151
|
Silva IN, Tavares AC, Ferreira AS, Moreira LM. Stress conditions triggering mucoid morphotype variation in Burkholderia species and effect on virulence in Galleria mellonella and biofilm formation in vitro. PLoS One 2013; 8:e82522. [PMID: 24358195 PMCID: PMC3865030 DOI: 10.1371/journal.pone.0082522] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022] Open
Abstract
Burkholderia cepacia complex (Bcc) bacteria are opportunistic pathogens causing chronic respiratory infections particularly among cystic fibrosis patients. During these chronic infections, mucoid-to-nonmucoid morphotype variation occurs, with the two morphotypes exhibiting different phenotypic properties. Here we show that in vitro, the mucoid clinical isolate Burkholderia multivorans D2095 gives rise to stable nonmucoid variants in response to prolonged stationary phase, presence of antibiotics, and osmotic and oxidative stresses. Furthermore, in vitro colony morphotype variation within other members of the Burkholderia genus occurred in Bcc and non-Bcc strains, irrespectively of their clinical or environmental origin. Survival to starvation and iron limitation was comparable for the mucoid parental isolate and the respective nonmucoid variant, while susceptibility to antibiotics and to oxidative stress was increased in the nonmucoid variants. Acute infection of Galleria mellonella larvae showed that, in general, the nonmucoid variants were less virulent than the respective parental mucoid isolate, suggesting a role for the exopolysaccharide in virulence. In addition, most of the tested nonmucoid variants produced more biofilm biomass than their respective mucoid parental isolate. As biofilms are often associated with increased persistence of pathogens in the CF lungs and are an indicative of different cell-to-cell interactions, it is possible that the nonmucoid variants are better adapted to persist in this host environment.
Collapse
Affiliation(s)
- Inês N. Silva
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
| | - Andreia C. Tavares
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
| | - Ana S. Ferreira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
| | - Leonilde M. Moreira
- Department of Bioengineering, Instituto Superior Técnico, Lisbon University, Lisbon, Portugal
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
152
|
Madeira A, dos Santos SC, Santos PM, Coutinho CP, Tyrrell J, McClean S, Callaghan M, Sá-Correia I. Proteomic profiling of Burkholderia cenocepacia clonal isolates with different virulence potential retrieved from a cystic fibrosis patient during chronic lung infection. PLoS One 2013; 8:e83065. [PMID: 24349432 PMCID: PMC3862766 DOI: 10.1371/journal.pone.0083065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/07/2013] [Indexed: 11/18/2022] Open
Abstract
Respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) are associated with a worse prognosis and increased risk of death. In this work, we assessed the virulence potential of three B. cenocepacia clonal isolates obtained from a CF patient between the onset of infection (isolate IST439) and before death with cepacia syndrome 3.5 years later (isolate IST4113 followed by IST4134), based on their ability to invade epithelial cells and compromise epithelial monolayer integrity. The two clonal isolates retrieved during late-stage disease were significantly more virulent than IST439. Proteomic profiling by 2-D DIGE of the last isolate recovered before the patient’s death, IST4134, and clonal isolate IST439, was performed and compared with a prior analysis of IST4113 vs. IST439. The cytoplasmic and membrane-associated enriched fractions were examined and 52 proteins were found to be similarly altered in the two last isolates compared with IST439. These proteins are involved in metabolic functions, nucleotide synthesis, translation and protein folding, cell envelope biogenesis and iron homeostasis. Results are suggestive of the important role played by metabolic reprogramming in the virulence potential and persistence of B. cenocepacia, in particular regarding bacterial adaptation to microaerophilic conditions. Also, the content of the virulence determinant AidA was higher in the last 2 isolates. Significant levels of siderophores were found to be secreted by the three clonal isolates in an iron-depleted environment, but the two late isolates were more tolerant to low iron concentrations than IST439, consistent with the relative abundance of proteins involved in iron uptake.
Collapse
Affiliation(s)
- Andreia Madeira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Sandra C. dos Santos
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M. Santos
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Carla P. Coutinho
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Jean Tyrrell
- Centre of Microbial Host Interactions, Department of Science, ITT-Dublin, Dublin, Ireland
| | - Siobhán McClean
- Centre of Microbial Host Interactions, Department of Science, ITT-Dublin, Dublin, Ireland
| | - Máire Callaghan
- Centre of Microbial Host Interactions, Department of Science, ITT-Dublin, Dublin, Ireland
| | - Isabel Sá-Correia
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- * E-mail:
| |
Collapse
|
153
|
Fisher ML, Sun W, Curtiss R. The route less taken: pulmonary models of enteric Gram-negative infection. Pathog Dis 2013; 70:99-109. [PMID: 24259516 DOI: 10.1111/2049-632x.12109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/16/2013] [Indexed: 11/29/2022] Open
Abstract
Many pathogens are capable of causing a fulminant infection in pulmonary tissues of mammals. Animal models have provided an extensive understanding of the genetic and molecular mechanisms of bacterial pathogenesis as well as host immune response in the lungs. Many clinically relevant Gram-negative bacteria are host-restricted. Thus, the powerful, informative tools of mouse models are not available for study with these organisms. However, over the past 30 years, enterprising work has demonstrated the utility of pulmonary infection with enteric pathogens. Such infection models have increased our understanding host-pathogen interactions in these organisms. Here, we provide a review and comparison of lung models of infection with enteric, Gram-negative bacteria relative to naturally occurring lung pathogens.
Collapse
Affiliation(s)
- Michael L Fisher
- Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ, USA
| | | | | |
Collapse
|
154
|
Antonic V, Stojadinovic A, Zhang B, Izadjoo MJ, Alavi M. Pseudomonas aeruginosa induces pigment production and enhances virulence in a white phenotypic variant of Staphylococcus aureus. Infect Drug Resist 2013; 6:175-86. [PMID: 24232573 PMCID: PMC3825675 DOI: 10.2147/idr.s49039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Staphyloxanthin is a virulence factor which protects Staphylococcus aureus in stress conditions. We isolated two pigment variants of S. aureus and one strain of Pseudomonas aeruginosa from a single wound infection. S. aureus variants displayed white and yellow colony phenotypes. The sequence of the operons for staphyloxanthin synthesis indicated that coding and promoter regions were identical between the two pigment variants. Quorum sensing controls pigment synthesis in some bacteria. It is also shown that P. aeruginosa quorum-sensing molecules affect S. aureus transcription. We explored whether the co-infecting P. aeruginosa can affect pigment production in the white S. aureus variant. In co-culture experiments between the white variants and a selected number of Gram-positive and Gram-negative bacteria, only P. aeruginosa induced pigment production in the white variant. Gene expression analysis of the white variant did not indicate upregulation of the crtM and other genes known to be involved in pigment production (sigB, sarA, farnesyl pyrophosphate synthase gene [FPP-synthase], hfq). In contrast, transcription of the catalase gene was significantly upregulated after co-culture. P. aeruginosa-induced pigment synthesis and catalase upregulation correlated with increased resistance to polymyxin B, hydrogen peroxide, and the intracellular environment of macrophages. Our data indicate the presence of silent but functional staphyloxanthin synthesis machinery in a white phenotypic variant of S. aureus which is activated by a co-infecting P. aeruginosa via inter-species communication. Another S. aureus virulence factor, catalase is also induced by this co-infecting bacterium. The resulting phenotypic changes are directly correlated with resistance of the white variant to stressful conditions.
Collapse
Affiliation(s)
- Vlado Antonic
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA ; Diagnostic and Translational Research Center, Gaithersburg, MD, USA ; Combat Wound Initiative Program, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
155
|
Whiley RA, Sheikh NP, Mushtaq N, Hagi-Pavli E, Personne Y, Javaid D, Waite RD. Differential Potentiation of the Virulence of the Pseudomonas aeruginosa Cystic Fibrosis Liverpool Epidemic Strain by Oral Commensal Streptococci. J Infect Dis 2013; 209:769-80. [DOI: 10.1093/infdis/jit568] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
156
|
Lee KWK, Periasamy S, Mukherjee M, Xie C, Kjelleberg S, Rice SA. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME JOURNAL 2013; 8:894-907. [PMID: 24152718 DOI: 10.1038/ismej.2013.194] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 12/25/2022]
Abstract
Most studies of biofilm biology have taken a reductionist approach, where single-species biofilms have been extensively investigated. However, biofilms in nature mostly comprise multiple species, where interspecies interactions can shape the development, structure and function of these communities differently from biofilm populations. Hence, a reproducible mixed-species biofilm comprising Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae was adapted to study how interspecies interactions affect biofilm development, structure and stress responses. Each species was fluorescently tagged to determine its abundance and spatial localization within the biofilm. The mixed-species biofilm exhibited distinct structures that were not observed in comparable single-species biofilms. In addition, development of the mixed-species biofilm was delayed 1-2 days compared with the single-species biofilms. Composition and spatial organization of the mixed-species biofilm also changed along the flow cell channel, where nutrient conditions and growth rate of each species could have a part in community assembly. Intriguingly, the mixed-species biofilm was more resistant to the antimicrobials sodium dodecyl sulfate and tobramycin than the single-species biofilms. Crucially, such community level resilience was found to be a protection offered by the resistant species to the whole community rather than selection for the resistant species. In contrast, community-level resilience was not observed for mixed-species planktonic cultures. These findings suggest that community-level interactions, such as sharing of public goods, are unique to the structured biofilm community, where the members are closely associated with each other.
