151
|
Vachhani P, Bose P, Rahmani M, Grant S. Rational combination of dual PI3K/mTOR blockade and Bcl-2/-xL inhibition in AML. Physiol Genomics 2014; 46:448-56. [PMID: 24824212 DOI: 10.1152/physiolgenomics.00173.2013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) continues to represent an area of critical unmet need with respect to new and effective targeted therapies. The Bcl-2 family of pro- and antiapoptotic proteins stands at the crossroads of cellular survival and death, and the expression of and interactions between these proteins determine tumor cell fate. Malignant cells, which are often primed for apoptosis, are particularly vulnerable to the simultaneous disruption of cooperative survival signaling pathways. Indeed, the single agent activity of agents such as mammalian target of rapamycin (mTOR) and mitogen-activated protein kinase kinase (MEK) inhibitors in AML has been modest. Much work in recent years has focused on strategies to enhance the therapeutic potential of the bona fide BH3-mimetic, ABT-737, which inhibits B-cell lymphoma 2 (Bcl-2) and Bcl-xL. Most of these strategies target Mcl-1, an antiapoptotic protein not inhibited by ABT-737. The phosphatidylinositol-3-kinase (PI3K)/Akt/mTOR and Ras/Raf/MEK/ERK signaling pathways are central to the growth, proliferation, and survival of AML cells, and there is much interest currently in pharmacologically interrupting these pathways. Dual inhibitors of PI3K and mTOR overcome some intrinsic disadvantages of rapamycin and its derivatives, which selectively inhibit mTOR. In this review, we discuss why combining dual PI3K/mTOR blockade with inhibition of Bcl-2 and Bcl-xL, by virtue of allowing coordinate inhibition of three mutually synergistic pathways in AML cells, may be a particularly attractive therapeutic strategy in AML, the success of which may be predicted for by basal Akt activation.
Collapse
Affiliation(s)
- Pankit Vachhani
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Prithviraj Bose
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia; Virginia Commonwealth University Massey Cancer Center, Richmond, Virginia
| | - Mohamed Rahmani
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia; Virginia Commonwealth University Massey Cancer Center, Richmond, Virginia
| | - Steven Grant
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia; Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, Virginia; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia; Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia; Institute of Molecular Medicine, Virginia Commonwealth University; and Virginia Commonwealth University Massey Cancer Center, Richmond, Virginia
| |
Collapse
|
152
|
Raha D, Wilson TR, Peng J, Peterson D, Yue P, Evangelista M, Wilson C, Merchant M, Settleman J. The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation. Cancer Res 2014; 74:3579-90. [PMID: 24812274 DOI: 10.1158/0008-5472.can-13-3456] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Selective kinase inhibitors have emerged as an important class of cancer therapeutics, and several such drugs are now routinely used to treat advanced-stage disease. However, their clinical benefit is typically short-lived because of the relatively rapid acquisition of drug resistance following treatment response. Accumulating preclinical and clinical data point to a role for a heterogeneous response to treatment within a subpopulation of tumor cells that are intrinsically drug-resistant, such as cancer stem cells. We have previously described an epigenetically determined reversibly drug-tolerant subpopulation of cancer cells that share some properties with cancer stem cells. Here, we define a requirement for the previously established cancer stem cell marker ALDH (aldehyde dehydrogenase) in the maintenance of this drug-tolerant subpopulation. We find that ALDH protects the drug-tolerant subpopulation from the potentially toxic effects of elevated levels of reactive oxygen species (ROS) in these cells, and pharmacologic disruption of ALDH activity leads to accumulation of ROS to toxic levels, consequent DNA damage, and apoptosis specifically within the drug-tolerant subpopulation. Combining ALDH inhibition with other kinase-directed treatments delayed treatment relapse in vitro and in vivo, revealing a novel combination treatment strategy for cancers that might otherwise rapidly relapse following single-agent therapy.
Collapse
Affiliation(s)
- Debasish Raha
- Authors' Affiliations: Departments of Discovery Oncology
| | | | | | | | - Peng Yue
- Bioinformatics, Genentech, Inc., South San Francisco, California
| | | | | | | | - Jeff Settleman
- Authors' Affiliations: Departments of Discovery Oncology,
| |
Collapse
|
153
|
Casey SC, Li Y, Felsher DW. An essential role for the immune system in the mechanism of tumor regression following targeted oncogene inactivation. Immunol Res 2014; 58:282-91. [PMID: 24791942 PMCID: PMC4201505 DOI: 10.1007/s12026-014-8503-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumors are genetically complex and can have a multitude of mutations. Consequently, it is surprising that the suppression of a single oncogene can result in rapid and sustained tumor regression, illustrating the concept that cancers are often "oncogene addicted." The mechanism of oncogene addiction has been presumed to be largely cell autonomous as a consequence of the restoration of normal physiological programs that induce proliferative arrest, apoptosis, differentiation, and/or cellular senescence. Interestingly, it has recently become apparent that upon oncogene inactivation, the immune response is critical in mediating the phenotypic consequences of oncogene addiction. In particular, CD4(+) T cells have been suggested to be essential to the remodeling of the tumor microenvironment, including the shutdown of host angiogenesis and the induction of cellular senescence in the tumor. However, adaptive and innate immune cells are likely involved. Thus, the effectors of the immune system are involved not only in tumor initiation, tumor progression, and immunosurveillance, but also in the mechanism of tumor regression upon targeted oncogene inactivation. Hence, oncogene inactivation may be an effective therapeutic approach because it both reverses the neoplastic state within a cancer cell and reactivates the host immune response that remodels the tumor microenvironment.
Collapse
Affiliation(s)
- Stephanie C Casey
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, 269 Campus Drive, CCSR 1105, Stanford, CA, 94305-5151, USA
| | | | | |
Collapse
|
154
|
Gálvez-Peralta M, Flatten KS, Loegering DA, Peterson KL, Schneider PA, Erlichman C, Kaufmann SH. Context-dependent antagonism between Akt inhibitors and topoisomerase poisons. Mol Pharmacol 2014; 85:723-34. [PMID: 24569089 PMCID: PMC3990016 DOI: 10.1124/mol.113.088674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 02/25/2014] [Indexed: 12/28/2022] Open
Abstract
Signaling through the phosphatidylinositol-3 kinase (PI3K)/Akt pathway, which is aberrantly activated in >50% of carcinomas, inhibits apoptosis and contributes to drug resistance. Accordingly, several Akt inhibitors are currently undergoing preclinical or early clinical testing. To examine the effect of Akt inhibition on the activity of multiple widely used classes of antineoplastic agents, human cancer cell lines were treated with the Akt inhibitor A-443654 [(2S)-1-(1H-indol-3-yl)-3-[5-(3-methyl-2H-indazol-5-yl)pyridin-3-yl]oxypropan-2-amine; ATP-competitive] or MK-2206 (8-[4-(1-aminocyclobutyl)phenyl]-9-phenyl-2H-[1,2,4]triazolo[3,4-f][1,6]naphthyridin-3-one;dihydrochloride; allosteric inhibitor) or with small interfering RNA (siRNA) targeting phosphoinositide-dependent kinase 1 (PDK1) along with cisplatin, melphalan, camptothecin, or etoposide and assayed for colony formation. Surprisingly different results were observed when Akt inhibitors were combined with different drugs. Synergistic effects were observed in multiple cell lines independent of PI3K pathway status when A-443654 or MK-2206 was combined with the DNA cross-linking agents cisplatin or melphalan. In contrast, effects of the Akt inhibitors in combination with camptothecin or etoposide were more complicated. In HCT116 and DLD1 cells, which harbor activating PI3KCA mutations, A-443654 over a broad concentration range enhanced the effects of camptothecin or etoposide. In contrast, in cell lines lacking activating PI3KCA mutations, partial inhibition of Akt signaling synergized with camptothecin or etoposide, but higher A-443654 or MK-2206 concentrations (>80% inhibition of Akt signaling) or PDK1 siRNA antagonized the topoisomerase poisons by diminishing DNA synthesis, a process that contributes to effective DNA damage and killing by these agents. These results indicate that the effects of combining inhibitors of the PI3K/Akt pathway with certain classes of chemotherapeutic agents might be more complicated than previously recognized.
Collapse
Affiliation(s)
- Marina Gálvez-Peralta
- Divisions of Oncology Research (M.G.-P., K.S.F., D.A.L., K.L.P., P.A.S., S.H.K.) and Medical Oncology (C.E.), Department of Oncology and Department of Molecular Pharmacology & Experimental Therapeutics (S.H.K.), Mayo Clinic College of Medicine, Rochester, Minnesota
| | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death and is currently the main event leading to death in patients with cirrhosis. Evolving information suggests that the metabolic syndrome with non-alcoholic liver disease may be an important cause of HCC in addition to viral hepatitis and alcohol-induced liver disease. The molecular pathogenesis is extremely complex and heterogeneous. To date the molecular information has not impacted on treatment decisions. Periodic surveillance imaging of patients with cirrhosis is widely practiced, especially because diagnostic, radiographic criteria for early-stage HCC have been defined (including nodules between 1 and 2 cm) and effective treatment is available for tumours detected at an early stage. Worldwide the approach to resection versus transplantation varies depending upon local resources, expertise and donor availability. The criteria for transplantation are discussed, and the controversial areas highlighted with evidence-based recommendations provided. Several approaches are available for intermediate stage disease, including radiofrequency ablation, transarterial chemoembolisation and radioembolisation; the rationale for these therapies is buttressed by appropriate outcome-based studies. For advanced disease, systemic therapy with sorafenib remains the option best supported by current data. Thus, while several trials have failed to improve the benefits of established therapies, studies assessing the sequential or combined application of those already known to be beneficial are needed. Also, new concepts are provided in regards to selecting and stratifying patients for second-line studies, which may help explain the failure of prior studies.
