151
|
Antiquorum sensing, antibiofilm formation and cytotoxicity activity of commonly used medicinal plants by inhabitants of Borabu sub-county, Nyamira County, Kenya. PLoS One 2017; 12:e0185722. [PMID: 29091715 PMCID: PMC5665492 DOI: 10.1371/journal.pone.0185722] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
Productions of various bacterial traits like production of virulence factors (e.g. toxins, enzymes), biofilm formation, luminescence among others, have been known to be controlled by quorum sensing (QS), a process that is dependent on chemical signals or autoinducers (AIs). Bacteria known to rely on such AIs are known to be virulent and tend to be resistant against various antimicrobial agents. Therefore, strategies aimed at the inhibition of QS pathways, are regarded as potential novel therapies in managing bacterial virulence hence reducing their ability to induce infections in humans. In the present study, a portfolio of 25 medicinal plant extracts (ethanol 50% v/v) used in southwestern Kenya were assayed against a transformed E. coli Top 10 reporter QS strain. This biosensor responds to the exogenous addition of 3-oxo-N-hexanoyl homoserine lactone (3OC6HSL) expressing green fluorescent protein (GFP). The large majority of the screened medicinal plants seemed to exhibit toxic effects and almost none of them induced antiquorum sensing (AQS) activity. This could be the consequence of the presence of mixed compounds in the extracts. Elaeodendron buchananii Loes and Acacia gerrardii Benth extracts that seemed to show AQS activity were further proved found to possess mild AQS but with defined antimicrobial activities, and no antibiofilm formation inhibition. As a control, an E. coli pBCA9145_jtk2828::sfGFP strain that produces constitutively GFP was used and confirmed that none of the two extracts quenched the fluorescence of sfGFP. Cytotoxicity assays with mammalian MDCK cells also did indicate that the selected extracts with putative AQS activity, also reduced the cell viability. Therefore, further studies will be needed to separate and re-test the individual compounds especially from the selected two promising plants.
Collapse
|
152
|
Baker YR, Hodgkinson JT, Florea BI, Alza E, Galloway WRJD, Grimm L, Geddis SM, Overkleeft HS, Welch M, Spring DR. Identification of new quorum sensing autoinducer binding partners in Pseudomonas aeruginosa using photoaffinity probes. Chem Sci 2017; 8:7403-7411. [PMID: 29163891 PMCID: PMC5674140 DOI: 10.1039/c7sc01270e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/26/2017] [Indexed: 12/20/2022] Open
Abstract
Many bacterial species, including the human pathogen Pseudomonas aeruginosa, employ a mechanism of intercellular communication known as quorum sensing (QS), which is mediated by signalling molecules termed autoinducers. The Pseudomonas Quinolone Signal (PQS) and 2-Heptyl-3H-4-Quinolone (HHQ) are autoinducers in P. aeruginosa, and they are considered important factors in the progress of infections by this clinically relevant organism. Herein, we report the development of HHQ and PQS photoaffinity-based probes for chemical proteomic studies. Application of these probes led to the identification of previously unsuspected putative HHQ and PQS binders, thereby providing new insights into QS at a proteomic level and revealing potential new small molecule targets for virulence attenuation strategies. Notably, we found evidence that PQS binds RhlR, the cognate receptor in the Rhl QS sub-system of P. aeruginosa. This is the first indication of interaction between the Rhl and PQS systems at the protein/ligand level, which suggests that RhlR should be considered a highly attractive target for antivirulence strategies.
Collapse
Affiliation(s)
- Y R Baker
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge , CB2 1GA , UK .
| | - J T Hodgkinson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge , CB2 1GA , UK .
| | - B I Florea
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - E Alza
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - W R J D Galloway
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - L Grimm
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge , CB2 1GA , UK .
| | - S M Geddis
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| | - H S Overkleeft
- Leiden Institute of Chemistry , Leiden University , Einsteinweg 55 , 2333 CC Leiden , The Netherlands
| | - M Welch
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge , CB2 1GA , UK .
| | - D R Spring
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK .
| |
Collapse
|
153
|
Duval M, Cossart P. Small bacterial and phagic proteins: an updated view on a rapidly moving field. Curr Opin Microbiol 2017; 39:81-88. [PMID: 29111488 DOI: 10.1016/j.mib.2017.09.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/17/2017] [Indexed: 01/21/2023]
Abstract
Small proteins, that is, polypeptides of 50 amino acids (aa) or less, are increasingly recognized as important regulators in bacteria. Secreted or not, their small size make them versatile proteins, involved in a wide range of processes. They may allow bacteria to sense and to respond to stresses, to send signals and communicate, and to modulate infections. Bacteriophages also produce small proteins to influence lysogeny/lysis decisions. In this review, we update the present view on small proteins functions, and discuss their possible applications.
Collapse
Affiliation(s)
- Mélodie Duval
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris F-75015, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris F-75015, France; Institut National de la Recherche Agronomique, Unité Sous Contrat 2020, Paris F-75015, France.
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Paris F-75015, France; Institut National de la Santé et de la Recherche Médicale, U604, Paris F-75015, France; Institut National de la Recherche Agronomique, Unité Sous Contrat 2020, Paris F-75015, France.
| |
Collapse
|
154
|
Kalaiarasan E, Thirumalaswamy K, Harish BN, Gnanasambandam V, Sali VK, John J. Inhibition of quorum sensing-controlled biofilm formation in Pseudomonas aeruginosa by quorum-sensing inhibitors. Microb Pathog 2017; 111:99-107. [DOI: 10.1016/j.micpath.2017.08.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 08/11/2017] [Accepted: 08/11/2017] [Indexed: 01/12/2023]
|
155
|
A Single Regulator Mediates Strategic Switching between Attachment/Spread and Growth/Virulence in the Plant Pathogen Ralstonia solanacearum. mBio 2017; 8:mBio.00895-17. [PMID: 28951474 PMCID: PMC5615195 DOI: 10.1128/mbio.00895-17] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The PhcA virulence regulator in the vascular wilt pathogen Ralstonia solanacearum responds to cell density via quorum sensing. To understand the timing of traits that enable R. solanacearum to establish itself inside host plants, we created a ΔphcA mutant that is genetically locked in a low-cell-density condition. Comparing levels of gene expression of wild-type R. solanacearum and the ΔphcA mutant during tomato colonization revealed that the PhcA transcriptome includes an impressive 620 genes (>2-fold differentially expressed; false-discovery rate [FDR], ≤0.005). Many core metabolic pathways and nutrient transporters were upregulated in the ΔphcA mutant, which grew faster than the wild-type strain in tomato xylem sap and on dozens of specific metabolites, including 36 found in xylem. This suggests that PhcA helps R. solanacearum to survive in nutrient-poor environmental habitats and to grow rapidly during early pathogenesis. However, after R. solanacearum reaches high cell densities in planta, PhcA mediates a trade-off from maximizing growth to producing costly virulence factors. R. solanacearum infects through roots, and low-cell-density-mode-mimicking ΔphcA cells attached to tomato roots better than the wild-type cells, consistent with their increased expression of several adhesins. Inside xylem vessels, ΔphcA cells formed aberrantly dense mats. Possibly as a result, the mutant could not spread up or down tomato stems as well as the wild type. This suggests that aggregating improves R. solanacearum survival in soil and facilitates infection and that it reduces pathogenic fitness later in disease. Thus, PhcA mediates a second strategic switch between initial pathogen attachment and subsequent dispersal inside the host. PhcA helps R. solanacearum optimally invest resources and correctly sequence multiple steps in the bacterial wilt disease cycle. Ralstonia solanacearum is a destructive soilborne crop pathogen that wilts plants by colonizing their water-transporting xylem vessels. It produces its costly virulence factors only after it has grown to a high population density inside a host. To identify traits that this pathogen needs in other life stages, we studied a mutant that mimics the low-cell-density condition. This mutant (the ΔphcA mutant) cannot sense its own population density. It grew faster than and used many nutrients not available to the wild-type bacterium, including metabolites present in tomato xylem sap. The mutant also attached much better to tomato roots, and yet it failed to spread once it was inside plants because it was trapped in dense mats. Thus, PhcA helps R. solanacearum succeed over the course of its complex life cycle by ensuring avid attachment to plant surfaces and rapid growth early in disease, followed by high virulence and effective dispersal later in disease.
Collapse
|
156
|
Hossain MA, Lee SJ, Park NH, Mechesso AF, Birhanu BT, Kang J, Reza MA, Suh JW, Park SC. Impact of phenolic compounds in the acyl homoserine lactone-mediated quorum sensing regulatory pathways. Sci Rep 2017; 7:10618. [PMID: 28878346 PMCID: PMC5587592 DOI: 10.1038/s41598-017-10997-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/17/2017] [Indexed: 01/10/2023] Open
Abstract
Quorum sensing (QS) is a cell density-dependent regulation of virulent bacterial gene expression by autoinducers that potentially pertains in the epidemic of bacterial virulence. This study was initially designed to evaluate the effect of 5 phenolic compounds in the modulation of QS and virulence factors of Chromobacterium violaceum and Pseudomonas aeruginosa, and to determine the mechanisms of their effects. Biosensor strains were used to assess antibacterial and anti-QS effect of these compounds. Only methyl gallate (MG) among these compounds demonstrated profound anti-QS effect in the preliminary study, and thus only MG was utilized further to evaluate the effects on the synthesis and activity of acyl homoserine lactone (AHL) in C. violaceum and on the modulation of biofilm, motility, proteolytic, elastase, pyocyanin, and rhamnolipid activity in P. aeruginosa. Finally, the effect of MG on the expression of QS-regulated genes of P. aeruginosa was verified. MG suppressed both the synthesis and activity of AHL in C. violaceum. It also restricted the biofilm formation and other QS-associated virulence factor of P. aeruginosa. MG concentration-dependently suppressed the expression of lasI/R, rhlI/R, and pqsA of P. aeruginosa and was non-toxic in in vitro study. This is the first report of the anti-QS mechanism of MG.
