151
|
Rao HG, Rosenfeld A, Wetmur JG. Methanococcus jannaschii flap endonuclease: expression, purification, and substrate requirements. J Bacteriol 1998; 180:5406-12. [PMID: 9765572 PMCID: PMC107589 DOI: 10.1128/jb.180.20.5406-5412.1998] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The flap endonuclease (FEN) of the hyperthermophilic archaeon Methanococcus jannaschii was expressed in Escherichia coli and purified to homogeneity. FEN retained activity after preincubation at 95 degrees C+ for 15 min. A pseudo-Y-shaped substrate was formed by hybridization of two partially complementary oligonucleotides. FEN cleaved the strand with the free 5' end adjacent to the single-strand-duplex junction. Deletion of the free 3' end prevented cleavage. Hybridization of a complementary oligonucleotide to the free 3' end moved the cleavage site by 1 to 2 nucleotides. Hybridization of excess complementary oligonucleotide to the free 5' end failed to block cleavage, although this substrate was refractory to cleavage by the 5'-3' exonuclease activity of Taq DNA polymerase. For verification, the free 5' end was replaced by an internally labeled hairpin structure. This structure was a substrate for FEN but became a substrate for Taq DNA polymerase only after exonucleolytic cleavage had destabilized the hairpin. A circular duplex substrate with a 5' single-stranded branch was formed by primer extension of a partially complementary oligonucleotide on virion phiX174. This denaturation-resistant substrate was used to examine the effects of temperature and solution properties, such as pH, salt, and divalent ion concentration on the turnover number of the enzyme.
Collapse
Affiliation(s)
- H G Rao
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
152
|
Hwang KY, Baek K, Kim HY, Cho Y. The crystal structure of flap endonuclease-1 from Methanococcus jannaschii. NATURE STRUCTURAL BIOLOGY 1998; 5:707-13. [PMID: 9699635 DOI: 10.1038/1406] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Flap endonuclease-1 (FEN-1), a structure specific nuclease, is an essential enzyme for eukaryotic DNA replication and repair. The crystal structure of FEN-1 from Methanococcus jannaschii, determined at 2.0 A resolution, reveals an active site with two metal ions residing on top of a deep cleft where several conserved acidic residues are clustered. Near the active site, a long flexible loop comprised of many basic and aromatic residues forms a hole large enough to accommodate the DNA substrate. Deletion mutations in this loop significantly decreased the nuclease activity and specificity of FEN-1, suggesting that the loop is critical for recognition and cleavage of the junction between single and double-stranded regions of flap DNA.
Collapse
Affiliation(s)
- K Y Hwang
- Structural Biology Center, Korea Institute of Science & Technology, Seoul, South Korea
| | | | | | | |
Collapse
|
153
|
Shen B, Qiu J, Hosfield D, Tainer JA. Flap endonuclease homologs in archaebacteria exist as independent proteins. Trends Biochem Sci 1998; 23:171-3. [PMID: 9612080 DOI: 10.1016/s0968-0004(98)01199-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- B Shen
- Dept of Cell and Tumor Biology, City of Hope National Medical Center, Duarte, CA 91010-0269, USA.
| | | | | | | |
Collapse
|
154
|
Kokoska RJ, Stefanovic L, Tran HT, Resnick MA, Gordenin DA, Petes TD. Destabilization of yeast micro- and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase delta (pol3-t). Mol Cell Biol 1998; 18:2779-88. [PMID: 9566897 PMCID: PMC110657 DOI: 10.1128/mcb.18.5.2779] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/1997] [Accepted: 02/19/1998] [Indexed: 02/07/2023] Open
Abstract
We examined the effects of mutations in the Saccharomyces cerevisiae RAD27 (encoding a nuclease involved in the processing of Okazaki fragments) and POL3 (encoding DNA polymerase delta) genes on the stability of a minisatellite sequence (20-bp repeats) and microsatellites (1- to 8-bp repeat units). Both the rad27 and pol3-t mutations destabilized both classes of repeats, although the types of tract alterations observed in the two mutant strains were different. The tract alterations observed in rad27 strains were primarily additions, and those observed in pol3-t strains were primarily deletions. Measurements of the rates of repetitive tract alterations in strains with both rad27 and pol3-t indicated that the stimulation of microsatellite instability by rad27 was reduced by the effects of the pol3-t mutation. We also found that rad27 and pol3-01 (an allele carrying a mutation in the "proofreading" exonuclease domain of DNA polymerase delta) mutations were synthetically lethal.
Collapse
Affiliation(s)
- R J Kokoska
- Department of Biology and Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | | | | | |
Collapse
|
155
|
Levine K, Tinkelenberg AH, Cross F. The CLN gene family: central regulators of cell cycle Start in budding yeast. PROGRESS IN CELL CYCLE RESEARCH 1998; 1:101-14. [PMID: 9552356 DOI: 10.1007/978-1-4615-1809-9_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Start transition in the budding yeast cell cycle is the point of most physiological regulation of cell cycle commitment. This transition is controlled by the CLN1,2,3 gene family. We review what is known about the regulation, inter-regulation and function of these genes in controlling the Start transition.
Collapse
Affiliation(s)
- K Levine
- Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
156
|
Abstract
Base excision repair can proceed in either one of two alternative pathways: a DNA polymerase beta-dependent pathway and a proliferating cell nuclear antigen (PCNA)-dependent pathway. Excision of an apurinic/apyrimidinic (AP) site by cutting the phosphate backbone on its 3' side following incision at its 5' side by AP endonuclease is a prerequisite to completion of these repair pathways. Using a reconstituted system with the proteins derived from Xenopus laevis, we found that flap endonuclease 1 (FEN1) was a factor responsible for the excision of a 5'-incised AP site in the PCNA-dependent pathway. In this pathway, DNA synthesis was not required for the action of FEN1 in the presence of PCNA and a replication factor C-containing fraction. The polymerase beta-dependent pathway could also use FEN1 for excision of the synthetic AP sites, which were not susceptible to beta-elimination. In this pathway, FEN1 was functional without PCNA and replication factor C but required the DNA synthesis, which led to a flap structure formation.
Collapse
Affiliation(s)
- K Kim
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | |
Collapse
|
157
|
de Laat WL, Appeldoorn E, Jaspers NG, Hoeijmakers JH. DNA structural elements required for ERCC1-XPF endonuclease activity. J Biol Chem 1998; 273:7835-42. [PMID: 9525876 DOI: 10.1074/jbc.273.14.7835] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heterodimeric complex ERCC1-XPF is a structure-specific endonuclease responsible for the 5' incision during mammalian nucleotide excision repair (NER). Additionally, ERCC1-XPF is thought to function in the repair of interstrand DNA cross-links and, by analogy to the homologous Rad1-Rad10 complex in Saccharomyces cerevisiae, in recombination between direct repeated DNA sequences. To gain insight into the role of ERCC1-XPF in such recombinational processes and in the NER reaction, we studied in detail the DNA structural elements required for ERCC1-XPF endonucleolytic activity. Recombinant ERCC1-XPF, purified from insect cells, was found to cleave stem-loop substrates at the DNA junction in the absence of other proteins like replication protein A, showing that the structure-specific endonuclease activity is intrinsic to the complex. Cleavage depended on the presence of divalent cations and was optimal in low Mn2+ concentrations (0.2 mM). A minimum of 4-8 unpaired nucleotides was required for incisions by ERCC1-XPF. Splayed arm and flap substrates were also cut by ERCC1-XPF, resulting in the removal of 3' protruding single-stranded arms. All incisions occurred in one strand of duplex DNA at the 5' side of a junction with single-stranded DNA. The exact cleavage position varied from 2 to 8 nucleotides away from the junction. One single-stranded arm, protruding either in the 3' or 5' direction, was necessary and sufficient for correct positioning of incisions by ERCC1-XPF. Our data specify the engagement of ERCC1-XPF in NER and allow a more direct search for its specific role in recombination.
Collapse
Affiliation(s)
- W L de Laat
- Department of Cell Biology and Genetics, Medical Genetics Centre, Erasmus University, P. O. Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
158
|
Abstract
Two specialized forms of site-directed double-strand (ds) DNA breakage and rejoining are part of the physiologic program of lymphocytes. One is recombination of the V, D and J gene sequences, termed V(D)J recombination, occurring during early B- and T-cell development, and the other is class-switch recombination occurring exclusively in mature B cells. For V(D)J recombination significant progress has been made recently elucidating the biochemistry of the reaction. In particular our understanding of how DNA ds breaks are both generated and rejoined has increased. For class-switch recombination no definitive information is known about the nucleases required for making the ds breaks, but recent evidence suggests that the joining phase shares activities also required for V(D)J recombination and general DNA ds break repair.