Collapse
Affiliation(s)
- Jordi Bruix
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clinic Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Spain
| | - Gregory J Gores
- Mayo Clinic, Mayo College of Medicine, Rochester, Minnesota, USA
| | - Vincenzo Mazzaferro
- Gastrointestinal Surgery and Liver Transplantation, Istituto Nazionale Tumori IRCCS (National Cancer Institute), Milan, Italy
| |
Collapse
|
156
|
Liu H, Westergard TD, Cashen A, Piwnica-Worms DR, Kunkle L, Vij R, Pham CG, DiPersio J, Cheng EH, Hsieh JJ. Proteasome inhibitors evoke latent tumor suppression programs in pro-B MLL leukemias through MLL-AF4. Cancer Cell 2014; 25:530-42. [PMID: 24735925 PMCID: PMC4097146 DOI: 10.1016/j.ccr.2014.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 11/24/2013] [Accepted: 03/10/2014] [Indexed: 01/22/2023]
Abstract
Chromosomal translocations disrupting MLL generate MLL-fusion proteins that induce aggressive leukemias. Unexpectedly, MLL-fusion proteins are rarely observed at high levels, suggesting excessive MLL-fusions may be incompatible with a malignant phenotype. Here, we used clinical proteasome inhibitors, bortezomib and carfilzomib, to reduce the turnover of endogenous MLL-fusions and discovered that accumulated MLL-fusions induce latent, context-dependent tumor suppression programs. Specifically, in MLL pro-B lymphoid, but not myeloid, leukemias, proteasome inhibition triggers apoptosis and cell cycle arrest involving activation cleavage of BID by caspase-8 and upregulation of p27, respectively. Furthermore, proteasome inhibition conferred preliminary benefit to patients with MLL-AF4 leukemia. Hence, feasible strategies to treat cancer-type and oncogene-specific cancers can be improvised through harnessing inherent tumor suppression properties of individual oncogenic fusions.
Collapse
Affiliation(s)
- Han Liu
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Todd D Westergard
- Department of Medicine, Washington University, St. Louis, MO 63105, USA
| | - Amanda Cashen
- Department of Medicine, Washington University, St. Louis, MO 63105, USA
| | - David R Piwnica-Worms
- BRIGHT Institute, Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63105, USA
| | | | - Ravi Vij
- Department of Medicine, Washington University, St. Louis, MO 63105, USA
| | - Can G Pham
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John DiPersio
- Department of Medicine, Washington University, St. Louis, MO 63105, USA
| | - Emily H Cheng
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| | - James J Hsieh
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
157
|
Hanly EK, Rajoria S, Darzynkiewicz Z, Zhao H, Suriano R, Tuli N, George AL, Bednarczyk R, Shin EJ, Geliebter J, Tiwari RK. Disruption of mutated BRAF signaling modulates thyroid cancer phenotype. BMC Res Notes 2014; 7:187. [PMID: 24673746 PMCID: PMC3976539 DOI: 10.1186/1756-0500-7-187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 03/19/2014] [Indexed: 12/19/2022] Open
Abstract
Background Thyroid cancer is the most common endocrine-related cancer in the United States and its incidence is rising rapidly. Since among various genetic lesions identified in thyroid cancer, the BRAFV600E mutation is found in 50% of papillary thyroid cancers and 25% of anaplastic thyroid cancers, this mutation provides an opportunity for targeted drug therapy. Our laboratory evaluated cellular phenotypic effects in response to treatment with PLX4032, a BRAFV600E-specific inhibitor, in normal BRAF-wild-type thyroid cells and in BRAFV600E-positive papillary thyroid cancer cells. Methods Normal BRAF-wild-type thyroid cells and BRAFV600E-mutated papillary thyroid cancer cells were subjected to proliferation assays and analyzed for cell death by immunofluorescence. Cell cycle status was determined using an EdU uptake assay followed by laser scanning cytometry. In addition, expression of proteins within the MAPK signal transduction pathway was analyzed by Western blot. Results PLX4032 has potent anti-proliferative effects selectively in BRAF-mutated thyroid cancer cells. These effects appear to be mediated by the drug’s activity of inhibiting phosphorylation of signaling molecules downstream of BRAF within the pro-survival MAPK pathway. Interestingly, PLX4032 promotes the phosphorylation of these signaling molecules in BRAF-wild-type thyroid cells. Conclusions These findings support further evaluation of combinational therapy that includes BRAFV600E inhibitors in thyroid cancer patients harboring the BRAFV600E mutation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Raj K Tiwari
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York 10595, USA.
| |
Collapse
|
158
|
Epiregulin: roles in normal physiology and cancer. Semin Cell Dev Biol 2014; 28:49-56. [PMID: 24631357 DOI: 10.1016/j.semcdb.2014.03.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/24/2014] [Accepted: 03/03/2014] [Indexed: 12/13/2022]
Abstract
Epiregulin is a 46-amino acid protein that belongs to the epidermal growth factor (EGF) family of peptide hormones. Epiregulin binds to the EGF receptor (EGFR/ErbB1) and ErbB4 (HER4) and can stimulate signaling of ErbB2 (HER2/Neu) and ErbB3 (HER3) through ligand-induced heterodimerization with a cognate receptor. Epiregulin possesses a range of functions in both normal physiologic states as well as in pathologic conditions. Epiregulin contributes to inflammation, wound healing, tissue repair, and oocyte maturation by regulating angiogenesis and vascular remodeling and by stimulating cell proliferation. Deregulated epiregulin activity appears to contribute to the progression of a number of different malignancies, including cancers of the bladder, stomach, colon, breast, lung, head and neck, and liver. Therefore, epiregulin and the elements of the EGF/ErbB signaling network that lie downstream of epiregulin appear to be good targets for therapeutic intervention.
Collapse
|
159
|
Giancotti FG. Deregulation of cell signaling in cancer. FEBS Lett 2014; 588:2558-70. [PMID: 24561200 DOI: 10.1016/j.febslet.2014.02.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 02/06/2023]
Abstract
Oncogenic mutations disrupt the regulatory circuits that govern cell function, enabling tumor cells to undergo de-regulated mitogenesis, to resist to pro-apoptotic insults, and to invade through tissue boundaries. Cancer cell biology has played a crucial role in elucidating the signaling mechanisms by which oncogenic mutations sustain these malignant behaviors and thereby in identifying rational targets for cancer drugs. The efficacy of such targeted therapies illustrate the power of a reductionist approach to the study of cancer.
Collapse
Affiliation(s)
- Filippo G Giancotti
- Cell Biology Program, Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
160
|
Vicente-Dueñas C, Hauer J, Ruiz-Roca L, Ingenhag D, Rodríguez-Meira A, Auer F, Borkhardt A, Sánchez-García I. Tumoral stem cell reprogramming as a driver of cancer: Theory, biological models, implications in cancer therapy. Semin Cancer Biol 2014; 32:3-9. [PMID: 24530939 DOI: 10.1016/j.semcancer.2014.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/03/2014] [Indexed: 12/24/2022]
Abstract
Cancer is a clonal malignant disease originated in a single cell and characterized by the accumulation of partially differentiated cells that are phenotypically reminiscent of normal stages of differentiation. According to current models, therapeutic strategies that block oncogene activity are likely to selectively target tumor cells. However, recent evidences have revealed that cancer stem cells could arise through a tumor stem cell reprogramming mechanism, suggesting that genetic lesions that initiate the cancer process might be dispensable for tumor progression and maintenance. This review addresses the impact of these results toward a better understanding of cancer development and proposes new approaches to treat cancer in the future.
Collapse
Affiliation(s)
- Carolina Vicente-Dueñas
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus M. de Unamuno s/n, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Julia Hauer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Lucía Ruiz-Roca
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus M. de Unamuno s/n, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Deborah Ingenhag
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Alba Rodríguez-Meira
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus M. de Unamuno s/n, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Franziska Auer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| | - Isidro Sánchez-García
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus M. de Unamuno s/n, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
161
|
Gibault L, Cazes A, Narjoz C, Blons H. [Molecular profiling of non-small cell lung cancer]. REVUE DE PNEUMOLOGIE CLINIQUE 2014; 70:47-62. [PMID: 24566035 DOI: 10.1016/j.pneumo.2013.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/24/2013] [Accepted: 11/01/2013] [Indexed: 06/03/2023]
Abstract
The management of locally advanced and metastatic non-small cell lung cancer has been revolutionized thanks to recent progress in pathology and molecular biology. The first molecular subgroup is defined by activating mutations of the epidermal growth factor receptor (EGFR), and a dramatic response to specific tyrosine kinase inhibitors. Since then, multiple genetic alterations (KRAS, HER2, BRAF, PIK3CA, ALK, ROS, RET…) have been identified as potential target of novel therapies, and molecular profiling has become common practice. This review focus on the molecular alterations associated with non-small cell lung cancer, including molecular profiling and response to targeted therapies.
Collapse
Affiliation(s)
- L Gibault
- Service de pathologie, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris, 20, rue Leblanc, 75015 Paris, France
| | - A Cazes
- Service de pathologie, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris, 20, rue Leblanc, 75015 Paris, France; Université Paris Descartes, 12, rue de l'École-de-Médecine, 75006 Paris, France
| | - C Narjoz
- Service de biochimie, UF de pharmacogénétique et oncologie moléculaire, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris, 20, rue Leblanc, 75015 Paris, France
| | - H Blons
- Université Paris Descartes, 12, rue de l'École-de-Médecine, 75006 Paris, France; Service de biochimie, UF de pharmacogénétique et oncologie moléculaire, hôpital européen Georges-Pompidou, Assistance publique-Hôpitaux de Paris, 20, rue Leblanc, 75015 Paris, France; UMR-S775, Inserm, centre universitaire des Saints-Pères, 46, rue des Saints-Pères, 75006 Paris, France.
| |
Collapse
|
162
|
Lopergolo A, Nicolini V, Favini E, Dal Bo L, Tortoreto M, Cominetti D, Folini M, Perego P, Castiglioni V, Scanziani E, Borrello MG, Zaffaroni N, Cassinelli G, Lanzi C. Synergistic cooperation between sunitinib and cisplatin promotes apoptotic cell death in human medullary thyroid cancer. J Clin Endocrinol Metab 2014; 99:498-509. [PMID: 24276455 DOI: 10.1210/jc.2013-2574] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
CONTEXT Tyrosine kinase inhibitors represent a new treatment option for patients with advanced medullary thyroid cancer (MTC). However, cures have not been achieved with current available agents used in monotherapy. OBJECTIVE Because RET has been shown to negatively regulate CD95 death receptor activation in preclinical models of RET-dependent MTC, we investigated the potential of the combination approach with the RET-targeting tyrosine kinase inhibitor sunitinib and cisplatin to enhance apoptosis activation through the extrinsic pathway. DESIGN The effects of sunitinib and cisplatin were examined in human MTC cell lines harboring oncogenic RET mutations. Experiments were designed to determine drug effects on RET signaling, cell growth, apoptosis, autophagy, and tumor growth in mice and to investigate the mechanisms of the drug interaction. RESULTS Sunitinib and cisplatin synergistically inhibited the growth of MZ-CRC-1 cells harboring the RET M918T activating mutation. The combination enhanced apoptosis activation through CD95-mediated, caspase-8-dependent pathway. Moreover, sunitinib induced a severe perturbation of the autophagic flux characterized by autophagosome accumulation and a remarkable lysosomal dysfunction, which was further enhanced, with lysosomal leakage induction, by cisplatin. Administration of the drug combination to mice xenografted with MZ-CRC-1 cells improved the antitumor efficacy, as compared with single-agent treatments, inducing complete responses in 30% of the treated mice, a significant increase in caspase-3 activation (P < .01 vs cisplatin, and P < .0005 vs sunitinib) and apoptosis in tumor cells. CONCLUSIONS Addition of cisplatin to sunitinib potentiates apoptotic cell death and has promising preclinical activity in MTCs harboring the RET M918T oncogene.