Collapse
Affiliation(s)
- Md Akil Hossain
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea.,Veterinary drugs & Biologics Division, Animal and Plant Quarantine Agency (QIA), 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Seung-Jin Lee
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Na-Hye Park
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Abraham Fikru Mechesso
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Biruk Tesfaye Birhanu
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - JeongWoo Kang
- Veterinary drugs & Biologics Division, Animal and Plant Quarantine Agency (QIA), 177, Hyeoksin 8-ro, Gimcheon-si, Gyeongsangbuk-do, 39660, Republic of Korea
| | - Md Ahsanur Reza
- Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University (Outer Campus), Babugonj, Barisal, 8210, Bangladesh
| | - Joo-Won Suh
- Center for Nutraceutical and Pharmaceutical Materials, Division of Bioscience and Bioinformatics, Science campus, Myongji University, 449-728, Yongin, Gyeonggi, Republic of Korea.
| | - Seung-Chun Park
- Laboratory of Clinical Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 702-701, Republic of Korea.
| |
Collapse
|
157
|
Chanda W, Joseph TP, Padhiar AA, Guo X, Min L, Wang W, Lolokote S, Ning A, Cao J, Huang M, Zhong M. Combined effect of linolenic acid and tobramycin on Pseudomonas aeruginosa biofilm formation and quorum sensing. Exp Ther Med 2017; 14:4328-4338. [PMID: 29104645 PMCID: PMC5658730 DOI: 10.3892/etm.2017.5110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/22/2017] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous Gram negative opportunistic pathogen capable of causing severe nosocomial infections in humans, and tobramycin is currently used to treat P. aeruginosa associated lung infections. Quorum sensing regulates biofilm formation which allows the bacterium to result in fatal infections forcing clinicians to extensively use antibiotics to manage its infections leading to emerging multiple drug resistant strains. As a result, tobramycin is also becoming resistant. Despite extensive studies on drug discovery to alleviate microbial drug resistance, the continued microbial evolution has forced researchers to focus on screening various phytochemicals and dietary compounds for antimicrobial potential. Linolenic acid (LNA) is an essential fatty acid that possesses antimicrobial actions on various microorganisms. It was hypothesized that LNA may affect the formation of biofilm on P. aeruginosa and improve the potency of tobramycin. The present study demonstrated that LNA interfered with cell-to-cell communication and reduced virulence factor production. It further enhanced the potency of tobramycin and synergistically inhibited biofilm formation through P. aeruginosa quorum sensing systems. Therefore, LNA may be considered as a potential agent for adjunctive therapy and its utilization may decrease tobramycin concentration in combined treatment thereby reducing aminoglycoside adverse effects.
Collapse
Affiliation(s)
- Warren Chanda
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Thomson Patrick Joseph
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Arshad Ahmed Padhiar
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Xuefang Guo
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Liu Min
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Wendong Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Sainyugu Lolokote
- Department of Epidemiology and Biostatistics, School of Public Health, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Anhong Ning
- Laboratory of Pathogen Biology, Experimental Teaching Center for Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Jing Cao
- Laboratory of Pathogen Biology, Experimental Teaching Center for Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Min Huang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| | - Mintao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044 P.R. China
| |
Collapse
|
158
|
Brader G, Compant S, Vescio K, Mitter B, Trognitz F, Ma LJ, Sessitsch A. Ecology and Genomic Insights into Plant-Pathogenic and Plant-Nonpathogenic Endophytes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:61-83. [PMID: 28489497 DOI: 10.1146/annurev-phyto-080516-035641] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants are colonized on their surfaces and in the rhizosphere and phyllosphere by a multitude of different microorganisms and are inhabited internally by endophytes. Most endophytes act as commensals without any known effect on their plant host, but multiple bacteria and fungi establish a mutualistic relationship with plants, and some act as pathogens. The outcome of these plant-microbe interactions depends on biotic and abiotic environmental factors and on the genotype of the host and the interacting microorganism. In addition, endophytic microbiota and the manifold interactions between members, including pathogens, have a profound influence on the function of the system plant and the development of pathobiomes. In this review, we elaborate on the differences and similarities between nonpathogenic and pathogenic endophytes in terms of host plant response, colonization strategy, and genome content. We furthermore discuss environmental effects and biotic interactions within plant microbiota that influence pathogenesis and the pathobiome.
Collapse
Affiliation(s)
- Günter Brader
- Center for Health and Bioresources, Bioresources Unit, Austrian Institute of Technology (AIT), 3430 Tulln, Austria
| | - Stéphane Compant
- Center for Health and Bioresources, Bioresources Unit, Austrian Institute of Technology (AIT), 3430 Tulln, Austria
| | - Kathryn Vescio
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003;
| | - Birgit Mitter
- Center for Health and Bioresources, Bioresources Unit, Austrian Institute of Technology (AIT), 3430 Tulln, Austria
| | - Friederike Trognitz
- Center for Health and Bioresources, Bioresources Unit, Austrian Institute of Technology (AIT), 3430 Tulln, Austria
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003;
| | - Angela Sessitsch
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003;
| |
Collapse
|
159
|
Positive Autoregulation of an Acyl-Homoserine Lactone Quorum-Sensing Circuit Synchronizes the Population Response. mBio 2017; 8:mBio.01079-17. [PMID: 28743819 PMCID: PMC5527315 DOI: 10.1128/mbio.01079-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many proteobacteria utilize acyl-homoserine lactone quorum-sensing signals. At low population densities, cells produce a basal level of signal, and when sufficient signal has accumulated in the surrounding environment, it binds to its receptor, and quorum-sensing-dependent genes can be activated. A common characteristic of acyl-homoserine lactone quorum sensing is that signal production is positively autoregulated. We have examined the role of positive signal autoregulation in Pseudomonas aeruginosa. We compared population responses and individual cell responses in populations of wild-type P. aeruginosa to responses in a strain with the signal synthase gene controlled by an arabinose-inducible promoter so that signal was produced at a constant rate per cell regardless of cell population density. At a population level, responses of the wild type and the engineered strain were indistinguishable, but the responses of individual cells in a population of the wild type showed greater synchrony than the responses of the engineered strain. Although sufficient signal is required to activate expression of quorum-sensing-regulated genes, it is not sufficient for activation of certain genes, the late genes, and their expression is delayed until other conditions are met. We found that late gene responses were reduced in the engineered strain. We conclude that positive signal autoregulation is not a required element in acyl-homoserine lactone quorum sensing, but it functions to enhance synchrony of the responses of individuals in a population. Synchrony might be advantageous in some situations, whereas a less coordinated quorum-sensing response might allow bet hedging and be advantageous in other situations. There are many quorum-sensing systems that involve a transcriptional activator, which responds to an acyl-homoserine lactone signal. In all of the examples studied, the gene coding for signal production is positively autoregulated by the signal, and it has even been described as essential for a quorum-sensing response. We have used the opportunistic pathogen Pseudomonas aeruginosa as a model to show that positive autoregulation is not required for a robust quorum-sensing response. We also show that positive autoregulation of signal production enhances the synchrony of the response. This information enhances our general understanding of the biological significance of how acyl-homoserine lactone quorum-sensing circuits are arranged.
Collapse
|
160
|
The Contribution of Bacteriophages to the Biology and Virulence of Pathogenic Clostridia. ADVANCES IN APPLIED MICROBIOLOGY 2017; 101:169-200. [PMID: 29050666 DOI: 10.1016/bs.aambs.2017.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacteriophages are key players in the evolution of most bacteria. Temperate phages have been associated with virulence of some of the deadliest pathogenic bacteria. Among the most notorious cases, the genes encoding the botulinum neurotoxin produced by Clostridium botulinum types C and D and the α-toxin (TcnA) produced by Clostridium novyi are both encoded within prophage genomes. Clostridium difficile is another important human pathogen and the recent identification of a complete binary toxin locus (CdtLoc) carried on a C. difficile prophage raises the potential for horizontal transfer of toxin genes by mobile genetic elements. Although the TcdA and TcdB toxins produced by C. difficile have never been found outside the pathogenicity locus (PaLoc), some prophages can still influence their production. Prophages can alter the expression of several metabolic and regulatory genes in C. difficile, as well as cell surface proteins such as CwpV, which confers phage resistance. Homologs of an Agr-like quorum sensing system have been identified in a C. difficile prophage, suggesting that it could possibly participate in cell-cell communication. Yet, other C. difficile prophages contain riboswitches predicted to recognize the secondary messenger molecule c-di-GMP involved in bacterial multicellular behaviors. Altogether, recent findings on clostridial phages underline the diversity of mechanisms and intricate relationship linking phages with their host. Here, milestone discoveries linking phages and virulence of some of the most pathogenic clostridial species will be retraced, with a focus on C. botulinum, C. novyi, C. difficile, and Clostridium perfringens phages, for which evidences are mostly available.