Collapse
Affiliation(s)
- U Grawunder
- Department of Pathology, University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | |
Collapse
|
159
|
Abstract
Expansion of DNA trinucleotide repeats (TNRs) is the causative mutation in a growing number of human genetic diseases. Large expansions of a CTG tract were obtained and shown by genetic and physical assays to be length-dependent sites of chromosome breakage in Saccharomyces cerevisiae. Deletion of RAD27, which encodes a nuclease involved in Okazaki fragment processing, caused length-dependent destabilization of CTG tracts and a substantial increase in expansion frequency. The genetic assay described here can be used to evaluate other factors that induce TNR expansion or chromosome fragility in humans.
Collapse
Affiliation(s)
- C H Freudenreich
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | |
Collapse
|
160
|
Sonoda E, Sasaki MS, Buerstedde JM, Bezzubova O, Shinohara A, Ogawa H, Takata M, Yamaguchi-Iwai Y, Takeda S. Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO J 1998; 17:598-608. [PMID: 9430650 PMCID: PMC1170409 DOI: 10.1093/emboj/17.2.598] [Citation(s) in RCA: 630] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Yeast rad51 mutants are viable, but extremely sensitive to gamma-rays due to defective repair of double-strand breaks. In contrast, disruption of the murine RAD51 homologue is lethal, indicating an essential role of Rad51 in vertebrate cells. We generated clones of the chicken B lymphocyte line DT40 carrying a human RAD51 transgene under the control of a repressible promoter and subsequently disrupted the endogenous RAD51 loci. Upon inhibition of the RAD51 transgene, Rad51- cells accumulated in the G2/M phase of the cell cycle before dying. Chromosome analysis revealed that most metaphase-arrested Rad51- cells carried isochromatid-type breaks. In conclusion, Rad51 fulfils an essential role in the repair of spontaneously occurring chromosome breaks in proliferating cells of higher eukaryotes.
Collapse
Affiliation(s)
- E Sonoda
- Bayer Chair, Department of Molecular Immunology and Allergology, Faculty of Medicine, Kyoto University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Schweitzer JK, Livingston DM. Expansions of CAG repeat tracts are frequent in a yeast mutant defective in Okazaki fragment maturation. Hum Mol Genet 1998; 7:69-74. [PMID: 9384605 DOI: 10.1093/hmg/7.1.69] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To understand the causes of CAG repeat tract changes that occur in the passage of human disease alleles, we are studying the effect of replication and repair mutations on CAG repeat tracts embedded in a yeast chromosome. In this report, we examine the effect of a mutation in the RTH1/RAD27 gene encoding a deoxyribonuclease needed for removal of excess nucleotides at the 5'-end of Okazaki fragments. Deletion of the RTH1/RAD27 gene has two effects on CAG tracts. First, the rth1/rad27 mutation destabilizes CAG tracts. Second, although most tract length changes in wild-type yeast cells are tract contractions, approximately half of the changes that occur as a result of the rth1/rad27 mutation are expansions of one or more repeat units. These results support the hypothesis that tract expansions that occur during passage of human disease alleles bearing expanded CAG tracts result from excess DNA synthesis on the lagging strand of replication.
Collapse
Affiliation(s)
- J K Schweitzer
- Department of Biochemistry, 4-225 Millard Hall, 435 Delaware Street SE, University of Minnesota, Minneapolis, MN 55455-0347, USA
| | | |
Collapse
|
162
|
Kimura S, Kai M, Kobayashi H, Suzuki A, Morioka H, Otsuka E, Sakaguchi K. A structure-specific endonuclease from cauliflower (Brassica oleracea var. botrytis) inflorescence. Nucleic Acids Res 1997; 25:4970-6. [PMID: 9396804 PMCID: PMC147132 DOI: 10.1093/nar/25.24.4970] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A protein with structure-specific endonuclease activity has been purified to near homogeneity from cauliflower ( Brassica oleracea var. botrytis) inflorescence through five successive column chromatographies. The protein is a single polypeptide with a molecular mass of 40 kDa. Using three different branched DNA structures (flap, pseudo-Y and stem-loop) we found that the enzyme, a cauliflower structure-specific endonuclease, cleaved the single-stranded tail in the 5'-flap and 5'-pseudo-Y structures, whereas it could not incise the 3'-flap and 3'-pseudo-Y structures. The incision points occur around the single strand-duplex junction in these DNA substrates and the enzyme leaves 5'-PO4 and 3'-OH termini on DNA. The protein also endonucleolytically cleaves on the 3'-side of the single-stranded region at the junction of unpaired and duplex DNA in the stem-loop structure. The structure-specific endonuclease activity is stimulated by Mg2+ and by Mn2+, but not by Ca2+. Like mammalian FEN-1, the protein has weak 5'-->3' double-stranded DNA-specific exonuclease activity. These results indicate that the cauliflower protein is a plant structure-specific endonuclease like mammalian FEN-1 or may be the plant alternative.
Collapse
Affiliation(s)
- S Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda-shi, Chiba-ken 278, Japan
| | | | | | | | | | | | | |
Collapse
|
163
|
Affiliation(s)
- D M Wilson
- Biology and Biotechnology Research Program, Lawrence Livermore National Laboratory, CA 94551, USA.
| | | |
Collapse
|
164
|
Bhagwat M, Meara D, Nossal NG. Identification of residues of T4 RNase H required for catalysis and DNA binding. J Biol Chem 1997; 272:28531-8. [PMID: 9353315 DOI: 10.1074/jbc.272.45.28531] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacteriophage T4 RNase H, which removes the RNA primers that initiate lagging strand fragments, has a 5'- to 3'-exonuclease activity on DNA.DNA and RNA.DNA duplexes and an endonuclease activity on flap or forked DNA structures (Bhagwat, M., Hobbs, L. J., and Nossal, N. J. (1997) J. Biol. Chem. 272, 28523-28530). It is a member of the RAD2 family of prokaryotic and eukaryotic replication and repair nucleases. The crystal structure of T4 RNase H, in the absence of DNA, shows two Mg2+ ions coordinated to the amino acids highly conserved in this family. It also shows a disordered region proposed to be involved in DNA binding (Mueser, T. C., Nossal, N. G., and Hyde, C. C. Cell (1996) 85, 1101-1112). To identify the amino acids essential for catalysis and DNA binding, we have constructed and characterized three kinds of T4 RNase H mutant proteins based on the possible roles of the amino acid residues: mutants of acidic residues coordinated to each of the two Mg2+ ions (Mg2+-1: D19N, D71N, D132N, and D155N; and Mg2+-2: D157N and D200N); mutants of conserved basic residues in or near the disordered region (K87A and R90A); and mutants of residues with hydroxyl side chains involved in the hydrogen bonding network (Y86F and S153A). Our studies show that Mg2+-1 and the residues surrounding it are important for catalysis and that Lys87 is necessary for DNA binding.
Collapse
Affiliation(s)
- M Bhagwat
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
165
|
Bhagwat M, Hobbs LJ, Nossal NG. The 5'-exonuclease activity of bacteriophage T4 RNase H is stimulated by the T4 gene 32 single-stranded DNA-binding protein, but its flap endonuclease is inhibited. J Biol Chem 1997; 272:28523-30. [PMID: 9353314 DOI: 10.1074/jbc.272.45.28523] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bacteriophage T4 RNase H is a 5'- to 3'-nuclease that has exonuclease activity on RNA.DNA and DNA.DNA duplexes and can remove the pentamer RNA primers made by the T4 primase-helicase (Hollingsworth, H. C., and Nossal, N. G. (1991) J. Biol. Chem. 266, 1888-1897; Hobbs, L. J., and Nossal, N. G. (1996) J. Bacteriol. 178, 6772-6777). Here we show that this exonuclease degrades duplex DNA nonprocessively, releasing a single oligonucleotide (nucleotides 1-4) with each interaction with the substrate. Degradation continues nonprocessively until the enzyme stops 8-11 nucleotides from the 3'-end of the substrate. T4 gene 32 single-stranded DNA-binding protein strongly stimulates the exonuclease activity of T4 RNase H, converting it into a processive nuclease that removes multiple short oligonucleotides with a combined length of 10-50 nucleotides each time it binds to the duplex substrate. 32 protein must bind on single-stranded DNA behind T4 RNase H for processive degradation. T4 RNase H also has a flap endonuclease activity that cuts preferentially on either side of the junction between single- and double-stranded DNA in flap and fork DNA structures. In contrast to the exonuclease, the endonuclease is inhibited completely by 32 protein binding to the single strand of the flap substrate. These results suggest an important role for T4 32 protein in controlling T4 RNase H degradation of RNA primers and adjacent DNA during each lagging strand cycle.