Collapse
Affiliation(s)
- Alessia Lopergolo
- Molecular Pharmacology Unit (A.L., V.N., E.F., L.D.B., M.T., D.C., M.F., P.P., N.Z., G.C., C.L.) and Molecular Mechanisms Unit (M.G.B.), Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; Department of Veterinary Sciences and Public Health (V.C., E.S.), Università degli Studi di Milano, 20133 Milan, Italy; and Mouse and Animal Pathology Laboratory (V.C., E.S.), Fondazione Filarete, 20139 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Eini R, Stoop H, Gillis AJM, Biermann K, Dorssers LCJ, Looijenga LHJ. Role of SOX2 in the etiology of embryonal carcinoma, based on analysis of the NCCIT and NT2 cell lines. PLoS One 2014; 9:e83585. [PMID: 24404135 PMCID: PMC3880257 DOI: 10.1371/journal.pone.0083585] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 11/06/2013] [Indexed: 01/07/2023] Open
Abstract
The transcription factor SOX2, associated with amongst others OCT3/4, is essential for maintenance of pluripotency and self-renewal of embryonic stem cells. SOX2 is highly expressed in embryonal carcinoma (EC), the stem cell component of malignant nonseminomatous germ cell tumors, referred to as germ cell cancer (GCC). In fact, OCT3/4 together with SOX2 is an informative diagnostic tool for EC in a clinical setting. Several studies support the hypothesis that SOX2 is a relevant oncogenic factor in various cancers and recently, SOX2 has been suggested as a putative therapeutic target for early stage EC. We demonstrate the presence of genomic amplification of SOX2 in an EC cell line, NCCIT, using array comparative genome hybridization and fluorescence in situ hybridization. Down-regulation of SOX2 by targeted siRNA provokes NCCIT cells towards apoptosis, while inhibition of OCT3/4 expression induced differentiation, with retained SOX2 levels. Mice pluripotent xenografts from NCCIT (N-NCCIT and N2-NCCIT) show a consistent SOX2 expression, in spite of loss of the expression of OCT3/4, and differentiation, with retained presence of genomic amplification. No SOX2 amplification has been identified in primary pure and mixed EC in vivo patient samples so far. The data presented in this study are based on a single EC cell line with a SOX2 amplification, with NT2 as control EC cell line, showing no profound induction of apoptosis upon SOX2 downregulation. The findings are of relevance to identify mechanisms involved in the pathogenesis of EC tumors, and support the model of SOX2-oncogene dependency of EC, which however, does not exclude induction of differentiation. This finding is likely related to the presence of wild type p53 in GCC, resulting in expression of downstream target genes, amongst others miR-34a, miR-145 and SOX2, associated to the unique sensitivity of GCC to DNA damaging agents.
Collapse
Affiliation(s)
- Ronak Eini
- Erasmus MC, University Medical Center Rotterdam, Department of Pathology, Rotterdam, The Netherlands
| | - Hans Stoop
- Erasmus MC, University Medical Center Rotterdam, Department of Pathology, Rotterdam, The Netherlands
| | - Ad J. M. Gillis
- Erasmus MC, University Medical Center Rotterdam, Department of Pathology, Rotterdam, The Netherlands
| | - Katharina Biermann
- Erasmus MC, University Medical Center Rotterdam, Department of Pathology, Rotterdam, The Netherlands
| | - Lambert C. J. Dorssers
- Erasmus MC, University Medical Center Rotterdam, Department of Pathology, Rotterdam, The Netherlands
| | - Leendert H. J. Looijenga
- Erasmus MC, University Medical Center Rotterdam, Department of Pathology, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
164
|
Song N, Gu XD, Wang Y, Chen ZY, Shi LB. Lentivirus-mediated siRNA targeting SAE1 induces cell cycle arrest and apoptosis in colon cancer cell RKO. Mol Biol 2014. [DOI: 10.1134/s0026893314010129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
165
|
Treatment of advanced non-small-cell lung cancer with epidermal growth factor receptor (EGFR) mutation or ALK gene rearrangement: results of an international expert panel meeting of the Italian Association of Thoracic Oncology. Clin Lung Cancer 2013; 15:173-81. [PMID: 24486058 DOI: 10.1016/j.cllc.2013.12.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 01/06/2023]
Abstract
The availability of targeted drugs has made the assessment of the EGFR mutation and ALK rearrangement critical in choosing the optimal treatment for patients with advanced non-small-cell lung cancer (NSCLC). In May 2013, the Italian Association of Thoracic Oncology (AIOT) organized an International Experts Panel Meeting to review strengths and limitations of the available evidence for the diagnosis and treatment of advanced NSCLC with EGFR or anaplastic lymphoma kinase (ALK) alterations and to discuss implications for clinical practice and future clinical research. All patients with advanced NSCLC, with the exclusion of pure squamous cell carcinoma in former or current smokers, should be tested for EGFR mutations and ALK rearrangements before decisions are made on first-line treatment. First-line treatment of EGFR-mutated cases should be with an EGFR tyrosine kinase inhibitor (TKI). Any available agent (gefitinib, erlotinib, or afatinib) can be used, until further data from comparative studies may better guide TKI selection. As general rule, and when clinically feasible, results of EGFR mutational status should be awaited before starting first-line treatment. Panelists agreed that the use of crizotinib is justified in any line of treatment. Although solid evidence supporting the continuation of EGFR TKIs or crizotinib beyond progression is lacking, in some cases (minimal, asymptomatic progression, or oligoprogression manageable by local therapy), treatment continuation beyond progression could be justified. Experimental strategies to target tumor heterogeneity and to treat patients after failure of EGFR TKIs or crizotinib are considered high-priority areas of research. A number of relevant research priorities were identified to optimize available treatment options.
Collapse
|
166
|
Targeting the EGFR family of receptor tyrosine kinases. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
167
|
Abstract
Pancreatic ductal adenocarcinoma (PDA) represents an unmet therapeutic challenge. PDA is addicted to the activity of the mutated KRAS oncogene which is considered so far an undruggable therapeutic target. We propose an approach to target KRAS effectively in patients using RNA interference. To meet this challenge, we have developed a local prolonged siRNA delivery system (Local Drug EluteR, LODER) shedding siRNA against the mutated KRAS (siG12D LODER). The siG12D LODER was assessed for its structural, release, and delivery properties in vitro and in vivo. The effect of the siG12D LODER on tumor growth was assessed in s.c. and orthotopic mouse models. KRAS silencing effect was further assessed on the KRAS downstream signaling pathway. The LODER-encapsulated siRNA was stable and active in vivo for 155 d. Treatment of PDA cells with siG12D LODER resulted in a significant decrease in KRAS levels, leading to inhibition of proliferation and epithelial-mesenchymal transition. In vivo, siG12D LODER impeded the growth of human pancreatic tumor cells and prolonged mouse survival. We report a reproducible and safe delivery platform based on a miniature biodegradable polymeric matrix, for the controlled and prolonged delivery of siRNA. This technology provides the following advantages: (i) siRNA is protected from degradation; (ii) the siRNA is slowly released locally within the tumor for prolonged periods; and (iii) the siG12D LODER elicits a therapeutic effect, thereby demonstrating that mutated KRAS is indeed a druggable target.
Collapse
|
168
|
Tsai TH, Yang CY, Ho CC, Liao WY, Jan IS, Chen KY, Wang JY, Ruan SY, Yu CJ, Yang JCH, Yang PC, Shih JY. Multi-gene analyses from waste brushing specimens for patients with peripheral lung cancer receiving EBUS-assisted bronchoscopy. Lung Cancer 2013; 82:420-5. [DOI: 10.1016/j.lungcan.2013.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/17/2013] [Accepted: 10/07/2013] [Indexed: 11/15/2022]
|
169
|
Abstract
Chromosomal rearrangements that lead to oncogenic kinase activation are observed in many epithelial cancers. These cancers express activated fusion kinases that drive the initiation and progression of malignancy, and often have a considerable response to small-molecule kinase inhibitors, which validates these fusion kinases as 'druggable' targets. In this Review, we examine the aetiologic, pathogenic and clinical features that are associated with cancers harbouring oncogenic fusion kinases, including anaplastic lymphoma kinase (ALK), ROS1 and RET. We discuss the clinical outcomes with targeted therapies and explore strategies to discover additional kinases that are activated by chromosomal rearrangements in solid tumours.
Collapse
Affiliation(s)
- Alice T Shaw
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
170
|
Tahiri A, Leivonen SK, Lüders T, Steinfeld I, Ragle Aure M, Geisler J, Mäkelä R, Nord S, Riis MLH, Yakhini Z, Kleivi Sahlberg K, Børresen-Dale AL, Perälä M, Bukholm IRK, Kristensen VN. Deregulation of cancer-related miRNAs is a common event in both benign and malignant human breast tumors. Carcinogenesis 2013; 35:76-85. [PMID: 24104550 DOI: 10.1093/carcin/bgt333] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs, which play an essential role in the regulation of gene expression during carcinogenesis. The role of miRNAs in breast cancer has been thoroughly investigated, and although many miRNAs are identified as cancer related, little is known about their involvement in benign tumors. In this study, we investigated miRNA expression profiles in the two most common types of human benign tumors (fibroadenoma/fibroadenomatosis) and in malignant breast tumors and explored their role as oncomirs and tumor suppressor miRNAs. Here, we identified 33 miRNAs with similar deregulated expression in both benign and malignant tumors compared with the expression levels of those in normal tissue, including breast cancer-related miRNAs such as let-7, miR-21 and miR-155. Additionally, messenger RNA (mRNA) expression profiles were obtained for some of the same samples. Using integrated mRNA/miRNA expression analysis, we observed that overexpression of certain miRNAs co-occurred with a significant downregulation of their candidate target mRNAs in both benign and malignant tumors. In support of these findings, in vitro functional screening of the downregulated miRNAs in non-malignant and breast cancer cell lines identified several possible tumor suppressor miRNAs, including miR-193b, miR-193a-3p, miR-126, miR-134, miR-132, miR-486-5p, miR-886-3p, miR-195 and miR-497, showing reduced growth when re-expressed in cancer cells. The finding of deregulated expression of oncomirs and tumor suppressor miRNAs in benign breast tumors is intriguing, indicating that they may play a role in proliferation. A role of cancer-related miRNAs in the early phases of carcinogenesis and malignant transformation can, therefore, not be ruled out.
