151
|
Liu HX, Zhang M, Krainer AR. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev 1998; 12:1998-2012. [PMID: 9649504 PMCID: PMC316967 DOI: 10.1101/gad.12.13.1998] [Citation(s) in RCA: 392] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/1997] [Accepted: 04/17/1998] [Indexed: 01/04/2023]
Abstract
Using an in vitro randomization and functional selection procedure, we have identified three novel classes of exonic splicing enhancers (ESEs) recognized by human SF2/ASF, SRp40, and SRp55, respectively. These ESEs are functional in splicing and are highly specific. For SF2/ASF and SRp55, in most cases, only the cognate SR protein can efficiently recognize an ESE and activate splicing. In contrast, the SRp40-selected ESEs can function with either SRp40 or SRp55, but not with SF2/ASF. UV cross-linking/competition and immunoprecipitation experiments showed that SR proteins recognize their cognate ESEs in nuclear extract by direct and specific binding. A motif search algorithm was used to derive consensus sequences for ESEs recognized by these SR proteins. Each SR protein yielded a distinct 5- to 7-nucleotide degenerate consensus. These three consensus sequences occur at higher frequencies in exons than in introns and may thus help define exon-intron boundaries. They occur in clusters within regions corresponding to naturally occurring, mapped ESEs. We conclude that a remarkably diverse set of sequences can function as ESEs. The degeneracy of these motifs is consistent with the fact that exonic enhancers evolved within extremely diverse protein coding sequences and are recognized by a small number of SR proteins that bind RNA with limited sequence specificity.
Collapse
Affiliation(s)
- H X Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724-2208 USA
| | | | | |
Collapse
|
152
|
McNally LM, McNally MT. An RNA splicing enhancer-like sequence is a component of a splicing inhibitor element from Rous sarcoma virus. Mol Cell Biol 1998; 18:3103-11. [PMID: 9584151 PMCID: PMC108892 DOI: 10.1128/mcb.18.6.3103] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The accumulation in infected cells of large amounts of unspliced viral RNA for use as mRNA and genomic RNA is a hallmark of retrovirus replication. The negative regulator of splicing (NRS) is a long cis-acting RNA element in Rous sarcoma virus that contributes to unspliced RNA accumulation through splicing inhibition. One of two critical sequences located in the NRS 3' region resembles a minor class 5' splice site and is required for U11 small nuclear ribonucleoprotein (snRNP) binding to the NRS. The second is a purine-rich region in the 5' half that interacts with the splicing factor SF2/ASF. In this study we investigated the possibility that this purine-rich region provides an RNA splicing enhancer function required for splicing inhibition. In vitro, the NRS acted as a potent, orientation-dependent enhancer of Drosophila doublesex pre-mRNA splicing, and enhancer activity mapped to the purine-rich domain. Analysis of a number of site-directed and deletion mutants indicated that enhancer activity was diffusely located throughout a 60-nucleotide area but only the activity associated with a short region previously shown to bind SF2/ASF correlated with efficient splicing inhibition. The significance of the enhancer activity to splicing inhibition was demonstrated by using chimeras in which two authentic enhancers (ASLV and FP) were substituted for the native NRS purine region. In each case, splicing inhibition in transfected cells was restored to levels approaching that observed for the NRS. The observation that a nonfunctional version of the FP enhancer (FPD) that does not bind SF2/ASF also fails to block splicing when paired with the NRS 3' region supports the notion that SF2/ASF binding to the NRS is relevant, but other SR proteins may substitute if an appropriate binding site is supplied. Our results are consistent with a role for the purine region in facilitated snRNP binding to the NRS via SF2/ASF.
Collapse
Affiliation(s)
- L M McNally
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
153
|
Kosaki A, Nelson J, Webster NJ. Identification of intron and exon sequences involved in alternative splicing of insulin receptor pre-mRNA. J Biol Chem 1998; 273:10331-7. [PMID: 9553088 DOI: 10.1074/jbc.273.17.10331] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The insulin receptor exists as two isoforms, A and B, that result from alternative splicing of exon 11 in the primary transcript. We have shown previously that the alternative splicing is developmentally and hormonally regulated. Consequently, these studies were instigated to identify sequences within the primary RNA transcript that regulate the alternative splicing. Minigenes containing exons 10, 11, and 12 and the intervening introns were constructed and transfected into HepG2 cells, which contain both isoforms of the insulin receptor. The cells were able to splice the minigene transcript to give both A (- exon 11) and B-like (+ exon 11) RNAs. A series of internal deletions within intron 10 were tested for their ability to give A and B RNAs. Intron 10 contained two sequences that modulated exon 11 inclusion; a 48-nucleotide purine-rich sequence at the 5' end of intron 10 that functions as a splicing enhancer and causes an increase in exon 11 inclusion, and a 43-nucleotide sequence at the 3' end of intron 10 upstream of the branch point sequence that favors skipping of exon 11. Increasing the length of the polypyrimidine tract at the 3' end of intron 10 caused exon 11 to be spliced constitutively, indicating that a weak splice site is required for alternative splicing. Finally, point mutations, insertions, and deletions within exon 11 itself were able to regulate inclusion of the exon both positively and negatively.
Collapse
Affiliation(s)
- A Kosaki
- Medical Research Service, Department of Veterans Affairs Medical Center, San Diego, California 92161, USA
| | | | | |
Collapse
|
154
|
Tacke R, Tohyama M, Ogawa S, Manley JL. Human Tra2 proteins are sequence-specific activators of pre-mRNA splicing. Cell 1998; 93:139-48. [PMID: 9546399 DOI: 10.1016/s0092-8674(00)81153-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The RNA-binding protein Tra2 is an important regulator of sex determination in Drosophila. Recently, two mammalian Tra2 homologs of unknown function have been described. Here, we show that human Tra2 proteins are present in HeLa cell nuclear extracts and that they bind efficiently and specifically to a previously characterized pre-mRNA splicing enhancer element. Indeed, both purified proteins bound preferentially to RNA sequences containing GAA repeats, characteristic of many enhancer elements. Neither Tra2 protein functioned in constitutive splicing in vitro, but both activated enhancer-dependent splicing in a sequence-specific manner and restored it after inhibition with competitor RNA. Our findings indicate that mammalian Tra2 proteins are sequence-specific splicing activators that likely participate in the control of cell-specific splicing patterns.
Collapse
Affiliation(s)
- R Tacke
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
155
|
Rudner DZ, Breger KS, Rio DC. Molecular genetic analysis of the heterodimeric splicing factor U2AF: the RS domain on either the large or small Drosophila subunit is dispensable in vivo. Genes Dev 1998; 12:1010-21. [PMID: 9531538 PMCID: PMC316676 DOI: 10.1101/gad.12.7.1010] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pre-mRNA splicing factor U2AF (U2 snRNP auxiliary factor) has an essential role in 3' splice site selection. U2AF binds the intron pyrimidine tract between the branchpoint and the 3' splice site and recruits U2 snRNP to the branch site at an early step in spliceosome assembly. Human U2AF is a heterodimer composed of large (hU2AF65) and small (hU2AF35) subunits. Both subunits contain a domain enriched in arginine-serine dipeptide repeats termed an RS domain. The two U2AF RS domains have been assigned essential and independent roles in spliceosome assembly in vitro-the hU2AF65 RS domain is required to target U2 snRNP to the branch site and the hU2AF35 RS domain is necessary for protein-protein interactions with constitutive and alternative splicing factors. We have investigated the functional requirements for the RS domains on the Drosophila U2AF homolog in vivo. In sharp contrast to its essential role in U2 snRNP recruitment in vitro, the RS domain on the Drosophila large subunit homolog (dU2AF50) was completely dispensable in vivo. Prompted by this unexpected result, we analyzed the RS domain on the Drosophila small subunit homolog (dU2AF38). Despite its requirement for enhancer-dependent splicing activity in vitro, the dU2AF38 RS domain was also inessential in vivo. Finally, we have tested whether the Drosophila U2AF heterodimer requires any RS domain. Flies mutant for both the small and large subunits could not be rescued by dU2AF50deltaRS and dU2AF38deltaRS transgenes. Therefore, in contrast to the separate roles assigned to the U2AF RS domains in vitro, our genetic data suggest that they may have redundant functions in vivo.
Collapse
Affiliation(s)
- D Z Rudner
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3204 USA
| | | | | |
Collapse
|
156
|
Carstens RP, McKeehan WL, Garcia-Blanco MA. An intronic sequence element mediates both activation and repression of rat fibroblast growth factor receptor 2 pre-mRNA splicing. Mol Cell Biol 1998; 18:2205-17. [PMID: 9528792 PMCID: PMC121464 DOI: 10.1128/mcb.18.4.2205] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing of fibroblast growth factor receptor 2 (FGF-R2) is an example of highly regulated alternative splicing in which exons IIIb and IIIc are utilized in a mutually exclusive manner in different cell types. The importance of this splicing choice is highlighted by studies which indicate that deregulation of the FGF-R2 splicing is associated with progression of prostate cancer. Loss of expression of a IIIb exon-containing isoform of FGF-R2 [FGF-R2 (IIIb)] accompanies the transition of a well-differentiated, androgen-dependent rat prostate cancer cell line, DT3, to the more aggressive, androgen-independent AT3 cell line. We have used transfection of rat FGF-R2 minigenes into DT3 and AT3 cancer cell lines to study the mechanisms that control alternative splicing of rat FGF-R2. Our results support a model in which an important cis-acting element located in the intron between these alternative exons mediates activation of splicing using the upstream IIIb exon and repression of the downstream IIIc exon in DT3 cells. This element consists of 57 nucleotides (nt) beginning 917 nt downstream of the IIIb exon. Analysis of mutants further demonstrates that an 18-nt "core sequence" within this element is most crucial for its function. Based on our observations, we have termed this sequence element ISAR (for intronic splicing activator and repressor), and we suggest that factors which bind this sequence are required for maintenance of expression of the FGF-R2 (IIIb) isoform.