Collapse
Affiliation(s)
- M Bhagwat
- Laboratory of Molecular and Cellular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
166
|
Eissenberg JC, Ayyagari R, Gomes XV, Burgers PM. Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon. Mol Cell Biol 1997; 17:6367-78. [PMID: 9343398 PMCID: PMC232488 DOI: 10.1128/mcb.17.11.6367] [Citation(s) in RCA: 135] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The importance of the interdomain connector loop and of the carboxy-terminal domain of Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) for functional interaction with DNA polymerases delta (Poldelta) and epsilon (Pol epsilon) was investigated by site-directed mutagenesis. Two alleles, pol30-79 (IL126,128AA) in the interdomain connector loop and pol30-90 (PK252,253AA) near the carboxy terminus, caused growth defects and elevated sensitivity to DNA-damaging agents. These two mutants also had elevated rates of spontaneous mutations. The mutator phenotype of pol30-90 was due to partially defective mismatch repair in the mutant. In vitro, the mutant PCNAs showed defects in DNA synthesis. Interestingly, the pol30-79 mutant PCNA (pcna-79) was most defective in replication with Poldelta, whereas pcna-90 was defective in replication with Pol epsilon. Protein-protein interaction studies showed that pcna-79 and pcna-90 failed to interact with Pol delta and Pol epsilon, respectively. In addition, pcna-90 was defective in interaction with the FEN-1 endo-exonuclease (RTH1 product). A loss of interaction between pcna-79 and the smallest subunit of Poldelta, the POL32 gene product, implicates this interaction in the observed defect with the polymerase. Neither PCNA mutant showed a defect in the interaction with replication factor C or in loading by this complex. Processivity of DNA synthesis by the mutant holoenzyme containing pcna-79 was unaffected on poly(dA) x oligo(dT) but was dramatically reduced on a natural template with secondary structure. A stem-loop structure with a 20-bp stem formed a virtually complete block for the holoenzyme containing pcna-79 but posed only a minor pause site for wild-type holoenzyme, indicating a function of the POL32 gene product in allowing replication past structural blocks.
Collapse
Affiliation(s)
- J C Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University Health Sciences Center, Missouri 63104, USA
| | | | | | | |
Collapse
|
167
|
Garforth SJ, Sayers JR. Structure-specific DNA binding by bacteriophage T5 5'-->3' exonuclease. Nucleic Acids Res 1997; 25:3801-7. [PMID: 9380501 PMCID: PMC146983 DOI: 10.1093/nar/25.19.3801] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phage T5 exonuclease is a 5'-->3'exodeoxyribonuclease that also exhibits endonucleolytic activity on flap structures (branched duplex DNA containing a free single-stranded 5'-end). Oligonucleotides were used to construct duplexes with either blunt ends, 5'-overhangs, 3'-overhangs, a flap or a forked end (pseudo-Y). The binding of T5 exonuclease to various structures was investigated using native electrophoretic mobility shift assays (EMSA) in the absence of the essential divalent metal cofactor. Binding of T5 exonuclease to either blunt-ended duplexes or single-stranded oligonucleotides could not be detected by EMSA. However, duplexes with 5'-overhangs, flaps and pseudo-Y structures showed decreased mobility with added T5 exonuclease. On binding to DNA the wild-type enzyme was rendered partially resistant to proteolysis, yielding a biologically active 31.5 kDa fragment. However, the protein-DNA complex remained susceptible to inactivation by p-hydroxymercuribenzoate (PHMB, a cysteine-specific modifying agent), suggesting that neither cysteine is intimately associated with substrate binding. Replacement of both cysteine residues of the molecule with serine did not greatly alter the catalytic or binding characteristics of the protein but did render it highly resistant to inhibition by PHMB.
Collapse
Affiliation(s)
- S J Garforth
- Department of Molecular and Genetic Medicine, University of Sheffield, Royal Hallamshire Hospital, Sheffield S10 2JF, UK
| | | |
Collapse
|
168
|
Wang Z, Wu X, Friedberg EC. Molecular mechanism of base excision repair of uracil-containing DNA in yeast cell-free extracts. J Biol Chem 1997; 272:24064-71. [PMID: 9295360 DOI: 10.1074/jbc.272.38.24064] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Base excision repair (BER) constitutes a ubiquitous excision repair mechanism, which is responsible for the removal of multiple types of damaged and inappropriate bases in DNA. We have employed a yeast cell-free system to examine the biochemical mechanism of the BER pathway in lower eukaryotes. Using uracil-containing DNA as a model substrate, we demonstrate that yeast BER requires Apn1 protein, an Escherichia coli endonuclease IV homolog. In extracts of an apn1 deletion mutant, the 5'-incision at AP (apurinic/apyrimidinic) sites is not detectable, supporting the notion that yeast contains only one major 5'-AP endonuclease. The processing of the 5'-deoxyribose phosphate moieties was found to be a rate-limiting step. During BER of uracil-containing DNA, repair patch sizes of 1-5 nucleotides were detected, with single nucleotide repair patches predominant.
Collapse
Affiliation(s)
- Z Wang
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA.
| | | | | |
Collapse
|
169
|
Shen B, Nolan JP, Sklar LA, Park MS. Functional analysis of point mutations in human flap endonuclease-1 active site. Nucleic Acids Res 1997; 25:3332-8. [PMID: 9241249 PMCID: PMC146887 DOI: 10.1093/nar/25.16.3332] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human flap endonuclease-1 (hFEN-1) is highly homologous to human XPG, Saccharomyces cerevisiae RAD2 and S.cerevisiae RTH1 and shares structural and functional similarity with viral exonucleases such as T4 RNase H, T5 exonuclease and prokaryotic DNA polymerase 5'nucleases. Sequence alignment of 18 structure-specific nucleases revealed two conserved nuclease domains with seven conserved carboxyl residues and one positively charged residue. In a previous report, we showed that removal of the side chain of each individual acidic residue results in complete loss of flap endonuclease activity. Here we report a detailed analysis of substrate cleavage and binding of these mutant enzymes as well as of an additional site-directed mutation of a conserved acidic residue (E160). We found that the active mutant (R103A) has substrate binding and cleavage activity indistinguishable from the wild type enzyme. Of the inactive mutants, one (D181A) has substrate binding properties comparable to the wild type, while three others (D34A, D86A and E160A) bind with lower apparent affinity (2-, 9- and 18-fold reduced, respectively). The other mutants (D158A, D179A and D233A) have no detectable binding activity. We interpret the structural implications of these findings using the crystal structures of related enzymes with the flap endonuclease activity and propose that there are two metal ions (Mg2+or Mn2+) in hFEN enzyme. These two metal coordinated active sites are distinguishable but interrelated. One metal site is directly involved in nucleophile attack to the substrate phosphodiester bonds while the other may stabilize the structure for the DNA substrate binding. These two sites may be relatively close since some of carboxyl residues can serve as ligands for both sites.
Collapse
Affiliation(s)
- B Shen
- Department of Cell and Tumor Biology, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA 91010-0269, USA
| | | | | | | |
Collapse
|
170
|
Wakasugi M, Reardon JT, Sancar A. The non-catalytic function of XPG protein during dual incision in human nucleotide excision repair. J Biol Chem 1997; 272:16030-4. [PMID: 9188507 DOI: 10.1074/jbc.272.25.16030] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
XPG is a member of the FEN-1 structure-specific endonuclease family. It has 3'-junction cutting activity on bubble substrates and makes the 3'-incision in the human dual incision (excision nuclease) repair system. To investigate the precise role of XPG in nucleotide excision repair, we mutagenized two amino acid residues thought to be involved in DNA binding and catalysis, overproduced the mutant proteins using a baculovirus/insect cell system, and purified and characterized the mutant proteins. The mutation D77A had a modest effect on junction cutting and excision activity and gave rise to uncoupled 5'-incision by mammalian cell-free extracts. The D812A mutation completely abolished the junction cutting and 3'-incision activities of XPG, but the excision nuclease reconstituted with XPG (D812A) carried out normal 5'-incision at the 23rd-24th phosphodiester bonds 5' to a (6-4) photoproduct without producing any 3'-incision. It is concluded that Asp-812 is an active site residue of XPG and that in addition to making the 3'-incision, the physical presence of XPG in the protein-DNA complex is required non-catalytically for subsequent 5'-incision by XPF-ERCC1.