Collapse
Affiliation(s)
- Kai Wei Kelvin Lee
- 1] Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore [2] School of Biological Sciences, Nanyang Technological University, Singapore
| | - Saravanan Periasamy
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Manisha Mukherjee
- 1] Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore [2] School of Biological Sciences, Nanyang Technological University, Singapore
| | - Chao Xie
- 1] Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore [2] Life Sciences Institute, National University of Singapore, Singapore
| | - Staffan Kjelleberg
- 1] Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore [2] School of Biological Sciences, Nanyang Technological University, Singapore [3] Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Scott A Rice
- 1] Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore [2] School of Biological Sciences, Nanyang Technological University, Singapore [3] Centre for Marine Bio-Innovation and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
157
|
Shin HS, Lee JH, Paek SH, Jung YW, Ha UH. Pseudomonas aeruginosa-dependent upregulation of TLR2 influences host responses to a secondaryStaphylococcus aureusinfection. Pathog Dis 2013; 69:149-56. [DOI: 10.1111/2049-632x.12074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/27/2013] [Accepted: 07/25/2013] [Indexed: 12/20/2022] Open
Affiliation(s)
- Hee-Sung Shin
- Department of Biotechnology and Bioinformatics; Korea University; Sejong Korea
| | - Jung-Hoon Lee
- Department of Biotechnology and Bioinformatics; Korea University; Sejong Korea
| | - Se-Hwan Paek
- Department of Biotechnology and Bioinformatics; Korea University; Sejong Korea
| | | | - Un-Hwan Ha
- Department of Biotechnology and Bioinformatics; Korea University; Sejong Korea
| |
Collapse
|
158
|
Zhang Y, Zhang H. Microbiota associated with type 2 diabetes and its related complications. FOOD SCIENCE AND HUMAN WELLNESS 2013. [DOI: 10.1016/j.fshw.2013.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
159
|
Reactive-oxygen-species-mediated P. aeruginosa killing is functional in human cystic fibrosis macrophages. PLoS One 2013; 8:e71717. [PMID: 23977124 PMCID: PMC3747231 DOI: 10.1371/journal.pone.0071717] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 07/01/2013] [Indexed: 01/07/2023] Open
Abstract
Pseudomonas aeruginosa is the most common pathogen for chronic lung infection in cystic fibrosis (CF) patients. About 80% of adult CF patients have chronic P. aeruginosa infection, which accounts for much of the morbidity and most of the mortality. Both bacterial genetic adaptations and defective innate immune responses contribute to the bacteria persistence. It is well accepted that CF transmembrane conductance regulator (CFTR) dysfunction impairs the airways-epithelium-mediated lung defence; however, other innate immune cells also appear to be affected, such as neutrophils and macrophages, which thus contribute to this infectious pathology in the CF lung. In macrophages, the absence of CFTR has been linked to defective P. aeruginosa killing, increased pro-inflammatory cytokine secretion, and reduced reactive oxygen species (ROS) production. To learn more about macrophage dysfunction in CF patients, we investigated the generation of the oxidative burst and its impact on bacterial killing in CF macrophages isolated from peripheral blood or lung parenchyma of CF patients, after P. aeruginosa infection. Our data demonstrate that CF macrophages show an oxidative response of similar intensity to that of non-CF macrophages. Intracellular ROS are recognized as one of the earliest microbicidal mechanisms against engulfed pathogens that are activated by macrophages. Accordingly, NADPH inhibition resulted in a significant increase in the intracellular bacteria survival in CF and non-CF macrophages, both as monocyte-derived macrophages and as lung macrophages. These data strongly suggest that the contribution of ROS to P. aeruginosa killing is not affected by CFTR mutations.
Collapse
|
160
|
Eusebio N, Coutinho CP, Sá-Correia I, Araujo R. SNaPBcen: a novel and practical tool for genotyping Burkholderia cenocepacia. J Clin Microbiol 2013; 51:2646-2653. [PMID: 23761147 PMCID: PMC3719605 DOI: 10.1128/jcm.01019-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/02/2013] [Indexed: 02/06/2023] Open
Abstract
Burkholderia cenocepacia is the most prevalent and feared member of the Burkholderia cepacia complex in lung infections of cystic fibrosis (CF). Genotyping and monitoring of long-term colonization are critical at clinical units; however, the differentiation of specific lineages performed by multilocus sequence typing (MLST) is still limited to a small number of isolates due to the high cost and time-consuming procedure. The aim of this study was to optimize a protocol (the SNaPBcen assay) for extensive bacterial population studies. The strategy used for the SNaPBcen assay is based on targeting single nucleotide polymorphisms (SNPs) located in MLST genes instead of sequencing full MLST sequences. Nonpolymorphic and redundant MLST positions were eliminated, and a set of 24 polymorphisms included in the SNaPBcen assay ensures a high-resolution genomic characterization. These polymorphisms were identified based on the comparative analysis of 137 B. cenocepacia MLST profiles available online (http://pubmlst.org/bcc/). The group of 81 clinical isolates of B. cenocepacia examined in this study using the SNaPBcen assay revealed 51 distinct profiles, and a final discriminatory power of 0.9997 compared with MLST was determined. The SNaPBcen assay was able to reveal isolates with microvariations and the presence of multiple clonal variants in patients chronically colonized with B. cenocepacia. Main phylogenetic subgroups IIIA, IIIB, and IIIC of B. cenocepacia could be separated by the Gl94R polymorphism included in the panel. The SNaPBcen assay proved to be a rapid and robust alternative to the standard MLST for B. cenocepacia, allowing the simultaneous analysis of multiple polymorphisms following amplification and mini-sequencing reactions.
Collapse
Affiliation(s)
- Nadia Eusebio
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| | - Carla P. Coutinho
- IBB—Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
| | - Isabel Sá-Correia
- IBB—Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal
| | - Ricardo Araujo
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
161
|
Blainey PC, Milla CE, Cornfield DN, Quake SR. Quantitative analysis of the human airway microbial ecology reveals a pervasive signature for cystic fibrosis. Sci Transl Med 2013; 4:153ra130. [PMID: 23019655 DOI: 10.1126/scitranslmed.3004458] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease caused by mutations in the gene encoding the CF transmembrane conductance regulator. Disruption of electrolyte homeostasis at mucosal surfaces leads to severe lung, pancreatic, intestinal, hepatic, and reproductive abnormalities. Loss of lung function as a result of chronic lung disease is the primary cause of death from CF. Using high-throughput sequencing to survey microbes in the sputum of 16 CF patients and 9 control individuals, we identified diverse microbial communities in the healthy samples, contravening conventional wisdom that healthy airways are not significantly colonized. Comparing these communities with those from the CF patients revealed significant differences in microbial ecology, including differential representation of uncultivated phylotypes. Despite patient-specific differences, our analysis revealed a focal microbial profile characteristic of CF. The profile differentiated case and control groups even when classically recognized CF pathogens were excluded. As a control, lung explant tissues were also processed from a group of patients with pulmonary disease. The findings in lung tissue corroborated the presence of taxa identified in the sputum samples. Comparing the sequencing results with clinical data indicated that diminished microbial diversity is associated with severity of pulmonary inflammation within our adult CF cohort.