Collapse
Affiliation(s)
- R P Carstens
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
157
|
Stark JM, Bazett-Jones DP, Herfort M, Roth MB. SR proteins are sufficient for exon bridging across an intron. Proc Natl Acad Sci U S A 1998; 95:2163-8. [PMID: 9482856 PMCID: PMC19283 DOI: 10.1073/pnas.95.5.2163] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We have developed a defined system to characterize the role of SR proteins and exonic enhancers in directly promoting splice-site interactions across an intron. Using RNA affinity chromatography, we find that SR proteins alone are sufficient to promote the specific association of the enhancer-containing exon 5 with the adjoining exon 6 from avian cardiac troponin-T. Direct visualization of this exon/exon association by electron spectroscopic imaging shows it to be highly specific. Furthermore, using in vivo characterized mutants of exon 5, we also show that this exon/exon association depends on the splicing enhancer within exon 5. These results suggest a model by which SR proteins may function through exonic enhancers to directly promote exon bridging.
Collapse
Affiliation(s)
- J M Stark
- Division of Basic Sciences and Molecular and Cellular Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| | | | | | | |
Collapse
|
158
|
Hoffmeyer S, Nürnberg P, Ritter H, Fahsold R, Leistner W, Kaufmann D, Krone W. Nearby stop codons in exons of the neurofibromatosis type 1 gene are disparate splice effectors. Am J Hum Genet 1998; 62:269-77. [PMID: 9463322 PMCID: PMC1376891 DOI: 10.1086/301715] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stop mutations are known to disrupt gene function in different ways. They both give rise to truncated polypeptides because of the premature-termination codons (PTCs) and frequently affect the metabolism of the corresponding mRNAs. The analysis of neurofibromin transcripts from different neurofibromatosis type 1 (NF1) patients revealed the skipping of exons containing PTCs. The phenomenon of exon skipping induced by nonsense mutations has been described for other disease genes, including the CFTR (cystic fibrosis transmembrance conductance regulator) gene and the fibrillin gene. We characterized several stop mutations localized within a few base pairs in exons 7 and 37 and noticed complete skipping of either exon in some cases. Because skipping of exon 7 and of exon 37 does not lead to a frameshift, PTCs are avoided in that way. Nuclear-scanning mechanisms for PTCs have been postulated to trigger the removal of the affected exons from the transcript. However, other stop mutations that we found in either NF1 exon did not lead to a skip, although they were localized within the same region. Calculations of minimum-free-energy structures of the respective regions suggest that both changes in the secondary structure of the mRNA and creation or disruption of exonic sequences relevant for the splicing process might in fact cause these different splice phenomena observed in the NF1 gene.
Collapse
Affiliation(s)
- S Hoffmeyer
- Abteilung Humangenetik, Universitat Ulm, Ulm, Germany.
| | | | | | | | | | | | | |
Collapse
|
159
|
Elrick LL, Humphrey MB, Cooper TA, Berget SM. A short sequence within two purine-rich enhancers determines 5' splice site specificity. Mol Cell Biol 1998; 18:343-52. [PMID: 9418881 PMCID: PMC121503 DOI: 10.1128/mcb.18.1.343] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/1997] [Accepted: 10/13/1997] [Indexed: 02/05/2023] Open
Abstract
Purine-rich enhancers are exon sequences that promote inclusion of alternative exons, usually via activation of weak upstream 3' splice sites. A recently described purine-rich enhancer from the caldesmon gene has an additional activity by which it directs selection of competing 5' splice sites within an alternative exon. In this study, we have compared the caldesmon enhancer with another purine-rich enhancer from the chicken cardiac troponin T (cTNT) gene for the ability to regulate flanking splice sites. Although similar in sequence and length, the two enhancers demonstrated strikingly different specificities towards 5' splice site choice when placed between competing 5' splice sites in an internal exon. The 32-nucleotide caldesmon enhancer caused effective usage of the exon-internal 5' splice site, whereas the 30-nucleotide cTNT enhancer caused effective usage of the exon-terminal 5' splice site. Both enhancer-mediated splicing pathways represented modulation of the default pathway in which both 5' splice sites were utilized. Each enhancer is multipartite, consisting of two purine-rich sequences of a simple (GAR)n repeat interdigitated with two enhancer-specific sequences. The entire enhancer was necessary for maximal splice site selectivity; however, a 5- to 7-nucleotide region from the 3' end of each enhancer dictated splice site selectivity. Mutations that interchanged this short region of the two enhancers switched specificity. The portion of the cTNT enhancer determinative for 5' splice site selectivity was different than that shown to be maximally important for activation of a 3' splice site, suggesting that enhancer environment can have a major impact on activity. These results are the first indication that individual purine-rich enhancers can differentiate between flanking splice sites. Furthermore, localization of the specificity of splice site choice to a short region within both enhancers indicates that subtle differences in enhancer sequence can have profound effects on the splicing pathway.
Collapse
Affiliation(s)
- L L Elrick
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
160
|
Heinrichs V, Ryner LC, Baker BS. Regulation of sex-specific selection of fruitless 5' splice sites by transformer and transformer-2. Mol Cell Biol 1998; 18:450-8. [PMID: 9418892 PMCID: PMC121514 DOI: 10.1128/mcb.18.1.450] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In Drosophila melanogaster, the fruitless (fru) gene controls essentially all aspects of male courtship behavior. It does this through sex-specific alternative splicing of the fru pre-mRNA, leading to the production of male-specific fru mRNAs capable of expressing male-specific fru proteins. Sex-specific fru splicing involves the choice between alternative 5' splice sites, one used exclusively in males and the other used only in females. Here we report that the Drosophila sex determination genes transformer (tra) and transformer-2 (tra-2) switch fru splicing from the male-specific pattern to the female-specific pattern through activation of the female-specific fru 5' splice site. Activation of female-specific fru splicing requires cis-acting tra and tra-2 repeat elements that are part of an exonic splicing enhancer located immediately upstream of the female-specific fru 5' splice site and are recognized by the TRA and TRA-2 proteins in vitro. This fru splicing enhancer is sufficient to promote the activation by tra and tra-2 of both a 5' splice site and the female-specific doublesex (dsx) 3' splice site, suggesting that the mechanisms of 5' splice site activation and 3' splice site activation may be similar.
Collapse
Affiliation(s)
- V Heinrichs
- Department of Biological Sciences, Stanford University, California 94305-5020, USA.
| | | | | |
Collapse
|
161
|
Staffa A, Acheson NH, Cochrane A. Novel exonic elements that modulate splicing of the human fibronectin EDA exon. J Biol Chem 1997; 272:33394-401. [PMID: 9407134 DOI: 10.1074/jbc.272.52.33394] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Three exons in the fibronectin primary transcript are alternatively spliced in a tissue- and developmental stage-specific manner. One of these exons, EDA, has been shown previously by others to contain two splicing regulatory elements between 155 and 180 nucleotides downstream of the 3'-splice site: an exon splicing enhancer and a negative element. By transient expression of a chimeric beta-globin/fibronectin EDA intron in COS-7 cells, we have identified two additional exonic splicing regulatory elements. RNA generated by a construct containing the first 120 nucleotides of the fibronectin EDA exon was spliced with an efficiency of approximately 50%. Deletion of most of the fibronectin EDA exon sequences resulted in a 20-fold increase in the amount of spliced RNA, indicative of an exon splicing silencer. Deletion and mutagenesis studies suggest that the fibronectin exon splicing silencer is associated with a conserved RNA secondary structure. In addition, sequences between nucleotides 93 and 118 of the EDA exon contain a non-purine-rich splicing enhancer as demonstrated by its ability to function in a heterologous context.