Collapse
|
161
|
The Effect of Adding Blood on the Virulence Genes Expression of Staphylococcus aureus in Exponential and Stationary Growth Phase. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.14380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
162
|
Turan NB, Chormey DS, Büyükpınar Ç, Engin GO, Bakirdere S. Quorum sensing: Little talks for an effective bacterial coordination. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.03.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
163
|
Heng SP, Letchumanan V, Deng CY, Ab Mutalib NS, Khan TM, Chuah LH, Chan KG, Goh BH, Pusparajah P, Lee LH. Vibrio vulnificus: An Environmental and Clinical Burden. Front Microbiol 2017; 8:997. [PMID: 28620366 PMCID: PMC5449762 DOI: 10.3389/fmicb.2017.00997] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/17/2017] [Indexed: 12/14/2022] Open
Abstract
Vibrio vulnificus is a Gram negative, rod shaped bacterium that belongs to the family Vibrionaceae. It is a deadly, opportunistic human pathogen which is responsible for the majority of seafood-associated deaths worldwide. V. vulnificus infection can be fatal as it may cause severe wound infections potentially requiring amputation or lead to sepsis in susceptible individuals. Treatment is increasingly challenging as V. vulnificus has begun to develop resistance against certain antibiotics due to their indiscriminate use. This article aims to provide insight into the antibiotic resistance of V. vulnificus in different parts of the world as well as an overall review of its clinical manifestations, treatment, and prevention. Understanding the organism's antibiotic resistance profile is vital in order to select appropriate treatment and initiate appropriate prevention measures to treat and control V. vulnificus infections, which should eventually help lower the mortality rate associated with this pathogen worldwide.
Collapse
Affiliation(s)
- Sing-Peng Heng
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Vengadesh Letchumanan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Chuan-Yan Deng
- Zhanjiang Evergreen South Ocean Science and Technology CorporationGuangdong, China
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan MalaysiaKuala Lumpur, Malaysia
| | - Tahir M. Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Department of Pharmacy, Absyn University PeshawarPeshawar, Pakistan
| | - Lay-Hong Chuah
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of MalayaKuala Lumpur, Malaysia
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Priyia Pusparajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
164
|
Coleman ME, Marks HM, Bartrand TA, Donahue DW, Hines SA, Comer JE, Taft SC. Modeling Rabbit Responses to Single and Multiple Aerosol Exposures of Bacillus anthracis Spores. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2017; 37:943-957. [PMID: 28121020 PMCID: PMC6126673 DOI: 10.1111/risa.12688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/07/2016] [Accepted: 06/18/2016] [Indexed: 06/06/2023]
Abstract
Survival models are developed to predict response and time-to-response for mortality in rabbits following exposures to single or multiple aerosol doses of Bacillus anthracis spores. Hazard function models were developed for a multiple-dose data set to predict the probability of death through specifying functions of dose response and the time between exposure and the time-to-death (TTD). Among the models developed, the best-fitting survival model (baseline model) is an exponential dose-response model with a Weibull TTD distribution. Alternative models assessed use different underlying dose-response functions and use the assumption that, in a multiple-dose scenario, earlier doses affect the hazard functions of each subsequent dose. In addition, published mechanistic models are analyzed and compared with models developed in this article. None of the alternative models that were assessed provided a statistically significant improvement in fit over the baseline model. The general approach utilizes simple empirical data analysis to develop parsimonious models with limited reliance on mechanistic assumptions. The baseline model predicts TTDs consistent with reported results from three independent high-dose rabbit data sets. More accurate survival models depend upon future development of dose-response data sets specifically designed to assess potential multiple-dose effects on response and time-to-response. The process used in this article to develop the best-fitting survival model for exposure of rabbits to multiple aerosol doses of B. anthracis spores should have broad applicability to other host-pathogen systems and dosing schedules because the empirical modeling approach is based upon pathogen-specific empirically-derived parameters.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sarah C. Taft
- Corresponding Author: Sarah C. Taft, National Homel and Security Research Center, U.S. Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, , O: 513-569-7037, C: 513-288-5460
| |
Collapse
|
165
|
Dou Y, Song F, Guo F, Zhou Z, Zhu C, Xiang J, Huan J. Acinetobacter baumannii quorum-sensing signalling molecule induces the expression of drug-resistance genes. Mol Med Rep 2017; 15:4061-4068. [PMID: 28487993 PMCID: PMC5436197 DOI: 10.3892/mmr.2017.6528] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/13/2017] [Indexed: 01/23/2023] Open
Abstract
Quorum-sensing signalling molecules such as N-acyl homoserine lactones (AHLs) enable certain Gram-negative bacteria to respond to environmental changes through behaviours, such as biofilm formation and flagellar movement. The present study aimed to identify Acinetobacter baumannii AHLs and assess their influence on antibiotic resistance. A clinical isolate of A. baumannii strain S (AbS) was collected from the wound of a burn patient and high-performance liquid chromatography and tandem quadrupole or quadrupole time-of-flight high-resolution mass spectrometry was used to identify AbS AHLs. Antibiotic sensitivity was assessed in an AHL-deficient AbS mutant (AbS-M), and the expression of drug-resistance genes in the presence of meropenem in AbS, AbS-M and AbS-M treated with the AHL N-3-hydroxy-dodecanoyl-homoserine lactone (N-3-OH-C12-HSL). AbS-M was more sensitive to meropenem and piperacillin than wild-type AbS, but resistance was restored by supplementation with N-3-OH-C12-HSL. In addition, meropenem-treated AbS-M expressed lower levels of the drug-resistance genes oxacillinase 51, AmpC, AdeA and AdeB; treatment with N-3-OH-C12-HSL also restored the expression of these genes. Overall, the results of the present study indicate that N-3-OH-C12-HSL may be involved in regulating the expression of drug-resistance genes in A. baumannii. Therefore, this quorum-sensing signalling molecule may be an important target for treating multidrug-resistant A. baumannii infections.
Collapse
Affiliation(s)
- Yi Dou
- Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Fei Song
- Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Feng Guo
- Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Zengding Zhou
- Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Cailian Zhu
- The Ninth People's Hospital, School of Stomatology, Shanghai Jiaotong University, Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Jun Xiang
- Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| | - Jingning Huan
- Department of Burns and Plastic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
166
|
Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. PLoS One 2017; 12:e0176883. [PMID: 28453568 PMCID: PMC5409170 DOI: 10.1371/journal.pone.0176883] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/18/2017] [Indexed: 11/19/2022] Open
Abstract
The quorum sensing (QS) circuit plays a role in the precise regulation of genes controlling virulence factors and biofilm formation in Pseudomonas aeruginosa. QS-controlled biofilm formation by Pseudomonas aeruginosa in clinical settings has remained controversial due to emerging drug resistance; therefore, screening diverse compounds for anti-biofilm or anti-QS activities is important. This study demonstrates the ability of sub-minimum inhibitory concentrations (sub-MICs) of baicalin, an active natural compound extracted from the traditional Chinese medicinal Scutellaria baicalensis, to inhibit the formation of Pseudomonas aeruginosa biofilms and enhance the bactericidal effects of various conventional antibiotics in vitro. In addition, baicalin exerted dose-dependent inhibitory effects on virulence phenotypes (LasA protease, LasB elastase, pyocyanin, rhamnolipid, motilities and exotoxin A) regulated by QS in Pseudomonas aeruginosa. Moreover, the expression levels of QS-regulatory genes, including lasI, lasR, rhlI, rhlR, pqsR and pqsA, were repressed after sub-MIC baicalin treatment, resulting in significant decreases in the QS signaling molecules 3-oxo-C12-HSL and C4-HSL, confirming the ability of baicalin-mediated QS inhibition to alter gene and protein expression. In vivo experiments indicated that baicalin treatment reduces Pseudomonas aeruginosa pathogenicity in Caenorhabditis elegans. Greater worm survival in the baicalin-treated group manifested as an increase in the LT50 from 24 to 96 h. In a mouse peritoneal implant infection model, baicalin treatment enhanced the clearance of Pseudomonas aeruginosa from the implants of mice infected with Pseudomonas aeruginosa compared with the control group. Moreover, the combination of baicalin and antibiotics significantly reduced the numbers of colony-forming units in the implants to a significantly greater degree than antibiotic treatment alone. Pathological and histological analyses revealed mitigation of the inflammatory response and reduced cell infiltration in the peritoneal tissue surrounding the implants after baicalin treatment. Measurement of the cytokine levels in the peritoneal lavage fluid of mice in the baicalin treatment group revealed a decrease in IL-4, an increase in interferon γ (IFN-γ), and a reversed IFN-γ/IL-4 ratio compared with the control group, indicating that baicalin treatment activated the Th1-induced immune response to expedite bacterial load clearance. Based on these results, baicalin might be a potent QS inhibitor and anti-biofilm agent for combating Pseudomonas aeruginosa biofilm-related infections.
Collapse
|
167
|
Inhibitory role of acyl homoserine lactones in hemolytic activity and viability of Streptococcus pyogenes M6 S165. Sci Rep 2017; 7:44902. [PMID: 28303956 PMCID: PMC5355980 DOI: 10.1038/srep44902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/14/2017] [Indexed: 12/28/2022] Open
Abstract
Streptococcus pyogenes an adapted human pathogen asymptomatically colonizes the nasopharynx, among other polymicrobial communities. However, information on the events leading to the colonization and expression of virulence markers subject to interspecies and host-bacteria interactions are limited. The interference of acyl homoserine lactones (AHLs) with the hemolytic activity and viability of S. pyogenes M6 S165 was examined. AHLs, with fatty acid side chains ≥12 carbon atoms, inhibited hemolytic activity by downregulating the expression of the sag operon involved in the production of streptolysin S. Inhibitory AHLs upregulated the expression of transcriptional regulator LuxR. Electrophoretic mobility shift assays revealed the interaction of LuxR with the region upstream of sagA. AHL-mediated bactericidal activity observed at higher concentrations (mM range) was an energy-dependent process, constrained by the requirement of glucose and iron. Ferrichrome transporter FtsABCD facilitated transport of AHLs across the streptococcal membrane. The study demonstrates a previously unreported role for AHLs in S. pyogenes virulence.