Collapse
Affiliation(s)
- M Wakasugi
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7260, USA
| | | | | |
Collapse
|
171
|
Klungland A, Lindahl T. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J 1997; 16:3341-8. [PMID: 9214649 PMCID: PMC1169950 DOI: 10.1093/emboj/16.11.3341] [Citation(s) in RCA: 588] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two forms of DNA base excision-repair (BER) have been observed: a 'short-patch' BER pathway involving replacement of one nucleotide and a 'long-patch' BER pathway with gap-filling of several nucleotides. The latter mode of repair has been investigated using human cell-free extracts or purified proteins. Correction of a regular abasic site in DNA mainly involves incorporation of a single nucleotide, whereas repair patches of two to six nucleotides in length were found after repair of a reduced or oxidized abasic site. Human AP endonuclease, DNA polymerase beta and a DNA ligase (either III or I) were sufficient for the repair of a regular AP site. In contrast, the structure-specific nuclease DNase IV (FEN1) was essential for repair of a reduced AP site, which occurred through the long-patch BER pathway. DNase IV was required for cleavage of a reaction intermediate generated by template strand displacement during gap-filling. XPG, a related nuclease, could not substitute for DNase IV. The long-patch BER pathway was largely dependent on DNA polymerase beta in cell extracts, but the reaction could be reconstituted with either DNA polymerase beta or delta. Efficient repair of gamma-ray-induced oxidized AP sites in plasmid DNA also required DNase IV. PCNA could promote the Pol beta-dependent long-patch pathway by stimulation of DNase IV.
Collapse
Affiliation(s)
- A Klungland
- Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Hertfordshire, UK
| | | |
Collapse
|
172
|
Willson J, Wilson S, Warr N, Watts FZ. Isolation and characterization of the Schizosaccharomyces pombe rhp9 gene: a gene required for the DNA damage checkpoint but not the replication checkpoint. Nucleic Acids Res 1997; 25:2138-46. [PMID: 9153313 PMCID: PMC146707 DOI: 10.1093/nar/25.11.2138] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Checkpoint controls exist in eukaryotic cells to ensure that cells do not enter mitosis in the presence of DNA damage or unreplicated chromosomes. In Schizosaccharomyces pombe many of the checkpoint genes analysed to date are required for both the DNA damage and the replication checkpoints, an exception being chk1 . We report here on the characterization of nine new methylmethane sulphonate (MMS)-sensitive S.pombe mutants, one of which is defective in the DNA damage checkpoint but not the replication checkpoint. We have cloned and sequenced the corresponding gene. The predicted protein is most similar to the Saccharomyces cerevisiae Rad9 protein, having 46% similarity and 26% identity. The S.pombe protein, which we have named Rhp9 (Rad9 homologue in S. pombe) on the basis of structural and phenotypic similarity, also contains motifs present in BRCA1 and 53BP1. Deletion of the gene is not lethal and results in a DNA damage checkpoint defect. Epistasis analysis with other S.pombe checkpoint mutants indicates that rhp9 acts in a process involving the checkpoint rad genes and that the rhp9 mutant is phenotypically very similar to chk1.
Collapse
Affiliation(s)
- J Willson
- Department of Biochemistry, School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | | | | | |
Collapse
|
173
|
Xu Y, Derbyshire V, Ng K, Sun XC, Grindley ND, Joyce CM. Biochemical and mutational studies of the 5'-3' exonuclease of DNA polymerase I of Escherichia coli. J Mol Biol 1997; 268:284-302. [PMID: 9159471 DOI: 10.1006/jmbi.1997.0967] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In order to improve our understanding of the 5'-3' exonuclease reaction catalyzed by Escherichia coli DNA polymerase I, we have constructed expression plasmids and developed purification methods for whole DNA polymerase I and its 5'-3' exonuclease domain that allow the production of large quantities of highly purified material suitable for biophysical and other studies. We have studied the enzymatic properties of the 5'-3' exonuclease, both as an isolated domain and in the context of the whole polymerase, using a variety of model oligonucleotides to explore the enzyme-substrate interaction. The 5'-3' exonuclease is known to be a structure-specific nuclease that cleaves a 5' displaced strand at the junction between single-stranded and duplex regions. Since the isolated domain shows the same structure specificity as the whole polymerase, the correct geometry of substrate binding is achieved without the assistance of the polymerase domain. The 5'-3' exonuclease reaction has a strict requirement for a free 5' end on the displaced strand; however, the upstream template and primer strands are dispensable. Site-directed mutagenesis of the ten carboxylate residues that are highly conserved among bacterial and bacteriophage 5'-3' exonucleases indicates that nine of them are important in the reaction. This finding is discussed in relation to structural and mutational data for related 5' nucleases.
Collapse
Affiliation(s)
- Y Xu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
174
|
Fiorentini P, Huang KN, Tishkoff DX, Kolodner RD, Symington LS. Exonuclease I of Saccharomyces cerevisiae functions in mitotic recombination in vivo and in vitro. Mol Cell Biol 1997; 17:2764-73. [PMID: 9111347 PMCID: PMC232127 DOI: 10.1128/mcb.17.5.2764] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We previously described a 5'-3' exonuclease required for recombination in vitro between linear DNA molecules with overlapping homologous ends. This exonuclease, referred to as exonuclease I (Exo I), has been purified more than 300-fold from vegetatively grown cells and copurifies with a 42-kDa polypeptide. The activity is nonprocessive and acts preferentially on double-stranded DNA. The biochemical properties are quite similar to those of Schizosaccharomyces pombe Exo I. Extracts prepared from cells containing a mutation of the Saccharomyces cerevisiae EXO1 gene, a homolog of S. pombe exo1, had decreased in vitro recombination activity and when fractionated were found to lack the peak of activity corresponding to the 5'-3' exonuclease. The role of EXO1 on recombination in vivo was determined by measuring the rate of recombination in an exo1 strain containing a direct duplication of mutant ade2 genes and was reduced sixfold. These results indicate that EXO1 is required for recombination in vivo and in vitro in addition to its previously identified role in mismatch repair.
Collapse
Affiliation(s)
- P Fiorentini
- Department of Microbiology, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
175
|
Yonemasu R, McCready SJ, Murray JM, Osman F, Takao M, Yamamoto K, Lehmann AR, Yasui A. Characterization of the alternative excision repair pathway of UV-damaged DNA in Schizosaccharomyces pombe. Nucleic Acids Res 1997; 25:1553-8. [PMID: 9092661 PMCID: PMC146609 DOI: 10.1093/nar/25.8.1553] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Schizosaccharomyces pombe cells deficient in nucleotide excision repair (NER) are still able to remove photoproducts from cellular DNA, showing that there is a second pathway for repair of UV damage in this organism. We have characterized this repair pathway by cloning and disruption of the genomic gene encoding UV damage endonuclease (UVDE). Although uvde gene disruptant cells are only mildly UV sensitive, a double disruptant of uvde and rad13 (a S. pombe mutant defective in NER) was synergistically more sensitive than either single disruptant and was unable to remove any photoproducts from cellular DNA. Analysis of the kinetics of photoproduct removal in different mutants showed that the UVDE-mediated pathway operates much more rapidly than NER. In contrast to a previous report, our genetic analysis showed that rad12 and uvde are not the same gene. Disruption of the rad2 gene encoding a structure- specific flap endonuclease makes cells UV sensitive, but much of this sensitivity is not observed if the uvde gene is also disrupted. Further genetic and immunochemical analyses suggest that DNA incised by UVDE is processed by two separate mechanisms, one dependent and one independent of flap endonuclease.