Collapse
Affiliation(s)
- A Staffa
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | |
Collapse
|
162
|
Hwang DY, Cohen JB. U1 small nuclear RNA-promoted exon selection requires a minimal distance between the position of U1 binding and the 3' splice site across the exon. Mol Cell Biol 1997; 17:7099-107. [PMID: 9372941 PMCID: PMC232566 DOI: 10.1128/mcb.17.12.7099] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Both experimental work and surveys of the lengths of internal exons in nature have suggested that vertebrate internal exons require a minimum size of approximately 50 nucleotides for efficient inclusion in mature mRNA. This phenomenon has been ascribed to steric interference between complexes involved in recognition of the splicing signals at the two ends of short internal exons. To determine whether U1 small nuclear ribonucleoprotein, a multicomponent splicing factor that is involved in the first recognition of splice sites, contributes to the lower size limit of vertebrate internal exons, we have taken advantage of our previous observation that U1 small nuclear RNAs (snRNAs) which bind upstream or downstream of the 5' splice site (5'SS) stimulate splicing of the upstream intron. By varying the position of U1 binding relative to the 3'SS, we show that U1-dependent splicing of the upstream intron becomes inefficient when U1 is positioned 48 nucleotides or less downstream of the 3'SS, suggesting a minimal distance between U1 and the 3'SS of approximately 50 nucleotides. This distance corresponds well to the suggested minimum size of internal exons. The results of experiments in which the 3'SS region of the reporter was duplicated suggest an optimal distance of greater than 72 nucleotides. We have also found that inclusion of a 24-nucleotide miniexon is promoted by the binding of U1 to the downstream intron but not by binding to the 5'SS. Our results are discussed in the context of models to explain constitutive splicing of small exons in nature.
Collapse
Affiliation(s)
- D Y Hwang
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | |
Collapse
|
163
|
Buvoli M, Mayer SA, Patton JG. Functional crosstalk between exon enhancers, polypyrimidine tracts and branchpoint sequences. EMBO J 1997; 16:7174-83. [PMID: 9384594 PMCID: PMC1170318 DOI: 10.1093/emboj/16.23.7174] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We recently identified enhancer elements that activate the weak 3' splice site of alpha-tropomyosin exon 2 as well as a variety of heterologous weak 3' splice sites. To understand their mechanism of action, we devised an iterative selection strategy to identify functional pyrimidine tracts and branchpoint sequences in the presence or absence of enhancer elements. Surprisingly, we found that strong pyrimidine tracts were selected regardless of the presence of enhancer elements. However, the presence of enhancer elements resulted in the selection of multiple, non-consensus branchpoint sequences. Thus, enhancer elements apparently activate weak 3' splice sites primarily by increasing the efficiency of splicing of introns containing branchpoint sequences with less than optimal U2-branchpoint pairing arrangements. Comparison of consensus sequences from both our selection strategy and compilations of published intron sequences suggests that exon enhancer elements could be widespread and play an important role in the selection of 3' splice sites.
Collapse
Affiliation(s)
- M Buvoli
- Department of Molecular Biology, Vanderbilt University, Box 1820 Station B, Nashville, TN 37235, USA
| | | | | |
Collapse
|
164
|
Zheng ZM, He PJ, Baker CC. Structural, functional, and protein binding analyses of bovine papillomavirus type 1 exonic splicing enhancers. J Virol 1997; 71:9096-107. [PMID: 9371566 PMCID: PMC230210 DOI: 10.1128/jvi.71.12.9096-9107.1997] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Alternative splicing plays an important role in regulation of bovine papillomavirus type 1 (BPV-1) gene expression. We have recently identified in BPV-1 late pre-mRNAs two purine-rich exonic splicing enhancers (SE1 and SE2) which also stimulate splicing of a Drosophila doublesex (dsx) pre-mRNA containing a suboptimal 3' splice site. In vivo studies now demonstrate that both SE1 and SE2 are required for preferential use of the BPV-1 nucleotide (nt) 3225 3' splice site in nonpermissive cells. Deletion or mutation of either element in a BPV-1 late pre-mRNA switches splicing to the late-specific alternative 3' splice site at nt 3605. To investigate the sequence specificity of these exonic splicing enhancers, various mutant SE1 or SE2 elements were connected to dsx pre-mRNAs and tested for their stimulatory effects on dsx pre-mRNA splicing in vitro. Substitution of U residues for either A or G residues in and around potential ASF/SF2 binding sites in SE1 or SE2 resulted in a significant reduction of splicing enhancer activity. However, the G-to-U substitutions in both enhancers had the largest effect, reducing splicing to near control levels. Further in vitro analyses showed that splicing enhancement by SE2 could be competed with excess unlabeled SE2 RNA, indicating that SE2 activity in HeLa nuclear extracts is mediated by trans-acting factors. UV cross-linking plus immunoprecipitation assays showed that both wild-type SE1 and SE2 RNAs could bind directly to purified HeLa SR proteins SRp30a (ASF/SF2), SRp55, and SRp75. UV cross-linking experiments also identified a 23-kDa protein which binds to SE2 but not SE1. This protein is present in both HeLa nuclear extracts and S100 extracts but absent from SR protein preparations, suggesting that it is not a classical SR protein. Mutant SE elements (containing G- to U-mutations) which had minimal splicing enhancer activity also had very weak binding capacity for these proteins, strongly suggesting that the binding of these proteins is required for splicing enhancer function.
Collapse
Affiliation(s)
- Z M Zheng
- Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA.
| | | | | |
Collapse
|
165
|
Wentz MP, Moore BE, Cloyd MW, Berget SM, Donehower LA. A naturally arising mutation of a potential silencer of exon splicing in human immunodeficiency virus type 1 induces dominant aberrant splicing and arrests virus production. J Virol 1997; 71:8542-51. [PMID: 9343212 PMCID: PMC192318 DOI: 10.1128/jvi.71.11.8542-8551.1997] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have isolated a naturally arising human immunodeficiency type 1 (HIV-1) mutant containing a point mutation within the env gene. The point mutation resulted in complete loss of balanced splicing, with dominant production of aberrant mRNAs. The aberrant RNAs arose via activation of normally cryptic splice sites flanking the mutation within the env terminal exon to create exon 6D, which was subsequently incorporated in aberrant env, tat, rev, and nef mRNAs. Aberrant multiply spliced messages contributed to reduced virus replication as a result of a reduction in wild-type Rev protein. The point mutation within exon 6D activated exon 6D inclusion when the exon and its flanking splice sites were transferred to a heterologous minigene. Introduction of the point mutation into an otherwise wild-type HIV-1 proviral clone resulted in virus that was severely inhibited for replication in T cells and displayed elevated usage of exon 6D. Exon 6D contains a bipartite element similar to that seen in tat exon 3 of HIV-1, consisting of a potential exon splicing silencer (ESS) juxtaposed to a purine-rich sequence similar to known exon splicing enhancers. In the absence of a flanking 5' splice site, the point mutation within the exon 6D ESS-like element strongly activated env splicing, suggesting that the putative ESS plays a natural role in limiting the level of env splicing. We propose, therefore, that exon silencers may be a common element in the HIV-1 genome used to create balanced splicing of multiple products from a single precursor RNA.
Collapse
Affiliation(s)
- M P Wentz
- Division of Molecular Virology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
166
|
Cramer P, Pesce CG, Baralle FE, Kornblihtt AR. Functional association between promoter structure and transcript alternative splicing. Proc Natl Acad Sci U S A 1997; 94:11456-60. [PMID: 9326631 PMCID: PMC23504 DOI: 10.1073/pnas.94.21.11456] [Citation(s) in RCA: 269] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been assumed that constitutive and regulated splicing of RNA polymerase II transcripts depends exclusively on signals present in the RNA molecule. Here we show that changes in promoter structure strongly affect splice site selection. We investigated the splicing of the ED I exon, which encodes a facultative type III repeat of fibronectin, whose inclusion is regulated during development and in proliferative processes. We used an alternative splicing assay combined with promoter swapping to demonstrate that the extent of ED I splicing is dependent on the promoter structure from which the transcript originated and that this regulation is independent of the promoter strength. Thus, these results provide the first evidence for coupling between alternative splicing and promoter-specific transcription, which agrees with recent cytological and biochemical evidence of coordination between splicing and transcription.
Collapse
Affiliation(s)
- P Cramer
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Investigaciones en Ingenier-ia Gen-etica y Biolog-ia Molecular, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
167
|
Duncan PI, Stojdl DF, Marius RM, Bell JC. In vivo regulation of alternative pre-mRNA splicing by the Clk1 protein kinase. Mol Cell Biol 1997; 17:5996-6001. [PMID: 9315658 PMCID: PMC232448 DOI: 10.1128/mcb.17.10.5996] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Controlled expression of cellular and viral genes through alternative precursor messenger RNA (pre-mRNA) splicing requires serine/arginine-rich (SR) proteins. The Clk1 kinase, which phosphorylates SR proteins, is regulated through alternative splicing of the Clk1 pre-mRNA, yielding mRNAs encoding catalytically active and truncated inactive polypeptides (Clk1 and Clk1T, respectively). We present evidence that Clk1 and Clk1T proteins regulate the splicing of Clk1 and adenovirus pre-mRNAs in vivo. The peptide domain encoded by the alternatively spliced exon of Clk1 is essential for the regulatory activity of the Clk1 kinase. This is the first direct demonstration of an in vivo link between alternative splicing and protein kinase activity.