Collapse
|
168
|
Vasavi H, Sudeep H, Lingaraju H, Shyam Prasad K. Bioavailability-enhanced Resveramax™ modulates quorum sensing and inhibits biofilm formation in Pseudomonas aeruginosa PAO1. Microb Pathog 2017; 104:64-71. [DOI: 10.1016/j.micpath.2017.01.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
|
169
|
|
170
|
Quorum sensing by farnesol revisited. Curr Genet 2017; 63:791-797. [DOI: 10.1007/s00294-017-0683-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
|
171
|
Surendran Nair M, Amalaradjou MA, Venkitanarayanan K. Antivirulence Properties of Probiotics in Combating Microbial Pathogenesis. ADVANCES IN APPLIED MICROBIOLOGY 2017; 98:1-29. [PMID: 28189153 DOI: 10.1016/bs.aambs.2016.12.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Probiotics are nonpathogenic microorganisms that confer a health benefit on the host when administered in adequate amounts. Ample evidence is documented to support the potential application of probiotics for the prevention and treatment of infections. Health benefits of probiotics include prevention of diarrhea, including antibiotic-associated diarrhea and traveler's diarrhea, atopic eczema, dental carries, colorectal cancers, and treatment of inflammatory bowel disease. The cumulative body of scientific evidence that demonstrates the beneficial effects of probiotics on health and disease prevention has made probiotics increasingly important as a part of human nutrition and led to a surge in the demand for probiotics in clinical applications and as functional foods. The ability of probiotics to promote health is attributed to the various beneficial effects exerted by these microorganisms on the host. These include lactose metabolism and food digestion, production of antimicrobial peptides and control of enteric infections, anticarcinogenic properties, immunologic enhancement, enhancement of short-chain fatty acid production, antiatherogenic and cholesterol-lowering attributes, regulatory role in allergy, protection against vaginal or urinary tract infections, increased nutritional value, maintenance of epithelial integrity and barrier, stimulation of repair mechanism in cells, and maintenance and reestablishment of well-balanced indigenous intestinal and respiratory microbial communities. Most of these attributes primarily focus on the effect of probiotic supplementation on the host. Hence, in most cases, it can be concluded that the ability of a probiotic to protect the host from infection is an indirect result of promoting overall health and well-being. However, probiotics also exert a direct effect on invading microorganisms. The direct modes of action resulting in the elimination of pathogens include inhibition of pathogen replication by producing antimicrobial substances like bacteriocins, competition for limiting resources in the host, antitoxin effect, inhibition of virulence, antiadhesive and antiinvasive effects, and competitive exclusion by competition for binding sites or stimulation of epithelial barrier function. Although much has been documented about the ability of probiotics to promote host health, there is limited discussion on the above mentioned effects of probiotics on pathogens. Being in an era of antibiotic resistance, a better understanding of this complex probiotic-pathogen interaction is critical for development of effective strategies to control infections. Therefore, this chapter will focus on the ability of probiotics to directly modulate the infectious nature of pathogens and the underlying mechanisms that mediate these effects.
Collapse
|
172
|
The Shift of an Intestinal "Microbiome" to a "Pathobiome" Governs the Course and Outcome of Sepsis Following Surgical Injury. Shock 2017; 45:475-82. [PMID: 26863118 DOI: 10.1097/shk.0000000000000534] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis following surgical injury remains a growing and worrisome problem following both emergent and elective surgery. Although early resuscitation efforts and prompt antibiotic therapy have improved outcomes in the first 24 to 48 h, late onset sepsis is now the most common cause of death in modern intensive care units. This time shift may be, in part, a result of prolonged exposure of the host to the stressors of critical illness which, over time, erode the health promoting intestinal microbiota and allow for virulent pathogens to predominate. Colonizing pathogens can then subvert the immune system and contribute to the deterioration of the host response. Here, we posit that novel approaches integrating the molecular, ecological, and evolutionary dynamics of the evolving gut microbiome/pathobiome during critical illness are needed to understand and prevent the late onset sepsis that develops following prolonged critical illness.
Collapse
|
173
|
Li YH, Huang X, Tian XL. Recent advances in dental biofilm: impacts of microbial interactions
on the biofilm ecology and pathogenesis. AIMS BIOENGINEERING 2017. [DOI: 10.3934/bioeng.2017.3.335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
174
|
Kröger C, Kary SC, Schauer K, Cameron ADS. Genetic Regulation of Virulence and Antibiotic Resistance in Acinetobacter baumannii. Genes (Basel) 2016; 8:genes8010012. [PMID: 28036056 PMCID: PMC5295007 DOI: 10.3390/genes8010012] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/18/2016] [Accepted: 12/20/2016] [Indexed: 01/14/2023] Open
Abstract
Multidrug resistant microorganisms are forecast to become the single biggest challenge to medical care in the 21st century. Over the last decades, members of the genus Acinetobacter have emerged as bacterial opportunistic pathogens, in particular as challenging nosocomial pathogens because of the rapid evolution of antimicrobial resistances. Although we lack fundamental biological insight into virulence mechanisms, an increasing number of researchers are working to identify virulence factors and to study antibiotic resistance. Here, we review current knowledge regarding the regulation of virulence genes and antibiotic resistance in Acinetobacter baumannii. A survey of the two-component systems AdeRS, BaeSR, GacSA and PmrAB explains how each contributes to antibiotic resistance and virulence gene expression, while BfmRS regulates cell envelope structures important for pathogen persistence. A. baumannii uses the transcription factors Fur and Zur to sense iron or zinc depletion and upregulate genes for metal scavenging as a critical survival tool in an animal host. Quorum sensing, nucleoid-associated proteins, and non-classical transcription factors such as AtfA and small regulatory RNAs are discussed in the context of virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Carsten Kröger
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Stefani C Kary
- Department of Microbiology, School of Genetics and Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin 2, Ireland.
| | - Kristina Schauer
- Department of Veterinary Science, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, Oberschleißheim 85764, Germany.
| | - Andrew D S Cameron
- Department of Biology, University of Regina, Regina, SK S4S 042, Canada.
| |
Collapse
|
175
|
Lillicrap A, Macken A, Wennberg AC, Grung M, Rundberget JT, Fredriksen L, Scheie AA, Benneche T, d'Auriac MA. Environmental fate and effects of novel quorum sensing inhibitors that can control biofilm formation. CHEMOSPHERE 2016; 164:52-58. [PMID: 27574814 DOI: 10.1016/j.chemosphere.2016.08.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
The formation of bacterial biofilms can have negative impacts on industrial processes and are typically difficult to control. The increase of antibiotic resistance, in combination with the requirement for more environmentally focused approaches, has placed pressure on industry and the scientific community to reassess biofilm control strategies. The discovery of bacterial quorum sensing, as an important mechanism in biofilm formation, has led to the development of new substances (such as halogenated thiophenones) to inhibit the quorum sensing process. However, there are currently limited data regarding the biodegradability or ecotoxicity of these substances. To assess the environmental fate and effects of thiophenones capable of quorum sensing inhibition, candidate substances were first identified that have potentially high biodegradability and low ecotoxicity using quantitative structure activity relationships. Subsequent confirmatory hazard assessment of these substances, using a marine alga and a marine crustacean, indicated that these estimates were significantly under predicted with acute toxicity values more than three orders of magnitude lower than anticipated combined with limited biodegradability. Therefore, although these quorum sensing inhibitors appear a promising approach to control biofilms, they may also have environmental impacts on certain aquatic organisms.
Collapse
Affiliation(s)
- Adam Lillicrap
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | - Ailbhe Macken
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | | | - Merete Grung
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | | | - Lene Fredriksen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.
| | - Anne Aamdal Scheie
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | - Tore Benneche
- Department of Chemistry, Faculty of Chemistry, University of Oslo, Oslo, Norway.
| | | |
Collapse
|
176
|
Shanker E, Morrison DA, Talagas A, Nessler S, Federle MJ, Prehna G. Pheromone Recognition and Selectivity by ComR Proteins among Streptococcus Species. PLoS Pathog 2016; 12:e1005979. [PMID: 27907154 PMCID: PMC5131902 DOI: 10.1371/journal.ppat.1005979] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/04/2016] [Indexed: 12/11/2022] Open
Abstract
Natural transformation, or competence, is an ability inherent to bacteria for the uptake of extracellular DNA. This process is central to bacterial evolution and allows for the rapid acquirement of new traits, such as antibiotic resistance in pathogenic microorganisms. For the Gram-positive bacteria genus Streptococcus, genes required for competence are under the regulation of quorum sensing (QS) mediated by peptide pheromones. One such system, ComRS, consists of a peptide (ComS) that is processed (XIP), secreted, and later imported into the cytoplasm, where it binds and activates the transcription factor ComR. ComR then engages in a positive feedback loop for the expression of ComS and the alternative sigma-factor SigX. Although ComRS are present in the majority of Streptococcus species, the sequence of both ComS/XIP and ComR diverge significantly, suggesting a mechanism for species-specific communication. To study possible cross-talk between streptococcal species in the regulation of competence, and to explore in detail the molecular interaction between ComR and XIP we undertook an interdisciplinary approach. We developed a 'test-bed' assay to measure the activity of different ComR proteins in response to cognate and heterologous XIP peptides in vivo, revealing distinct ComR classes of strict, intermediate, and promiscuous specificity among species. We then solved an X-ray crystal structure of ComR from S. suis to further understand the interaction with XIP and to search for structural features in ComR proteins that may explain XIP recognition. Using the structure as a guide, we probed the apo conformation of the XIP-binding pocket by site-directed mutagenesis, both in test-bed cultures and biochemically in vitro. In alignments with ComR proteins from other species, we find that the pocket is lined by a variable and a conserved face, where residues of the conserved face contribute to ligand binding and the variable face discriminate among XIP peptides. Together, our results not only provide a model for XIP recognition and specificity, but also allow for the prediction of novel XIP peptides that induce ComR activity.
