151
|
Gou M, Su N, Zheng J, Huai J, Wu G, Zhao J, He J, Tang D, Yang S, Wang G. An F-box gene, CPR30, functions as a negative regulator of the defense response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:757-70. [PMID: 19682297 DOI: 10.1111/j.1365-313x.2009.03995.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Arabidopsis gain-of-resistance mutants, which show HR-like lesion formation and SAR-like constitutive defense responses, were used well as tools to unravel the plant defense mechanisms. We have identified a novel mutant, designated constitutive expresser of PR genes 30 (cpr30), that exhibited dwarf morphology, constitutive resistance to the bacterial pathogen Pseudomonas syringae and the dramatic induction of defense-response gene expression. The cpr30-conferred growth defect morphology and defense responses are dependent on ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), PHYTOALEXIN DEFICIENT 4 (PAD4), and NONRACE-SPECIFIC DISEASE RESISTANCE 1 (NDR1). Further studies demonstrated that salicylic acid (SA) could partially account for the cpr30-conferred constitutive PR1 gene expression, but not for the growth defect, and that the cpr30-conferred defense responses were NPR1 independent. We observed a widespread expression of CPR30 throughout the plant, and a localization of CPR30-GFP fusion protein in the cytoplasm and nucleus. As an F-box protein, CPR30 could interact with multiple Arabidopsis-SKP1-like (ASK) proteins in vivo. Co-localization of CPR30 and ASK1 or ASK2 was observed in Arabidopsis protoplasts. Based on these results, we conclude that CPR30, a novel negative regulator, regulates both SA-dependent and SA-independent defense signaling, most likely through the ubiquitin-proteasome pathway in Arabidopsis.
Collapse
Affiliation(s)
- Mingyue Gou
- State Key Laboratory of Agrobiotechnology and National Center for Plant Gene Research (Beijing), China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Legay S, Lamoureux D, Hausman JF, Hoffmann L, Evers D. Monitoring gene expression of potato under salinity using cDNA microarrays. PLANT CELL REPORTS 2009; 28:1799-816. [PMID: 19851774 DOI: 10.1007/s00299-009-0780-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/11/2009] [Accepted: 09/25/2009] [Indexed: 05/08/2023]
Abstract
The molecular response to salt exposure was studied in the leaves of a Solanum tuberosum clone using cDNA microarray. Differentially expressed genes were classified according to their known or predicted function and their expression ratio as compared to the control. The major changes upon a 150 mM NaCl exposure in potato leaves occurred in the photosystem apparatus and Calvin cycle: many transcripts coding for proteins belonging to photosystems I and II and chlorophyll synthesis were repressed. On the other hand, we observed the induction of various kinds of transcription factors implicated in osmotic stress response via ABA-dependent or ABA-independent pathways but also in plant defense pathways. This revealed a crosstalk between abiotic and biotic stress responses during salt exposure, which activated several adaptation mechanisms including heat shock proteins, late embryogenesis abundant, dehydrins and PR proteins. Gene expression changes related to carbohydrate and amino acid metabolism were also observed, pointing at putative modifications at the metabolic level.