Collapse
Affiliation(s)
- R Yonemasu
- Institute of Development, Aging and Cancer, Graduate School of Science, Tohoku University, Seiryomachi 4-1, Sendai 980-77, Japan
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat Genet 1997; 15:345-55. [PMID: 9090378 DOI: 10.1038/ng0497-345] [Citation(s) in RCA: 459] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have combined long synthetic arrays of alpha satellite DNA with telomeric DNA and genomic DNA to generate artificial chromosomes in human HT1080 cells. The resulting linear microchromosomes contain exogenous alpha satellite DNA, are mitotically and cytogenetically stable in the absence of selection for up to six months in culture, bind centromere proteins specific for active centromeres, and are estimated to be 6-10 megabases in size, approximately one-fifth to one-tenth the size of endogenous human chromosomes. We conclude that this strategy results in the formation of de novo centromere activity and that the microchromosomes so generated contain all of the sequence elements required for stable mitotic chromosome segregation and maintenance. This first-generation system for the construction of human artificial chromosomes should be suitable for dissecting the sequence requirements of human centromeres, as well as developing constructs useful for therapeutic applications.
Collapse
Affiliation(s)
- J J Harrington
- Department of Genetics and Center for Human Genetics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | | | | | | | | |
Collapse
|
177
|
Nouspikel T, Lalle P, Leadon SA, Cooper PK, Clarkson SG. A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function. Proc Natl Acad Sci U S A 1997; 94:3116-21. [PMID: 9096355 PMCID: PMC20331 DOI: 10.1073/pnas.94.7.3116] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/1996] [Accepted: 01/14/1997] [Indexed: 02/04/2023] Open
Abstract
Xeroderma pigmentosum (XP) patients have defects in nucleotide excision repair (NER), the versatile repair pathway that removes UV-induced damage and other bulky DNA adducts. Patients with Cockayne syndrome (CS), another rare sun-sensitive disorder, are specifically defective in the preferential removal of damage from the transcribed strand of active genes, a process known as transcription-coupled repair. These two disorders are usually clinically and genetically distinct, but complementation analyses have assigned a few CS patients to the rare XP groups B, D, or G. The XPG gene encodes a structure-specific endonuclease that nicks damaged DNA 3' to the lesion during NER. Here we show that three XPG/CS patients had mutations that would produce severely truncated XPG proteins. In contrast, two sibling XPG patients without CS are able to make full-length XPG, but with a missense mutation that inactivates its function in NER. These results suggest that XPG/CS mutations abolish interactions required for a second important XPG function and that it is the loss of this second function that leads to the CS clinical phenotype.
Collapse
Affiliation(s)
- T Nouspikel
- Department of Genetics and Microbiology, University Medical Centre (CMU), Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
178
|
Budd ME, Campbell JL. A yeast replicative helicase, Dna2 helicase, interacts with yeast FEN-1 nuclease in carrying out its essential function. Mol Cell Biol 1997; 17:2136-42. [PMID: 9121462 PMCID: PMC232061 DOI: 10.1128/mcb.17.4.2136] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have recently described a new helicase, the Dna2 helicase, that is essential for yeast DNA replication. We now show that the yeast FEN-1 (yFEN-1) nuclease interacts genetically and biochemically with Dna2 helicase. FEN-1 is implicated in DNA replication and repair in yeast, and the mammalian homolog of yFEN-1 (DNase IV, FEN-1, or MF1) participates in Okazaki fragment maturation. Overproduction of yFEN-1, encoded by RAD27/RTH1, suppresses the temperature-sensitive growth of dna2-1 mutants. Overproduction of Dna2 suppresses the rad27/rth1 delta temperature-sensitive growth defect. dna2-1 rad27/rth1 delta double mutants are inviable, indicating that the mutations are synthetically lethal. The genetic interactions are likely due to direct physical interaction between the two proteins, since both epitope-tagged yFEN-1 and endogenous yFEN-1 coimmunopurify with tagged Dna2. The simplest interpretation of these data is that one of the roles of Dna2 helicase is associated with processing of Okazaki fragments.
Collapse
Affiliation(s)
- M E Budd
- Braun Laboratories, California Institute of Technology, Pasadena 91125, USA
| | | |
Collapse
|
179
|
Lieber MR. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 1997; 19:233-40. [PMID: 9080773 DOI: 10.1002/bies.950190309] [Citation(s) in RCA: 349] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Unlike the most well-characterized prokaryotic polymerase, E. coli DNA pol l, none of the eukaryotic polymerases have their own 5' to 3' exonuclease domain for nick translation and Okazaki fragment processing. In eukaryotes, FEN-1 is an endo- and exonuclease that carries out this function independently of the polymerase molecules. Only seven nucleases have been cloned from multicellular eukaryotic cells. Among these, FEN-1 is intriguing because it has complex structural preferences; specifically, it cleaves at branched DNA structures. The cloning of FEN-1 permitted establishment of the first eukaryotic nuclease family, predicting that S. cerevisiae RAD2 (S. pombe Rad13) and its mammalian homolog, XPG, would have similar structural specificity. The FEN-1 nuclease family includes several similar enzymes encoded by bacteriophages. The crystal structures of two enzymes in the FEN-1 nuclease family have been solved and they provide a structural basis for the interesting steric requirements of FEN-1 substrates. Because of their unique structural specificities, FEN-1 and its family members have important roles in DNA replication, repair and, potentially, recombination. Recently, FEN-1 was found to specifically associate with PCNA, explaining some aspects of FEN-1 function during DNA replication and potentially in DNA repair.
Collapse
Affiliation(s)
- M R Lieber
- Dept of Pathology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
180
|
Ahne F, Jha B, Eckardt-Schupp F. The RAD5 gene product is involved in the avoidance of non-homologous end-joining of DNA double strand breaks in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 1997; 25:743-9. [PMID: 9016623 PMCID: PMC146520 DOI: 10.1093/nar/25.4.743] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In wild-type yeast, the repair of a 169 bp double-strand gap induced by the restriction enzymes ApaI and NcoI in the URA3gene of the shuttle vector YpJA18 occurs with high fidelity according to the homologous chromosomal sequence. In contrast, only 25% of the cells of rad5-7 and rad5 Delta mutants perform correct gap repair. As has been proven by sequencing of the junction sites, the remaining cells recircularise the gapped plasmids by joining of the non-compatible, non-homologous ends. Thus, regarding the repair of DNA double-strand breaks, the rad5 mutants behave like mammalian cells rather than budding yeast. The majority of the end joined plasmids miss either one or both of the 3'and 5'protruding single-strands of the restriction ends completely and have undergone blunt-end ligation accompanied by fill-in DNA synthesis. These results imply an important role for the Rad5 protein (Rad5p) in the protection of protruding single-strand ends and for the avoidance of non-homologous end joining during repair of double-strand gaps in budding yeast. Alternatively, the Rad5p may be an accessory factor increasing the efficiency of homologous recombination in yeast, however, the molecular mechanism of Rad5p function requires further investigation.
Collapse
Affiliation(s)
- F Ahne
- Institut für Strahlenbiologie, GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, Neuherberg, Germany
| | | | | |
Collapse
|
181
|
Tishkoff DX, Filosi N, Gaida GM, Kolodner RD. A novel mutation avoidance mechanism dependent on S. cerevisiae RAD27 is distinct from DNA mismatch repair. Cell 1997; 88:253-63. [PMID: 9008166 DOI: 10.1016/s0092-8674(00)81846-2] [Citation(s) in RCA: 370] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mutations in the S. cerevisiae RAD27 (also called RTH1 or YKL510) gene result in a strong mutator phenotype. In this study we show that the majority of the resulting mutations have a structure in which sequences ranging from 5-108 bp flanked by direct repeats of 3-12 bp are duplicated. Such mutations have not been previously detected at high frequency in the mutation spectra of mutator strains. Epistasis analysis indicates that RAD27 does not play a major role in MSH2-dependent mismatch repair. Mutations in RAD27 cause increased rates of mitotic crossing over and are lethal in combination with mutations in RAD51 and RAD52. These observations suggest that the majority of replication errors that accumulate in rad27 strains are processed by double-strand break repair, while a smaller percentage are processed by a mutagenic repair pathway. The duplication mutations seen in rad27 mutants occur both in human tumors and as germline mutations in inherited human diseases.