Collapse
Affiliation(s)
- Erin Shanker
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, United States of America
- Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Donald A. Morrison
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Antoine Talagas
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, France
| | - Sylvie Nessler
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, France
| | - Michael J. Federle
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, United States of America
- Center for Biomolecular Science, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Gerd Prehna
- Center for Structural Biology, Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States of America
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States of America
| |
Collapse
|
177
|
Thompson TA, Brown PD. Association between the agr locus and the presence of virulence genes and pathogenesis in Staphylococcus aureus using a Caenorhabditis elegans model. Int J Infect Dis 2016; 54:72-76. [PMID: 27915107 DOI: 10.1016/j.ijid.2016.11.411] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/03/2016] [Accepted: 11/21/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a commensal pathogen with a virulon that is under agr control. agr dysfunction has been seen in clinical strains that do not respond positively to treatment. This study aimed to establish the association between the genes in the virulon and the presence of agr and to determine the relationship between the presence or absence of agr and pathogenicity. METHODS PCR was used to identify the presence of the agr operon in 101 clinical S. aureus strains. δ-Haemolysin screening was conducted on all agr-positive strains using the blood agar assay. Singleplex and/or multiplex PCR was used to determine the presence of 31 virulence genes in the strains. Caenorhabditis elegans infectivity and lifespan assays were conducted using 30 CF512 nematodes per strain in triplicate. Significance associated with the carriage of virulence and agr genes was determined using the Chi-square test. Nematode survival was measured using Kaplan-Meier survival estimates and differences in survival were assessed using the log-rank test. RESULTS The frequency of agr-negative strains was 20%. All groups of virulence genes were significantly associated with agr-positive strains: enterotoxin (p<0.001), toxins (p<0.001), capsule (p=0.036), and microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) (p=0.0026). The median lifespan (q=0.5) of agr-negative strains was 15.5 days and of agr-positive strains was 6.5 days. The log-rank test showed a significant difference in the survival rate of nematodes exposed to the two groups (p=0.006). CONCLUSIONS There was a strong association between the carriage of virulence genes and the presence of the agr operon in clinical strains of S. aureus. Further, agr-positive strains were more pathogenic than agr-negative strains, suggesting a correlation between the presence of agr, carriage of virulence determinants, and pathogenicity.
Collapse
Affiliation(s)
- Terissa A Thompson
- Department of Basic Medical Sciences (Biochemistry Section), University of the West Indies, Mona, Jamaica
| | - Paul D Brown
- Department of Basic Medical Sciences (Biochemistry Section), University of the West Indies, Mona, Jamaica.
| |
Collapse
|
178
|
Li XC, Wang C, Mulchandani A, Ge X. Engineering Soluble Human Paraoxonase 2 for Quorum Quenching. ACS Chem Biol 2016; 11:3122-3131. [PMID: 27623343 DOI: 10.1021/acschembio.6b00527] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many pathogenic bacteria utilize quorum sensing (QS) systems to regulate the expression of their virulence genes and promote the formation of biofilm, which renders pathogens with extreme resistance to conventional antibiotic treatments. As a novel approach for attenuating antibiotic resistance and in turn fighting chronic infections, enzymatic inactivation of QS signaling molecules, such as N-acyl homoserine lactones (AHLs), holds great promises. Instead of using bacterial lactonases that can evoke immune response when administered, we focus on the human paraoxonase 2 (huPON2). However, insolubility when heterologously overexpressed hinders its application as anti-infection therapeutics. In this study, huPON2 was engineered for soluble expression with minimal introduction of foreign sequences. On the basis of structure modeling, degenerate linkers were exploited for the removal of hydrophobic helices of huPON2 without disrupting its folding structure and thus retaining its enzymatic function. High soluble expression levels were achieved with a yield of 76 mg of fully human PON2 variants per liter of culture media. Particularly, two clones, D2 and E3, showed significant quorum quenching (QQ) bioactivities and effectively impeded Pseudomonas aeruginosa swimming and swarming motilities, signs of an early stage of biofilm formation. In addition, by correlating QQ with luminescence signal readouts, quantitative analysis of QQ toward natural or non-natural AHL-regulator combinations suggested that D2 and E3 exhibited strong lactone hydrolysis activities toward five AHLs of different side chain lengths and modifications widely utilized by a variety of biomedically important pathogens.
Collapse
Affiliation(s)
- Xin Cathy Li
- Department of Biochemistry and Molecular Biology, ‡Department of Chemical
and Environmental
Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, United States
| | - Christopher Wang
- Department of Biochemistry and Molecular Biology, ‡Department of Chemical
and Environmental
Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, United States
| | - Ashok Mulchandani
- Department of Biochemistry and Molecular Biology, ‡Department of Chemical
and Environmental
Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, United States
| | - Xin Ge
- Department of Biochemistry and Molecular Biology, ‡Department of Chemical
and Environmental
Engineering, University of California Riverside, 900 University Ave., Riverside, California 92521, United States
| |
Collapse
|
179
|
Alibert S, N'gompaza Diarra J, Hernandez J, Stutzmann A, Fouad M, Boyer G, Pagès JM. Multidrug efflux pumps and their role in antibiotic and antiseptic resistance: a pharmacodynamic perspective. Expert Opin Drug Metab Toxicol 2016; 13:301-309. [PMID: 27764576 DOI: 10.1080/17425255.2017.1251581] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Worrying levels of bacterial resistance have been reported worldwide involving the failure of many available antibiotic treatments. Multidrug resistance (MDR) in Gram-negative bacteria is often ascribed to the presence of multiple and different resistance mechanisms in the same strain. RND efflux pumps play a major role and are an attractive target to discover new antibacterial drugs. Areas covered: This review discusses the prevalence of efflux pumps, their overexpression in clinical scenarios, their polyselectivity, their effect on the intracellular concentrations of various antibiotics associated with the alteration of the membrane permeability and their involvement in pathogenicity are discussed. Expert opinion: Efflux pumps are new targets for the development of adjuvant in antibiotic treatments by of efflux pump inhibition. They may allow us to rejuvenate old antibiotics acting on their concentration inside the bacteria and thus potentiating their activity while blocking the release of virulence factors. It is a pharmacodynamic challenge to finalize new combined therapy.
Collapse
Affiliation(s)
- Sandrine Alibert
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Joannah N'gompaza Diarra
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Jessica Hernandez
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Aurélien Stutzmann
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Marwa Fouad
- b Pharmaceutical Chemistry Department, Faculty of Pharmacy , Cairo University , Giza , Egypt
| | - Gérard Boyer
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| | - Jean-Marie Pagès
- a Aix-Marseille Université, IRBA, TMCD2, UMR-MD1, Transporteurs Membranaires, Chimioresistance et Drug Design, Facultés de Médecine et de Pharmacie , Marseille , France
| |
Collapse
|
180
|
Palmer AG, Mukherjee A, Stacy DM, Lazar S, Ané JM, Blackwell HE. Interkingdom Responses to Bacterial Quorum Sensing Signals Regulate Frequency and Rate of Nodulation in Legume-Rhizobia Symbiosis. Chembiochem 2016; 17:2199-2205. [DOI: 10.1002/cbic.201600373] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Andrew G. Palmer
- Department of Biological Sciences; Florida Institute of Technology; 150 West University Melbourne FL 32904 USA
| | - Arijit Mukherjee
- Department of Biology; University of Central Arkansas; 201 Donaghey Conway AK 72035 USA
| | - Danielle M. Stacy
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706 USA
| | - Stephen Lazar
- Department of Biological Sciences; Florida Institute of Technology; 150 West University Melbourne FL 32904 USA
| | - Jean-Michel Ané
- Department of Agronomy; University of Wisconsin-Madison; 1575 Linden Drive Madison WI 53706 USA
- Department of Bacteriology; University of Wisconsin-Madison; 1550 Linden Drive Madison WI 53706 USA
| | - Helen E. Blackwell
- Department of Chemistry; University of Wisconsin-Madison; 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
181
|
García-Contreras R. Is Quorum Sensing Interference a Viable Alternative to Treat Pseudomonas aeruginosa Infections? Front Microbiol 2016; 7:1454. [PMID: 27683577 PMCID: PMC5021973 DOI: 10.3389/fmicb.2016.01454] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/31/2016] [Indexed: 01/02/2023] Open
Abstract
Quorum sensing (QS) coordinates the expression of multiple virulence factors in Pseudomonas aeruginosa; hence its inhibition has been postulated as a new alternative to treat its infections. In particular, QS interference approaches claim that they attenuate bacterial virulence without directly decreasing bacterial growth and suggest that in vivo the immune system would control the infections. Moreover, since in vitro experiments performed in rich medium demonstrate that interfering with QS decreases the production of virulence factors without affecting bacterial growth it was assumed than in vivo therapies will minimize the selection of resistant strains. Therefore, the underlying assumptions toward an effective implementation of a successful Quorum sensing interference (QSI) therapy for treating P. aeruginosa infections are that (i) QS only exerts important effects in the regulation of virulence genes but it does not affect metabolic processes linked to growth, (ii) the expression of virulence factors is only positively regulated by QS, (iii) inhibition of virulence factors in vivo do not affect bacterial growth, (iv) the immune system of the infected patients will be able to get rid of the infections, and (v) the therapy will be effective in the strains that are actively producing the infections. Nevertheless, for QSI in P. aeruginosa, substantial experimental evidence against the validity of most of these assumptions has accumulated during the past years, suggesting that a far better understanding of its virulence and its behavior during infections is needed in order to design truly solid QSI therapeutic alternatives to combat this remarkable pathogen.