Collapse
Affiliation(s)
- Sylvain Legay
- Department EVA Environment and Agrobiotechnologies, Centre de Recherche Public-Gabriel Lippmann, 4422 Belvaux, Luxembourg
| | | | | | | | | |
Collapse
|
153
|
Yao Q, Zhou R, Fu T, Wu W, Zhu Z, Li A, Jia J. Characterization and mapping of complementary lesion-mimic genes lm1 and lm2 in common wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:1005-1012. [PMID: 19621213 DOI: 10.1007/s00122-009-1104-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 06/30/2009] [Indexed: 05/28/2023]
Abstract
A lesion-mimic phenotype appeared in a segregating population of common wheat cross Yanzhan 1/Zaosui 30. The parents had non-lesion normal phenotypes. Shading treatment and histochemical analyses showed that the lesions were caused by light-dependent cell death and were not associated with pathogens. Studies over two cropping seasons showed that some lines with more highly expressed lesion-mimic phenotypes exhibited significantly lower grain yields than those with the normal phenotype, but there were no significant effects in the lines with weakly expressed lesion-mimic phenotypes. Among yield traits, one-thousand grain weight was the most affected by lesion-mimic phenotypes. Genetic analysis indicated that this was a novel type of lesion mimic, which was caused by interaction of recessive genes derived from each parent. The lm1 (lesion mimic 1) locus from Zaosui 30 was flanked by microsatellite markers Xwmc674 and Xbarc133/Xbarc147 on chromosome 3BS, at genetic distances of 1.2 and 3.8 cM, respectively, whereas lm2 from Yanzhan 1 was mapped between microsatellite markers Xgwm513 and Xksum154 on chromosome 4BL, at genetic distances of 1.5 and 3 cM, respectively. The linked microsatellite makers identified in this study might be useful for evaluating whether potential parents with normal phenotype are carriers of lesion-mimic alleles.
Collapse
Affiliation(s)
- Qin Yao
- Agronomy College, Sichuan Agricultural University, 625014 Yaan, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
154
|
Liu J, Elmore JM, Fuglsang AT, Palmgren MG, Staskawicz BJ, Coaker G. RIN4 functions with plasma membrane H+-ATPases to regulate stomatal apertures during pathogen attack. PLoS Biol 2009; 7:e1000139. [PMID: 19564897 PMCID: PMC2694982 DOI: 10.1371/journal.pbio.1000139] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 05/18/2009] [Indexed: 02/05/2023] Open
Abstract
Pathogen perception by the plant innate immune system is of central importance to plant survival and productivity. The Arabidopsis protein RIN4 is a negative regulator of plant immunity. In order to identify additional proteins involved in RIN4-mediated immune signal transduction, we purified components of the RIN4 protein complex. We identified six novel proteins that had not previously been implicated in RIN4 signaling, including the plasma membrane (PM) H(+)-ATPases AHA1 and/or AHA2. RIN4 interacts with AHA1 and AHA2 both in vitro and in vivo. RIN4 overexpression and knockout lines exhibit differential PM H(+)-ATPase activity. PM H(+)-ATPase activation induces stomatal opening, enabling bacteria to gain entry into the plant leaf; inactivation induces stomatal closure thus restricting bacterial invasion. The rin4 knockout line exhibited reduced PM H(+)-ATPase activity and, importantly, its stomata could not be re-opened by virulent Pseudomonas syringae. We also demonstrate that RIN4 is expressed in guard cells, highlighting the importance of this cell type in innate immunity. These results indicate that the Arabidopsis protein RIN4 functions with the PM H(+)-ATPase to regulate stomatal apertures, inhibiting the entry of bacterial pathogens into the plant leaf during infection.