Collapse
Affiliation(s)
- P I Duncan
- Ottawa Regional Cancer Centre, Ontario, Canada
| | | | | | | |
Collapse
|
168
|
Del Gatto F, Plet A, Gesnel MC, Fort C, Breathnach R. Multiple interdependent sequence elements control splicing of a fibroblast growth factor receptor 2 alternative exon. Mol Cell Biol 1997; 17:5106-16. [PMID: 9271388 PMCID: PMC232361 DOI: 10.1128/mcb.17.9.5106] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The fibroblast growth factor receptor 2 gene contains a pair of mutually exclusive alternative exons, one of which (K-SAM) is spliced specifically in epithelial cells. We have described previously (F. Del Gatto and R. Breathnach, Mol. Cell. Biol. 15:4825-4834, 1995) some elements controlling K-SAM exon splicing, namely weak exon splice sites, an exon-repressing sequence, and an intron-activating sequence. We identify here two additional sequences in the intron downstream from the K-SAM exon which activate splicing of the exon. The first sequence (intron-activating sequence 2 [IAS2]) lies 168 to 186 nucleotides downstream from the exon's 5' splice site. The second sequence (intron-activating sequence 3 [IAS3]) lies 933 to 1,052 nucleotides downstream from the exon's 5' splice site. IAS3 is a complex region composed of several parts, one of which (nucleotides 963 to 983) can potentially form an RNA secondary structure with IAS2. This structure is composed of two stems separated by an asymmetric bulge. Mutations which disrupt either stem decrease activation, while compensatory mutations which reestablish the stem restore activation, either completely or partially, depending on the mutation. We present a model for K-SAM exon splicing involving the intervention of multiple, interdependent pre-mRNA sequence elements.
Collapse
Affiliation(s)
- F Del Gatto
- INSERM U463, Institut de Biologie-CHR, Nantes, France
| | | | | | | | | |
Collapse
|
169
|
Hwang DY, Cohen JB. A splicing enhancer in the 3'-terminal c-H-ras exon influences mRNA abundance and transforming activity. J Virol 1997; 71:6416-26. [PMID: 9261359 PMCID: PMC191915 DOI: 10.1128/jvi.71.9.6416-6426.1997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Analysis of cDNA clones previously identified an optional intron in the 3'-untranslated region of the human H-ras gene. A possible correlation was observed between failure to remove this intron and overexpression of the gene, suggesting that splicing of the intron may require a specific titrable factor. The splicing signals at the end of the intron deviate from the consensus and may be inefficient, but we noticed that the adjacent exon downstream has a purine-rich region reminiscent of purine-rich splicing enhancers in other genes that stimulate the removal of weak, flanking introns. We show here that the purine-rich region of H-ras has splicing-enhancer activity in the homologous as well as a heterologous context. Interestingly, although the affected intron is outside the coding region, inversion or deletion of the enhancer reduced the transforming activity of oncogenic H-ras alleles severalfold. Experiments with corresponding cDNA constructs suggested that this is not a consequence of the altered structures of the mRNAs produced when the enhancer is inverted or deleted. Instead, we propose that the region controls an additional pre-mRNA processing event besides splicing of the terminal intron. Our work indicates that the purine-rich region may play an important role in the control of H-ras activity.
Collapse
Affiliation(s)
- D Y Hwang
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
170
|
Jumaa H, Nielsen PJ. The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation. EMBO J 1997; 16:5077-85. [PMID: 9305649 PMCID: PMC1170142 DOI: 10.1093/emboj/16.16.5077] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
SRp20 is a member of the highly conserved SR family of splicing regulators. Using a variety of reporter gene constructs, we show that SRp20 regulates alternative splicing of its own mRNA. Overexpression of SRp20 results in a reduction in the level of exon 4-skipped SRp20 transcripts and activates the production of transcripts containing exon 4. These exon 4-included transcripts encode a truncated protein lacking the C-terminal RS domain. We provide evidence that SRp20 probably enhances the recognition of the otherwise unused, weak splice acceptor of exon 4. The recognition of exons with weak splice acceptor sites may be a general activity of SRp20. Unexpectedly, ASF/SF2, another member of the SR family, antagonizes the effect of SRp20 on SRp20 pre-mRNA splicing and suppresses the production of the exon 4-included form. Our results indicate that ASF/SF2 suppresses the use of the alternative exon 4, most likely by inhibiting the recognition of the splice donor of exon 4. These results demonstrate, for the first time, an auto-regulatory activity of an SR protein which is antagonized by a second SR protein.
Collapse
Affiliation(s)
- H Jumaa
- Max Planck Institute for Immunobiology, Freiburg, Germany
| | | |
Collapse
|
171
|
Cooper TA, Mattox W. The regulation of splice-site selection, and its role in human disease. Am J Hum Genet 1997; 61:259-66. [PMID: 9311728 PMCID: PMC1715899 DOI: 10.1086/514856] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- T A Cooper
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
172
|
McCullough AJ, Berget SM. G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol Cell Biol 1997; 17:4562-71. [PMID: 9234714 PMCID: PMC232310 DOI: 10.1128/mcb.17.8.4562] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Splicing of small introns in lower eucaryotes can be distinguished from vertebrate splicing by the inability of such introns to be expanded and by the inability of splice site mutations to cause exon skipping-properties suggesting that the intron rather than the exon is the unit of recognition. Vertebrates do contain small introns. To see if they possess properties similar to small introns in lower eucaryotes, we studied the small second intron from the human alpha-globin gene. Mutation of the 5' splice site of this intron resulted in in vivo intron inclusion, not exon skipping, suggesting the presence of intron bridging interactions. The intron had an unusual base composition reflective of a sequence bias present in a collection of small human introns in which multiple G triplets stud the interior of the introns. Each G triplet represented a minimal sequence element additively contributing to maximal splicing efficiency and spliceosome assembly. More importantly, G triplets proximal to a duplicated splice site caused preferential utilization of the 5' splice site upstream of the triplets or the 3' splice site downstream of the triplets; i.e., sequences containing G triplets were preferentially used as introns when a choice was possible. Thus, G triplets internal to a small intron have the ability to affect splice site decisions at both ends of the intron. Each G triplet additively contributed to splice site selectivity. We suggest that G triplets are a common component of human 5' splice sites and aid in the definition of exon-intron borders as well as overall splicing efficiency. In addition, our data suggest that such intronic elements may be characteristic of small introns and represent an intronic equivalent to the exon enhancers that facilitate recognition of both ends of an exon during exon definition.
Collapse
Affiliation(s)
- A J McCullough
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | |
Collapse
|
173
|
Shovlin CL, Hughes JM, Scott J, Seidman CE, Seidman JG. Characterization of endoglin and identification of novel mutations in hereditary hemorrhagic telangiectasia. Am J Hum Genet 1997; 61:68-79. [PMID: 9245986 PMCID: PMC1715873 DOI: 10.1086/513906] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To identify mutations that cause hereditary hemorrhagic telangiectasia (HHT, or Rendu-Osler-Weber syndrome), clinical evaluations and genetic studies were performed on 32 families. Linkage studies in four of eight families indicated an endoglin (ENG) gene mutation. ENG sequences of affected members of the four linked families and probands from the 24 small families were screened for mutations, by Southern blot analyses and by cycle sequencing of PCR-amplified DNA. Seven novel mutations were identified in eight families. Two mutations (a termination codon in exon 4 and a large genomic deletion extending 3' of intron 8) did not produce a stable ENG transcript in lymphocytes. Five other mutations (two donor splice-site mutations and three deletions) produce altered mRNAs that are predicted to encode markedly truncated ENG proteins. Mutations in other families are predicted to lie in ENG-regulatory regions or in one of the additional genes that may cause HHT. These data suggest that the molecular mechanism by which ENG mutations cause HHT is haploinsufficiency. Furthermore, because the clinical manifestation of disease in these eight families was similar, we hypothesize that phenotypic variation of HHT is not related to a particular ENG mutation.
Collapse
Affiliation(s)
- C L Shovlin
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
174
|
Du K, Peng Y, Greenbaum LE, Haber BA, Taub R. HRS/SRp40-mediated inclusion of the fibronectin EIIIB exon, a possible cause of increased EIIIB expression in proliferating liver. Mol Cell Biol 1997; 17:4096-104. [PMID: 9199345 PMCID: PMC232263 DOI: 10.1128/mcb.17.7.4096] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Serine-arginine (SR)-rich proteins are believed to be important in mediating alternative pre-mRNA splicing. HRS/SRp40 expression is elevated in liver cell proliferation during development, regeneration, and oncogenesis. We tested whether HRS expression correlates with the appearance of alternatively spliced fibronectin transcripts during liver growth. HRS was highly expressed during the proliferative phase of liver development, correlating with expression of the fibronectin EIIIB alternative exon. In regenerating liver, HRS protein was induced in a time course consistent with the observed increase in fibronectin transcripts containing the EIIIB exon, particularly in nonparenchymal liver cells. Furthermore, in an in vivo assay, HRS, and not other SR proteins, directly mediated EIIIB exon inclusion in the fibronectin transcript. This alternative splicing was dependent on a purine-rich region within the EIIIB exon to which HRS specifically bound. We have established that HRS has the potential to contribute to the regulation of fibronectin pre-mRNA splicing during liver growth. Changes in fibronectin forms may be important in modifying liver architecture during the proliferative response, thus providing a potential mechanism by which SR proteins may participate in cellular growth control.