Collapse
Affiliation(s)
- Paul C Blainey
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
162
|
Zhu J, Jiménez-Díaz J, Bean HD, Daphtary NA, Aliyeva MI, Lundblad LKA, Hill JE. Robust detection of P. aeruginosa and S. aureus acute lung infections by secondary electrospray ionization-mass spectrometry (SESI-MS) breathprinting: from initial infection to clearance. J Breath Res 2013; 7:037106. [PMID: 23867706 DOI: 10.1088/1752-7155/7/3/037106] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Before breath-based diagnostics for lung infections can be implemented in the clinic, it is necessary to understand how the breath volatiles change during the course of infection, and ideally, to identify a core set of breath markers that can be used to diagnose the pathogen at any point during the infection. In the study presented here, we use secondary electrospray ionization-mass spectrometry (SESI-MS) to characterize the breathprint of Pseudomonas aeruginosa and Staphylococcus aureus lung infections in a murine model over a period of 120 h, with a total of 86 mice in the study. Using partial least squares-discriminant analysis (PLS-DA) to evaluate the time-course data, we were able to show that SESI-MS breathprinting can be used to robustly classify acute P. aeruginosa and S. aureus mouse lung infections at any time during the 120 h infection/clearance process. The variable importance plot from PLS indicates that multiple peaks from the SESI-MS breathprints are required for discriminating the bacterial infections. Therefore, by utilizing the entire breathprint rather than single biomarkers, infectious agents can be diagnosed by SESI-MS independent of when during the infection breath is tested.
Collapse
Affiliation(s)
- Jiangjiang Zhu
- School of Engineering, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | |
Collapse
|
163
|
Zhang XX, Rainey PB. Exploring the sociobiology of pyoverdin-producing Pseudomonas. Evolution 2013; 67:3161-74. [PMID: 24152000 DOI: 10.1111/evo.12183] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 05/29/2013] [Indexed: 01/19/2023]
Abstract
The idea that bacteria are social is a popular concept with implications for understanding the ecology and evolution of microbes. The view arises predominately from reasoning regarding extracellular products, which, it has been argued, can be considered "public goods." Among the best studied is pyoverdin-a diffusible iron-chelating agent produced by bacteria of the genus Pseudomonas. Here we report the de novo evolution of pyoverdin nonproducing mutants, genetically characterize these types and then test the appropriateness of the sociobiology framework by performing growth and fitness assays in the same environment in which the nonproducing mutants evolved. Our data draw attention to discordance in the fit between social evolution theory and biological reality. We show that pyoverdin-defective genotypes can gain advantage by avoiding the cost of production under conditions where the molecule is not required; in some environments pyoverdin is personalized. By exploring the fitness consequences of nonproducing types under a range of conditions, we show complex genotype-by-environment interactions with outcomes that range from social to asocial. Together these findings give reason to question the generality of the conclusion that pyoverdin is a social trait.
Collapse
Affiliation(s)
- Xue-Xian Zhang
- Institute of Natural and Mathematical Sciences, Massey University at Albany, Private Bag 102 904, North Shore Mail Centre, Auckland, New Zealand
| | | |
Collapse
|
164
|
Carter LM, Kafsack BF, Llinás M, Mideo N, Pollitt LC, Reece SE. Stress and sex in malaria parasites. EVOLUTION MEDICINE AND PUBLIC HEALTH 2013; 2013:135-47. [PMID: 24481194 PMCID: PMC3854026 DOI: 10.1093/emph/eot011] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
For vector-borne parasites such as malaria, how within- and between-host processes interact to shape transmission is poorly understood. In the host, malaria parasites replicate asexually but for transmission to occur, specialized sexual stages (gametocytes) must be produced. Despite the central role that gametocytes play in disease transmission, explanations of why parasites adjust gametocyte production in response to in-host factors remain controversial. We propose that evolutionary theory developed to explain variation in reproductive effort in multicellular organisms, provides a framework to understand gametocyte investment strategies. We examine why parasites adjust investment in gametocytes according to the impact of changing conditions on their in-host survival. We then outline experiments required to determine whether plasticity in gametocyte investment enables parasites to maintain fitness in a variable environment. Gametocytes are a target for anti-malarial transmission-blocking interventions so understanding plasticity in investment is central to maximizing the success of control measures in the face of parasite evolution.
Collapse
Affiliation(s)
- Lucy M. Carter
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
- *Corresponding author. Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, EH9 3JT, UK. Tel: +44 131 650 7706; Fax: +44 131 650 6564; E-mail:
| | - Björn F.C. Kafsack
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Manuel Llinás
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Nicole Mideo
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Laura C. Pollitt
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Sarah E. Reece
- Institute of Evolutionary Biology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA; Department of Molecular Biology, 246 Carl Icahn Lab, Washington Road, Princeton University, Princeton, NJ, USA; Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, Millennium Science Complex, University Park, PA, USA and Centre for Immunity, Infection & Evolution. Institutes of Evolution, Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
165
|
Abstract
PURPOSE OF REVIEW The field of cystic fibrosis (CF) is changing dramatically as the scientific knowledge accumulated since the cloning of the cystic fibrosis transmembrane conductance regulator (CFTR) gene is being translated into effective therapies to correct the basic defect and provide better disease models and in-depth understanding of the basic mechanisms of disease. RECENT FINDINGS This review focuses on three main aspects of the recent advances in the field: understanding the lung disease pathophysiology (in particular, the early events that condition its onset), better definition of the complex microbiology of the CF airway, and therapeutic developments. Although the most recently developed therapies, whether approved or under study, do not constitute a definitive cure, the benefit to patients is already becoming clearly apparent. SUMMARY As the field continues to change rapidly and new therapies are being identified, CF has become a paradigm for the application of concepts such as translational medicine, genomic medicine, and personalized care, with measurable clinical benefit for the patients affected by this disease.
Collapse
|
166
|
Pseudomonas aeruginosa uses multiple pathways to acquire iron during chronic infection in cystic fibrosis lungs. Infect Immun 2013; 81:2697-704. [PMID: 23690396 DOI: 10.1128/iai.00418-13] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa chronically infects the lungs of more than 80% of adult patients with cystic fibrosis (CF) and is a major contributor to the progression of disease pathology. P. aeruginosa requires iron for growth and has multiple iron uptake systems that have been studied in bacteria grown in laboratory culture. The purpose of this research was to determine which of these are active during infection in CF. RNA was extracted from 149 sputum samples obtained from 23 CF patients. Reverse transcription-quantitative real-time PCR (RT-qPCR) was used to measure the expression of P. aeruginosa genes encoding transport systems for the siderophores pyoverdine and pyochelin, for heme, and for ferrous ions. Expression of P. aeruginosa genes could be quantified in 89% of the sputum samples. Expression of genes associated with siderophore-mediated iron uptake was detected in most samples but was at low levels in some samples, indicating that other iron uptake mechanisms are active. Expression of genes encoding heme transport systems was also detected in most samples, indicating that heme uptake occurs during infection in CF. feoB expression was detected in all sputum samples, implying an important role for ferrous ion uptake by P. aeruginosa in CF. Our data show that multiple P. aeruginosa iron uptake mechanisms are active in chronic CF infection and that RT-qPCR of RNA extracted from sputum provides a powerful tool for investigating bacterial physiology during infection in CF.
Collapse
|
167
|
Gaspar MC, Couet W, Olivier JC, Pais AACC, Sousa JJS. Pseudomonas aeruginosa infection in cystic fibrosis lung disease and new perspectives of treatment: a review. Eur J Clin Microbiol Infect Dis 2013; 32:1231-52. [DOI: 10.1007/s10096-013-1876-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/01/2013] [Indexed: 12/20/2022]
|
168
|
Buivydas A, Pasanen T, Senčilo A, Daugelavičius R, Vaara M, Bamford DH. Clinical isolates of Pseudomonas aeruginosa from superficial skin infections have different physiological patterns. FEMS Microbiol Lett 2013; 343:183-9. [PMID: 23590530 DOI: 10.1111/1574-6968.12148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/22/2013] [Accepted: 03/28/2013] [Indexed: 12/01/2022] Open
Abstract
Pseudomonas aeruginosa are known to have a wide physiological potential allowing them to constantly populate diverse environments leading to severe infections of humans such as septicemia, leg ulcers, and burn wounds. We set out to probe physiological characteristics of P. aeruginosa isolates from diabetic leg ulcers collected from Helsinki metropolitan area. A total of 61 clinical isolates were obtained. Detailed phenotypic (physiological) characteristics [outer membrane (OM) permeability, membrane voltage, and activity of multidrug resistance pumps] were determined in several growth phases leading to the division of the analyzed set of P. aeruginosa strains into five distinct clusters including cells with similar physiological properties. In addition, their antibiotic resistance patterns and genetic heterogeneity were determined. Multiple isolates from the same patient were genetically very closely related and belonged to the same phenotypic cluster. However, genetically close isolates from different patients expressed very different phenotypic properties. The characteristics of infected patients seem to determine the growth environments for microorganisms that adapt by changing their physiological and/or genetic properties.