Collapse
Affiliation(s)
- Andliena Tahiri
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine and Laboratory Sciences, Akershus University Hospital and
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Solomon B, Wilner KD, Shaw AT. Current status of targeted therapy for anaplastic lymphoma kinase-rearranged non-small cell lung cancer. Clin Pharmacol Ther 2013; 95:15-23. [PMID: 24091716 DOI: 10.1038/clpt.2013.200] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/25/2013] [Indexed: 12/28/2022]
Abstract
The identification of chromosomal rearrangements involving the anaplastic lymphoma kinase (ALK) gene in ~3-5% of non-small cell lung cancer (NSCLC) tissues and the demonstration that the first-in-class ALK tyrosine kinase inhibitor, crizotinib, can effectively target these tumors represent a significant advance in the evolution of personalized medicine for NSCLC. Single-arm studies demonstrating rapid and durable responses in the majority of ALK-positive NSCLC patients treated with crizotinib have been followed by a randomized phase III clinical trial in which superiority of crizotinib over chemotherapy was seen in previously treated ALK-positive NSCLC patients. However, despite the initial responses, most patients develop acquired resistance to crizotinib. Several novel therapeutic approaches targeting ALK-positive NSCLC are currently under evaluation in clinical trials, including second-generation ALK inhibitors, such as LDK378, CH5424802 (RO5424802802), and AP26113, and heat shock protein 90 inhibitors.
Collapse
Affiliation(s)
- B Solomon
- 1] Department of Medical Oncology, Peter MacCallum Cancer Centre, East Melbourne, Australia [2] Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | | | - A T Shaw
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
172
|
Niederst MJ, Engelman JA. Bypass mechanisms of resistance to receptor tyrosine kinase inhibition in lung cancer. Sci Signal 2013; 6:re6. [PMID: 24065147 DOI: 10.1126/scisignal.2004652] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Receptor tyrosine kinases (RTKs) are activated by somatic genetic alterations in a subset of cancers, and such cancers are often sensitive to specific inhibitors of the activated kinase. Two well-established examples of this paradigm include lung cancers with either EGFR mutations or ALK translocations. In these cancers, inhibition of the corresponding RTK leads to suppression of key downstream signaling pathways, such as the PI3K (phosphatidylinositol 3-kinase)/AKT and MEK (mitogen-activated protein kinase kinase)/ERK (extracellular signal-regulated kinase) pathways, resulting in cell growth arrest and death. Despite the initial clinical efficacy of ALK (anaplastic lymphoma kinase) and EGFR (epidermal growth factor receptor) inhibitors in these cancers, resistance invariably develops, typically within 1 to 2 years. Over the past several years, multiple molecular mechanisms of resistance have been identified, and some common themes have emerged. One is the development of resistance mutations in the drug target that prevent the drug from effectively inhibiting the respective RTK. A second is activation of alternative RTKs that maintain the signaling of key downstream pathways despite sustained inhibition of the original drug target. Indeed, several different RTKs have been implicated in promoting resistance to EGFR and ALK inhibitors in both laboratory studies and patient samples. In this mini-review, we summarize the concepts underlying RTK-mediated resistance, the specific examples known to date, and the challenges of applying this knowledge to develop improved therapeutic strategies to prevent or overcome resistance.
Collapse
Affiliation(s)
- Matthew J Niederst
- 1Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | |
Collapse
|
173
|
Tahiri A, Røe K, Ree AH, de Wijn R, Risberg K, Busch C, Lønning PE, Kristensen V, Geisler J. Differential inhibition of ex-vivo tumor kinase activity by vemurafenib in BRAF(V600E) and BRAF wild-type metastatic malignant melanoma. PLoS One 2013; 8:e72692. [PMID: 24023633 PMCID: PMC3758344 DOI: 10.1371/journal.pone.0072692] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/12/2013] [Indexed: 01/03/2023] Open
Abstract
Background Treatment of metastatic malignant melanoma patients harboring BRAF(V600E) has improved drastically after the discovery of the BRAF inhibitor, vemurafenib. However, drug resistance is a recurring problem, and prognoses are still very bad for patients harboring BRAF wild-type. Better markers for targeted therapy are therefore urgently needed. Methodology In this study, we assessed the individual kinase activity profiles in 26 tumor samples obtained from patients with metastatic malignant melanoma using peptide arrays with 144 kinase substrates. In addition, we studied the overall ex-vivo inhibitory effects of vemurafenib and sunitinib on kinase activity status. Results Overall kinase activity was significantly higher in lysates from melanoma tumors compared to normal skin tissue. Furthermore, ex-vivo incubation with both vemurafenib and sunitinib caused significant decrease in phosphorylation of kinase substrates, i.e kinase activity. While basal phosphorylation profiles were similar in BRAF wild-type and BRAF(V600E) tumors, analysis with ex-vivo vemurafenib treatment identified a subset of 40 kinase substrates showing stronger inhibition in BRAF(V600E) tumor lysates, distinguishing the BRAF wild-type and BRAF(V600E) tumors. Interestingly, a few BRAF wild-type tumors showed inhibition profiles similar to BRAF(V600E) tumors. The kinase inhibitory effect of vemurafenib was subsequently analyzed in cell lines harboring different BRAF mutational status with various vemurafenib sensitivity in-vitro. Conclusions Our findings suggest that multiplex kinase substrate array analysis give valuable information about overall tumor kinase activity. Furthermore, intra-assay exposure to kinase inhibiting drugs may provide a useful tool to study mechanisms of resistance, as well as to identify predictive markers.
Collapse
Affiliation(s)
- Andliena Tahiri
- Department of Clinical Molecular Biology and Laboratory Sciences, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kathrine Røe
- Department of Clinical Molecular Biology and Laboratory Sciences, Akershus University Hospital, Lørenskog, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Anne H. Ree
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Rik de Wijn
- PamGene International B.V., ‘s- Hertogenbosch, The Netherlands
| | - Karianne Risberg
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Christian Busch
- Section of Oncology, Institute of Medicine, University of Bergen, Bergen, Norway
| | - Per E. Lønning
- Section of Oncology, Institute of Medicine, University of Bergen, Bergen, Norway
- Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Vessela Kristensen
- Department of Clinical Molecular Biology and Laboratory Sciences, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jürgen Geisler
- Department of Clinical Molecular Biology and Laboratory Sciences, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- * E-mail:
| |
Collapse
|
174
|
Fukushima H, Ogura K, Wan L, Lu Y, Li V, Gao D, Liu P, Lau AW, Wu T, Kirschner MW, Inuzuka H, Wei W. SCF-mediated Cdh1 degradation defines a negative feedback system that coordinates cell-cycle progression. Cell Rep 2013; 4:803-16. [PMID: 23972993 PMCID: PMC3839583 DOI: 10.1016/j.celrep.2013.07.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/18/2013] [Accepted: 07/19/2013] [Indexed: 12/31/2022] Open
Abstract
Proper cell-cycle transitions are driven by waves of ubiquitin-dependent degradation of key regulators by the anaphase-promoting complex (APC) and Skp1-Cullin1-F-box (SCF) E3 ubiquitin ligase complexes. But precisely how APC and SCF activities are coordinated to regulate cell-cycle progression remains largely unclear. We previously showed that APC/Cdh1 earmarks the SCF component Skp2 for degradation. Here, we continue to report that SCF(β-TRCP) reciprocally controls APC/Cdh1 activity by governing Cdh1 ubiquitination and subsequent degradation. Furthermore, we define both cyclin A and Plk1, two well-known Cdh1 substrates, as upstream modifying enzymes that promote Cdh1 phosphorylation to trigger Cdh1 ubiquitination and subsequent degradation by SCF(β-TRCP). Thus, our work reveals a negative repression mechanism for SCF to control APC, thereby illustrating an elegant dual repression system between these two E3 ligase complexes to create the ordered cascade of APC and SCF activities governing timely cell-cycle transitions.
Collapse
Affiliation(s)
- Hidefumi Fukushima
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Kohei Ogura
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Victor Li
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Daming Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Pengda Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Alan W. Lau
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Wu
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marc W. Kirschner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
175
|
Campiglio M, Bufalino R, Sasso M, Ferri E, Casalini P, Adamo V, Fabi A, Aiello R, Riccardi F, Valle E, Scotti V, Tabaro G, Giuffrida D, Tarenzi E, Bologna A, Mustacchi G, Bianchi F, Balsari A, Ménard S, Tagliabue E. Effect of adjuvant trastuzumab treatment in conventional clinical setting: an observational retrospective multicenter Italian study. Breast Cancer Res Treat 2013; 141:101-10. [PMID: 23942848 PMCID: PMC3758836 DOI: 10.1007/s10549-013-2658-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/30/2013] [Indexed: 01/03/2023]
Abstract
Clinical trials have shown the efficacy of trastuzumab-based adjuvant therapy in HER2-positive breast cancers, but routine clinical use awaits evaluation of compliance, safety, and effectiveness. Adjuvant trastuzumab-based therapy in routine clinical use was evaluated in the retrospective study GHEA, recording 1,002 patients treated according to the HERA protocol between March 2005 and December 2009 in 42 Italian oncology departments; 874 (87.23 %) patients completed 1-year trastuzumab treatment. In 128 patients (12.77 %), trastuzumab was withdrawn due to cardiac or non-cardiac toxicity (28 and 29 patients, respectively), disease progression (5 patients) or the clinician's decision (66 patients). In addition, 156 patients experienced minor non-cardiac toxicities; 10 and 44 patients showed CHF and decreased LVEF, respectively, at the end of treatment. Compliance and safety of adjuvant trastuzumab-based therapy in Italian hospitals were high and close to those reported in the HERA trial. With a median follow-up of 32 months, 107 breast cancer relapses were recorded (overall frequency, 10.67 %), and lymph node involvement, estrogen receptor negativity, lymphoid infiltration, and vascular invasion were identified as independent prognostic factors for tumor recurrence, indicating that relapses were associated with advanced tumor stage. Analysis of site and frequency of distant metastases showed that bone metastases were significantly more frequent during or immediately after trastuzumab (<18 months from the start of treatment) compared to recurrences in bone after the end of treatment and wash-out of the drug (>18 months from the start of treatment) (35.89 vs. 14.28 %, p = 0.0240); no significant differences were observed in recurrences in the other recorded body sites, raising the possibility that the protection exerted by trastuzumab is lower in bone metastases.