Collapse
Affiliation(s)
- Jun Liu
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - James M. Elmore
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Anja T. Fuglsang
- Centre for Membrane Pumps in Cells and Disease—PUMPKIN, Danish National Research Foundation, Århus and Copenhagen, Denmark
- Plant Physiology and Anatomy Laboratory, Department of Plant Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Michael G. Palmgren
- Centre for Membrane Pumps in Cells and Disease—PUMPKIN, Danish National Research Foundation, Århus and Copenhagen, Denmark
- Plant Physiology and Anatomy Laboratory, Department of Plant Biology, University of Copenhagen, Frederiksberg, Denmark
| | - Brian J. Staskawicz
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Gitta Coaker
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|
155
|
Abuqamar S, Luo H, Laluk K, Mickelbart MV, Mengiste T. Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:347-60. [PMID: 19143995 DOI: 10.1111/j.1365-313x.2008.03783.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants deploy diverse molecular and cellular mechanisms to survive in stressful environments. The tomato (Solanum lycopersicum) abscisic acid-induced myb1 (SlAIM1) gene encoding an R2R3MYB transcription factor is induced by pathogens, plant hormones, salinity and oxidative stress, suggesting a function in pathogen and abiotic stress responses. Tomato SlAIM1 RNA interference (RNAi) plants with reduced SlAIM1 gene expression show an increased susceptibility to the necrotrophic fungus Botrytis cinerea, and increased sensitivity to salt and oxidative stress. Ectopic expression of SlAIM1 is sufficient for tolerance to high salinity and oxidative stress. These responses correlate with reduced sensitivity to abscisic acid (ABA) in the SlAIM1 RNAi, but increased sensitivity in the overexpression plants, suggesting SlAIM1-mediated ABA responses are required to integrate tomato responses to biotic and abiotic stresses. Interestingly, when exposed to high root-zone salinity levels, SlAIM1 RNAi plants accumulate more Na(+), whereas the overexpression lines accumulate less Na(+) relative to wild-type plants, suggesting that SlAIM1 regulates ion fluxes. Transmembrane ion flux is a hallmark of early responses to abiotic stress and pathogen infection preceding hypersensitive cell death and necrosis. Misregulation of ion fluxes can result in impaired plant tolerance to necrotrophic infection or abiotic stress. Our data reveal a previously uncharacterized connection between ABA, Na(+) homeostasis, oxidative stress and pathogen response, and shed light on the genetic control of crosstalk between plant responses to pathogens and abiotic stress. Together, our data suggest SlAIM1 integrates plant responses to pathogens and abiotic stresses by modulating responses to ABA.
Collapse
Affiliation(s)
- Synan Abuqamar
- Department of Botany and Plant Pathology, Purdue University, 915 West state street, West Lafayette, IN 47907-2054, USA
| | | | | | | | | |
Collapse
|
156
|
Ma W, Smigel A, Verma R, Berkowitz GA. Cyclic nucleotide gated channels and related signaling components in plant innate immunity. PLANT SIGNALING & BEHAVIOR 2009; 4:277-82. [PMID: 19794842 PMCID: PMC2664486 DOI: 10.4161/psb.4.4.8103] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 02/09/2009] [Indexed: 05/23/2023]
Abstract
Although plants lack the mobile sentry cells present in animal innate immune systems, plants have developed complex innate immune reactions triggering basal resistance and the hypersensitive response (HR). Cytosolic Ca(2+) elevation is considered to be an important early event in this pathogen response signal transduction cascade. Plasma membrane (PM)-localized cyclic nucleotide gated channels (CNGCs) contribute to the cytosolic Ca(2+) rise upon pathogen perception. Recent work suggests that some PM-localized leucine-rich-repeat receptor-like kinases (LRR-RLKs) may be involved in the perception of pathogen associated molecular pattern molecules and triggering some pathogen responses in plants, some of these LRR-RLKs might have cyclic nucleotide cyclase activity. The recognition of pathogens may be connected to cyclic nucleotide generation and the activation of CNGCs, followed by cytosolic Ca(2+) increase and downstream signaling events (possibly involving nitric oxide, reactive oxygen species (ROS), calmodulin (CaM), CaM-like protein (CML) and protein kinases). Notably, CaM or CML could be the crucial sensor downstream from the early Ca(2+) signal leading to nitric oxide (NO) production during plant innate immune responses.
Collapse
Affiliation(s)
- Wei Ma
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, Storrs, CT, USA
| | | | | | | |
Collapse
|
157
|
Szczerba MW, Britto DT, Kronzucker HJ. K+ transport in plants: physiology and molecular biology. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:447-66. [PMID: 19217185 DOI: 10.1016/j.jplph.2008.12.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/10/2008] [Accepted: 12/10/2008] [Indexed: 05/06/2023]
Abstract
Potassium (K(+)) is an essential nutrient and the most abundant cation in plant cells. Plants have a wide variety of transport systems for K(+) acquisition, catalyzing K(+) uptake across a wide spectrum of external concentrations, and mediating K(+) movement within the plant as well as its efflux into the environment. K(+) transport responds to variations in external K(+) supply, to the presence of other ions in the root environment, and to a range of plant stresses, via Ca(2+) signaling cascades and regulatory proteins. This review will summarize the molecular identities of known K(+) transporters, and examine how this information supports physiological investigations of K(+) transport and studies of plant stress responses in a changing environment.