Collapse
Affiliation(s)
- K Du
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
175
|
Query CC, McCaw PS, Sharp PA. A minimal spliceosomal complex A recognizes the branch site and polypyrimidine tract. Mol Cell Biol 1997; 17:2944-53. [PMID: 9111366 PMCID: PMC232146 DOI: 10.1128/mcb.17.5.2944] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The association of U2 snRNP with the pre-mRNA branch region is a critical step in the assembly of spliceosomal complexes. We describe an assembly process that reveals both minimal requirements for formation of a U2 snRNP-substrate RNA complex, here designated the Amin complex, and specific interactions with the branch site adenosine. The substrate is a minimal RNA oligonucleotide, containing only a branch sequence and polypyrimidine tract. Interactions at the branch site adenosine and requirements for polypyrimidine tract-binding proteins for the Amin complex are the same as those of authentic prespliceosome complex A. Surprisingly, Amin complex formation does not require U1 snRNP or ATP, suggesting that these factors are not necessary for stable binding of U2 snRNP per se, but rather are necessary for accessibility of components on longer RNA substrates. Furthermore, there is an ATP-dependent activity that releases or destabilizes U2 snRNP from branch sequences. The simplicity of the Amin complex will facilitate a detailed understanding of the assembly of prespliceosomes.
Collapse
Affiliation(s)
- C C Query
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02139-4307, USA
| | | | | |
Collapse
|
176
|
Min H, Turck CW, Nikolic JM, Black DL. A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev 1997; 11:1023-36. [PMID: 9136930 DOI: 10.1101/gad.11.8.1023] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have purified and cloned a new splicing factor, KSRP. KSRP is a component of a multiprotein complex that binds specifically to an intronic splicing enhancer element downstream of the neuron-specific c-src N1 exon. This 75-kD protein induces the assembly of five other proteins, including the heterogeneous nuclear ribonucleoprotein F, onto the splicing enhancer. The sequence of the KSRP cDNA indicates that the protein contains four K homology RNA-binding domains and an unusual carboxy-terminal domain. KSRP is similar to two proteins, FUSE-binding protein and P-element somatic inhibitor. KSRP is expressed in both neural and non-neural cell lines, although it is present at higher levels in neural cells. Antibodies specific for KSRP inhibit the splicing of the N1 exon in vitro. Moreover, this inhibition of N1 splicing can be rescued by the addition of purified KSRP. KSRP is likely to regulate splicing from a number of intronic splicing enhancer sequences.
Collapse
Affiliation(s)
- H Min
- Molecular Biology Institute, University of California at Los Angeles, 90095-1662, USA
| | | | | | | |
Collapse
|
177
|
Coulter LR, Landree MA, Cooper TA. Identification of a new class of exonic splicing enhancers by in vivo selection. Mol Cell Biol 1997; 17:2143-50. [PMID: 9121463 PMCID: PMC232062 DOI: 10.1128/mcb.17.4.2143] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In vitro selection strategies have typically been used to identify a preferred ligand, usually an RNA, for an identified protein. Ideally, one would like to know RNA consensus sequences preferred in vivo for as-yet-unidentified factors. The ability to select RNA-processing signals would be particularly beneficial in the analysis of exon enhancer sequences that function in exon recognition during pre-mRNA splicing. Exon enhancers represent a class of potentially ubiquitous RNA-processing signals whose actual prevalence is unknown. To establish an approach for in vivo selection, we developed an iterative scheme to select for exon sequences that enhance exon inclusion. This approach is modeled on the in vitro SELEX procedure and uses transient transfection in an iterative procedure to enrich RNA-processing signals in cultured vertebrate cells. Two predominant sequence motifs were enriched after three rounds of selection: a purine-rich motif that resembles previously identified splicing enhancers and a class of A/C-rich splicing enhancers (ACEs). Individual selected ACEs enhanced splicing in vivo and in vitro. ACE splicing activity was competed by RNAs containing the purine-rich splicing enhancer from cardiac troponin T exon 5. Thus, ACE activity is likely to require a subset of the SR splicing factors previously shown to mediate activity of this purine-rich enhancer. ACE motifs are found in two vertebrate exons previously demonstrated to contain splicing enhancer activity as well as in the well-characterized Drosophila doublesex (dsx) splicing enhancer. We demonstrate that one copy of the dsx repeat enhances splicing of a vertebrate exon in vertebrate cells and that this enhancer activity requires the ACE motif. We suggest the possibility that the dsx enhancer is a member of a previously unrecognized family of ACEs.
Collapse
Affiliation(s)
- L R Coulter
- Department of Pathology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
178
|
Chabot B, Blanchette M, Lapierre I, La Branche H. An intron element modulating 5' splice site selection in the hnRNP A1 pre-mRNA interacts with hnRNP A1. Mol Cell Biol 1997; 17:1776-86. [PMID: 9121425 PMCID: PMC232024 DOI: 10.1128/mcb.17.4.1776] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The hnRNP A1 pre-mRNA is alternatively spliced to yield the A1 and A1b mRNAs, which encode proteins differing in their ability to modulate 5' splice site selection. Sequencing a genomic portion of the murine A1 gene revealed that the intron separating exon 7 and the alternative exon 7B is highly conserved between mouse and human. In vitro splicing assays indicate that a conserved element (CE1) from the central portion of the intron shifts selection toward the distal donor site when positioned in between the 5' splice sites of exon 7 and 7B. In vivo, the CE1 element promotes exon 7B skipping. A 17-nucleotide sequence within CE1 (CE1a) is sufficient to activate the distal 5' splice site. RNase T1 protection/immunoprecipitation assays indicate that hnRNP A1 binds to CE1a, which contains the sequence UAGAGU, a close match to the reported optimal A1 binding site, UAGGGU. Replacing CE1a by different oligonucleotides carrying the sequence UAGAGU or UAGGGU maintains the preference for the distal 5' splice site. In contrast, mutations in the AUGAGU sequence activate the proximal 5' splice site. In support of a direct role of the A1-CE1 interaction in 5'-splice-site selection, we observed that the amplitude of the shift correlates with the efficiency of A1 binding. Whereas addition of SR proteins abrogates the effect of CE1, the presence of CE1 does not modify U1 snRNP binding to competing 5' splice sites, as judged by oligonucleotide-targeted RNase H protection assays. Our results suggest that hnRNP A1 modulates splice site selection on its own pre-mRNA without changing the binding of U1 snRNP to competing 5' splice sites.
Collapse
Affiliation(s)
- B Chabot
- Département de Microbiologie, Faculté de Médecine, Université de Sherbrooke, Quebec, Canada.
| | | | | | | |
Collapse
|
179
|
Gallego ME, Gattoni R, Stévenin J, Marie J, Expert-Bezançon A. The SR splicing factors ASF/SF2 and SC35 have antagonistic effects on intronic enhancer-dependent splicing of the beta-tropomyosin alternative exon 6A. EMBO J 1997; 16:1772-84. [PMID: 9130721 PMCID: PMC1169780 DOI: 10.1093/emboj/16.7.1772] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Exons 6A and 6B of the chicken beta-tropomyosin gene are mutually exclusive and selected in a tissue-specific manner. Exon 6A is present in non-muscle and smooth muscle cells, while exon 6B is present in skeletal muscle cells. In this study we have investigated the mechanism underlying exon 6A recognition in non-muscle cells. Previous reports have identified a pyrimidine-rich intronic enhancer sequence (S4) downstream of exon 6A as essential for exon 6A 5'-splice site recognition. We show here that preincubation of HeLa cell extracts with an excess of RNA containing this sequence specifically inhibits exon 6A recognition by the splicing machinery. Splicing inhibition by an excess of this RNA can be rescued by addition of the SR protein ASF/SF2, but not by the SR proteins SC35 or 9G8. ASF/SF2 stimulates exon 6A splicing through specific interaction with the enhancer sequence. Surprisingly, SC35 behaves as an inhibitor of exon 6A splicing, since addition to HeLa nuclear extracts of increasing amounts of the SC35 protein completely abolish the stimulatory effect of ASF/SF2 on exon 6A splicing. We conclude that exon 6A recognition in vitro depends on the ratio of the ASF/SF2 to SC35 SR proteins. Taken together our results suggest that variations in the level or activity of these proteins could contribute to the tissue-specific choice of beta-tropomyosin exon 6A. In support of this we show that SR proteins isolated from skeletal muscle tissues are less efficient for exon 6A stimulation than SR proteins isolated from HeLa cells.
Collapse
Affiliation(s)
- M E Gallego
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
180
|
Zhu C, Urano J, Bell LR. The Sex-lethal early splicing pattern uses a default mechanism dependent on the alternative 5' splice sites. Mol Cell Biol 1997; 17:1674-81. [PMID: 9032294 PMCID: PMC231892 DOI: 10.1128/mcb.17.3.1674] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Sex-lethal (Sxl) early transcripts have a unique 5' exon and a splicing pattern that differs from that of the late transcripts. While the late transcripts are regulated sex specifically by control of exon 3 inclusion, the early transcripts are not. While the late transcripts include exon 3 by default, the early transcripts skip exon 3. Splicing patterns of a reporter gene that mimics the early transcript, and its variants, were analyzed in Drosophila transformants and tissue culture cells. The results demonstrate that the early, in contrast to the late, splicing pattern is not regulated by stage-specific or sex-specific trans-acting factors, and so the pattern appears to arise from some type of intrinsic splice site preference or compatibility. Inclusion or exclusion of exon 3 is determined by the identity of the upstream 5' splice site region as late or early. The important region of the early exon lies within 233 nucleotides of the immediately adjacent intron.