Collapse
Affiliation(s)
- M Campiglio
- Molecular Targeting Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Takahashi M, Chiyo T, Okada T, Hohjoh H. Specific inhibition of tumor cells by oncogenic EGFR specific silencing by RNA interference. PLoS One 2013; 8:e73214. [PMID: 23951344 PMCID: PMC3738543 DOI: 10.1371/journal.pone.0073214] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/17/2013] [Indexed: 01/14/2023] Open
Abstract
Anticancer agents that have minimal effects on normal cells and tissues are ideal cancer drugs. Here, we show specific inhibition of human cancer cells carrying oncogenic mutations in the epidermal growth factor receptor (EGFR) gene by means of oncogenic allele-specific RNA interference (RNAi), both in vivo and in vitro. The allele-specific RNAi (ASP-RNAi) treatment did not affect normal cells or tissues that had no target oncogenic allele, whereas the suppression of a normal EGFR allele by a conventional in vivo RNAi caused adverse effects, i.e., normal EGFR is vital. Taken together, our current findings suggest that specific inhibition of oncogenic EGFR alleles without affecting the normal EGFR allele may provide a safe treatment approach for cancer patients and that ASP-RNAi treatment may be capable of becoming a safe and effective, anticancer treatment method.
Collapse
Affiliation(s)
- Masaki Takahashi
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Tomoko Chiyo
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Takashi Okada
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hirohiko Hohjoh
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
177
|
Al-aidaroos AQO, Yuen HF, Guo K, Zhang SD, Chung TH, Chng WJ, Zeng Q. Metastasis-associated PRL-3 induces EGFR activation and addiction in cancer cells. J Clin Invest 2013; 123:3459-71. [PMID: 23867504 PMCID: PMC4011027 DOI: 10.1172/jci66824] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 05/10/2013] [Indexed: 12/16/2022] Open
Abstract
Metastasis-associated phosphatase of regenerating liver-3 (PRL-3) has pleiotropic effects in driving cancer progression, yet the signaling mechanisms of PRL-3 are still not fully understood. Here, we provide evidence for PRL-3-induced hyperactivation of EGFR and its downstream signaling cascades in multiple human cancer cell lines. Mechanistically, PRL-3-induced activation of EGFR was attributed primarily to transcriptional downregulation of protein tyrosine phosphatase 1B (PTP1B), an inhibitory phosphatase for EGFR. Functionally, PRL-3-induced hyperactivation of EGFR correlated with increased cell growth, promigratory characteristics, and tumorigenicity. Moreover, PRL-3 induced cellular addiction to EGFR signaling, as evidenced by the pronounced reversion of these oncogenic attributes upon EGFR-specific inhibition. Of clinical significance, we verified elevated PRL-3 expression as a predictive marker for favorable therapeutic response in a heterogeneous colorectal cancer (CRC) patient cohort treated with the clinically approved anti-EGFR antibody cetuximab. The identification of PRL-3-driven EGFR hyperactivation and consequential addiction to EGFR signaling opens new avenues for inhibiting PRL-3-driven cancer progression. We propose that elevated PRL-3 expression is an important clinical predictive biomarker for favorable anti-EGFR cancer therapy.
Collapse
Affiliation(s)
- Abdul Qader Omer Al-aidaroos
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hiu Fung Yuen
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ke Guo
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shu Dong Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tae-Hoon Chung
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wee Joo Chng
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
178
|
Li Y, Takahashi M, Stork PJS. Ras-mutant cancer cells display B-Raf binding to Ras that activates extracellular signal-regulated kinase and is inhibited by protein kinase A phosphorylation. J Biol Chem 2013; 288:27646-27657. [PMID: 23893412 DOI: 10.1074/jbc.m113.463067] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The small G protein Ras regulates proliferation through activation of the mitogen-activated protein (MAP) kinase (ERK) cascade. The first step of Ras-dependent activation of ERK signaling is Ras binding to members of the Raf family of MAP kinase kinase kinases, C-Raf and B-Raf. Recently, it has been reported that in melanoma cells harboring oncogenic Ras mutations, B-Raf does not bind to Ras and does not contribute to basal ERK activation. For other types of Ras-mutant tumors, the relative contributions of C-Raf and B-Raf are not known. We examined non-melanoma cancer cell lines containing oncogenic Ras mutations and express both C-Raf and B-Raf isoforms, including the lung cancer cell line H1299 cells. Both B-Raf and C-Raf were constitutively bound to oncogenic Ras and contributed to Ras-dependent ERK activation. Ras binding to B-Raf and C-Raf were both subject to inhibition by the cAMP-dependent protein kinase PKA. cAMP inhibited the growth of H1299 cells and Ras-dependent ERK activation via PKA. PKA inhibited the binding of Ras to both C-Raf and B-Raf through phosphorylations of C-Raf at Ser-259 and B-Raf at Ser-365, respectively. These studies demonstrate that in non-melanocytic Ras-mutant cancer cells, Ras signaling to B-Raf is a significant contributor to ERK activation and that the B-Raf pathway, like that of C-Raf, is a target for inhibition by PKA. We suggest that cAMP and hormones coupled to cAMP may prove useful in dampening the effects of oncogenic Ras in non-melanocytic cancer cells through PKA-dependent actions on B-Raf as well as C-Raf.
Collapse
Affiliation(s)
- Yanping Li
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Maho Takahashi
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
| | - Philip J S Stork
- Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239.
| |
Collapse
|
179
|
Efficient ROSA26-Based Conditional and/or Inducible Transgenesis Using RMCE-Compatible F1 Hybrid Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2013; 9:774-85. [DOI: 10.1007/s12015-013-9458-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
180
|
Martini M, Ciraolo E, Gulluni F, Hirsch E. Targeting PI3K in Cancer: Any Good News? Front Oncol 2013; 3:108. [PMID: 23658859 PMCID: PMC3647219 DOI: 10.3389/fonc.2013.00108] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 04/19/2013] [Indexed: 12/29/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway regulates several cellular processes and it’s one of the most frequently deregulated pathway in human tumors. Given its prominent role in cancer, there is great interest in the development of inhibitors able to target several members of PI3K signaling pathway in clinical trials. These drug candidates include PI3K inhibitors, both pan- and isoform-specific inhibitors, AKT, mTOR, and dual PI3K/mTOR inhibitors. As novel compounds progress into clinical trials, it’s becoming urgent to identify and select patient population that most likely benefit from PI3K inhibition. In this review we will discuss individual PIK3CA mutations as predictors of sensitivity and resistance to targeted therapies, leading to use of novel PI3K/mTOR/AKT inhibitors to a more “personalized” treatment.
Collapse
Affiliation(s)
- Miriam Martini
- Molecular Biotechnology Center, University of Turin Turin, Italy
| | | | | | | |
Collapse
|
181
|
Tsai CJ, Nussinov R. The molecular basis of targeting protein kinases in cancer therapeutics. Semin Cancer Biol 2013; 23:235-42. [PMID: 23651790 DOI: 10.1016/j.semcancer.2013.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 04/25/2013] [Indexed: 10/26/2022]
Abstract
In this paper, we provide an overview of targeted anticancer therapies with small molecule kinase inhibitors. First, we discuss why a single constitutively active kinase emanating from a variety of aberrant genetic alterations is capable of transforming a normal cell, leading it to acquire the hallmarks of a cancer cell. To draw attention to the fact that kinase inhibition in targeted cancer therapeutics differs from conventional cytotoxic chemotherapy, we exploit a conceptual framework explaining why suppressed kinase activity will selectively kill only the so-called oncogene 'addicted' cancer cell, while sparing the healthy cell. Second, we introduce the protein kinase superfamily in light of its common active conformation with precisely positioned structural elements, and the diversified auto-inhibitory conformations among the kinase families. Understanding the detailed activation mechanism of individual kinases is essential to relate the observed oncogenic alterations to the elevated constitutively active state, to identify the mechanism of consequent drug resistance, and to guide the development of the next-generation inhibitors. To clarify the vital importance of structural guidelines in studies of oncogenesis, we explain how somatic mutations in EGFR result in kinase constitutive activation. Third, in addition to the common theme of secondary (acquired) mutations that prevent drug binding from blocking a signaling pathway which is hijacked by the aberrant activated kinase, we discuss scenarios of drug resistance and relapse by compensating lesions that bypass the inactivated pathway in a vertical or horizontal fashion. Collectively, these suggest that the future challenge of cancer therapy with small molecule kinase inhibitors will rely on the discovery of distinct combinations of optimized drugs to target individual subtypes of different cancers.
Collapse
Affiliation(s)
- Chung-Jung Tsai
- Basic Science Program, SAIC-Frederick, Inc., National Cancer Institute, Center for Cancer Research Nanobiology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | |
Collapse
|
182
|
Powell IJ, Bollig-Fischer A. Minireview: the molecular and genomic basis for prostate cancer health disparities. Mol Endocrinol 2013; 27:879-91. [PMID: 23608645 DOI: 10.1210/me.2013-1039] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite more aggressive screening across all demographics and gradual declines in mortality related to prostate cancer (PCa) in the United States, race disparities persist. For African American men (AAM), PCa is more often an aggressive disease showing increased metastases and greater PCa-related mortality compared with European American men. The earliest research points to how distinctions are likely the result of a combination of factors, including ancestry genetics and lifestyle variables. More recent research considers that cancer, although influenced by external forces, is ultimately a disease primarily driven by aberrations observed in the molecular genetics of the tumor. Research studying PCa predominantly from European American men shows that indolent and advanced or metastatic prostate tumors have distinguishing molecular genomic make-ups. Early yet increasing evidence suggests that clinically distinct PCa from AAM also display molecular distinctions. It is reasonable to predict that further study will reveal molecular subtypes and various frequencies for PCa subtypes among diverse patient groups, thereby providing insight as to the genomic lesions and gene signatures that are functionally implicated in carcinogenesis or aggressive PCa in AAM. That knowledge will prove useful in developing strategies to predict who will develop advanced PCa among AAM and will provide the rationale to develop effective individualized treatment strategies to overcome disparities.