Collapse
Affiliation(s)
- Rodolfo García-Contreras
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico Mexico City, Mexico
| |
Collapse
|
182
|
Huang L, Minematsu T, Kitamura A, Quinetti PC, Nakagami G, Mugita Y, Oe M, Noguchi H, Mori T, Sanada H. Topical Administration of Acylated Homoserine Lactone Improves Epithelialization of Cutaneous Wounds in Hyperglycaemic Rats. PLoS One 2016; 11:e0158647. [PMID: 27404587 PMCID: PMC4942101 DOI: 10.1371/journal.pone.0158647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/20/2016] [Indexed: 01/13/2023] Open
Abstract
Clinicians often experience delayed epithelialization in diabetic patients, for which a high glucose condition is one of the causes. However, the mechanisms underlying delayed wound closure have not been fully elucidated, and effective treatments to enhance epithelialization in patients with hyperglycaemia have not been established. Here we propose a new reagent, acylated homoserine lactone (AHL), to improve the delayed epithelialization due to the disordered formation of a basement membrane of epidermis in hyperglycaemic rats. Acute hyperglycaemia was induced by streptozotocin injection in this experiment. Full thickness wounds were created on the flanks of hyperglycaemic or control rats. Histochemical and immunohistochemical analyses were performed to identify hyperglycaemia-specific abnormalities in epidermal regeneration by comparison between groups. We then examined the effects of AHL on delayed epithelialization in hyperglycaemic rats. Histological analysis showed the significantly shorter epithelializing tissue (P < 0.05), abnormal structure of basement membrane (fragmentation and immaturity), and hypo- and hyperproliferation of basal keratinocytes in hyperglycaemic rats. Treating the wound with AHL resulted in the decreased abnormalities of basement membrane, normal distribution of proliferating epidermal keratinocytes, and significantly promoted epithelialization (P < 0.05) in hyperglycemic rats, suggesting the improving effects of AHL on abnormal epithelialization due to hyperglycemia.
Collapse
Affiliation(s)
- Lijuan Huang
- Departments of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, Japan
| | - Takeo Minematsu
- Departments of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, Japan
- * E-mail: (HS); (T. Minematsu)
| | - Aya Kitamura
- Departments of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, Japan
| | - Paes C. Quinetti
- Departments of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, Japan
| | - Gojiro Nakagami
- Departments of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, Japan
| | - Yuko Mugita
- Departments of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, Japan
| | - Makoto Oe
- Department of Advanced Nursing Technology, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, Japan
| | - Hiroshi Noguchi
- Department of Life Support Technology (Molten), Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, Japan
| | - Taketoshi Mori
- Department of Life Support Technology (Molten), Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, Japan
| | - Hiromi Sanada
- Departments of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, The University of Tokyo, Hongo, Tokyo, Japan
- * E-mail: (HS); (T. Minematsu)
| |
Collapse
|
183
|
Morkunas B, Gal B, Galloway WRJD, Hodgkinson JT, Ibbeson BM, Tan YS, Welch M, Spring DR. Discovery of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells. Beilstein J Org Chem 2016; 12:1428-33. [PMID: 27559393 PMCID: PMC4979876 DOI: 10.3762/bjoc.12.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022] Open
Abstract
Pyocyanin is a small molecule produced by Pseudomonas aeruginosa that plays a crucial role in the pathogenesis of infections by this notorious opportunistic pathogen. The inhibition of pyocyanin production has been identified as an attractive antivirulence strategy for the treatment of P. aeruginosa infections. Herein, we report the discovery of an inhibitor of pyocyanin production in cultures of wild-type P. aeruginosa which is based around a 4-alkylquinolin-2(1H)-one scaffold. To the best of our knowledge, this is the first reported example of pyocyanin inhibition by a compound based around this molecular framework. The compound may therefore be representative of a new structural sub-class of pyocyanin inhibitors, which could potentially be exploited in in a therapeutic context for the development of critically needed new antipseudomonal agents. In this context, the use of wild-type cells in this study is notable, since the data obtained are of direct relevance to native situations. The compound could also be of value in better elucidating the role of pyocyanin in P. aeruginosa infections. Evidence suggests that the active compound reduces the level of pyocyanin production by inhibiting the cell–cell signalling mechanism known as quorum sensing. This could have interesting implications; quorum sensing regulates a range of additional elements associated with the pathogenicity of P. aeruginosa and there is a wide range of other potential applications where the inhibition of quorum sensing is desirable.
Collapse
Affiliation(s)
- Bernardas Morkunas
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Balint Gal
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | | | - James T Hodgkinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Brett M Ibbeson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| | - Yaw Sing Tan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK; Bioinformatics Institute, ASTAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK
| |
Collapse
|
184
|
Mitra A, Herren CD, Patel IR, Coleman A, Mukhopadhyay S. Integration of AI-2 Based Cell-Cell Signaling with Metabolic Cues in Escherichia coli. PLoS One 2016; 11:e0157532. [PMID: 27362507 PMCID: PMC4928848 DOI: 10.1371/journal.pone.0157532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/01/2016] [Indexed: 01/08/2023] Open
Abstract
The quorum sensing molecule Autoinducer-2 (AI-2) is generated as a byproduct of activated methyl cycle by the action of LuxS in Escherichia coli. AI-2 is synthesized, released and later internalized in a cell-density dependent manner. Here, by mutational analysis of the genes, uvrY and csrA, we describe a regulatory circuit of accumulation and uptake of AI-2. We constructed a single-copy chromosomal luxS-lacZ fusion in a luxS+ merodiploid strain and evaluated its relative expression in uvrY and csrA mutants. At the entry of stationary phase, the expression of the fusion and AI-2 accumulation was positively regulated by uvrY and negatively regulated by csrA respectively. A deletion of csrA altered message stability of the luxS transcript and CsrA protein exhibited weak binding to 5’ luxS regulatory region. DNA protein interaction and chromatin immunoprecipitation analysis confirmed direct interaction of UvrY with the luxS promoter. Additionally, reduced expression of the fusion in hfq deletion mutant suggested involvement of small RNA interactions in luxS regulation. In contrast, the expression of lsrA operon involved in AI-2 uptake, is negatively regulated by uvrY and positively by csrA in a cell-density dependent manner. The dual role of csrA in AI-2 synthesis and uptake suggested a regulatory crosstalk of cell signaling with carbon regulation in Escherichia coli. We found that the cAMP-CRP mediated catabolite repression of luxS expression was uvrY dependent. This study suggests that luxS expression is complex and regulated at the level of transcription and translation. The multifactorial regulation supports the notion that cell-cell communication requires interaction and integration of multiple metabolic signals.
Collapse
Affiliation(s)
- Arindam Mitra
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Christopher D. Herren
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Isha R. Patel
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Adam Coleman
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Suman Mukhopadhyay
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
185
|
Do H, Kumaraswami M. Structural Mechanisms of Peptide Recognition and Allosteric Modulation of Gene Regulation by the RRNPP Family of Quorum-Sensing Regulators. J Mol Biol 2016; 428:2793-804. [PMID: 27283781 DOI: 10.1016/j.jmb.2016.05.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/19/2016] [Accepted: 05/29/2016] [Indexed: 11/19/2022]
Abstract
The members of RRNPP family of bacterial regulators sense population density-specific secreted oligopeptides and modulate the expression of genes involved in cellular processes, such as sporulation, competence, virulence, biofilm formation, conjugative plasmid transfer and antibiotic resistance. Signaling by RRNPP regulators include several steps: generation and secretion of the signaling oligopeptides, re-internalization of the signaling molecules into the cytoplasm, signal sensing by the cytosolic RRNPP regulators, signal-specific allosteric structural changes in the regulators, and interaction of the regulators with their respective regulatory target and gene regulation. The recently determined structures of the RRNPP regulators provide insight into the mechanistic aspects for several steps in this signaling circuit. In this review, we discuss the structural principles underlying peptide specificity, regulatory target recognition, and ligand-induced allostery in RRNPP regulators and its impact on gene regulation. Despite the conserved tertiary structure of these regulators, structural analyses revealed unexpected diversity in the mechanism of activation and molecular strategies that couple the peptide-induced allostery to gene regulation. Although these structural studies provide a sophisticated understanding of gene regulation by RRNPP regulators, much needs to be learned regarding the target DNA binding by yet-to-be characterized RNPP regulators and the several aspects of signaling by Rgg regulators.
Collapse
Affiliation(s)
- Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Hospital Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital System, Houston, TX, 77030, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Hospital Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital System, Houston, TX, 77030, USA.
| |
Collapse
|
186
|
Dawgul M, Baranska-Rybak W, Piechowicz L, Bauer M, Neubauer D, Nowicki R, Kamysz W. The Antistaphylococcal Activity of Citropin 1.1 and Temporin A against Planktonic Cells and Biofilms Formed by Isolates from Patients with Atopic Dermatitis: An Assessment of Their Potential to Induce Microbial Resistance Compared to Conventional Antimicrobials. Pharmaceuticals (Basel) 2016; 9:E30. [PMID: 27231918 PMCID: PMC4932548 DOI: 10.3390/ph9020030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 01/22/2023] Open
Abstract
Staphylococcus aureus (SA) colonizes the vast majority of patients with atopic dermatitis (AD). Its resistance to antibiotics and ability to form biofilms are the main origins of therapeutic complications. Endogenous antimicrobial peptides (AMPs) exhibit strong activity against SA, including antibiotic resistant strains as well as bacteria existing in biofilm form. The purpose of the present work was to determine the antistaphylococcal activity of two amphibian peptides against SA isolated from patients with AD. The AMPs demonstrated permanent activity towards strains exposed to sublethal concentrations of the compounds and significantly stronger antibiofilm activity in comparison to that of conventional antimicrobials. The results suggest the potential application of amphibian AMPs as promising antistaphylococcal agents for the management of skin infections.