Collapse
Affiliation(s)
- D X Tishkoff
- Charles A. Dana Division of Human Cancer Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
182
|
Mason RM, Thacker J, Fairman MP. The joining of non-complementary DNA double-strand breaks by mammalian extracts. Nucleic Acids Res 1996; 24:4946-53. [PMID: 9016665 PMCID: PMC146356 DOI: 10.1093/nar/24.24.4946] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have developed a high efficiency system in which mammalian extracts join DNA double-strand breaks with non-complementary termini. This system has been used to obtain a large number of junction sequences from a range of different break-end combinations, allowing the elucidation of the joining mechanisms. Using an extract of calf thymus it was found that the major mechanism of joining was by blunt-end ligation following removal or fill-in of the single-stranded bases. However, some break-end combinations were joined through an efficient mechanism using short repeat sequences and we have succeeded in separating this mechanism from blunt-end joining by the biochemical fractionation of extracts. Characterization of activities and sequence data in an extensively purified fraction that will join ends by the repeat mechanism led to a model where joining is initiated by 3' strand invasion followed by pairing to short repeat sequences close to the break site. Thus the joining of double-strand breaks by mammalian extracts is achieved by several mechanisms and this system will allow the purification of the factors involved in each by the judicial choice of the non-complementary ends used in the assay.
Collapse
Affiliation(s)
- R M Mason
- DNA Repair and Mutagenesis Group, MRC Radiation and Genome Stability Unit, Harwell, Didcot, Oxon, UK
| | | | | |
Collapse
|
183
|
Yao M, Kow YW. Cleavage of insertion/deletion mismatches, flap and pseudo-Y DNA structures by deoxyinosine 3'-endonuclease from Escherichia coli. J Biol Chem 1996; 271:30672-6. [PMID: 8940043 DOI: 10.1074/jbc.271.48.30672] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Deoxyinosine 3'-endonuclease, an Escherichia coli repair enzyme that recognizes and cleaves DNA containing deoxyinosine and base mismatches, can cleave heteroduplexes containing a hairpin or unpaired loop. These DNA structures, referred to as insertion/deletion mismatches (IDM), are abnormal intermediate structures generated during replication of repetitive DNA sequences. In addition, the enzyme also cleaved the 5'-single-stranded tails of flap and pseudo-Y DNA structures, suggesting that deoxyinosine 3'-endonuclease is a bacterial functional homologue of human FEN1 and yeast RTH1 nucleases. These biochemical properties suggest that deoxyinosine 3'-endonuclease might be important in the repair of IDM structures generated in lagging strand during DNA replication.
Collapse
Affiliation(s)
- M Yao
- Division of Cancer Biology, Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia 30335, USA
| | | |
Collapse
|
184
|
Dionne I, Wellinger RJ. Cell cycle-regulated generation of single-stranded G-rich DNA in the absence of telomerase. Proc Natl Acad Sci U S A 1996; 93:13902-7. [PMID: 8943033 PMCID: PMC19463 DOI: 10.1073/pnas.93.24.13902] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Current models of telomere replication predict that due to the properties of the polymerases implicated in semiconservative replication of linear DNA, the two daughter molecules have one end that is blunt and one end with a short 3' overhang. Telomerase is thought to extend the short 3' overhang to produce long single-stranded overhangs. Recently, such overhangs, or TG1-3 tails, were shown to occur on both telomeres of replicated linear plasmids in yeast. Moreover, indirect evidence suggested that the TG1-3 tails also occurred in a yeast strain lacking telomerase. We report herein a novel in-gel hybridization technique to probe telomeres for single-stranded DNA. Using this method, it is shown directly that in yeast strains lacking the TLC1 gene encoding the yeast telomerase RNA, TG1-3 single-stranded DNA was generated on chromosomal and plasmid telomeres. The single-stranded DNA only appeared in S phase and was sensitive to digestion with a single-strand-specific exonuclease. These data demonstrate that during replication of telomeres, TG1-3 tails can be generated in a way that is independent of telomerase-mediated strand elongation. In wild-type strains, these TG1-3 tails could subsequently serve as substrates for telomerase and telomere binding proteins on all telomeres.
Collapse
Affiliation(s)
- I Dionne
- Faculté de Médicine, Départment de Microbiologie et Infectiologie, Université de Sherbrooke, QC, Canada
| | | |
Collapse
|
185
|
DeMott MS, Shen B, Park MS, Bambara RA, Zigman S. Human RAD2 homolog 1 5'- to 3'-exo/endonuclease can efficiently excise a displaced DNA fragment containing a 5'-terminal abasic lesion by endonuclease activity. J Biol Chem 1996; 271:30068-76. [PMID: 8939954 DOI: 10.1074/jbc.271.47.30068] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Repair of abasic lesions, one of the most common types of damage found in DNA, is crucial to an organism's well-being. Studies in vitro indicate that after apurinic-apyrimidinic endonuclease cleaves immediately upstream of a baseless site, removal of the 5'-terminal sugar-phosphate residue is achieved by deoxyribophosphodiesterase activity, an enzyme-mediated beta-elimination reaction, or by endonucleolytic cleavage downstream of the baseless sugar. Synthesis and ligation complete repair. Eukaryotic RAD2 homolog 1 (RTH1) nuclease, by genetic and biochemical evidence, is involved in repair of modified DNA. Efficient endonucleolytic cleavage by RTH1 nuclease has been demonstrated for annealed primers that have unannealed 5'-tails. In vivo, such substrate structures could result from repair-related strand displacement synthesis. Using 5'-tailed substrates, we examined the ability of human RTH1 nuclease to efficiently remove 5'-terminal abasic residues. A series of upstream primers were used to increasingly displace an otherwise annealed downstream primer containing a 5'-terminal deoxyribose-5-phosphate. Until displacement of the first annealed nucleotide, substrates resisted cleavage. With further displacement, efficient cleavage occurred at the 3'-end of the tail. Therefore, in combination with strand displacement activity, RTH1 nucleases may serve as an important alternative to other pathways in repair of abasic sites in DNA.
Collapse
Affiliation(s)
- M S DeMott
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
186
|
Barnes CJ, Wahl AF, Shen B, Park MS, Bambara RA. Mechanism of tracking and cleavage of adduct-damaged DNA substrates by the mammalian 5'- to 3'-exonuclease/endonuclease RAD2 homologue 1 or flap endonuclease 1. J Biol Chem 1996; 271:29624-31. [PMID: 8939893 DOI: 10.1074/jbc.271.47.29624] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The mammalian 5'- to 3'-exonuclease/endonuclease, called RAD2 homologue 1 or flap endonuclease 1, has a unique cleavage activity, dependent on specific substrate structure. On a primer-template, in which the primer has an unannealed 5'-tail, endonucleolytic cleavage near the annealing point releases the tail intact. Entering at the 5'-end, the nuclease tracks along the entire tail to the point of cleavage. Genetic analyses suggest that this nuclease removes DNA adducts in vivo (Sommers, C. H., Miller, E. J., Dujon, B., Prakash, S., and Prakash, L. (1995) J. Biol. Chem. 270, 4193-4196). Micrococcal nuclease footprinting shows that after tracking the nuclease protects a region of the tail 25 nucleotides long, adjacent to the cleavage site. Substrates with adducts at specific locations were used to assess the mechanism of RAD2 homologue 1 nuclease tracking and its ability to cleave modified DNA. Either a conventional cis-diamminedichloroplatinum (II) (CDDP) or a bulky CDDP derivative was placed within or beyond the region protected by the nuclease. The nuclease cleaved the tail of both substrates. In contrast, a CDDP adduct just adjacent to the expected cleavage point was inhibitory. A CDDP adduct at the very 5'-end of the tail was also cleaved. The nuclease could remove tails containing adducts on the sugar-phosphate backbone. Apparently, the nuclease is designed to slide over various types of damage on single stranded DNA and then cut past the damaged site.