Collapse
Affiliation(s)
- Isaac J Powell
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, USA.
| | | |
Collapse
|
183
|
Noncanonical roles of the immune system in eliciting oncogene addiction. Curr Opin Immunol 2013; 25:246-58. [PMID: 23571026 DOI: 10.1016/j.coi.2013.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/07/2013] [Accepted: 02/08/2013] [Indexed: 02/08/2023]
Abstract
Cancer is highly complex. The magnitude of this complexity makes it highly surprising that even the brief suppression of an oncogene can sometimes result in rapid and sustained tumor regression, illustrating that cancers can be 'oncogene addicted' [1-10]. The essential implication is that oncogenes may not only fuel the initiation of tumorigenesis, but in some cases must be excessively activated to maintain a neoplastic state [11]. Oncogene suppression acutely restores normal physiological programs that effectively overrides secondary genetic events and a cancer collapses [12,13]. Oncogene addiction is the description of the dramatic and sustained regression of some cancers upon the specific inactivation of a single oncogene [1-13,14(••),15,16(••)], that can occur through tumor intrinsic [1,2,4,12], but also host immune mechanisms [17-23]. Notably, oncogene inactivation elicits a host immune response that involves specific immune effectors and cytokines that facilitate a remodeling of the tumor microenvironment including the shut down of angiogenesis and the induction of cellular senescence of tumor cells [16(••)]. Hence, immune effectors are not only critically involved in tumor prevention, initiation [17-19], and progression [20], but also appear to be essential to tumor regression upon oncogene inactivation [21,22(••),23(••)]. Understanding how the inactivation of an oncogene elicits a systemic signal in the host that prompts a deconstruction of a tumor could have important implications. The combination of oncogene-targeted therapy together with immunomodulatory therapy may be ideal for the development of both robust tumor intrinsic and immunological responses, effectively leading to sustained tumor regression.
Collapse
|
184
|
Bellovin DI, Das B, Felsher DW. Tumor dormancy, oncogene addiction, cellular senescence, and self-renewal programs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 734:91-107. [PMID: 23143977 DOI: 10.1007/978-1-4614-1445-2_6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cancers are frequently addicted to initiating oncogenes that elicit aberrant cellular proliferation, self-renewal, and apoptosis. Restoration of oncogenes to normal physiologic regulation can elicit dramatic reversal of the neoplastic phenotype, including reduced proliferation and increased apoptosis of tumor cells (Science 297(5578):63-64, 2002). In some cases, oncogene inactivation is associated with compete elimination of a tumor. However, in other cases, oncogene inactivation induces a conversion of tumor cells to a dormant state that is associated with cellular differentiation and/or loss of the ability to self-replicate. Importantly, this dormant state is reversible, with tumor cells regaining the ability to self-renew upon oncogene reactivation. Thus, understanding the mechanism of oncogene inactivation-induced dormancy may be crucial for predicting therapeutic outcome of targeted therapy. One important mechanistic insight into tumor dormancy is that oncogene addiction might involve regulation of a decision between self-renewal and cellular senescence. Recent evidence suggests that this decision is regulated by multiple mechanisms that include tumor cell-intrinsic, cell-autonomous mechanisms and host-dependent, tumor cell-non-autonomous programs (Mol Cell 4(2):199-207, 1999; Science 297(5578):102-104, 2002; Nature 431(7012):1112-1117, 2004; Proc Natl Acad Sci U S A 104(32):13028-13033, 2007). In particular, the tumor microenvironment, which is known to be critical during tumor initiation (Cancer Cell 7(5):411-423, 2005; J Clin Invest 121(6):2436-2446, 2011), prevention (Nature 410(6832):1107-1111, 2001), and progression (Cytokine Growth Factor Rev 21(1):3-10, 2010), also appears to dictate when oncogene inactivation elicits the permanent loss of self-renewal through induction of cellular senescence (Nat Rev Clin Oncol 8(3):151-160, 2011; Science 313(5795):1960-1964, 2006; N Engl J Med 351(21):2159-21569, 2004). Thus, oncogene addiction may be best modeled as a consequence of the interplay amongst cell-autonomous and host-dependent programs that define when a therapy will result in tumor dormancy.
Collapse
Affiliation(s)
- David I Bellovin
- Department of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305-5151, USA
| | | | | |
Collapse
|
185
|
Bollig-Fischer A, Michelhaugh S, Ali-Fehmi R, Mittal S. The molecular genomics of metastatic brain tumours. ACTA ACUST UNITED AC 2013; 1. [PMID: 25400938 DOI: 10.13172/2052-9635-1-1-759] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Metastatic brain tumours remain an intractable clinical problem despite notable advances in the treatment of the primary cancers. It is estimated that 30-40% of breast and lung cancer patients will develop brain metastases. Typically, brain lesions are not diagnosed until patients exhibit neurological symptoms because there are currently no tests that can predict which patients will be afflicted. Brain metastases are resistant to current chemotherapies, and despite surgical resection and radiotherapy, the prognosis for these patients remains very poor with an average survival of only 6-9 months. Cancer is ultimately a genetic disease, involving patient genetics and aberrant tumour genomics; therefore the pursuit of an explanation for why or how brain metastases occur requires investigation of the associated somatic mutations. In this article, we review the current literature surrounding the molecular and genome-based mechanistic evidence to indicate driver oncogenes that hold potential biomarkers for risk, or therapeutic targets for treatment of brain metastases. CONCLUSION Patients afflicted with metastatic brain tumours are in dire need of more effective therapies, and clinicians need predictive laboratory tests to identify patients at risk of developing metastatic brain tumours. The as yet unrealized comprehensive analysis of metastatic brain tumour genomics is necessary to meet these needs. Moreover, without improved understanding of the genomic aberrations that drive metastatic brain tumours, development of biomarkers and molecularly targeted therapies will remain stalled and patient outcomes will continue to be dismal.
Collapse
Affiliation(s)
- A Bollig-Fischer
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA ; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sk Michelhaugh
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - R Ali-Fehmi
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA ; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| | - S Mittal
- Barbara Ann Karmanos Cancer Institute, Detroit, MI, USA ; Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
186
|
Masui K, Gini B, Wykosky J, Zanca C, Mischel PS, Furnari FB, Cavenee WK. A tale of two approaches: complementary mechanisms of cytotoxic and targeted therapy resistance may inform next-generation cancer treatments. Carcinogenesis 2013; 34:725-38. [PMID: 23455378 PMCID: PMC3616676 DOI: 10.1093/carcin/bgt086] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 02/26/2013] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy and molecularly targeted approaches represent two very different modes of cancer treatment and each is associated with unique benefits and limitations. Both types of therapy share the overarching limitation of the emergence of drug resistance, which prevents these drugs from eliciting lasting clinical benefit. This review will provide an overview of the various mechanisms of resistance to each of these classes of drugs and examples of drug combinations that have been tested clinically. This analysis supports the contention that understanding modes of resistance to both chemotherapy and molecularly targeted therapies may be very useful in selecting those drugs of each class that will have complementing mechanisms of sensitivity and thereby represent reasonable combination therapies.
Collapse
Affiliation(s)
- Kenta Masui
- Ludwig Institute for Cancer Research, University of California San Diego, La Jolla, CA 92093-0660, USA
| | | | | | | | | | | | | |
Collapse
|
187
|
Furuta M, Kozaki KI, Tanimoto K, Tanaka S, Arii S, Shimamura T, Niida A, Miyano S, Inazawa J. The tumor-suppressive miR-497-195 cluster targets multiple cell-cycle regulators in hepatocellular carcinoma. PLoS One 2013; 8:e60155. [PMID: 23544130 PMCID: PMC3609788 DOI: 10.1371/journal.pone.0060155] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/21/2013] [Indexed: 11/19/2022] Open
Abstract
MicroRNAs (miRNAs) are key post-transcriptional regulators of gene expression and commonly deregulated in carcinogenesis. To explore functionally crucial tumor-suppressive (TS)-miRNAs in hepatocellular carcinoma (HCC), we performed integrative function- and expression-based screenings of TS-miRNAs in six HCC cell lines. The screenings identified seven miRNAs, which showed growth-suppressive activities through the overexpression of each miRNA and were endogenously downregulated in HCC cell lines. Further expression analyses using a large panel of HCC cell lines and primary tumors demonstrated four miRNAs, miR-101, -195, -378 and -497, as candidate TS-miRNAs frequently silenced in HCCs. Among them, two clustered miRNAs miR-195 and miR-497 showed significant growth-suppressive activity with induction of G1 arrest. Comprehensive exploration of their targets using Argonute2-immunoprecipitation-deep-sequencing (Ago2-IP-seq) and genome-wide expression profiling after their overexpression followed by pathway analysis, revealed a significant enrichment of cell cycle regulators. Among the candidates, we successfully identified CCNE1, CDC25A, CCND3, CDK4, and BTRC as direct targets for miR-497 and miR-195. Moreover, target genes frequently upregulated in HCC in a tumor-specific manner, such as CDK6, CCNE1, CDC25A and CDK4, showed an inverse correlation in the expression of miR-195 and miR-497, and their targets. These results suggest the molecular pathway regulating cell cycle progression to be integrally altered by downregulation of miR-195 and miR-497 expression, leading to the aberrant cell proliferation in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Mayuko Furuta
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence (GCOE) Program for International Research Center for Molecular Science in Tooth and Bone Diseases, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ken-ichi Kozaki
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Therapeutic Genomics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Hard Tissue Genome Research Center, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kousuke Tanimoto
- Genome Laboratory, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinji Tanaka
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigeki Arii
- Department of Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Teppei Shimamura
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Atsushi Niida
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Johji Inazawa
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Global Center of Excellence (GCOE) Program for International Research Center for Molecular Science in Tooth and Bone Diseases, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
- Hard Tissue Genome Research Center, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
188
|
Li Z, Zhang Y, Ramanujan K, Ma Y, Kirsch DG, Glass DJ. Oncogenic NRAS, required for pathogenesis of embryonic rhabdomyosarcoma, relies upon the HMGA2-IGF2BP2 pathway. Cancer Res 2013; 73:3041-50. [PMID: 23536553 DOI: 10.1158/0008-5472.can-12-3947] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Embryonic rhabdomyosarcoma (ERMS) is the most common soft-tissue tumor in children. Here, we report the identification of the minor groove DNA-binding factor high mobility group AT-hook 2 (HMGA2) as a driver of ERMS development. HMGA2 was highly expressed in normal myoblasts and ERMS cells, where its expression was essential to maintain cell proliferation, survival in vitro, and tumor outgrowth in vivo. Mechanistic investigations revealed that upregulation of the insulin-like growth factor (IGF) mRNA-binding protein IGF2BP2 was critical for HMGA2 action. In particular, IGF2BP2 was essential for mRNA and protein stability of NRAS, a frequently mutated gene in ERMS. shRNA-mediated attenuation of NRAS or pharmacologic inhibition of the MAP-ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) effector pathway showed that NRAS and NRAS-mediated signaling was required for tumor maintenance. Taken together, these findings implicate the HMGA2-IGFBP2-NRAS signaling pathway as a critical oncogenic driver in ERMS.