Collapse
Affiliation(s)
- Malgorzata Dawgul
- Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland.
| | | | - Lidia Piechowicz
- Faculty of Medicine, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland.
| | - Marta Bauer
- Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland.
| | - Damian Neubauer
- Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland.
| | - Roman Nowicki
- Faculty of Medicine, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland.
| | - Wojciech Kamysz
- Faculty of Pharmacy, Medical University of Gdansk, Al. Gen. J. Hallera 107, 80-416 Gdansk, Poland.
| |
Collapse
|
187
|
Hathroubi S, Mekni MA, Domenico P, Nguyen D, Jacques M. Biofilms: Microbial Shelters Against Antibiotics. Microb Drug Resist 2016; 23:147-156. [PMID: 27214143 DOI: 10.1089/mdr.2016.0087] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biofilms are communities of aggregated bacterial cells embedded in a self-produced extracellular polymeric matrix. Biofilms are recalcitrant to antibiotic treatment and immune defenses and are implicated in many chronic bacterial and fungal infections. In this review, we provide an overview of the contribution of biofilms to persistent infections resistant to antibiotic treatment, the impact of multispecies biofilms on drug resistance and tolerance, and recent advances in the development of antibiofilm agents. Understanding the mechanisms of antibiotic resistance and tolerance in biofilms is essential for developing new preventive and therapeutic strategies and curbing drug resistance.
Collapse
Affiliation(s)
- Skander Hathroubi
- 1 Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal , Montréal, Canada
| | - Mohamed A Mekni
- 2 The National Bone Marrow Transplant Centre , UR12ES02, Faculty of Medicine, Tunis, Tunisia
| | | | - Dao Nguyen
- 4 Meakins Christie Laboratories, Department of Medicine, Research Institute of the McGill University Health Centre , Montréal, Canada
| | - Mario Jacques
- 1 Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal , Montréal, Canada
| |
Collapse
|
188
|
Bzdrenga J, Daudé D, Rémy B, Jacquet P, Plener L, Elias M, Chabrière E. Biotechnological applications of quorum quenching enzymes. Chem Biol Interact 2016; 267:104-115. [PMID: 27223408 DOI: 10.1016/j.cbi.2016.05.028] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/04/2016] [Accepted: 05/20/2016] [Indexed: 11/12/2022]
Abstract
Numerous bacteria use quorum sensing (QS) to synchronize their behavior and monitor their population density. They use signaling molecules known as autoinducers (AI's) that are synthesized and secreted into their local environment to regulate QS-dependent gene expression. Among QS-regulated pathways, biofilm formation and virulence factor secretion are particularly problematic as they are involved in surface-attachment, antimicrobial agent resistance, toxicity, and pathogenicity. Targeting QS represents a promising strategy to inhibit undesirable bacterial traits. This strategy, referred to as quorum quenching (QQ), includes QS-inhibitors and QQ enzymes. These approaches are appealing because they do not directly challenge bacterial survival, and consequently selection pressure may be low, yielding a lower occurrence of resistance. QQ enzymes are particularly promising because they act extracellularly to degrade AI's and can be used in catalytic quantities. This review draws an overview of QQ enzyme related applications, covering several economically important fields such as agriculture, aquaculture, biofouling and health issues. Finally, the possibility of resistance mechanism occurrence to QQ strategies is discussed.
Collapse
Affiliation(s)
- Janek Bzdrenga
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - David Daudé
- Gene&GreenTK, Faculté de Médecine, 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Benjamin Rémy
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France; Gene&GreenTK, Faculté de Médecine, 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Pauline Jacquet
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Laure Plener
- Gene&GreenTK, Faculté de Médecine, 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Mikael Elias
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, St. Paul, MN 55108, USA
| | - Eric Chabrière
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France.
| |
Collapse
|
189
|
Joshi JR, Burdman S, Lipsky A, Yariv S, Yedidia I. Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P. carotovorum ssp. brasiliense via quorum sensing regulation. MOLECULAR PLANT PATHOLOGY 2016; 17:487-500. [PMID: 26177258 PMCID: PMC6638513 DOI: 10.1111/mpp.12295] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Several studies have reported effects of the plant phenolic acids cinnamic acid (CA) and salicylic acid (SA) on the virulence of soft rot enterobacteria. However, the mechanisms involved in these processes are not yet fully understood. Here, we investigated whether CA and SA interfere with the quorum sensing (QS) system of two Pectobacterium species, P. aroidearum and P. carotovorum ssp. brasiliense, which are known to produce N-acyl-homoserine lactone (AHL) QS signals. Our results clearly indicate that both phenolic compounds affect the QS machinery of the two species, consequently altering the expression of bacterial virulence factors. Although, in control treatments, the expression of QS-related genes increased over time, the exposure of bacteria to non-lethal concentrations of CA or SA inhibited the expression of QS genes, including expI, expR, PC1_1442 (luxR transcriptional regulator) and luxS (a component of the AI-2 system). Other virulence genes known to be regulated by the QS system, such as pecS, pel, peh and yheO, were also down-regulated relative to the control. In agreement with the low levels of expression of expI and expR, CA and SA also reduced the level of the AHL signal. The effects of CA and SA on AHL signalling were confirmed in compensation assays, in which exogenous application of N-(β-ketocaproyl)-l-homoserine lactone (eAHL) led to the recovery of the reduction in virulence caused by the two phenolic acids. Collectively, the results of gene expression studies, bioluminescence assays, virulence assays and compensation assays with eAHL clearly support a mechanism by which CA and SA interfere with Pectobacterium virulence via the QS machinery.
Collapse
Affiliation(s)
- Janak Raj Joshi
- Department of Plant Pathology and Microbiology and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, 50250, Bet Dagan, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Alexander Lipsky
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, 50250, Bet Dagan, Israel
| | - Shaked Yariv
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, 50250, Bet Dagan, Israel
| | - Iris Yedidia
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, 50250, Bet Dagan, Israel
| |
Collapse
|
190
|
Shukla V, Bhathena Z. Broad Spectrum Anti-Quorum Sensing Activity of Tannin-Rich Crude Extracts of Indian Medicinal Plants. SCIENTIFICA 2016; 2016:5823013. [PMID: 27190686 PMCID: PMC4848445 DOI: 10.1155/2016/5823013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/09/2016] [Accepted: 03/20/2016] [Indexed: 06/05/2023]
Abstract
Quorum sensing (QS) mechanisms have been demonstrated to have significance in expression of pathogenicity in infectious bacteria. In Gram negative bacteria the autoinducer molecules that mediate QS are acyl homoserine lactones (AHL) and in Gram positive bacteria they are peptides called autoinducing peptides (AIP). A screening of tannin-rich medicinal plants was attempted to identify extracts that could interrupt the QS mechanisms in both Gram positive and Gram negative bacteria over a wide range of concentrations and therefore potentially be potent agents that could act as broad spectrum QS inhibitors. Six out of the twelve Indian medicinal plant extracts that were analyzed exhibited anti-QS activity in Chromobacterium violaceum 12472 and in S. aureus strain with agr:blaZ fusion over a broad range of subinhibitory concentrations, indicating that the extracts contain high concentration of molecules that can interfere with the QS mechanisms mediated by AHL as well as AIP.
Collapse
Affiliation(s)
- Varsha Shukla
- Department of Microbiology, Ramnarain Ruia College, Matunga, Mumbai 400019, India
| | - Zarine Bhathena
- Department of Microbiology, Bhavan's College, Andheri, Mumbai 400058, India
| |
Collapse
|
191
|
Banerjee G, Ray AK. The talking language in some major Gram-negative bacteria. Arch Microbiol 2016; 198:489-99. [PMID: 27062655 DOI: 10.1007/s00203-016-1220-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 10/22/2022]
Abstract
Cell-cell interaction or quorum sensing (QS) is a vital biochemical/physiological process in bacteria that is required for various physiological functions, including nutrient uptake, competence development, biofilm formation, sporulation, as well as for toxin secretion. In natural environment, bacteria live in close association with other bacteria and interaction among them is crucial for survival. The QS-regulated gene expression in bacteria is a cell density-dependent process and the initiation process depends on the threshold level of the signaling molecule, N-acyl-homoserine lactone (AHL). The present review summarizes the QS signal and its respective circuit in Gram-negative bacteria. Most of the human pathogens belong to Gram-negative group, and only a few of them cause disease through QS system. Thus, inhibition of pathogenic bacteria is important. Use of antibiotics creates a selective pressure (antibiotics act as natural selection factor to promote one group of bacteria over another group) for emerging multidrug-resistant bacteria and will not be suitable for long-term use. The alternative process of inhibition of QS in bacteria using different natural and synthetic molecules is called quorum quenching. However, in the long run, QS inhibitors or blockers may also develop resistance, but obviously it will solve some sort of problems. In this review, we also have stated the mode of action of quorum-quenching molecule. The understanding of QS network in pathogenic Gram-negative bacteria will help us to solve many health-related problems in future.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, 731 235, India.
| | - Arun Kumar Ray
- Department of Zoology, Visva-Bharati University, Santiniketan, West Bengal, 731 235, India
| |
Collapse
|
192
|
Chanos P, Mygind T. Co-culture-inducible bacteriocin production in lactic acid bacteria. Appl Microbiol Biotechnol 2016; 100:4297-308. [DOI: 10.1007/s00253-016-7486-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
193
|
The response of Serratia marcescens JG to environmental changes by quorum sensing system. Arch Microbiol 2016; 198:585-90. [DOI: 10.1007/s00203-016-1213-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 02/01/2016] [Accepted: 03/19/2016] [Indexed: 01/27/2023]
|
194
|
Peng X, Zhang Y, Bai G, Zhou X, Wu H. Cyclic di-AMP mediates biofilm formation. Mol Microbiol 2016; 99:945-59. [PMID: 26564551 PMCID: PMC5003771 DOI: 10.1111/mmi.13277] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2015] [Indexed: 12/27/2022]
Abstract
Cyclic di-AMP (c-di-AMP) is an emerging second messenger in bacteria. It has been shown to play important roles in bacterial fitness and virulence. However, transduction of c-di-AMP signaling in bacteria and the role of c-di-AMP in biofilm formation are not well understood. The level of c-di-AMP is modulated by activity of di-adenylyl cyclase that produces c-di-AMP and phosphodiesterase (PDE) that degrades c-di-AMP. In this study, we determined that increased c-di-AMP levels by deletion of the pdeA gene coding for a PDE promoted biofilm formation in Streptococcus mutans. Deletion of pdeA upregulated expression of gtfB, the gene coding for a major glucan producing enzyme. Inactivation of gtfB blocked the increased biofilm by the pdeA mutant. Two c-di-AMP binding proteins including CabPA (SMU_1562) and CabPB (SMU_1708) were identified. Interestingly, only CabPA deficiency inhibited both the increased biofilm formation and the upregulated expression of GtfB observed in the pdeA mutant. In addition, CabPA but not CabPB interacted with VicR, a known transcriptional factor that regulates expression of gtfB, suggesting that a signaling link between CabPA and GtfB through VicR. Increased biofilm by the pdeA deficiency also enhanced bacterial colonization of Drosophila in vivo. Taken together, our studies reveal a new role of c-di-AMP in mediating biofilm formation through a CabPA/VicR/GtfB signaling network in S. mutans.