Collapse
Affiliation(s)
- C J Barnes
- Department of Biochemistry and Cancer Center, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
187
|
Chen U, Chen S, Saha P, Dutta A. p21Cip1/Waf1 disrupts the recruitment of human Fen1 by proliferating-cell nuclear antigen into the DNA replication complex. Proc Natl Acad Sci U S A 1996; 93:11597-602. [PMID: 8876181 PMCID: PMC38103 DOI: 10.1073/pnas.93.21.11597] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Fen1 or maturation factor 1 is a 5'-3' exonuclease essential for the degradation of the RNA primer-DNA junctions at the 5' ends of immature Okazaki fragments prior to their ligation into a continuous DNA strand. The gene is also necessary for repair of damaged DNA in yeast. We report that human proliferating-cell nuclear antigen (PCNA) associates with human Fen1 with a Kd of 60 nM and an apparent stoichiometry of three Fen1 molecules per PCNA trimer. The Fen1-PCNA association is seen in cell extracts without overexpression of either partner and is mediated by a basic region at the C terminus of Fen1. Therefore, the polymerase delta-PCNA-Fen1 complex has all the activities associated with prokaryotic DNA polymerases involved in replication: 5'-3' polymerase, 3'-5' exonuclease, and 5'-3' exonuclease. Although p21, a regulatory protein induced by p53 in response to DNA damage, interacts with PCNA with a comparable Kd (10 nM) and a stoichiometry of three molecules of p21 per PCNA trimer, a p21-PCNA-Fen1 complex is not formed. This mutually exclusive interaction suggests that the conformation of a PCNA trimer switches such that it can either bind p21 or Fen1. Furthermore, overexpression of p21 can disrupt Fen1-PCNA interaction in vivo. Therefore, besides interfering with the processivity of polymerase delta-PCNA, p21 also uncouples Fen1 from the PCNA scaffold.
Collapse
Affiliation(s)
- U Chen
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
188
|
Harris PV, Mazina OM, Leonhardt EA, Case RB, Boyd JB, Burtis KC. Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes. Mol Cell Biol 1996; 16:5764-71. [PMID: 8816490 PMCID: PMC231577 DOI: 10.1128/mcb.16.10.5764] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mutations in the Drosophila mus308 gene confer specific hypersensitivity to DNA-cross-linking agents as a consequence of defects in DNA repair. The mus308 gene is shown here to encode a 229-kDa protein in which the amino-terminal domain contains the seven conserved motifs characteristic of DNA and RNA helicases and the carboxy-terminal domain shares over 55% sequence similarity with the polymerase domains of prokaryotic DNA polymerase I-like enzymes. This is the first reported member of this family of DNA polymerases in a eukaryotic organism, as well as the first example of a single polypeptide with homology to both DNA polymerase and helicase motifs. Identification of a closely related gene in the genome of Caenorhabditis elegans suggests that this novel polypeptide may play an evolutionarily conserved role in the repair of DNA damage in eukaryotic organisms.
Collapse
Affiliation(s)
- P V Harris
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | | | | | | | | | |
Collapse
|
189
|
Sijbers AM, de Laat WL, Ariza RR, Biggerstaff M, Wei YF, Moggs JG, Carter KC, Shell BK, Evans E, de Jong MC, Rademakers S, de Rooij J, Jaspers NG, Hoeijmakers JH, Wood RD. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 1996; 86:811-22. [PMID: 8797827 DOI: 10.1016/s0092-8674(00)80155-5] [Citation(s) in RCA: 396] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nucleotide excision repair, which is defective in xeroderma pigmentosum (XP), involves incision of a DNA strand on each side of a lesion. We isolated a human gene homologous to yeast Rad1 and found that it corrects the repair defects of XP group F as well as rodent groups 4 and 11. Causative mutations and strongly reduced levels of encoded protein were identified in XP-F patients. The XPF protein was purified from mammalian cells in a tight complex with ERCC1. This complex is a structure-specific endonuclease responsible for the 5' incision during repair. These results demonstrate that the XPF, ERCC4, and ERCC11 genes are equivalent, complete the isolation of the XP genes that form the core nucleotide excision repair system, and solve the catalytic function of the XPF-containing complex.
Collapse
Affiliation(s)
- A M Sijbers
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Sijbers AM, van der Spek PJ, Odijk H, van den Berg J, van Duin M, Westerveld A, Jaspers NG, Bootsma D, Hoeijmakers JH. Mutational analysis of the human nucleotide excision repair gene ERCC1. Nucleic Acids Res 1996; 24:3370-80. [PMID: 8811092 PMCID: PMC146110 DOI: 10.1093/nar/24.17.3370] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The human DNA repair protein ERCC1 resides in a complex together with the ERCC4, ERCC11 and XP-F correcting activities, thought to perform the 5' strand incision during nucleotide excision repair (NER). Its yeast counterpart, RAD1-RAD10, has an additional engagement in a mitotic recombination pathway, probably required for repair of DNA cross-links. Mutational analysis revealed that the poorly conserved N-terminal 91 amino acids of ERCC1 are dispensable for both repair functions, in contrast to a deletion of only four residues from the C-terminus. A database search revealed a strongly conserved motif in this C-terminus sharing sequence homology with many DNA break processing proteins, indicating that this part is primarily required for the presumed structure-specific endonuclease activity of ERCC1. Most missense mutations in the central region give rise to an unstable protein (complex). Accordingly, we found that free ERCC1 is very rapidly degraded, suggesting that protein-protein interactions provide stability. Survival experiments show that the removal of cross-links requires less ERCC1 than UV repair. This suggests that the ERCC1-dependent step in cross-link repair occurs outside the context of NER and provides an explanation for the phenotype of the human repair syndrome xeroderma pigmentosum group F.
Collapse
Affiliation(s)
- A M Sijbers
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Ludwig DL, Mudgett JS, Park MS, Perez-Castro AV, MacInnes MA. Molecular cloning and structural analysis of the functional mouse genomic XPG gene. Mamm Genome 1996; 7:644-9. [PMID: 8703115 DOI: 10.1007/s003359900198] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mouse XPG gene is a homolog of the human DNA excision repair gene known to be defective in the hereditary sun-sensitive disorder xeroderma pigmentosum (group-G). Defects in mouse XPG have been shown to directly affect the sensitivity of cultured cells to chemotherapy agents and may play a role in tumor cell drug resistance in vivo. A full-length cosmid clone of mouse XPG was isolated by complementation of the UV sensitivity and repair defect in CHO-UV135 cells. Exon mapping determined that the gene consisted of 15 exons within 32 kb of genomic DNA. Sequencing of intron-exon boundaries revealed that mouse XPG possesses a rare class of intron previously identified in only four other eukaryotic genes; it utilizes AT and AC dinucleotides instead of the expected GT and AG within the splice junctions. Promoter analysis determined that mouse XPG is expressed constitutively and probably initiates transcription from multiple start sites, yet, unlike the yeast homolog RAD2, we found no evidence that it is UVC inducible in cultured cells. Amino acid comparison with human XPG identified a highly conserved acidic region of homology not previously described.
Collapse
Affiliation(s)
- D L Ludwig
- Life Sciences Division, MS M888, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | | | |
Collapse
|
192
|
Arroyo MP, Downey KM, So AG, Wang TS. Schizosaccharomyces pombe proliferating cell nuclear antigen mutations affect DNA polymerase delta processivity. J Biol Chem 1996; 271:15971-80. [PMID: 8663159 DOI: 10.1074/jbc.271.27.15971] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We introduced nine site-directed mutations into seven conserved fission yeast proliferative cell nuclear antigen (PCNA) residues, Leu2, Asp63, Arg64, Gly69, Gln201, Glu259, and Glu260, either as single or as double mutants. Both the recombinant wild type and mutant PCNAs were able to form homotrimers in solution and to sustain growth of a null pcna strain (Deltapcna). Wild type Schizosaccharomyces pombe PCNA and PCNA proteins with mutations in Asp63, Gln201, Glu259, or Glu260 to Ala were able to stimulate DNA synthetic activity and to enhance the processivity of calf thymus DNA polymerase delta holoenzyme similar to calf thymus PCNA. Mutations of Leu2 to Val or Arg64 to Ala, either singly or as a double mutant, yielded PCNA mutant proteins that had reduced capacity in enhancing the processivity of DNA polymerase delta but showed no deficiency in stimulation of the ATPase activity of replication factor C. S. pombe Deltapcna strains sustained by these two mutant-pcna alleles had moderate defects in growth and displayed elongated phenotypes. These cells, however, were not sensitive to UV irradiation. Together, these in vitro and in vivo studies suggest that the side chains of Leu2 and Arg64 in one face of the PCNA trimer ring structure are two of the several sites involved in tethering DNA polymerase delta for processive DNA synthesis during DNA replication.