Collapse
Affiliation(s)
- C Zhu
- Department of Biological Sciences, University of Southern California, Los Angeles 90089-1340, USA
| | | | | |
Collapse
|
181
|
McCullough AJ, Schuler MA. Intronic and exonic sequences modulate 5' splice site selection in plant nuclei. Nucleic Acids Res 1997; 25:1071-7. [PMID: 9023120 PMCID: PMC146543 DOI: 10.1093/nar/25.5.1071] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pre-mRNA transcripts in a variety of organisms, including plants, Drosophila and Caenorhabditis elegans, contain introns which are significantly richer in adenosine and uridine residues than their flanking exons. Previous analyses using exonic and intronic replacements between two nonequivalent 5'splice sites in the 469 nt long rbcS3A intron 1 provided the first evidence indicating that, in both tobacco and Drosophila nuclei, 5'splice site selection is strongly influenced by the position of that site relative to the AU transition point between exon and intron. To differentiate between two potential models for 5'splice site recognition, we have expressed a completely different set of intronic and exonic replacement constructs containing identical 5'splice sites upstream of beta-conglycinin intron 4 (115 nt). Mutagenesis and deletion of the upstream 5'splice site demonstrate that intronic AU-rich sequences function by promoting recognition of the most upstream 5'splice site rather than by masking the downstream 5'splice site. Sequence insertions define a role for AG-rich exonic sequences in plant pre-mRNA splicing by demonstrating that an AG-rich element is capable of promoting downstream 5'splice site recognition. We conclude that AU-rich intronic sequences, AG-rich exonic sequences and the 5'splice site itself collectively define 5'intron boundaries in dicot nuclei.
Collapse
Affiliation(s)
- A J McCullough
- Verna and Marrs McClean Department of Biochemistry, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
182
|
Tacke R, Chen Y, Manley JL. Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc Natl Acad Sci U S A 1997; 94:1148-53. [PMID: 9037021 PMCID: PMC19759 DOI: 10.1073/pnas.94.4.1148] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/1996] [Accepted: 12/09/1996] [Indexed: 02/03/2023] Open
Abstract
We showed previously that ASF/SF2, a member of the SR protein family of splicing factors, can activate a splicing enhancer element composed of high-affinity ASF/SF2 binding sites. To determine whether other SR proteins can behave similarly, we selected a high-affinity RNA-binding site (B1) for the SR protein SRp40. Strikingly, the success of this selection was completely dependent on phosphorylation of the RS domain, as unphosphorylated SRp40 failed to select specific sequences. We show that three copies of B1 function as a strong splicing enhancer, activating an intron with suboptimal splicing signals in nuclear extracts. Enhancer activity in S100 extracts (which lack SR proteins) required SRp40 and a nuclear fraction previously found to be required for ASF/SF2-dependent splicing. Importantly, enhancer activity was lost when SRp40 was replaced by ASF/SF2 or SC35, and SRp40 was the only classical SR protein found to be associated with the enhancer. Together, our results indicate that phosphorylation-dependent, sequence-specific RNA binding can impart unique activities to individual SR proteins.
Collapse
Affiliation(s)
- R Tacke
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
183
|
Coolidge CJ, Seely RJ, Patton JG. Functional analysis of the polypyrimidine tract in pre-mRNA splicing. Nucleic Acids Res 1997; 25:888-96. [PMID: 9016643 PMCID: PMC146492 DOI: 10.1093/nar/25.4.888] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The polypyrimidine tract is one of the important cis-acting sequence elements directing intron removal in pre-mRNA splicing. Progressive deletions of the polypyrimidine tract have been found to abolish correct lariat formation, spliceosome assembly and splicing. In addition, the polypyrimidine tract can alter 3'-splice site selection by promoting alternative branch site selection. However, there appears to be great flexibility in the specific sequence of a given tract. Not only the optimal composition of the polypyrimidine tract, but also the role of the tract in introns with no apparent polypyrimidine tracts or where changes in the tract are apparently harmless are uncertain. Accordingly, we have designed a series of cis-competition splicing constructs to test the functional competitive efficiency of a variety of systematically mutated polypyrimidine tracts. An RT/PCR assay was used to detect spliced product formation as a result of differential branch point selection dependent on direct competition between two opposing polypyrimidine tracts. We found that pyrimidine tracts containing 11 continuous uridines are the strongest pyrimidine tracts. In such cases, the position of the uridine stretch between the branch point and 3'-splice site AG is unimportant. In contrast, decreasing the continuous uridine stretch to five or six residues requires that the tract be located immediately adjacent to the AG for optimal competitive efficiency. The block to splicing with decreasing polypyrimidine tract strength is primarily prior to the first step of splicing. While lengthy continuous uridine tracts are the most competitive, tracts with decreased numbers of consecutive uridines and even tracts with alternating purine/pyrimidine residues can still function to promote branch point selection, but are far less effective competitors in 3'-splice site selection assays.
Collapse
Affiliation(s)
- C J Coolidge
- Department of Molecular Biology, Vanderbilt University, Nashville, TN 37235, USA
| | | | | |
Collapse
|
184
|
Cook CR, McNally MT. Characterization of an RNP complex that assembles on the Rous sarcoma virus negative regulator of splicing element. Nucleic Acids Res 1996; 24:4962-8. [PMID: 9016667 PMCID: PMC146344 DOI: 10.1093/nar/24.24.4962] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have characterized an RNP complex that assembles in nuclear extracts on the negative regulator of splicing (NRS) element from Rous sarcoma virus. While no complex was detected by native gel electrophoresis under conditions that supported spliceosome assembly, gel filtration revealed a specific ATP-independent complex that rapidly assembled on NRS RNA. No complexes were formed on non-specific RNA. Unlike the non-specific H complex, factors required for NRS complex assembly are limiting in nuclear extract. The NRS complex was not detected in reactions containing ATP and pre-formed complexes were dissociated in the presence of ATP. In addition, the assembly process was sensitive to high salt but NRS complexes were salt stable once formed. Assembly of the NRS complex appears functionally significant since mutated NRS RNAs that fail to inhibit splicing in vivo are defective for NRS complex assembly in nuclear extract. The probable relationship of the NRS complex to spliceosomal complexes is discussed.
Collapse
Affiliation(s)
- C R Cook
- Department of Microbiology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | |
Collapse
|
185
|
Sarkissian M, Winne A, Lafyatis R. The mammalian homolog of suppressor-of-white-apricot regulates alternative mRNA splicing of CD45 exon 4 and fibronectin IIICS. J Biol Chem 1996; 271:31106-14. [PMID: 8940107 DOI: 10.1074/jbc.271.49.31106] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have previously described human (HsSWAP) and mouse (MmSWAP) homologs to the Drosophila alternative splicing regulator suppressor-of-white-apricot (su(wa) or DmSWAP). DmSWAP was formally defined as an alternative splicing regulator by studies showing that it autoregulates splicing of its own pre-mRNA. We report here that mammalian SWAP regulates its own splicing, and also the splicing of fibronectin and CD45. Using an in vivo system of cell transfection, mammalian SWAP regulated 5' splice site selection in splicing of its own second intron. SWAP enhanced splicing to the distal 5' splice site, whereas the SR protein ASF/SF2 enhanced splicing to the proximal site. SWAP also regulated alternative splicing of the fibronectin IIICS region by promoting exclusion of the entire IIICS region. In contrast, ASF/SF2 stimulated inclusion of the entire IIICS region. Finally, SWAP regulated splicing of CD45 exon 4, promoting exclusion of this exon, an effect also seen with ASF/SF2. Experiments using SWAP deletion mutants showed that splicing regulation of the fibronectin IIICS region and CD45 exon 4 requires a region including a carboxyl-terminal arginine/serine (R/S)-rich motif. Since R/S motifs of various splicing proteins have been shown to interact with each other, these results suggest that the R/S motif in SWAP may regulate splicing, at least in part, through interactions with other R/S containing splicing factors.
Collapse
Affiliation(s)
- M Sarkissian
- Boston University School of Medicine, The Arthritis Center, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
186
|
Alzhanova-Ericsson AT, Sun X, Visa N, Kiseleva E, Wurtz T, Daneholt B. A protein of the SR family of splicing factors binds extensively to exonic Balbiani ring pre-mRNA and accompanies the RNA from the gene to the nuclear pore. Genes Dev 1996; 10:2881-93. [PMID: 8918889 DOI: 10.1101/gad.10.22.2881] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report on the molecular cloning and intracellular localization of a heterogeneous nuclear ribonucleoprotein (hnRNP), Ct-hrp45, one of the major components of pre-mRNP particles in Chironomus tentans. It is shown that hrp45 belongs to the SR family of splicing factors and exhibits high sequence similarity to Drosophila SRp55/B52 and human SF2/ASF. The distribution of hrp45 within the C. tentans salivary gland cells is studied by immunocytology. The hrp45 protein is found to be abundant in the nucleus, whereas it is undetectable in the cytoplasm. The fate of hrp45 in specific pre-mRNP particles, the Balbiani ring (BR) granules, is revealed by immunoelectron microscopy. It is observed that hrp45 is associated with the growing BR pre-mRNP particles and is being added continuously concomitant with the growth of the transcript, indicating that hrp45 is bound extensively to exon 4, which comprises 80-90% of the primary transcript. Furthermore, hrp45 remains bound to the BR RNP particles in the nucleoplasm and is not released until the particles translocate through the nuclear pore. Thus, hrp45 behaves as an hnRNP protein linked to exon RNA (and perhaps also to the introns) rather than as a spliceosome component connected to the assembly and disassembly of spliceosomes. It seems that hrp45, and possibly also other SR family proteins, is playing an important role in the structural organization of pre-mRNP particles and is perhaps participating not only in splicing but also in other intranuclear events.