Collapse
Affiliation(s)
- Zhizhong Li
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA.
| | | | | | | | | | | |
Collapse
|
189
|
Zahreddine H, Borden KLB. Mechanisms and insights into drug resistance in cancer. Front Pharmacol 2013; 4:28. [PMID: 23504227 PMCID: PMC3596793 DOI: 10.3389/fphar.2013.00028] [Citation(s) in RCA: 464] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 02/25/2013] [Indexed: 11/24/2022] Open
Abstract
Cancer drug resistance continues to be a major impediment in medical oncology. Clinically, resistance can arise prior to or as a result of cancer therapy. In this review, we discuss different mechanisms adapted by cancerous cells to resist treatment, including alteration in drug transport and metabolism, mutation and amplification of drug targets, as well as genetic rewiring which can lead to impaired apoptosis. Tumor heterogeneity may also contribute to resistance, where small subpopulations of cells may acquire or stochastically already possess some of the features enabling them to emerge under selective drug pressure. Making the problem even more challenging, some of these resistance pathways lead to multidrug resistance, generating an even more difficult clinical problem to overcome. We provide examples of these mechanisms and some insights into how understanding these processes can influence the next generation of cancer therapies.
Collapse
Affiliation(s)
- Hiba Zahreddine
- Department of Pathology and Cell Biology, Institute of Research in Immunology and Cancer, Université de Montréal Montreal, QC, Canada
| | | |
Collapse
|
190
|
Stites EC. Chemical kinetic mechanistic models to investigate cancer biology and impact cancer medicine. Phys Biol 2013; 10:026004. [PMID: 23406820 DOI: 10.1088/1478-3975/10/2/026004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Traditional experimental biology has provided a mechanistic understanding of cancer in which the malignancy develops through the acquisition of mutations that disrupt cellular processes. Several drugs developed to target such mutations have now demonstrated clinical value. These advances are unequivocal testaments to the value of traditional cellular and molecular biology. However, several features of cancer may limit the pace of progress that can be made with established experimental approaches alone. The mutated genes (and resultant mutant proteins) function within large biochemical networks. Biochemical networks typically have a large number of component molecules and are characterized by a large number of quantitative properties. Responses to a stimulus or perturbation are typically nonlinear and can display qualitative changes that depend upon the specific values of variable system properties. Features such as these can complicate the interpretation of experimental data and the formulation of logical hypotheses that drive further research. Mathematical models based upon the molecular reactions that define these networks combined with computational studies have the potential to deal with these obstacles and to enable currently available information to be more completely utilized. Many of the pressing problems in cancer biology and cancer medicine may benefit from a mathematical treatment. As work in this area advances, one can envision a future where such models may meaningfully contribute to the clinical management of cancer patients.
Collapse
Affiliation(s)
- Edward C Stites
- The Translational Genomics Research Institute, Clinical Translational Research Division, 13208 E Shea Blvd, Scottsdale, AZ 85258, USA.
| |
Collapse
|
191
|
Zhang Y, Farenholtz KE, Yang Y, Guessous F, Dipierro CG, Calvert VS, Deng J, Schiff D, Xin W, Lee JK, Purow B, Christensen J, Petricoin E, Abounader R. Hepatocyte growth factor sensitizes brain tumors to c-MET kinase inhibition. Clin Cancer Res 2013; 19:1433-44. [PMID: 23386689 DOI: 10.1158/1078-0432.ccr-12-2832] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The receptor tyrosine kinase (RTK) c-MET and its ligand hepatocyte growth factor (HGF) are deregulated and promote malignancy in cancer and brain tumors. Consequently, clinically applicable c-MET inhibitors have been developed. The purpose of this study was to investigate the not-well-known molecular determinants that predict responsiveness to c-MET inhibitors and to explore new strategies for improving inhibitor efficacy in brain tumors. EXPERIMENTAL DESIGN We investigated the molecular factors and pathway activation signatures that determine sensitivity to c-MET inhibitors in a panel of glioblastoma and medulloblastoma cells, glioblastoma stem cells, and established cell line-derived xenografts using functional assays, reverse protein microarrays, and in vivo tumor volume measurements, but validation with animal survival analyses remains to be done. We also explored new approaches for improving the efficacy of the inhibitors in vitro and in vivo. RESULTS We found that HGF coexpression is a key predictor of response to c-MET inhibition among the examined factors and identified an ERK/JAK/p53 pathway activation signature that differentiates c-MET inhibition in responsive and nonresponsive cells. Surprisingly, we also found that short pretreatment of cells and tumors with exogenous HGF moderately but statistically significantly enhanced the antitumor effects of c-MET inhibition. We observed a similar ligand-induced sensitization effect to an EGF receptor small-molecule kinase inhibitor. CONCLUSIONS These findings allow the identification of a subset of patients that will be responsive to c-MET inhibition and propose ligand pretreatment as a potential new strategy for improving the anticancer efficacy of RTK inhibitors.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Konstantinidou G, Ramadori G, Torti F, Kangasniemi K, Ramirez RE, Cai Y, Behrens C, Dellinger MT, Brekken RA, Wistuba II, Heguy A, Teruya-Feldstein J, Scaglioni PP. RHOA-FAK is a required signaling axis for the maintenance of KRAS-driven lung adenocarcinomas. Cancer Discov 2013; 3:444-57. [PMID: 23358651 DOI: 10.1158/2159-8290.cd-12-0388] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
UNLABELLED Non-small cell lung cancer (NSCLC) often expresses mutant KRAS together with tumor-associated mutations of the CDKN2A locus, which are associated with aggressive, therapy-resistant tumors. Here, we unravel specific requirements for the maintenance of NSCLC that carries this genotype. We establish that the extracellular signal-regulated kinase (ERK)/RHOA/focal adhesion kinase (FAK) network is deregulated in high-grade lung tumors. Suppression of RHOA or FAK induces cell death selectively in mutant KRAS;INK4A/ARF-deficient lung cancer cells. Furthermore, pharmacologic inhibition of FAK caused tumor regression specifically in the high-grade lung cancer that developed in mutant Kras;Cdkn2a-null mice. These findings provide a rationale for the rapid implementation of genotype-specific targeted therapies using FAK inhibitors in patients with cancer. SIGNIFICANCE Targeted therapies are effective for only a small fraction of patients with cancer. We report that FAK inhibitors exert potent antitumor effects in NSCLCs that express mutant KRAS in association with INK4A/ARF deficiency. These results reveal a novel genotype-specific vulnerability of cancer cells that can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Georgia Konstantinidou
- Department of Internal Medicine, Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Lackner MR, Wilson TR, Settleman J. Mechanisms of acquired resistance to targeted cancer therapies. Future Oncol 2012; 8:999-1014. [PMID: 22894672 DOI: 10.2217/fon.12.86] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Drugs that target genomically defined vulnerabilities in human tumors have now been clinically validated as effective cancer therapies. However, the relatively rapid acquisition of resistance to such treatments that is observed in virtually all cases significantly limits their utility and remains a substantial challenge to the clinical management of advanced cancers. As molecular mechanisms of resistance have begun to be elucidated, new strategies to overcome or prevent the development of resistance have begun to emerge. In some cases, specific mutational mechanisms contribute directly to acquired drug resistance, and in other cases it appears that nonmutational and possibly epigenetic mechanisms play a significant role. This article discusses the various genetic and nongenetic mechanisms of acquired drug resistance that have been reported in the context of 'rationally targeted' drug therapies.
Collapse
Affiliation(s)
- Mark R Lackner
- Department of Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA, USA
| | | | | |
Collapse
|
194
|
Lee HJ, Schaefer G, Heffron TP, Shao L, Ye X, Sideris S, Malek S, Chan E, Merchant M, La H, Ubhayakar S, Yauch RL, Pirazzoli V, Politi K, Settleman J. Noncovalent wild-type-sparing inhibitors of EGFR T790M. Cancer Discov 2012; 3:168-81. [PMID: 23229345 DOI: 10.1158/2159-8290.cd-12-0357] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Approximately half of EGFR-mutant non-small cell lung cancer (NSCLC) patients treated with small-molecule EGFR kinase inhibitors develop drug resistance associated with the EGF receptor (EGFR) T790M "gatekeeper" substitution, prompting efforts to develop covalent EGFR inhibitors, which can effectively suppress EGFR T790M in preclinical models. However, these inhibitors have yet to prove clinically efficacious, and their toxicity in skin, reflecting activity against wild-type EGFR, may limit dosing required to effectively suppress EGFR T790M in vivo. While profiling sensitivity to various kinase inhibitors across a large cancer cell line panel, we identified indolocarbazole compounds, including a clinically well-tolerated FLT3 inhibitor, as potent and reversible inhibitors of EGFR T790M that spare wild-type EGFR. These findings show the use of broad cancer cell profiling of kinase inhibitor efficacy to identify unanticipated novel applications, and they identify indolocarbazole compounds as potentially effective EGFR inhibitors in the context of T790M-mediated drug resistance in NSCLC. SIGNIFICANCE EGFR-mutant lung cancer patients who respond to currently used EGFR kinase inhibitors invariably develop drug resistance, which is associated with the EGFR T790M resistance mutation in about half these cases. We unexpectedly identified a class of reversible potent inhibitors of EGFR T790M that do not inhibit wild-type EGFR, revealing a promising therapeutic strategy to overcome T790M-associated drug-resistant lung cancers.