Collapse
Affiliation(s)
- Mark W Szczerba
- Department of Plant Sciences, University of California, Davis, 1 Shields Ave., Davis, CA 95616, USA.
| | | | | |
Collapse
|
158
|
Chaiwongsar S, Strohm AK, Roe JR, Godiwalla RY, Chan CWM. A cyclic nucleotide-gated channel is necessary for optimum fertility in high-calcium environments. THE NEW PHYTOLOGIST 2009; 183:76-87. [PMID: 19368669 DOI: 10.1111/j.1469-8137.2009.02833.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
* Arabidopsis cngc2 plants are hypersensitive to external calcium and exhibit reduced plant size and fertility, especially when they are treated with elevated but physiologically relevant levels of calcium. This report focuses on the role of cyclic nucleotide-gated channel 2 (CNGC2) in plant fertility. * To determine the cause of the reduced fertility, we investigated the flower structure and growth potential of both male and female reproductive organs in cngc2 plants grown in high-calcium conditions. * cngc2 mutants had short stamens that may limit pollen deposition and pistils that were not conducive to pollen tube growth. * Our data indicate that sporophytic, but not gametophytic, defects are the main cause of the observed reduction in seed yield in cngc2 plants, and suggest that correct cyclic nucleotide and calcium signaling are important for cell elongation and pollen tube guidance.
Collapse
Affiliation(s)
- Suraphon Chaiwongsar
- University of Wisconsin-Madison, Department of Horticulture, Madison, WI 53706, USA
| | - Allison K Strohm
- University of Wisconsin-Madison, Department of Horticulture, Madison, WI 53706, USA
| | - Joshua R Roe
- University of Wisconsin-Whitewater, Departments of Biological Sciences and Chemistry, Whitewater, WI 53190, USA
| | - Roxana Y Godiwalla
- University of Wisconsin-Whitewater, Departments of Biological Sciences and Chemistry, Whitewater, WI 53190, USA
| | - Catherine W M Chan
- University of Wisconsin-Whitewater, Departments of Biological Sciences and Chemistry, Whitewater, WI 53190, USA
| |
Collapse
|
159
|
Abstract
In numerous plant signal transduction pathways, Ca2+ is a versatile second messenger which controls the activation of many downstream actions in response to various stimuli. There is strong evidence to indicate that information encoded within these stimulus-induced Ca2+ oscillations can provide signalling specificity. Such Ca2+ signals, or 'Ca2+ signatures', are generated in the cytosol, and in noncytosolic locations including the nucleus and chloroplast, through the coordinated action of Ca2+ influx and efflux pathways. An increased understanding of the functions and regulation of these various Ca2+ transporters has improved our appreciation of the role these transporters play in specifically shaping the Ca2+ signatures. Here we review the evidence which indicates that Ca2+ channel, Ca2+-ATPase and Ca2+ exchanger isoforms can indeed modulate specific Ca2+ signatures in response to an individual signal.