Collapse
Affiliation(s)
- Andrius Buivydas
- Department of Biosciences, University of Helsinki, Helsinki, Finland; Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
169
|
Voit EO. Mesoscopic modeling as a starting point for computational analyses of cystic fibrosis as a systemic disease. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:258-70. [PMID: 23570976 DOI: 10.1016/j.bbapap.2013.03.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/01/2013] [Accepted: 03/25/2013] [Indexed: 12/18/2022]
Abstract
Probably the most prominent expectation associated with systems biology is the computational support of personalized medicine and predictive health. At least some of this anticipated support is envisioned in the form of disease simulators that will take hundreds of personalized biomarker data as input and allow the physician to explore and optimize possible treatment regimens on a computer before the best treatment is applied to the actual patient in a custom-tailored manner. The key prerequisites for such simulators are mathematical and computational models that not only manage the input data and implement the general physiological and pathological principles of organ systems but also integrate the myriads of details that affect their functionality to a significant degree. Obviously, the construction of such models is an overwhelming task that suggests the long-term development of hierarchical or telescopic approaches representing the physiology of organs and their diseases, first coarsely and over time with increased granularity. This article illustrates the rudiments of such a strategy in the context of cystic fibrosis (CF) of the lung. The starting point is a very simplistic, generic model of inflammation, which has been shown to capture the principles of infection, trauma, and sepsis surprisingly well. The adaptation of this model to CF contains as variables healthy and damaged cells, as well as different classes of interacting cytokines and infectious microbes that are affected by mucus formation, which is the hallmark symptom of the disease (Perez-Vilar and Boucher, 2004) [1]. The simple model represents the overall dynamics of the disease progression, including so-called acute pulmonary exacerbations, quite well, but of course does not provide much detail regarding the specific processes underlying the disease. In order to launch the next level of modeling with finer granularity, it is desirable to determine which components of the coarse model contribute most to the disease dynamics. The article introduces for this purpose the concept of module gains or ModGains, which quantify the sensitivity of key disease variables in the higher-level system. In reality, these variables represent complex modules at the next level of granularity, and the computation of ModGains therefore allows an importance ranking of variables that should be replaced with more detailed models. The "hot-swapping" of such detailed modules for former variables is greatly facilitated by the architecture and implementation of the overarching, coarse model structure, which is here formulated with methods of biochemical systems theory (BST). This article is part of a Special Issue entitled: Computational Proteomics, Systems Biology & Clinical Implications. Guest Editor: Yudong Cai.
Collapse
Affiliation(s)
- Eberhard O Voit
- Department of Biomedical Engineering, Georgia Tech, 313 Ferst Drive, Suite 4103, Atlanta, GA 30332-0535, USA.
| |
Collapse
|
170
|
Baxter CG, Rautemaa R, Jones AM, Webb AK, Bull M, Mahenthiralingam E, Denning DW. Intravenous antibiotics reduce the presence ofAspergillusin adult cystic fibrosis sputum. Thorax 2013; 68:652-7. [DOI: 10.1136/thoraxjnl-2012-202412] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
171
|
Robinson KM, Alcorn JF. T-Cell Immunotherapy in Cystic Fibrosis. Am J Respir Crit Care Med 2013; 187:564-6. [DOI: 10.1164/rccm.201212-2201ed] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
172
|
Palmer GC, Jorth PA, Whiteley M. The role of two Pseudomonas aeruginosa anthranilate synthases in tryptophan and quorum signal production. MICROBIOLOGY-SGM 2013; 159:959-969. [PMID: 23449919 DOI: 10.1099/mic.0.063065-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative, opportunistic pathogen that causes infections in the lungs of individuals with the genetic disease cystic fibrosis. Density-dependent production of toxic factors regulated by the Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone; PQS) have been proposed to be involved in P. aeruginosa virulence. PQS biosynthesis requires conversion of the central metabolite chorismate to anthranilate by anthranilate synthase. This reaction is also the first step in tryptophan biosynthesis. P. aeruginosa possesses two functional anthranilate synthases, TrpEG and PhnAB, and these enzymes are not functionally redundant, as trpEG mutants are tryptophan auxotrophs but produce PQS while mutants in phnAB are tryptophan prototrophs but do not produce PQS in minimal media. The goal of the work described in this paper was to determine the mechanism for this lack of functional complementation of TrpEG and PhnAB. Our results reveal that overexpression of either enzyme compensates for tryptophan auxotrophy and PQS production in the trpEG and phnAB mutants respectively, leading to the hypothesis that differential regulation of these genes is responsible for the lack of functional complementation. In support of this hypothesis, trpEG was shown to be expressed primarily during low-density growth while phnAB was expressed primarily at high density. Furthermore, dysregulation of phnAB expression eliminated tryptophan auxotrophy in the P. aeruginosa trpEG mutant. Based on these data, we propose a model for anthranilate sequestration by differential transcriptional regulation of the two P. aeruginosa anthranilate synthase enzymes.
Collapse
Affiliation(s)
- Gregory C Palmer
- Section of Molecular Genetics and Microbiology, The Institute of Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Peter A Jorth
- Section of Molecular Genetics and Microbiology, The Institute of Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Marvin Whiteley
- Section of Molecular Genetics and Microbiology, The Institute of Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
173
|
Vandenheuvel D, Singh A, Vandersteegen K, Klumpp J, Lavigne R, Van den Mooter G. Feasibility of spray drying bacteriophages into respirable powders to combat pulmonary bacterial infections. Eur J Pharm Biopharm 2013; 84:578-82. [PMID: 23353012 DOI: 10.1016/j.ejpb.2012.12.022] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 01/21/2023]
Abstract
The use of bacterial viruses for antibacterial treatment (bacteriophage therapy) is currently being reevaluated. In this study, we analyze the potential of processing bacteriophages in a dry powder formulation, using a laboratory spray dryer. The phages were dried in the presence of lactose, trehalose or dextran 35, serving as an excipient to give the resulting powder the necessary bulk mass and offer protection to the delicate phage structure. Out of the three excipients tested, trehalose was found to be the most efficient in protecting the phages from temperature and shear stress throughout the spray drying process. A low inlet air temperature and atomizing force appeared to be the best parameter conditions for phage survival. Pseudomonas podovirus LUZ19 was remarkably stable, suffering less than 1 logarithmic unit reduction in phage titer. The phage titer of Staphyloccus phage Romulus-containing powders, a member of the Myoviridae family, showed more than 2.5 logarithmic units reduction. On the other hand, Romulus-containing powders showed more favorable characteristics for pulmonary delivery, with a high percentage of dry powder particles in the pulmonary deposition fraction (1-5 μm particle diameter). Even though the parameters were not optimized for spray drying all phages, it was demonstrated that spray drying phages with this industrial relevant and scalable set up was possible. The resulting powders had desirable size ranges for pulmonary delivery of phages with dry powder inhalers (DPIs).
Collapse
Affiliation(s)
- Dieter Vandenheuvel
- Division of Gene Technology, Katholieke Universiteit Leuven, Heverlee, Belgium
| | | | | | | | | | | |
Collapse
|
174
|
Bernardi DM, Ribeiro AF, Mazzola TN, Vilela MMS, Sgarbieri VC. The impact of cystic fibrosis on the immunologic profile of pediatric patients. J Pediatr (Rio J) 2013; 89:40-7. [PMID: 23544809 DOI: 10.1016/j.jped.2013.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/22/2012] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To compare the immunologic state of 44 pediatric patients with cystic fibrosis (CF) with a control group consisting of 16 healthy individuals. METHODS CF patients aged 3 to 12 years with moderate to good clinical score were selected for the study. Erythrocytic glutathione, production of reactive oxygen species, cytokines (TNF-a, IFN-g, IL-8, IL-6, IL-10) in peripheral blood mononuclear cells cultures under spontaneous and BCG- or PHA-stimulated conditions, serum concentrations of TGF-b2, IgA, IgG, IgM, IgE, and salivary IgA were evaluated. RESULTS The spontaneous production of TNF-a, IL-6, and IL-10, the PHA-stimulated production of IL-6, and the serum TGF-b2, IgA, and IgG were increased in samples from CF patients. Healthy subjects had a higher production of TNF-a in response to BCG. CONCLUSION Although CF patients appeared clinically stable, the results of their peripheral blood examinations demonstrated an impact on the immune system.