Collapse
Affiliation(s)
- Ho-June Lee
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Mologni L, Brussolo S, Ceccon M, Gambacorti-Passerini C. Synergistic effects of combined Wnt/KRAS inhibition in colorectal cancer cells. PLoS One 2012; 7:e51449. [PMID: 23227266 PMCID: PMC3515485 DOI: 10.1371/journal.pone.0051449] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 10/31/2012] [Indexed: 11/24/2022] Open
Abstract
Activation of Wnt signalling due to inability to degrade β-catenin is found in >85% of colorectal cancers. Approximately half of colon cancers express a constitutively active KRAS protein. A significant fraction of patients show both abnormalities. We previously reported that simultaneous down-regulation of both β-catenin and KRAS was necessary to induce significant cell death and tumor growth inhibition of colorectal cancer cells. Although attractive, an RNAi-based therapeutic approach is still far from being employed in the clinical setting. Therefore, we sought to recapitulate our previous findings by the use of small-molecule inhibitors of β-catenin and KRAS. We show here that the β-catenin inhibitors PKF115-584 and pyrvinium pamoate block β-catenin-dependent transcriptional activity and synergize with the KRAS inhibitor S-trans, trans-farnesylthiosalicylic acid (FTS, salirasib) in colon cancer cells driven by Wnt and KRAS oncogenic signals, but not in cells carrying BRAF mutations. The combined use of these compounds was superior to the use of any drug alone in inducing cell growth arrest, cell death, MYC and survivin down-modulation, and inhibition of anchorage-independent growth. Expression analysis of selected cancer-relevant genes revealed down-regulation of CD44 as a common response to the combined treatments. These data provide a proof of principle for a combination therapeutic strategy in colorectal cancer.
Collapse
Affiliation(s)
- Luca Mologni
- Department of Health Sciences, University of Milano-Bicocca, Monza, Italy.
| | | | | | | |
Collapse
|
196
|
Masuda M, Toh S, Wakasaki T, Suzui M, Joe AK. Somatic evolution of head and neck cancer - biological robustness and latent vulnerability. Mol Oncol 2012; 7:14-28. [PMID: 23168041 PMCID: PMC5528403 DOI: 10.1016/j.molonc.2012.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 10/23/2012] [Accepted: 10/24/2012] [Indexed: 01/05/2023] Open
Abstract
Despite recent advancements in multidisciplinary treatments, the overall survival and quality of life of patients with advanced head and neck squamous cell carcinoma (HNSCC) have not improved significantly over the past decade. Molecular targeted therapies, which have been addressed and advanced by the concept of “oncogene addiction”, have demonstrated only limited successes so far. To explore a novel clue for clinically effective targeted therapies, we analyzed the molecular circuitry of HNSCC through the lens that HNSCC is an evolving system. In the trajectory of this somatic evolution, HNSCC acquires biological robustness under a variety of selective pressures including genetic, epigenetic, micro‐environmental and metabolic stressors, which well explains the major mechanism of “escaping from oncogene addiction”. On the other hand, this systemic view appears to instruct us approaches to target latent vulnerability of HNSCC that is masked behind the plasticity and evolvability of this complex adaptive system. There is an urgent need to develop a novel conceptual framework for the treatment of HNSCC. The biological robustness of HNSCC was analyzed through a somatic evolution model. This model well explains the mechanism of “escaping from oncogene addiction”. We discuss about the possible approaches to target vulnerability of evolving HNSCC.
Collapse
Affiliation(s)
- Muneyuki Masuda
- Department of Head & Neck Surgery, National Kyushu Cancer Center, 3-1-1, Notame, Minamiku, Fukuoka 811-1395, Japan.
| | | | | | | | | |
Collapse
|
197
|
Complex oncogene dependence in microRNA-125a-induced myeloproliferative neoplasms. Proc Natl Acad Sci U S A 2012; 109:16636-41. [PMID: 23012470 DOI: 10.1073/pnas.1213196109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Deregulation of microRNA (miRNA) expression can lead to cancer initiation and progression. However, limited information exists on the function of miRNAs in cancer maintenance. We examined these issues in the case of myeloproliferative diseases and neoplasms (MPN), a collection of hematopoietic neoplasms regarded as preleukemic, thereby representing early neoplastic states. We report here that microRNA-125a (miR-125a)-induced MPN display a complex manner of oncogene dependence. Following a gain-of-function genomics screen, we overexpressed candidate miR-125a in vivo, which led to phenotypes consistent with an atypical MPN characterized by leukocytosis, monocytosis, splenomegaly, and progressive anemia. The diseased MPN state could be recapitulated in a doxycycline-inducible mouse model. Upon doxycycline withdrawal, the primary MPN phenotypes rapidly resolved after the discontinuation of miR-125a overexpression. However, reinduction of miR-125a led to complex phenotypes, with some animals rapidly developing lethal anemia with extensive damages in the spleen. Forced expression of miR-125a resulted in elevated cellular tyrosine phosphorylation and hypersensitivity toward hematopoietic cytokines. Furthermore, we demonstrate that miR-125a targets multiple protein phosphatases. Our data demonstrate that miR-125a-induced MPN is addicted to its sustained overexpression, and highlight the complex nature of oncogenic miRNA dependence in an early neoplastic state.
Collapse
|
198
|
Selective requirement for Mediator MED23 in Ras-active lung cancer. Proc Natl Acad Sci U S A 2012; 109:E2813-22. [PMID: 22988093 DOI: 10.1073/pnas.1204311109] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
K-RAS-activating mutations occur frequently in non-small cell lung cancer, leading to aberrant activation of the Ras-MAPK signaling pathway that contributes to the malignant phenotype. However, the development of Ras-targeted therapeutics remains challenging. Here, we show that MED23, a component of the multisubunit Mediator complex that is known to integrate signaling and gene activities, is selectively important for Ras-active lung cancer. By screening a large panel of human lung cancer cell lines with or without a Ras mutation, we found that Med23 RNAi specifically inhibits the proliferation and tumorigenicity of lung cancer cells with hyperactive Ras activity. Med23 deficiency in fibroblasts selectively inhibited the oncogenic transformation induced by Ras but not by c-Myc. The transcription factor ELK1, which is phosphorylated by MAPK for relaying Ras signaling to MED23, also was required for the Ras-driven oncogenesis. Transcriptome analysis revealed that MED23 and ELK1 co-regulate a common set of target genes enriched in regulating cell-cycle and -proliferation functions to support the Ras dependency. Furthermore, MED23 was up-regulated by Ras transformation in correlation with the strength of Ras signaling as indicated by the ELK1 phosphorylation level and was found to be overexpressed in both Ras-mutated lung cancer cell lines and primary tumor samples. Remarkably, lower Med23 expression predicted better survival in Ras-active lung cancer patients and xenograft mice. Collectively, our findings demonstrate a critical role for MED23 in enabling the "Ras-addiction" of lung carcinogenesis, thus providing a vulnerable target for the treatment of Ras-active lung cancer.
Collapse
|
199
|
Weigelt B, Downward J. Genomic Determinants of PI3K Pathway Inhibitor Response in Cancer. Front Oncol 2012; 2:109. [PMID: 22970424 PMCID: PMC3431500 DOI: 10.3389/fonc.2012.00109] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/14/2012] [Indexed: 12/11/2022] Open
Abstract
The phosphoinositide 3-kinase (PI3K) pathway is frequently activated in cancer as a result of genetic (e.g., amplifications, mutations, deletions) and epigenetic (e.g., methylation, regulation by non-coding RNAs) aberrations targeting its key components. Several lines of evidence demonstrate that tumors from different anatomical sites depend on the continued activation of this pathway for the maintenance of their malignant phenotype. The PI3K pathway therefore is an attractive candidate for therapeutic intervention, and inhibitors targeting different components of this pathway are in various stages of clinical development. Burgeoning data suggest that the genomic features of a given tumor determine its response to targeted small molecule inhibitors. Importantly, alterations of different components of the PI3K pathway may result in distinct types of dependencies and response to specific therapeutic agents. In this review, we will focus on the genomic determinants of response to PI3K, dual PI3K/mechanistic target of rapamycin (mTOR), mTOR, and AKT inhibitors in cancer identified in preclinical models and clinical trials to date, and the development of molecular tools for the stratification of cancer patients.
Collapse
Affiliation(s)
- Britta Weigelt
- Signal Transduction Laboratory, Cancer Research UK London Research InstituteLondon, UK
| | - Julian Downward
- Signal Transduction Laboratory, Cancer Research UK London Research InstituteLondon, UK
- Division of Cancer Biology, The Institute of Cancer ResearchLondon, UK
| |
Collapse
|
200
|
Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature 2012; 487:505-9. [PMID: 22763448 DOI: 10.1038/nature11249] [Citation(s) in RCA: 951] [Impact Index Per Article: 73.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 05/23/2012] [Indexed: 12/13/2022]
Abstract
Mutationally activated kinases define a clinically validated class of targets for cancer drug therapy. However, the efficacy of kinase inhibitors in patients whose tumours harbour such alleles is invariably limited by innate or acquired drug resistance. The identification of resistance mechanisms has revealed a recurrent theme—the engagement of survival signals redundant to those transduced by the targeted kinase. Cancer cells typically express multiple receptor tyrosine kinases (RTKs) that mediate signals that converge on common critical downstream cell-survival effectors—most notably, phosphatidylinositol-3-OH kinase (PI(3)K) and mitogen-activated protein kinase (MAPK). Consequently, an increase in RTK-ligand levels, through autocrine tumour-cell production, paracrine contribution from tumour stroma or systemic production, could confer resistance to inhibitors of an oncogenic kinase with a similar signalling output. Here, using a panel of kinase-'addicted' human cancer cell lines, we found that most cells can be rescued from drug sensitivity by simply exposing them to one or more RTK ligands. Among the findings with clinical implications was the observation that hepatocyte growth factor (HGF) confers resistance to the BRAF inhibitor PLX4032 (vemurafenib) in BRAF-mutant melanoma cells. These observations highlight the extensive redundancy of RTK-transduced signalling in cancer cells and the potentially broad role of widely expressed RTK ligands in innate and acquired resistance to drugs targeting oncogenic kinases.
Collapse
|