Collapse
Affiliation(s)
- Martin R McAinsh
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK;Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Jon K Pittman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK;Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
160
|
Sherman T, Fromm H. Physiological Roles of Cyclic Nucleotide Gated Channels in Plants. SIGNALING IN PLANTS 2009. [DOI: 10.1007/978-3-540-89228-1_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
161
|
Zhang L, Lavery L, Gill U, Gill K, Steffenson B, Yan G, Chen X, Kleinhofs A. A cation/proton-exchanging protein is a candidate for the barley NecS1 gene controlling necrosis and enhanced defense response to stem rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:385-97. [PMID: 18956175 DOI: 10.1007/s00122-008-0910-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Accepted: 10/02/2008] [Indexed: 05/08/2023]
Abstract
We characterized three lesion mimic necS1 (necrotic Steptoe) mutants, induced by fast neutron (FN) treatment of barley cultivar Steptoe. The three mutants are recessive and allelic. When infected with Puccinia graminis f. sp. tritici pathotypes MCC and QCC and P. graminis f. sp. secalis isolate 92-MN-90, all three mutants exhibited enhanced resistance compared to parent cultivar Steptoe. These results suggested that the lesion mimic mutants carry broad-spectrum resistance to stem rust. In order to identify the mutated gene responsible for the phenotype, transcript-based cloning was used. Two genes, represented by three Barley1 probesets (Contig4211_at and Contig4212_s_at, representing the same gene, and Contig10850_s_at), were deleted in all three mutants. Genetic analysis suggested that the lesion mimic phenotype was due to a mutation in one or both of these genes, named NecS1. Consistent with the increased disease resistance, all three mutants constitutively accumulated elevated transcript levels of pathogenesis-related (PR) genes. Barley stripe mosaic virus (BSMV) has been developed as a virus-induced gene-silencing (VIGS) vector for monocots. We utilized BSMV-VIGS to demonstrate that silencing of the gene represented by Contig4211_at, but not Contig10850_s_at caused the necrotic lesion mimic phenotype on barley seedling leaves. Therefore, Contig4211_at is a strong candidate for the NecS1 gene, which encodes a cation/proton exchanging protein (HvCAX1).
Collapse
Affiliation(s)
- Ling Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Guo KM, Babourina O, Christopher DA, Borsics T, Rengel Z. The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. PHYSIOLOGIA PLANTARUM 2008; 134:499-507. [PMID: 18823330 DOI: 10.1111/j.1399-3054.2008.01157.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cyclic nucleotide-gated channels (CNGCs) in the plasma membrane transport K+ and other cations; however, their roles in the response and adaptation of plants to environmental salinity are unclear. Growth, cation contents, salt tolerance and K+ fluxes were assessed in wild-type and two AtCNGC10 antisense lines (A2 and A3) of Arabidopsis thaliana (L.) Heynh. Compared with the wild-type, mature plants of both antisense lines had altered K+ and Na+ concentrations in shoots and were more sensitive to salt stress, as assessed by biomass and Chl fluorescence. The shoots of A2 and A3 plants contained higher Na+ concentrations and significantly higher Na+/K+ ratios compared with wild-type, whereas roots contained higher K+ concentrations and lower Na+/K+ ratios. Four-day-old seedlings of both antisense lines exposed to salt stress had smaller Na+/K+ ratios and longer roots than the wild-type. Under sudden salt treatment, the Na+ efflux was higher and the K+ efflux was smaller in the antisense lines, indicating that AtCNGC10 might function as a channel providing Na+ influx and K+ efflux at the root/soil interface. We conclude that the AtCNGC10 channel is involved in Na+ and K+ transport during cation uptake in roots and in long-distance transport, such as phloem loading and/or xylem retrieval. Mature A2 and A3 plants became more salt sensitive than wild-type plants because of impaired photosynthesis induced by a higher Na+ concentration in the leaves.