Collapse
Affiliation(s)
- Daniela M Bernardi
- Department of Food and Nutrition, School of Food Engineering, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
175
|
Bernardi DM, Ribeiro AF, Mazzola TN, Vilela MM, Sgarbieri VC. The impact of cystic fibrosis on the immunologic profile of pediatric patients. JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2013. [DOI: 10.1016/j.jpedp.2012.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
176
|
Bragonzi A, Farulla I, Paroni M, Twomey KB, Pirone L, Lorè NI, Bianconi I, Dalmastri C, Ryan RP, Bevivino A. Modelling co-infection of the cystic fibrosis lung by Pseudomonas aeruginosa and Burkholderia cenocepacia reveals influences on biofilm formation and host response. PLoS One 2012; 7:e52330. [PMID: 23284990 PMCID: PMC3528780 DOI: 10.1371/journal.pone.0052330] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 11/12/2012] [Indexed: 02/07/2023] Open
Abstract
The Gram-negative bacteria Pseudomonas aeruginosa and Burkholderia cenocepacia are opportunistic human pathogens that are responsible for severe nosocomial infections in immunocompromised patients and those suffering from cystic fibrosis (CF). These two bacteria have been shown to form biofilms in the airways of CF patients that make such infections more difficult to treat. Only recently have scientists begun to appreciate the complicated interplay between microorganisms during polymicrobial infection of the CF airway and the implications they may have for disease prognosis and response to therapy. To gain insight into the possible role that interaction between strains of P. aeruginosa and B. cenocepacia may play during infection, we characterised co-inoculations of in vivo and in vitro infection models. Co-inoculations were examined in an in vitro biofilm model and in a murine model of chronic infection. Assessment of biofilm formation showed that B. cenocepacia positively influenced P. aeruginosa biofilm development by increasing biomass. Interestingly, co-infection experiments in the mouse model revealed that P. aeruginosa did not change its ability to establish chronic infection in the presence of B. cenocepacia but co-infection did appear to increase host inflammatory response. Taken together, these results indicate that the co-infection of P. aeruginosa and B. cenocepacia leads to increased biofilm formation and increased host inflammatory response in the mouse model of chronic infection. These observations suggest that alteration of bacterial behavior due to interspecies interactions may be important for disease progression and persistent infection.
Collapse
Affiliation(s)
- Alessandra Bragonzi
- Division of Immunology, Transplantation and Infectious Diseases, Infections and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Farulla
- Technical Unit for Sustainable Development and Innovation of Agro-Industrial System, ENEA Casaccia Research Centre, Rome, Italy
| | - Moira Paroni
- Division of Immunology, Transplantation and Infectious Diseases, Infections and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Kate B. Twomey
- Department of Microbiology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Luisa Pirone
- Technical Unit for Sustainable Development and Innovation of Agro-Industrial System, ENEA Casaccia Research Centre, Rome, Italy
| | - Nicola Ivan Lorè
- Division of Immunology, Transplantation and Infectious Diseases, Infections and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Irene Bianconi
- Division of Immunology, Transplantation and Infectious Diseases, Infections and Cystic Fibrosis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Dalmastri
- Technical Unit for Sustainable Development and Innovation of Agro-Industrial System, ENEA Casaccia Research Centre, Rome, Italy
| | - Robert P. Ryan
- Department of Microbiology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Annamaria Bevivino
- Technical Unit for Sustainable Development and Innovation of Agro-Industrial System, ENEA Casaccia Research Centre, Rome, Italy
- * E-mail:
| |
Collapse
|
177
|
Chevrot R, Didelot S, Van den Bossche L, Tambadou F, Caradec T, Marchand P, Izquierdo E, Sopéna V, Caillon J, Barthélémy C, Van Schepdael A, Hoogmartens J, Rosenfeld E. A Novel Depsipeptide Produced by Paenibacillus alvei 32 Isolated from a Cystic fibrosis Patient. Probiotics Antimicrob Proteins 2012; 5:18-25. [DOI: 10.1007/s12602-012-9121-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
178
|
Fierer N, Ferrenberg S, Flores GE, González A, Kueneman J, Legg T, Lynch RC, McDonald D, Mihaljevic JR, O'Neill SP, Rhodes ME, Song SJ, Walters WA. From Animalcules to an Ecosystem: Application of Ecological Concepts to the Human Microbiome. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2012. [DOI: 10.1146/annurev-ecolsys-110411-160307] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human body is inhabited by billions of microbial cells and these microbial symbionts play critical roles in human health. Human-associated microbial communities are diverse, and the structure of these communities is variable across body habitats, through time, and between individuals. We can apply concepts developed by plant and animal ecologists to better understand and predict the spatial and temporal patterns in these communities. Due to methodological limitations and the largely unknown natural history of most microbial taxa, this integration of ecology into research on the human microbiome is still in its infancy. However, such integration will yield a deeper understanding of the role of the microbiome in human health and an improved ability to test ecological concepts that are more difficult to test in plant and animal systems.
Collapse
Affiliation(s)
- Noah Fierer
- Department of Ecology and Evolutionary Biology,
- Cooperative Institute for Research in Environmental Sciences,
| | | | | | | | | | - Teresa Legg
- Department of Ecology and Evolutionary Biology,
| | | | | | | | - Sean P. O'Neill
- Department of Ecology and Evolutionary Biology,
- Institute of Arctic and Alpine Research, and
| | | | - Se Jin Song
- Department of Ecology and Evolutionary Biology,
| | - William A. Walters
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| |
Collapse
|
179
|
Cooper JL, Quinton PM, Ballard ST. Mucociliary transport in porcine trachea: differential effects of inhibiting chloride and bicarbonate secretion. Am J Physiol Lung Cell Mol Physiol 2012. [PMID: 23204069 DOI: 10.1152/ajplung.00143.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This study was designed to assess the relative importance of Cl(-) and HCO(3)(-) secretion to mucociliary transport rate (MCT) in ex vivo porcine tracheas. MCT was measured in one group of tissues that was exposed to adventitial HCO(3)(-)-free solution while a parallel group was exposed to adventitial HCO(3)(-)-replete solution. After measurement of baseline MCT rates, acetylcholine (ACh) was added to stimulate submucosal gland mucous liquid secretion, and MCT rates were again measured. Before ACh addition, the mean MCT was higher in the HCO(3)(-)-free group (4.2 ± 0.9 mm/min) than in the HCO(3)(-)-replete group (2.3 ± 0.3 mm/min), but this difference was not statistically significant. ACh addition significantly increased MCT in both groups, but ACh-stimulated MCT was significantly lower in the HCO(3)(-)-free group (11.0 ± 1.5 mm/min) than in the HCO(3)(-)-replete group (17.0 ± 2.0 mm/min). A second series of experiments examined the effect on MCT of blocking Cl(-) secretion with 100 μM bumetanide. Before adding ACh, MCT in the bumetanide-treated group (1.0 ± 0.2 mm/min) was significantly lower than in the control group (3.8 ± 1.1 mm/min). ACh addition significantly increased MCT in both groups, but there was no significant difference between the bumetanide-treated group (21.4 ± 1.7 mm/min) and control group (19.5 ± 3.4 mm/min). These results indicate that ACh-stimulated MCT has greater dependence on HCO(3)(-) secretion, whereas the basal MCT rate has greater dependence on Cl(-) secretion.
Collapse
Affiliation(s)
- Jeffrey L Cooper
- Department of Physiology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | | | | |
Collapse
|
180
|
Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Høiby N, Molin S. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 2012; 10:841-51. [DOI: 10.1038/nrmicro2907] [Citation(s) in RCA: 514] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
181
|
Conrad D, Haynes M, Salamon P, Rainey PB, Youle M, Rohwer F. Cystic fibrosis therapy: a community ecology perspective. Am J Respir Cell Mol Biol 2012; 48:150-6. [PMID: 23103995 DOI: 10.1165/rcmb.2012-0059ps] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Current therapy for cystic fibrosis (CF) focuses on minimizing the microbial community and the host's immune response through the aggressive use of airway clearance techniques, broad-spectrum antibiotics, and treatments that break down the pervasive endobronchial biofilm. Antibiotic selection is typically based on the susceptibility of individual microbial strains to specific antibiotics in vitro. Often this approach cannot accurately predict medical outcomes because of factors both technical and biological. Recent culture-independent assessments of the airway microbial and viral communities demonstrated that the CF airway infection is considerably more complex and dynamic than previously appreciated. Understanding the ecological and evolutionary pressures that shape these communities is critically important for the optimal use of current therapies (in both the choice of therapy and timing of administration) and the development of newer strategies. The climax-attack model (CAM) presented here, grounded in basic ecological principles, postulates the existence of two major functional communities. The attack community consists of transient viral and microbial populations that induce strong innate immune responses. The resultant intense immune response creates microenvironments that facilitate the establishment of a climax community that is slower-growing and inherently resistant to antibiotic therapy. Newer methodologies, including sequence-based metagenomic analysis, can track not only the taxonomic composition but also the metabolic capabilities of these changing viral and microbial communities over time. Collecting this information for CF airways will enable the mathematical modeling of microbial community dynamics during disease progression. The resultant understanding of airway communities and their effects on lung physiology will facilitate the optimization of CF therapies.