Collapse
Affiliation(s)
- A T Alzhanova-Ericsson
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
187
|
Abstract
Recent progress in the study of alternative RNA splicing indicates that the interaction of RNA-binding proteins with specific target elements modulates splice site recognition and spliceosome assembly. The identity of splicing signals, the presence of modulating elements and differences in the distribution of RNA-binding proteins are key determinants involved in the tissue-specific regulation of splice site selection.
Collapse
Affiliation(s)
- B Chabot
- Departement De Microbiologie et Infectiologie, Faculté De Médecine, Université De Sherbrooke, Québec, Canada.
| |
Collapse
|
188
|
Zhang WJ, Wu JY. Functional properties of p54, a novel SR protein active in constitutive and alternative splicing. Mol Cell Biol 1996; 16:5400-8. [PMID: 8816452 PMCID: PMC231539 DOI: 10.1128/mcb.16.10.5400] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The p54 protein was previously identified by its reactivity with an autoantiserum. We report here that p54 is a new member of the SR family of splicing factors, as judged from its structural, antigenic, and functional characteristics. Consistent with its identification as an SR protein, p54 can function as a constitutive splicing factor in complementing splicing-deficient HeLa cell S100 extract. However, p54 also shows properties distinct from those of other SR family members, p54 can directly interact with the 65-kDa subunit of U2 auxiliary factor (U2AF65), a protein associated with the 3' splice site. In addition, p54 interacts with other SR proteins but does not interact with the U1 small nuclear ribonucleoprotein U1-70K or the 35-kDa subunit of U2 auxiliary factor (U2AF35). This protein-protein interaction profile is different from those of prototypical SR proteins SC35 and ASF/SF2, both of which interact with U1-70K and U2AF35 but not with U2AF65. p54 promotes the use of the distal 5' splice site in E1A pre-mRNA alternative splicing, while the same site is suppressed by ASF/SF2 and SC35. These findings and the differential tissue distribution of p54 suggest that this novel SR protein may participate in regulation of alternative splicing in a tissue- and substrate-dependent manner.
Collapse
Affiliation(s)
- W J Zhang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
189
|
Simpson GG, Filipowicz W. Splicing of precursors to mRNA in higher plants: mechanism, regulation and sub-nuclear organisation of the spliceosomal machinery. PLANT MOLECULAR BIOLOGY 1996; 32:1-41. [PMID: 8980472 DOI: 10.1007/bf00039375] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The removal of introns from pre-mRNA transcripts and the concomitant ligation of exons is known as pre-mRNA splicing. It is a fundamental aspect of constitutive eukaryotic gene expression and an important level at which gene expression is regulated. The process is governed by multiple cis-acting elements of limited sequence content and particular spatial constraints, and is executed by a dynamic ribonucleoprotein complex termed the spliceosome. The mechanism and regulation of pre-mRNA splicing, and the sub-nuclear organisation of the spliceosomal machinery in higher plants is reviewed here. Heterologous introns are often not processed in higher plants indicating that, although highly conserved, the process of pre-mRNA splicing in plants exhibits significant differences that distinguish it from splicing in yeast and mammals. A fundamental distinguishing feature is the presence of and requirement for AU or U-rich intron sequence in higher-plant pre-mRNA splicing. In this review we document the properties of higher-plant introns and trans-acting spliceosomal components and discuss the means by which these elements combine to determine the accuracy and efficiency of pre-mRNA processing. We also detail examples of how introns can effect regulated gene expression by affecting the nature and abundance of mRNA in plants and list the effects of environmental stresses on splicing. Spliceosomal components exhibit a distinct pattern of organisation in higher-plant nuclei. Effective probes that reveal this pattern have only recently become available, but the domains in which spliceosomal components concentrate were identified in plant nuclei as enigmatic structures some sixty years ago. The organisation of spliceosomal components in plant nuclei is reviewed and these recent observations are unified with previous cytochemical and ultrastructural studies of plant ribonuleoprotein domains.
Collapse
Affiliation(s)
- G G Simpson
- Friedrich Miescher-Institut, Basel, Switzerland
| | | |
Collapse
|
190
|
Neuman E, Sellers WR, McNeil JA, Lawrence JB, Kaelin WG. Structure and partial genomic sequence of the human E2F1 gene. Gene 1996; 173:163-9. [PMID: 8964493 DOI: 10.1016/0378-1119(96)00184-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The E2F family of transcription factors appears to play a critical role in the transcription of certain genes required for cell cycle progression. E2F1, the first cloned member of this family, is regulated during the cell cycle at the mRNA level by changes in transcription of the E2F1 gene and at the protein level by complex formation with proteins such as the retinoblastoma gene product (pRB), cyclin A and DP1. E2F1 can override a pRB-induced G1/S block and can behave as an oncogene in certain cells. E2F1 was cloned and was found to contain seven exons. The dinucleotides at the 5' and 3' splice sites of intron 4 do not agree with consensus splice site sequences. Fluorescence in situ hybridization localized E2F1 to chromosome 20q11. Knowledge of the organization of E2F1 may facilitate identification of additional E2F family members, as well as detection of E2F1 abnormalities in human tumors.
Collapse
Affiliation(s)
- E Neuman
- Dana-Farber Cancer Institute, Boston, MA 02146, USA
| | | | | | | | | |
Collapse
|
191
|
Dauwalder B, Amaya-Manzanares F, Mattox W. A human homologue of the Drosophila sex determination factor transformer-2 has conserved splicing regulatory functions. Proc Natl Acad Sci U S A 1996; 93:9004-9. [PMID: 8799144 PMCID: PMC38585 DOI: 10.1073/pnas.93.17.9004] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Regulation of gene expression through alternative pre-mRNA splicing appears to occur in all metazoans, but most of our knowledge about splicing regulators derives from studies on genetically identified factors from Drosophila. Among the best studied of these is the transformer-2 (TRA-2) protein which, in combination with the transformer (TRA) protein, directs sex-specific splicing of pre-mRNA from the sex determination gene doublesex (dsx). Here we report the identification of htra-2 alpha, a human homologue of tra-2. Two alternative types of htra-2 alpha cDNA clones were identified that encode different protein isoforms with striking organizational similarity to Drosophila tra-2 proteins. When expressed in flies, one hTRA-2 alpha isoform partially replaces the function of Drosophila TRA-2, affecting both female sexual differentiation and alternative splicing of dsx pre-mRNA. Like Drosophila TRA-2, the ability of hTRA-2 alpha to regulate dsx is female-specific and depends on the presence of the dsx splicing enhancer. These results demonstrate that htra-2 alpha has conserved a striking degree of functional specificity during evolution and leads us to suggest that, although they are likely to serve different roles in development, the tra-2 products of flies and humans have similar molecular functions.
Collapse
Affiliation(s)
- B Dauwalder
- Department of Molecular Genetics, University of Texas, M. D. Anderson Cancer Center, Houston 77030, USA
| | | | | |
Collapse
|
192
|
Lynch KW, Maniatis T. Assembly of specific SR protein complexes on distinct regulatory elements of the Drosophila doublesex splicing enhancer. Genes Dev 1996; 10:2089-101. [PMID: 8769651 DOI: 10.1101/gad.10.16.2089] [Citation(s) in RCA: 179] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Drosophila doublesex female-specific splicing enhancer consists of two classes of regulatory elements, six 13-nucleotide repeat sequences, and a single purine-rich element (PRE). Here, we show that the Drosophila regulatory proteins Transformer (Tra) and Transformer 2 (Tra2) recruit different members of the SR family of splicing factors to the repeats and the PRE. The complexes formed on the repeats in HeLa cell extract consist of Tra, Tra2, and the SR protein 9G8. in Drosophila Kc cell extract, Tra and Tra2 recruit the SR protein RBP1 to the repeats. These proteins are arranged in a specific order on the repeats, with the SR protein at the 5' end of each repeat, and Tra2 at each 3' end. Although Tra did not cross-link strongly to the repeats, its presence was essential for the binding of Tra2 to the 3' end of the repeat. Individual SR proteins were also recruited to the PRE by Tra and Tra2, but in this case they were SF2/ASF and dSRp30 in HeLa and Drosophila cell extracts, respectively. The binding of Tra2, Tra, and the specific SR proteins to the repeats or the PRE was highly cooperative within each complex. Thus, Tra2, which contains a single RNA binding domain, can recognize distinct sequences in the repeats and the PRE in conjunction with specific SR proteins. These observations show that the protein composition of each complex is determined by the RNA recognition sequence and specific interactions between SR proteins and Tra and Tra2.