Collapse
Affiliation(s)
- Xian Peng
- Department of Pediatric Dentistry, University of Alabama at Birmingham, School of Dentistry, Birmingham, AL, USA
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Yang Zhang
- Center for Immunology and Microbial Disease, MC-151, Albany Medical College, 47 New Scotland Avenue, Albany, NY, USA
| | - Guangchun Bai
- Center for Immunology and Microbial Disease, MC-151, Albany Medical College, 47 New Scotland Avenue, Albany, NY, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Hui Wu
- Department of Pediatric Dentistry, University of Alabama at Birmingham, School of Dentistry, Birmingham, AL, USA
| |
Collapse
|
195
|
Parker D, Ahn D, Cohen T, Prince A. Innate Immune Signaling Activated by MDR Bacteria in the Airway. Physiol Rev 2016; 96:19-53. [PMID: 26582515 DOI: 10.1152/physrev.00009.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation.
Collapse
Affiliation(s)
- Dane Parker
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Danielle Ahn
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Taylor Cohen
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| | - Alice Prince
- Departments of Pediatrics and Pharmacology, Columbia University, New York, New York
| |
Collapse
|
196
|
Hodgkinson JT, Gross J, Baker YR, Spring DR, Welch M. A new Pseudomonas quinolone signal (PQS) binding partner: MexG. Chem Sci 2016; 7:2553-2562. [PMID: 28660026 PMCID: PMC5477026 DOI: 10.1039/c5sc04197j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/08/2016] [Indexed: 01/29/2023] Open
Abstract
Pseudomonas Quinolone Signal (PQS) probes capture a new binding partner for this signal molecule.
The opportunistic pathogen Pseudomonas aeruginosa utilises the cell–cell signalling mechanism known as quorum sensing to regulate virulence. P. aeruginosa produces two quinolone-based quorum sensing signalling molecules; the Pseudomonas quinolone signal (PQS) and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ). To date, only one receptor (the PqsR protein) has been identified that is capable of binding PQS and HHQ. Here, we report on the synthesis of PQS and HHQ affinity probes for chemical proteomic studies. The PQS affinity probe very effectively captured PqsR in vitro. In addition, we also identified an interaction between PQS and the “orphan” RND efflux pump protein, MexG. The PQS–MexG interaction was further confirmed by purifying MexG and characterizing its ability to bind PQS and HHQ in vitro. Our findings suggest that PQS may have multiple binding partners in the cell and provide important new tools for studying quinolone signalling in P. aeruginosa and other organisms.
Collapse
Affiliation(s)
- James T Hodgkinson
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK
| | - Jeremy Gross
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge , CB2 1GA , UK .
| | - Ysobel R Baker
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK
| | - David R Spring
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK
| | - M Welch
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge , CB2 1GA , UK .
| |
Collapse
|
197
|
A Novel Glycolipid Biosurfactant Confers Grazing Resistance upon Pantoea ananatis BRT175 against the Social Amoeba Dictyostelium discoideum. mSphere 2016; 1:mSphere00075-15. [PMID: 27303689 PMCID: PMC4863597 DOI: 10.1128/msphere.00075-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 12/01/2015] [Indexed: 11/20/2022] Open
Abstract
Pantoea is a versatile genus of bacteria with both plant- and animal-pathogenic strains, some of which have been suggested to cause human infections. There is, however, limited knowledge on the potential determinants used for host association and pathogenesis in animal systems. In this study, we used the model host Dictyostelium discoideum to show that isolates of Pantoea ananatis exhibit differential grazing susceptibility, with some being resistant to grazing by the amoebae. We carried out a high-throughput genetic screen of one grazing-resistant isolate, P. ananatis BRT175, using the D. discoideum pathosystem to identify genes responsible for the resistance phenotype. Among the 26 candidate genes involved in grazing resistance, we identified rhlA and rhlB, which we show are involved in the biosynthesis of a biosurfactant that enables swarming motility in P. ananatis BRT175. Using liquid chromatography-mass spectrometry (LC-MS), the biosurfactant was shown to be a glycolipid with monohexose-C10-C10 as the primary congener. We show that this novel glycolipid biosurfactant is cytotoxic to the amoebae and is capable of compromising cellular integrity, leading to cell lysis. The production of this biosurfactant may be important for bacterial survival in the environment and could contribute to the establishment of opportunistic infections. IMPORTANCE The genetic factors used for host interaction by the opportunistic human pathogen Pantoea ananatis are largely unknown. We identified two genes that are important for the production of a biosurfactant that confers grazing resistance against the social amoeba Dictyostelium discoideum. We show that the biosurfactant, which exhibits cytotoxicity toward the amoebae, is a glycolipid that incorporates a hexose rather than rhamnose. The production of this biosurfactant may confer a competitive advantage in the environment and could potentially contribute to the establishment of opportunistic infections.
Collapse
|
198
|
Husain FM, Ahmad I, Baig MH, Khan MS, Khan MS, Hassan I, Al-Shabib NA. Broad-spectrum inhibition of AHL-regulated virulence factors and biofilms by sub-inhibitory concentrations of ceftazidime. RSC Adv 2016. [DOI: 10.1039/c6ra02704k] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quorum sensing in bacteria is a density dependent communication system that regulates the expression of genes. In this study we have shown the broad spectrum anti-quorum sensing and biofilm inhibiting activity of ceftazidime against 3 different bacterial pathogens.
Collapse
Affiliation(s)
- Fohad Mabood Husain
- Department of Food Science and Nutrition
- College of Food and Agricultural Sciences
- King Saud University
- Riyadh-11541
- Kingdom of Saudi Arabia
| | - Iqbal Ahmad
- Department of Agricultural Microbiology
- Aligarh Muslim University
- Aligarh-202002
- India
| | | | - Mohammad Shavez Khan
- Department of Agricultural Microbiology
- Aligarh Muslim University
- Aligarh-202002
- India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry
- College of Science
- King Saud University
- Riyadh-11541
- Kingdom of Saudi Arabia
| | - Iftekhar Hassan
- Department of Zoology
- College of Science
- King Saud University
- Riyadh-11541
- Kingdom of Saudi Arabia
| | - Nasser Abdulatif Al-Shabib
- Department of Food Science and Nutrition
- College of Food and Agricultural Sciences
- King Saud University
- Riyadh-11541
- Kingdom of Saudi Arabia
| |
Collapse
|
199
|
Hu H, He J, Liu J, Yu H, Tang J, Zhang J. Role of N-acyl-homoserine lactone (AHL) based quorum sensing on biofilm formation on packing media in wastewater treatment process. RSC Adv 2016. [DOI: 10.1039/c5ra23466b] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Quorum sensing (QS) signaling has been extensively studied in granules and single species populations.
Collapse
Affiliation(s)
- Huizhi Hu
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Junguo He
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Jian Liu
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Huarong Yu
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Jian Tang
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Jie Zhang
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin
- China
| |
Collapse
|
200
|
Campos-Galvão MEM, Ribon AOB, Araújo EF, Vanetti MCD. Changes in the Salmonella enterica Enteritidis phenotypes in presence of acyl homoserine lactone quorum sensing signals. J Basic Microbiol 2015; 56:493-501. [PMID: 26662614 DOI: 10.1002/jobm.201500471] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/11/2015] [Indexed: 12/20/2022]
Abstract
Quorum sensing is used by bacteria to coordinate gene expression in response to population density and involves the production, detection and response to extracellular signaling molecules known as autoinducers (AIs). Salmonella does not synthesize the AI-1, acyl homoserine lactone (AHL) common to gram-negative bacteria; however, it has a receptor for AI-1, the SdiA protein. The effect of SdiA in modulating phenotypes of Salmonella has not been elucidated. In this report, we provide evidence that the AIs-1 affect Salmonella enterica serovar Enteritidis behavior by enhancing the biofilm formation and expression of virulence genes under anaerobic conditions. Biofilm formation by Salmonella was detected by the crystal violet method and by scanning electron microscopy. The presence of AHLs, particularly C12-HSL, increased biofilm formation and promoted expression of biofilm formation genes (lpfA, fimF, fliF, glgC) and virulence genes (hilA, invA, invF). Our results demonstrated that AHLs produced by other organisms played an important role in virulence phenotypes of Salmonella Enteritidis.
Collapse
Affiliation(s)
| | | | - Elza Fernandes Araújo
- Department of Microbiology, Laboratory of Food Microbiology, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | | |
Collapse
|