Collapse
Affiliation(s)
- Douglas Conrad
- Division of Pulmonary and Critical Care Medicine, University of California at San Diego, San Diego Veterans Administration Healthcare System, 3350 La Jolla Village Drive, 111J, San Diego, CA 92122, USA.
| | | | | | | | | | | |
Collapse
|
182
|
Horsley A, Jones AM. Antibiotic treatment for Burkholderia cepacia complex in people with cystic fibrosis experiencing a pulmonary exacerbation. Cochrane Database Syst Rev 2012; 10:CD009529. [PMID: 23076960 DOI: 10.1002/14651858.cd009529.pub2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Chronic pulmonary infection is one of the hallmarks of lung disease in cystic fibrosis. Infections dominated by organisms of the Burkholderia cepacia complex, a group of at least 17 closely-related species of gram-negative bacteria, are particularly difficult to treat. These infections may be associated with a fulminant necrotising pneumonia, and are greatly feared by patients. Burkholderia cepacia bacteria are innately resistant to many common antibiotics and able to acquire resistance against many more. Since strict patient segregation was introduced to cystic fibrosis medical care, the incidence of the more virulent epidemic strains has fallen, and new infections are more likely to be with environmentally-acquired strains which seem to exhibit less virulence. Nonetheless, exacerbations of respiratory symptoms require effective therapy directed against the dominant bacterial species. Although evidence-based guidelines exist for the treatment of respiratory exacerbations involving Pseudomonas aeruginosa, the most common chronic infection in cystic fibrosis, these cannot be directly extended to Burkholderia cepacia complex infections. The aim of this review is to assess the available trial evidence for choice and application of treatments for Burkholderia cepacia complex infections. OBJECTIVES To assess the effectiveness and safety of different antibiotic regimens in people with cystic fibrosis experiencing an exacerbation, who are chronically infected with organisms of the Burkholderia cepacia complex. SEARCH METHODS We searched the Cochrane Cystic Fibrosis Trials Register, compiled from electronic database searches and handsearching of journals and conference abstract books. We also searched the reference lists of relevant articles and reviews.Date of latest search: 29 November 2011. SELECTION CRITERIA Randomised and quasi-randomised controlled trials of treatments for exacerbations of pulmonary symptoms in cystic fibrosis patients chronically infected with organisms of the Burkholderia cepacia complex. DATA COLLECTION AND ANALYSIS No relevant trials were identified. MAIN RESULTS No trials were included in this review. AUTHORS' CONCLUSIONS Burkholderia cepacia complex infections present a significant challenge for cystic fibrosis clinicians and patients alike. The incidence is likely to increase as the cystic fibrosis population ages and the problem of how to manage and treat these infections becomes more important. There is a lack of trial evidence to guide decision making and no conclusions can be drawn from this review about the optimal antibiotic regimens for cystic fibrosis patients with chronic Burkholderia cepacia complex infections. Clinicians must continue to assess each patient individually, taking into account in vitro antibiotic susceptibility data, previous clinical responses and their own experience. There is a clear need for multi-centre randomised clinical trials to assess the effectiveness of different antibiotic regimens in cystic fibrosis patients infected with organisms of the Burkholderia cepacia complex.
Collapse
Affiliation(s)
- Alex Horsley
- School of Translational Medicine, University Hospital of South Manchester, Manchester, UK.
| | | |
Collapse
|
183
|
McIsaac SM, Stadnyk AW, Lin TJ. Toll-like receptors in the host defense against Pseudomonas aeruginosa respiratory infection and cystic fibrosis. J Leukoc Biol 2012; 92:977-85. [PMID: 22892106 DOI: 10.1189/jlb.0811410] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TLRs function in innate immunity by detecting conserved structures present in bacteria, viruses, and fungi. Although TLRs do not necessarily distinguish pathogenic organisms from commensals, in the context of compromised innate immunity and combined with pathogens' effector molecules, TLRs drive the host response to the organism. This review will discuss the evidence and role(s) of TLRs in the response to the opportunistic bacterial pathogen, Pseudomonas aeruginosa, as it relates to respiratory infection and CF, in which innate immune mechanisms are indeed compromised. Outer membrane lipoproteins, LPS, flagellin, and nucleic acids all serve as ligands for TLR2, -4, -5, and -9, respectively. These TLRs and their respective downstream effector molecules have proven critical to the host response to P. aeruginosa, although the protective effects of TLRs may be impaired and in some cases, enhanced in the CF patient, contributing to the particular susceptibility of individuals with this disease to P. aeruginosa infection.
Collapse
Affiliation(s)
- Shayla M McIsaac
- Department of Microbiology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
184
|
An overview of international literature from cystic fibrosis registries. Part 4: update 2011. J Cyst Fibros 2012; 11:480-93. [PMID: 22884375 DOI: 10.1016/j.jcf.2012.07.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/26/2012] [Accepted: 07/15/2012] [Indexed: 01/13/2023]
Abstract
A total of 53 national cystic fibrosis (CF) patient registry studies published between July 2008 and November 2011 have been reviewed, focusing on the following topics: CF epidemiology, nutrition, microbiology, clinical complications, factors influencing diagnosis and lung disease, effects of socioeconomic status, therapeutic strategy evaluation, clinical trial methodology. The studies describe the clinical characteristics of CF patients, the incidence and prevalence of disease and role of gender gap, as well as the influence of socioeconomic status and environmental factors on clinical outcomes, covering a variety of countries and ethnic groups. Original observations describe patients as they get older, with special reference to the adult presentation of CF and long-term survival. Methodological aspects are discussed, covering the design of clinical trials, survival analysis, auxometry, measures of quality of life, follow up of lung disease, predictability of disease progression and life expectancy. Microbiology studies have investigated the role of selected pathogens, such as Burkholderia species and MRSA. Pulmonary exacerbations are discussed both as a factor influencing morbidity and an endpoint in clinical trials. Finally, some studies give insights on complications, such as CF-related diabetes and hemoptysis, and emerging problems, such as chronic nephropathy.
Collapse
|
185
|
Epoxide-mediated CifR repression of cif gene expression utilizes two binding sites in Pseudomonas aeruginosa. J Bacteriol 2012; 194:5315-24. [PMID: 22843844 DOI: 10.1128/jb.00984-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa secretes an epoxide hydrolase virulence factor that reduces the apical membrane expression of ABC transporters such as the cystic fibrosis transmembrane conductance regulator (CFTR). This virulence factor, named CFTR inhibitory factor (Cif), is regulated by a TetR-family, epoxide-responsive repressor known as CifR via direct binding and repression. We identified two sites of CifR binding in the intergenic space between cifR and morB, the first gene in the operon containing the cif gene. We have mapped these binding sites and found they are 27 bp in length, and they overlap the -10 and +1 sites of both the cifR and morB regulatory region and the start of transcription, respectively. In addition, we found that CifR binds to each repression site with differing affinity. Mutagenesis of these binding sites resulted in a loss of DNA binding in vitro, and mutation of one of these sites in vivo resulted in an increase in transcription of both the cif and cifR genes. We characterized cif and cifR gene expression in sputum and found that, whereas cif gene expression varied relative to an in vitro coculture control, cifR gene expression was consistently higher. Analysis of a longitudinal sample of CF isolates from nine patients revealed that Cif protein was expressed over time, although variably, and these changes could not be linked to mutations in the cifR gene or the promoters of these genes. Finally, we tested CifR responsiveness to other epoxides and showed that CifR can respond to multiple epoxides to various degrees.