Collapse
Affiliation(s)
- M P Arroyo
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | | | | | | |
Collapse
|
193
|
Doherty AJ, Serpell LC, Ponting CP. The helix-hairpin-helix DNA-binding motif: a structural basis for non-sequence-specific recognition of DNA. Nucleic Acids Res 1996; 24:2488-97. [PMID: 8692686 PMCID: PMC145986 DOI: 10.1093/nar/24.13.2488] [Citation(s) in RCA: 289] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
One, two or four copies of the 'helix-hairpin-helix' (HhH) DNA-binding motif are predicted to occur in 14 homologous families of proteins. The predicted DNA-binding function of this motif is shown to be consistent with the crystallographic structure of rat polymerase beta, complexed with DNA template-primer [Pelletier, H., Sawaya, M.R., Kumar, A., Wilson, S.H. and Kraut, J. (1994) Science 264, 1891-1903] and with biochemical data. Five crystal structures of predicted HhH motifs are currently known: two from rat pol beta and one each in endonuclease III, AlkA and the 5' nuclease domain of Taq pol I. These motifs are more structurally similar to each other than to any other structure in current databases, including helix-turn-helix motifs. The clustering of the five HhH structures separately from other bi-helical structures in searches indicates that all members of the 14 families of proteins described herein possess similar HhH structures. By analogy with the rat pol beta structure, it is suggested that each of these HhH motifs bind DNA in a non-sequence-specific manner, via the formation of hydrogen bonds between protein backbone nitrogens and DNA phosphate groups. This type of interaction contrasts with the sequence-specific interactions of other motifs, including helix-turn-helix structures. Additional evidence is provided that alphaherpesvirus virion host shutoff proteins are members of the polymerase I 5'-nuclease and FEN1-like endonuclease gene family, and that a novel HhH-containing DNA-binding domain occurs in the kinesin-like molecule nod, and in other proteins such as cnjB, emb-5 and SPT6.
Collapse
Affiliation(s)
- A J Doherty
- Laboratory of Molecular Biophysics, University of Oxford, UK
| | | | | |
Collapse
|
194
|
Mueser TC, Nossal NG, Hyde CC. Structure of bacteriophage T4 RNase H, a 5' to 3' RNA-DNA and DNA-DNA exonuclease with sequence similarity to the RAD2 family of eukaryotic proteins. Cell 1996; 85:1101-12. [PMID: 8674116 DOI: 10.1016/s0092-8674(00)81310-0] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bacteriophage T4 RNase H is a 5' to 3' exonuclease that removes RNA primers from the lagging strand of the DNA replication fork and is a member of the RAD2 family of eukaryotic and prokaryotic replication and repair nucleases. The crystal structure of the full-length native form of T4 RNase H has been solved at 2.06 angstroms resolution in the presence of Mg2+ but in the absence of nucleic acids. The most conserved residues are clustered together in a large cleft with two Mg2+ in the proposed active site. This structure suggests the way in which the widely separated conserved regions in the larger nucleotide excision repair proteins, such as human XPG, could assemble into a structure like that of the smaller replication nucleases.
Collapse
Affiliation(s)
- T C Mueser
- Laboratory of Structural Biology Research, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892-2755, USA
| | | | | |
Collapse
|
195
|
Hegde V, McFarlane RJ, Taylor EM, Price C. The genetics of the repair of 5-azacytidine-mediated DNA damage in the fission yeast Schizosaccharomyces pombe. MOLECULAR & GENERAL GENETICS : MGG 1996; 251:483-92. [PMID: 8709952 DOI: 10.1007/bf02172377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have recently demonstrated that Schizosaccharomyces pombe cells treated with the nucleoside analogue 5-azacytidine (5-azaC) require previously characterised G2 checkpoint mechanisms for survival. Here we present a survey of known DNA repair mutations which defines those genes required for survival in the presence of 5-azaC. Using a combination of single-mutant and epistasis analyses we find that the excision, mismatch and recombinational repair pathways are all required in some degree for the repair of 5-azaC-mediated DNA damage. There are distinct differences in the epistatic interactions of several of the repair mutations with respect to 5-azaC-mediated DNA damage relative to UV-mediated DNA damage.
Collapse
Affiliation(s)
- V Hegde
- Department of Molecular Biology and Biotechnology, University of Sheffield, U.K
| | | | | | | |
Collapse
|
196
|
Affiliation(s)
- R Kolodner
- Charles A. Dana Division of Human Cancer Genetics, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
197
|
Wu X, Li J, Li X, Hsieh CL, Burgers PM, Lieber MR. Processing of branched DNA intermediates by a complex of human FEN-1 and PCNA. Nucleic Acids Res 1996; 24:2036-43. [PMID: 8668533 PMCID: PMC145902 DOI: 10.1093/nar/24.11.2036] [Citation(s) in RCA: 169] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In eukaryotic cells, a 5' flap DNA endonuclease activity and a ds DNA 5'-exonuclease activity exist within a single enzyme called FEN-1 [flap endo-nuclease and 5(five)'-exo-nuclease]. This 42 kDa endo-/exonuclease, FEN-1, is highly homologous to human XP-G, Saccharomyces cerevisiae RAD2 and S.cerevisiae RTH1. These structure-specific nucleases recognize and cleave a branched DNA structure called a DNA flap, and its derivative called a pseudo Y-structure. FEN-1 is essential for lagging strand DNA synthesis in Okazaki fragment joining. FEN-1 also appears to be important in mismatch repair. Here we find that human PCNA, the processivity factor for eukaryotic polymerases, physically associates with human FEN-1 and stimulates its endonucleolytic activity at branched DNA structures and its exonucleolytic activity at nick and gap structures. Structural requirements for FEN-1 and PCNA loading provide an interesting picture of this stimulation. PCNA loads on to substrates at double-stranded DNA ends. In contrast, FEN-1 requires a free single-stranded 5' terminus and appears to load by tracking along the single-stranded DNA branch. These physical constraints define the range of DNA replication, recombination and repair processes in which this family of structure-specific nucleases participate. A model explaining the exonucleolytic activity of FEN-1 in terms of its endonucleolytic activity is proposed based on these observations.
Collapse
Affiliation(s)
- X Wu
- Department of Pathology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
198
|
Affiliation(s)
- M Hall
- Cancer Research Campaign Mammalian Cell DNA Repair Group, Department of Zoology, Cambridge, U.K
| | | |
Collapse
|
199
|
Abstract
The strand of telomeric DNA that runs 5'-3' toward a chromosome end is typically G rich. Telomerase-generated G tails are expected at one end of individual DNA molecules. Saccharomyces telomeres acquire TG1-3 tails late in S phase. Moreover, the telomeres of linear plasmids can interact when the TG1-3 tails are present. Molecules that mimic the structures predicted for telomere replication intermediates were generated in vitro. These in vitro generated molecules formed telomere-telomere interactions similar to those on molecules isolated from yeast, but only if both ends that interacted had a TG1-3 tail. Moreover, TG1-3 tails were generated in vivo in cells lacking telomerase. These data suggest a new step in telomere maintenance, cell cycle-regulated degradation of the C1-3A strand, which can generate a potential substrate for telomerase and telomere-binding proteins at every telomere.
Collapse
Affiliation(s)
- R J Wellinger
- Department of Microbiology, Faculty of Medicine, Université de Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
200
|
Shen B, Nolan JP, Sklar LA, Park MS. Essential amino acids for substrate binding and catalysis of human flap endonuclease 1. J Biol Chem 1996; 271:9173-6. [PMID: 8621570 DOI: 10.1074/jbc.271.16.9173] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Human flap endonuclease 1 (FEN-1) is a member of the structure-specific endonuclease family and is involved in DNA repair. Eight restrictively conserved amino acids in FEN-1 have been converted individually to an alanine to elucidate their roles in specific DNA substrate binding and catalysis. Flap endonuclease activity of the wild type and mutant enzymes was measured by kinetic flow cytometry. Mutants D34A, D86A, and D181A lost their cleavage activity completely but retained substrate binding ability, as measured by their ability to inhibit the wild type enzyme in a competition assay. This indicates that these amino acids contribute to integrity of the enzyme active site. Loss of both binding and cleavage competency for the flap substrate by mutants E156A, G231A, and D233A suggests that these amino acids are involved in substrate binding. Mutants R103A and D179A retained wild type-like enzyme activity.
Collapse
Affiliation(s)
- B Shen
- Life Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | | | |
Collapse
|