Collapse
Affiliation(s)
- K W Lynch
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
193
|
|
194
|
Yeakley JM, Morfin JP, Rosenfeld MG, Fu XD. A complex of nuclear proteins mediates SR protein binding to a purine-rich splicing enhancer. Proc Natl Acad Sci U S A 1996; 93:7582-7. [PMID: 8755518 PMCID: PMC38789 DOI: 10.1073/pnas.93.15.7582] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
A purine-rich splicing enhancer from a constitutive exon has been shown to shift the alternative splicing of calcitonin/CGRP pre-mRNA in vivo. Here, we demonstrate that the native repetitive GAA sequence comprises the optimal enhancer element and specifically binds a saturable complex of proteins required for general splicing in vitro. This complex contains a 37-kDa protein that directly binds the repetitive GAA sequence and SRp40, a member of the SR family of non-snRNP splicing factors. While purified SR proteins do not stably bind the repetitive GAA element, exogenous SR proteins become associated with the GAA element in the presence of nuclear extracts and stimulate GAA-dependent splicing. These results suggest that repetitive GAA sequences enhance splicing by binding a protein complex containing a sequence-specific RNA binding protein and a general splicing activator that, in turn, recruit additional SR proteins. This type of mechanism resembles the tra/tra-2-dependent recruitment of SR proteins to the Drosophila doublesex alternative splicing regulatory element.
Collapse
Affiliation(s)
- J M Yeakley
- Division of Cellular and Molecular Medicine, University of California, San Diego, La Jolla CA 92093-0648, USA
| | | | | | | |
Collapse
|
195
|
Affiliation(s)
- J L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
196
|
Zheng ZM, He P, Baker CC. Selection of the bovine papillomavirus type 1 nucleotide 3225 3' splice site is regulated through an exonic splicing enhancer and its juxtaposed exonic splicing suppressor. J Virol 1996; 70:4691-9. [PMID: 8676495 PMCID: PMC190405 DOI: 10.1128/jvi.70.7.4691-4699.1996] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Alternative splicing is an important mechanism for the regulation of bovine papillomavirus type 1 (BPV-1) gene expression during the virus life cycle. However, one 3' splice site, located at nucleotide (nt) 3225, is used for the processing of most BPV-1 pre-mRNAs in BPV-1-transformed C127 cells and at early to intermediate times in productively infected warts. At late stages of the viral life cycle, an alternative 3' splice site at nt 3605 is used for the processing of the late pre-mRNA. In this study, we used in vitro splicing in HeLa cell nuclear extracts to identify cis elements which regulate BPV-1 3' splice site selection. Two purine-rich exonic splicing enhancers were identified downstream of nt 3225. These sequences, designated SE1 (nt 3256 to 3305) and SE2 (nt 3477 to 3526), were shown to strongly stimulate the splicing of a chimeric Drosophila doublesex pre-mRNA, which contains a weak 3' splice site. A BPV-1 late pre-mRNA containing the nt 3225 3' splice site but lacking both SE1 and SE2 was spliced poorly, indicating that this 3' splice site is inherently weak. Analysis of the 3' splice site suggested that this feature is due to both a nonconsensus branch point sequence and a suboptimal polypyrimidine tract. Addition of SE1 to the late pre-mRNA dramatically stimulated splicing, indicating that SE1 also functions as an exonic splicing enhancer in its normal context. However, a late pre-mRNA containing both SE1 and SE2 as well as the sequence in between was spliced inefficiently. Further mapping studies demonstrated that a 48-nt pyrimidine-rich region immediately downstream of SE1 was responsible for this suppression of splicing. Thus, these data suggest that selection of the BPV-1 nt 3225 3' splice site is regulated by both positive and negative exonic sequences.
Collapse
Affiliation(s)
- Z M Zheng
- Laboratory of Tumor Virus Biology, Division of Basic Sciences, National Cancer Institute, Bethesda, Maryland 20892-5055, USA
| | | | | |
Collapse
|
197
|
Kimura K, Yamamoto M. Modification of the alternative splicing process of testosterone-repressed prostate message-2 (TRPM-2) gene by protein synthesis inhibitors and heat shock treatment. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1307:83-8. [PMID: 8652672 DOI: 10.1016/0167-4781(96)00017-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
During the course of the study to examine the effect of cycloheximide on apoptosis-related genes, the variant rat testosterone-repressed prostate message-2 (TRPM-2) mRNA deficient of the exon 5 was found. The putative protein encoded by the variant TRPM-2 mRNA is only constituted from the N-terminal one-third portion of the ordinary TRPM-2 protein. The expression of the variant form was increased dramatically by cycloheximide treatment, while that of the ordinary form was not affected very much. The similar phenomenon was also observed by the use of other types of protein synthesis inhibitors, anisomycin and emetine. The enhancement of expression of the variant was observed in the rat treated with heat shock as well. The variant form was presumably generated by the exon skip mechanism. Systematic analyses of cycloheximide effect on the alternative splicing at various splicing junctions were performed. However, cycloheximide did not exhibit any remarkable effects on other types of alternative splicing, including exon skip in beta A4-amyloid protein precursor (APP) gene, alternative donor selection in Fas antigen gene and alternative acceptor selection in catechol O-methyltransferase (COMT) gene. These results indicated that the induction of exon skip by both protein synthesis inhibition and heat shock treatment occurs in a limited number of genes, if not only in TRPM-2.
Collapse
Affiliation(s)
- K Kimura
- Department of Biochemistry, National Defense Medical College, Saitama, Japan
| | | |
Collapse
|
198
|
Abstract
During the past year, significant advances have been made in the field of pre-mRNA splicing. It is now clear that members of the serine-arginine-rich protein family are key players in exon definition and function at multiple steps in the spliceosome cycle. Novel findings have been made concerning the role of exon sequences, which function as both constitutive and regulated enhancers of splicing, in trans-splicing and as targets for tissue-specific control of splicing patterns. By combining biochemical approaches in human and yeast extracts with genetic analysis, much has been learned about the RNA-RNA and RNA-protein interactions that are necessary to assemble the various complexes that are found along the pathway to the catalytically active spliceosome.
Collapse
Affiliation(s)
- M D Adams
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | | | |
Collapse
|
199
|
Tan W, Schalling M, Zhao C, Luukkonen M, Nilsson M, Fenyö EM, Pavlakis GN, Schwartz S. Inhibitory activity of the equine infectious anemia virus major 5' splice site in the absence of Rev. J Virol 1996; 70:3645-58. [PMID: 8648699 PMCID: PMC190240 DOI: 10.1128/jvi.70.6.3645-3658.1996] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The major 5' splice site of equine infectious anemia virus (EIAV) conforms to the consensus 5' splice site in eight consecutive positions and is located immediately upstream of the gag AUG. Our results show that the presence of this 5' splice site on the EIAV gag mRNA decreases Gag production 30- to 60-fold. This is caused by inefficient nuclear mRNA export and inefficient mRNA utilization. Inhibition could be overcome by providing human immunodeficiency virus type 1 Rev/Rev-responsive element, human T-cell leukemia virus type 1 Rex/Rex-responsive element, or simian retrovirus type 1 constitutive transport element. In addition, inhibition could be abolished by introducing single point mutations in the 5' splice site or by moving the 5' splice site away from its natural position immediately upstream of the gag AUG. This demonstrates that both maintenance of a perfect consensus 5' splice site and its proper location on the mRNA are important for inhibitory activity of the EIAV major 5' splice site.
Collapse
Affiliation(s)
- W Tan
- Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Hwang DY, Cohen JB. Base pairing at the 5' splice site with U1 small nuclear RNA promotes splicing of the upstream intron but may be dispensable for slicing of the downstream intron. Mol Cell Biol 1996; 16:3012-22. [PMID: 8649413 PMCID: PMC231296 DOI: 10.1128/mcb.16.6.3012] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We previously reported that exon skipping in vivo due to point mutations in the 5' splice site (5'ss) signal of an internal mammalian exon can be prevented by coexpression of U1 small nuclear RNAs, termed shift-U1s, with complementarity to sequence upstream or downstream of the mutated site. We now show by S1 nuclease protection experiments that a typical shift-U1 restores splicing of the upstream intron, but not necessarily of the down stream intron. This indicates that the normal 5'ss sequence acts as an enhancer for splicing of the upstream intron, that it owes this activity to base pairing with U1, and that the enhancer activity is reproduced by base pairing of U1 with other sequences in the area. Shift-U1s are dispensable when the 3'ss sequence of the upstream intron is improved, which suggests that base pairing of U1 with sequences at or near the downstream end of the exon normally functions by compensating for a weakness in the upstream 3'ss. Accordingly, U1 appears to be involved in communication across the exon, but our data indicate at the same time that extensive base pairing between U1 and the 5'ss sequence is not necessary for accurate splicing of the downstream intron. These findings are discussed in relation to the coordinate selection exon termini proposed by the exon definition model.
Collapse
Affiliation(s)
- D Y Hwang
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pennsylvania 15261, USA
| | | |
Collapse
|