Collapse
|
186
|
Verregghen M, Heijerman HG, Reijers M, van Ingen J, van der Ent CK. Risk factors for Mycobacterium abscessus infection in cystic fibrosis patients; a case–control study. J Cyst Fibros 2012; 11:340-3. [DOI: 10.1016/j.jcf.2012.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 12/01/2022]
|
187
|
Rudkjøbing VB, Thomsen TR, Alhede M, Kragh KN, Nielsen PH, Johansen UR, Givskov M, Høiby N, Bjarnsholt T. The microorganisms in chronically infected end-stage and non-end-stage cystic fibrosis patients. ACTA ACUST UNITED AC 2012; 65:236-44. [DOI: 10.1111/j.1574-695x.2011.00925.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 12/31/2022]
|
188
|
Pederiva MA, Wissmann G, Friaza V, Morilla R, de La Horra C, Montes-Cano MA, Goldani LZ, Calderón EJ, Prolla JC. High prevalence ofPneumocystis jiroveciicolonization in Brazilian cystic fibrosis patients. Med Mycol 2012; 50:556-60. [DOI: 10.3109/13693786.2011.645892] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
189
|
The YfiBNR signal transduction mechanism reveals novel targets for the evolution of persistent Pseudomonas aeruginosa in cystic fibrosis airways. PLoS Pathog 2012; 8:e1002760. [PMID: 22719254 PMCID: PMC3375315 DOI: 10.1371/journal.ppat.1002760] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 05/03/2012] [Indexed: 12/19/2022] Open
Abstract
The genetic adaptation of pathogens in host tissue plays a key role in the establishment of chronic infections. While whole genome sequencing has opened up the analysis of genetic changes occurring during long-term infections, the identification and characterization of adaptive traits is often obscured by a lack of knowledge of the underlying molecular processes. Our research addresses the role of Pseudomonas aeruginosa small colony variant (SCV) morphotypes in long-term infections. In the lungs of cystic fibrosis patients, the appearance of SCVs correlates with a prolonged persistence of infection and poor lung function. Formation of P. aeruginosa SCVs is linked to increased levels of the second messenger c-di-GMP. Our previous work identified the YfiBNR system as a key regulator of the SCV phenotype. The effector of this tripartite signaling module is the membrane bound diguanylate cyclase YfiN. Through a combination of genetic and biochemical analyses we first outline the mechanistic principles of YfiN regulation in detail. In particular, we identify a number of activating mutations in all three components of the Yfi regulatory system. YfiBNR is shown to function via tightly controlled competition between allosteric binding sites on the three Yfi proteins; a novel regulatory mechanism that is apparently widespread among periplasmic signaling systems in bacteria. We then show that during long-term lung infections of CF patients, activating mutations invade the population, driving SCV formation in vivo. The identification of mutational "scars" in the yfi genes of clinical isolates suggests that Yfi activity is both under positive and negative selection in vivo and that continuous adaptation of the c-di-GMP network contributes to the in vivo fitness of P. aeruginosa during chronic lung infections. These experiments uncover an important new principle of in vivo persistence, and identify the c-di-GMP network as a valid target for novel anti-infectives directed against chronic infections.
Collapse
|
190
|
Willner D, Daly J, Whiley D, Grimwood K, Wainwright CE, Hugenholtz P. Comparison of DNA extraction methods for microbial community profiling with an application to pediatric bronchoalveolar lavage samples. PLoS One 2012; 7:e34605. [PMID: 22514642 PMCID: PMC3326054 DOI: 10.1371/journal.pone.0034605] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/05/2012] [Indexed: 12/27/2022] Open
Abstract
Barcoded amplicon sequencing is rapidly becoming a standard method for profiling microbial communities, including the human respiratory microbiome. While this approach has less bias than standard cultivation, several steps can introduce variation including the type of DNA extraction method used. Here we assessed five different extraction methods on pediatric bronchoalveolar lavage (BAL) samples and a mock community comprised of nine bacterial genera to determine method reproducibility and detection limits for these typically low complexity communities. Additionally, using the mock community, we were able to evaluate contamination and select a relative abundance cut-off threshold based on the geometric distribution that optimizes the trade off between detecting bona fide operational taxonomic units and filtering out spurious ones. Using this threshold, the majority of genera in the mock community were predictably detected by all extraction methods including the hard-to-lyse Gram-positive genus Staphylococcus. Differences between extraction methods were significantly greater than between technical replicates for both the mock community and BAL samples emphasizing the importance of using a standardized methodology for microbiome studies. However, regardless of method used, individual patients retained unique diagnostic profiles. Furthermore, despite being stored as raw frozen samples for over five years, community profiles from BAL samples were consistent with historical culturing results. The culture-independent profiling of these samples also identified a number of anaerobic genera that are gaining acceptance as being part of the respiratory microbiome. This study should help guide researchers to formulate sampling, extraction and analysis strategies for respiratory and other human microbiome samples.
Collapse
Affiliation(s)
- Dana Willner
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute of Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.
| | | | | | | | | | | |
Collapse
|
191
|
Abstract
Explaining the contribution of host and pathogen factors in driving infection dynamics is a major ambition in parasitology. There is increasing recognition that analyses based on single summary measures of an infection (e.g., peak parasitaemia) do not adequately capture infection dynamics and so, the appropriate use of statistical techniques to analyse dynamics is necessary to understand infections and, ultimately, control parasites. However, the complexities of within-host environments mean that tracking and analysing pathogen dynamics within infections and among hosts poses considerable statistical challenges. Simple statistical models make assumptions that will rarely be satisfied in data collected on host and parasite parameters. In particular, model residuals (unexplained variance in the data) should not be correlated in time or space. Here we demonstrate how failure to account for such correlations can result in incorrect biological inference from statistical analysis. We then show how mixed effects models can be used as a powerful tool to analyse such repeated measures data in the hope that this will encourage better statistical practices in parasitology.
Collapse
Affiliation(s)
- Laura C Pollitt
- Institute of Evolutionary Biology, University of Edinburgh, School of Biological Sciences, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
192
|
Schoustra SE, Dench J, Dali R, Aaron SD, Kassen R. Antagonistic interactions peak at intermediate genetic distance in clinical and laboratory strains of Pseudomonas aeruginosa. BMC Microbiol 2012; 12:40. [PMID: 22439760 PMCID: PMC3391984 DOI: 10.1186/1471-2180-12-40] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 03/22/2012] [Indexed: 11/24/2022] Open
Abstract
Background Bacteria excrete costly toxins to defend their ecological niche. The evolution of such antagonistic interactions between individuals is expected to depend on both the social environment and the strength of resource competition. Antagonism is expected to be weak among highly similar genotypes because most individuals are immune to antagonistic agents and among dissimilar genotypes because these are unlikely to be competing for the same resources and antagonism should not yield much benefit. The strength of antagonism is therefore expected to peak at intermediate genetic distance. Results We studied the ability of laboratory strains of Pseudomonas aeruginosa to prevent growth of 55 different clinical P. aeruginosa isolates derived from cystic fibrosis patients. Genetic distance was determined using genetic fingerprints. We found that the strength of antagonism was maximal among genotypes of intermediate genetic distance and we show that genetic distance and resource use are linked. Conclusions Our results suggest that the importance of social interactions like antagonism may be modulated by the strength of resource competition.
Collapse
Affiliation(s)
- Sijmen E Schoustra
- Biology Department, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| | | | | | | | | |
Collapse
|
193
|
Abstract
BACKGROUND Recurrent endobronchial infection in cystic fibrosis requires treatment with intravenous antibiotics for several weeks usually in hospital, affecting health costs and quality of life for patients and their families. OBJECTIVES To determine whether home intravenous antibiotic therapy in cystic fibrosis is as effective as inpatient intravenous antibiotic therapy and if it is preferred by individuals or families or both. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register comprising references identified from comprehensive electronic database searches and handsearches of relevant journals and abstract books of conference proceedings.Most recent search of the Group's Trials Register: 01 September 2011. SELECTION CRITERIA Randomized and quasi-randomized controlled studies of intravenous antibiotic treatment for adults and children with cystic fibrosis at home compared to in hospital. DATA COLLECTION AND ANALYSIS The authors independently selected studies for inclusion in the review, assessed methodological quality of each study and extracted data using a standardised form. MAIN RESULTS Eighteen studies were identified by the searches. Only one study could be included which reported results from 17 participants aged 10 to 41 years with an infective exacerbation of Pseudomonas aeruginosa. All their 31 admissions (18 hospital and 13 at home after two to four days of hospital treatment) were analysed as independent events. Outcomes were measured at 0, 10 and 21 days after initiation of treatment. Home participants underwent fewer investigations than hospital participants (P < 0.002) and general activity was higher in the home group. No significant differences were found for clinical outcomes, adverse events, complications or change of intravenous lines,or time to next admission. Home participants received less low-dose home maintenance antibiotic.Quality of life measures showed no significant differences for dyspnoea and emotional state, but fatigue and mastery were worse for home participants, possibly due to a higher general activity and need of support. Personal, family, sleeping and eating disruptions were less important for home than hospital admissions.Home therapy was cheaper for families and the hospital. Indirect costs were not determined. AUTHORS' CONCLUSIONS Current evidence is restricted to a single randomized clinical trial. It suggests that, in the short term, home therapy does not harm individuals, entails fewer investigations, reduces social disruptions and can be cost-effective. There were both advantages and disadvantages in terms of quality of life. The decision to attempt home treatment should be based on the individual situation and appropriate local resources. More research is urgently required.