Collapse
Affiliation(s)
- Kun-Mei Guo
- School of Earth and Geographical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | |
Collapse
|
163
|
Baxter J, Moeder W, Urquhart W, Shahinas D, Chin K, Christendat D, Kang HG, Angelova M, Kato N, Yoshioka K. Identification of a functionally essential amino acid for Arabidopsis cyclic nucleotide gated ion channels using the chimeric AtCNGC11/12 gene. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:457-69. [PMID: 18643993 DOI: 10.1111/j.1365-313x.2008.03619.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We used the chimeric Arabidopsis cyclic nucleotide-gated ion channel AtCNGC11/12 to conduct a structure-function study of plant cyclic nucleotide-gated ion channels (CNGCs). AtCNGC11/12 induces multiple pathogen resistance responses in the Arabidopsis mutant constitutive expresser of PR genes 22 (cpr22). A genetic screen for mutants that suppress cpr22-conferred phenotypes identified an intragenic mutant, #73, which has a glutamate to lysine substitution (E519K) at the beginning of the eighth beta-sheet of the cyclic nucleotide-binding domain in AtCNGC11/12. The #73 mutant is morphologically identical to wild-type plants and has lost cpr22-related phenotypes including spontaneous cell death and enhanced pathogen resistance. Heterologous expression analysis using a K(+)-uptake-deficient yeast mutant revealed that this Glu519 is important for AtCNGC11/12 channel function, proving that the occurrence of cpr22 phenotypes requires active channel function of AtCNGC11/12. Additionally, Glu519 was also found to be important for the function of the wild-type channel AtCNGC12. Computational structural modeling and in vitro cAMP-binding assays suggest that Glu519 is a key residue for the structural stability of AtCNGCs and contributes to the interaction of the cyclic nucleotide-binding domain and the C-linker domain, rather than the binding of cAMP. Furthermore, a mutation in the alpha-subunit of the human cone receptor CNGA3 that causes total color blindness aligned well to the position of Glu519 in AtCNGC11/12. This suggests that AtCNGC11/12 suppressors could be a useful tool for discovering important residues not only for plant CNGCs but also for CNGCs in general.
Collapse
Affiliation(s)
- Joyce Baxter
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, Morrissey D, Bravo JE, Lynch DV, Xiao S. An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. THE PLANT CELL 2008; 20:3163-79. [PMID: 19001565 PMCID: PMC2613663 DOI: 10.1105/tpc.108.060053] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2008] [Revised: 10/14/2008] [Accepted: 10/21/2008] [Indexed: 05/03/2023]
Abstract
The Arabidopsis thaliana resistance gene RPW8 triggers the hypersensitive response (HR) to restrict powdery mildew infection via the salicylic acid-dependent signaling pathway. To further understand how RPW8 signaling is regulated, we have conducted a genetic screen to identify mutations enhancing RPW8-mediated HR-like cell death (designated erh). Here, we report the isolation and characterization of the Arabidopsis erh1 mutant, in which the At2g37940 locus is knocked out by a T-DNA insertion. Loss of function of ERH1 results in salicylic acid accumulation, enhanced transcription of RPW8 and RPW8-dependent spontaneous HR-like cell death in leaf tissues, and reduction in plant stature. Sequence analysis suggests that ERH1 may encode the long-sought Arabidopsis functional homolog of yeast and protozoan inositolphosphorylceramide synthase (IPCS), which converts ceramide to inositolphosphorylceramide. Indeed, ERH1 is able to rescue the yeast aur1 mutant, which lacks the IPCS, and the erh1 mutant plants display reduced ( approximately 53% of wild type) levels of leaf IPCS activity, indicating that ERH1 encodes a plant IPCS. Consistent with its biochemical function, the erh1 mutation causes ceramide accumulation in plants expressing RPW8. These data reinforce the concept that sphingolipid metabolism (specifically, ceramide accumulation) plays an important role in modulating plant programmed cell death associated with defense.
Collapse
Affiliation(s)
- Wenming Wang
- Center for Biosystems Research, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Moeder W, Yoshioka K. Lesion mimic mutants: A classical, yet still fundamental approach to study programmed cell death. PLANT SIGNALING & BEHAVIOR 2008; 3:764-7. [PMID: 19513227 PMCID: PMC2634370 DOI: 10.4161/psb.3.10.6545] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 07/04/2008] [Indexed: 05/18/2023]
Abstract
Over the last decade a substantial number of lesion mimic mutants (LMM) have been isolated and a growing number of the genes have been cloned. It is now becoming clear that these mutants are valuable tools to dissect various aspects of programmed cell death (PCD) and pathogen resistance pathways in plants. Together with other forward genetics approaches LMMs shed light on the PCD machinery in plant cells and revealed important roles for sphingolipids, Ca(2+) and chloroplast-derived porphyrin-metabolites during cell death development.