Collapse
Affiliation(s)
- Albert Balaguer
- Department of Pediatrics. Hospital General de Catalunya., Universitat Internacional de Catalunya, Barcelona, Spain.
| | | |
Collapse
|
194
|
Dallaire-Dufresne S, Paquet VE, Charette SJ. [Dictyostelium discoideum: a model for the study of bacterial virulence]. Can J Microbiol 2012; 57:699-707. [PMID: 21877947 DOI: 10.1139/w11-072] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The amoeba Dictyostelium discoideum, a bacterial predator, has emerged as a valuable tool for studying bacterial virulence. All its features make this unicellular eukaryote a versatile model organism. It can be used to study virulence factors of pathogenic bacteria as well as host elements involved in resistance to pathogens. The virulence of more than 20 bacterial species pathogenic for humans or animals has been studied using D. discoideum so far. These bacteria are either extracellular or intracellular pathogens. This review presents an overview of the question, with special emphasis on the reasons why D. discoideum is a suitable host model to study bacterial virulence, as well as on the type of information on host–pathogen relationship this amoeba can provide.
Collapse
Affiliation(s)
- Stéphanie Dallaire-Dufresne
- Institut de biologie intégrative et des systèmes, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | | | | |
Collapse
|
195
|
Abstract
Hypermutability is a phenotype characterized by a moderate to high elevation of spontaneous mutation rates and could result from DNA replication errors, defects in error correction mechanisms and many other causes. The elevated mutation rates are helpful to organisms to adapt to sudden and unforeseen threats to survival. At the same time hypermutability also leads to the generation of many deleterious mutations which offset its adaptive value and therefore disadvantageous. Nevertheless, it is very common in nature, especially among clinical isolates of pathogens. Hypermutability is inherited by indirect (second order) selection along with the beneficial mutations generated. At large population sizes and high mutation rates many cells in the population could concurrently acquire beneficial mutations of varying adaptive (fitness) values. These lineages compete with the ancestral cells and also among themselves for fixation. The one with the 'fittest' mutation gets fixed ultimately while the others are lost. This has been called 'clonal interference' which puts a speed limit on adaptation. The original clonal interference hypothesis has been modified recently. Nonheritable (transient) hypermtability conferring significant adaptive benefits also occur during stress response although its molecular basis remains controversial. The adaptive benefits of heritable hypermutability are discussed with emphasis on host-pathogen interactions.
Collapse
|
196
|
Cardines R, Giufrè M, Pompilio A, Fiscarelli E, Ricciotti G, Bonaventura GD, Cerquetti M. Haemophilus influenzae in children with cystic fibrosis: Antimicrobial susceptibility, molecular epidemiology, distribution of adhesins and biofilm formation. Int J Med Microbiol 2012; 302:45-52. [DOI: 10.1016/j.ijmm.2011.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 07/26/2011] [Accepted: 08/29/2011] [Indexed: 12/22/2022] Open
|
197
|
Peters BM, Jabra-Rizk MA, O'May GA, Costerton JW, Shirtliff ME. Polymicrobial interactions: impact on pathogenesis and human disease. Clin Microbiol Rev 2012; 25:193-213. [PMID: 22232376 PMCID: PMC3255964 DOI: 10.1128/cmr.00013-11] [Citation(s) in RCA: 482] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microorganisms coexist in a complex milieu of bacteria, fungi, archaea, and viruses on or within the human body, often as multifaceted polymicrobial biofilm communities at mucosal sites and on abiotic surfaces. Only recently have we begun to appreciate the complicated biofilm phenotype during infection; moreover, even less is known about the interactions that occur between microorganisms during polymicrobial growth and their implications in human disease. Therefore, this review focuses on polymicrobial biofilm-mediated infections and examines the contribution of bacterial-bacterial, bacterial-fungal, and bacterial-viral interactions during human infection and potential strategies for protection against such diseases.
Collapse
Affiliation(s)
- Brian M. Peters
- Graduate Program in Life Sciences, Molecular Microbiology and Immunology Program, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Dental School, Baltimore, Maryland, USA
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, Dental School, University of Maryland—Baltimore, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland—Baltimore, Baltimore, Maryland, USA
| | - Graeme A. O'May
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Dental School, Baltimore, Maryland, USA
| | - J. William Costerton
- Department of Orthopedic Surgery, Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| | - Mark E. Shirtliff
- Department of Microbial Pathogenesis, University of Maryland—Baltimore, Dental School, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland—Baltimore, Baltimore, Maryland, USA
| |
Collapse
|
198
|
Genomic expression analysis reveals strategies of Burkholderia cenocepacia to adapt to cystic fibrosis patients' airways and antimicrobial therapy. PLoS One 2011; 6:e28831. [PMID: 22216120 PMCID: PMC3244429 DOI: 10.1371/journal.pone.0028831] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/15/2011] [Indexed: 12/20/2022] Open
Abstract
Pulmonary colonization of cystic fibrosis (CF) patients with Burkholderia cenocepacia or other bacteria of the Burkholderia cepacia complex (Bcc) is associated with worse prognosis and increased risk of death. During colonization, the bacteria may evolve under the stressing selection pressures exerted in the CF lung, in particular, those resulting from challenges of the host immune defenses, antimicrobial therapy, nutrient availability and oxygen limitation. Understanding the adaptive mechanisms that promote successful colonization and long-term survival of B. cenocepacia in the CF lung is essential for an improved therapeutic outcome of chronic infections. To get mechanistic insights into these adaptive strategies a transcriptomic analysis, based on DNA microarrays, was explored in this study. The genomic expression levels in two clonal variants isolated during long-term colonization of a CF patient who died from the cepacia syndrome were compared. One of the isolates examined, IST439, is the first B. cenocepacia isolate retrieved from the patient and the other isolate, IST4113, was obtained three years later and is more resistant to different classes of antimicrobials. Approximately 1000 genes were found to be differently expressed in the two clonal variants reflecting a marked reprogramming of genomic expression. The up-regulated genes in IST4113 include those involved in translation, iron uptake (in particular, in ornibactin biosynthesis), efflux of drugs and in adhesion to epithelial lung tissue and to mucin. Alterations related with adaptation to the nutritional environment of the CF lung and to an oxygen-limited environment are also suggested to be a key feature of transcriptional reprogramming occurring during long-term colonization, antibiotic therapy and the progression of the disease.
Collapse
|
199
|
Coutinho CP, dos Santos SC, Madeira A, Mira NP, Moreira AS, Sá-Correia I. Long-term colonization of the cystic fibrosis lung by Burkholderia cepacia complex bacteria: epidemiology, clonal variation, and genome-wide expression alterations. Front Cell Infect Microbiol 2011; 1:12. [PMID: 22919578 PMCID: PMC3417363 DOI: 10.3389/fcimb.2011.00012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/15/2011] [Indexed: 01/06/2023] Open
Abstract
Long-term respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) patients generally lead to a more rapid decline in lung function and, in some cases, to a fatal necrotizing pneumonia known as the "cepacia syndrome." Bcc bacteria are ubiquitous in the environment and are recognized as serious opportunistic pathogens that are virtually impossible to eradicate from the CF lung, posing a serious clinical threat. The epidemiological survey of Bcc bacteria involved in respiratory infections at the major Portuguese CF Treatment Center at Santa Maria Hospital, in Lisbon, has been carried out by our research group for the past 16 years, covering over 500 clinical isolates where B. cepacia and B. cenocepacia are the predominant species, with B. stabilis, B. contaminans, B. dolosa, and B. multivorans also represented. The systematic and longitudinal study of this CF population during such an extended period of time represents a unique case-study, comprehending 41 Bcc-infected patients (29 pediatric and 12 adult) of whom around 70% have been persistently colonized between 7 months and 9 years. During chronic infection, the CF airways represent an evolving ecosystem, with multiple phenotypic variants emerging from the clonal population and becoming established in the patients' airways as the result of genetic adaptation. Understanding the evolutionary mechanisms involved is crucial for an improved therapeutic outcome of chronic infections in CF. This review focuses on our contribution to the understanding of these adaptive mechanisms based on extensive phenotypic, genotypic, and genome-wide expression approaches of selected Bcc clonal variants obtained during long-term colonization of the CF airways.
Collapse
Affiliation(s)
- Carla P. Coutinho
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Sandra C. dos Santos
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Andreia Madeira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Nuno P. Mira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Ana S. Moreira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| |
Collapse
|
200
|
True microbiota involved in chronic lung infection of cystic fibrosis patients found by culturing and 16S rRNA gene analysis. J Clin Microbiol 2011; 49:4352-5. [PMID: 22012018 DOI: 10.1128/jcm.06092-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patients suffering from cystic fibrosis (CF) develop chronic lung infection. In this study, we investigated the microorganisms present in transplanted CF lungs (n = 5) by standard culturing and 16S rRNA gene analysis. A correspondence between culturing and the molecular methods was observed. In conclusion, standard culturing seems reliable for the identification of the dominating pathogens.
Collapse
|