Collapse
Affiliation(s)
- Wolfgang Moeder
- Department of Cell and Systems Biology; and Center for the Analysis of Genome Evolution and Function (CAGEF); University of Toronto; Toronto, Ontario Canada
| | | |
Collapse
|
166
|
Genger RK, Jurkowski GI, McDowell JM, Lu H, Jung HW, Greenberg JT, Bent AF. Signaling pathways that regulate the enhanced disease resistance of Arabidopsis "defense, no death" mutants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1285-96. [PMID: 18785824 PMCID: PMC2923831 DOI: 10.1094/mpmi-21-10-1285] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabidopsis dnd1 and dnd2 mutants lack cyclic nucleotide-gated ion channel proteins and carry out avirulence or resistance gene-mediated defense with a greatly reduced hypersensitive response (HR). They also exhibit elevated broad-spectrum disease resistance and constitutively elevated salicylic acid (SA) levels. We examined the contributions of NPR1, SID2 (EDS16), NDR1, and EIN2 to dnd phenotypes. Mutations that affect SA accumulation or signaling (sid2, npr1, and ndr1) abolished the enhanced resistance of dnd mutants against Pseudomonas syringae pv. tomato and Hyaloperonospora parasitica but not Botrytis cinerea. When SA-associated pathways were disrupted, the constitutive activation of NPR1-dependent and NPR1-independent and SA-dependent pathways was redirected toward PDF1.2-associated pathways. This PDF1.2 overexpression was downregulated after infection by P. syringae. Disruption of ethylene signaling abolished the enhanced resistance to B. cinerea but not P. syringae or H. parasitica. However, loss of NPR1, SID2, NDR1, or EIN2 did not detectably alter the reduced HR in dnd mutants. The susceptibility of dnd ein2 plants to B. cinerea despite their reduced-HR phenotype suggests that cell death repression is not the primary cause of dnd resistance to necrotrophic pathogens. The partial restoration of resistance to B. cinerea in dnd1 npr1 ein2 triple mutants indicated that this resistance is not entirely EIN2 dependent. The above findings indicate that the broad-spectrum resistance of dnd mutants occurs due to activation or sensitization of multiple defense pathways, yet none of the investigated pathways are required for the reduced-HR phenotype.
Collapse
Affiliation(s)
- Ruth K Genger
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
167
|
Hong JK, Choi DS, Kim SH, Yi SY, Kim YJ, Hwang BK. Distinct roles of the pepper pathogen-induced membrane protein gene CaPIMP1 in bacterial disease resistance and oomycete disease susceptibility. PLANTA 2008; 228:485-497. [PMID: 18506481 DOI: 10.1007/s00425-008-0752-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Accepted: 05/08/2008] [Indexed: 05/26/2023]
Abstract
Plant integral membrane proteins have essential roles in diverse internal and external physiological processes as signal receptors or ion transporters. The pepper CaPIMP1 gene encoding a putative integral membrane protein with four transmembrane domains was isolated and functionally characterized from pepper leaves infected with the avirulent strain Xanthomonas campestris pv. vesicatoria (Xcv). CaPIMP1-green fluorescence protein (GFP) fusions localized to the plasma membrane in onion cells, as observed by confocal microscopy. CaPIMP1 was expressed in an organ-specific manner in healthy pepper plants. Infection with Xcv induced differential accumulation of CaPIMP1 transcripts in pepper leaf tissues during compatible and incompatible interactions. The function of CaPIMP1 was examined by using the virus-induced gene silencing technique in pepper plants and by overexpression in Arabidopsis. CaPIMP1-silenced pepper plants were highly susceptible to Xcv infection and expressed lower levels of the defense-related gene CaSAR82A. CaPIMP1 overexpression (CaPIMP1-OX) in transgenic Arabidopsis conferred enhanced resistance to P. syringae pv. tomato infection, accompanied by enhanced AtPDF1.2 gene expression. In contrast, CaPIMP1-OX plants were highly susceptible to the biotrophic oomycete Hyaloperonospora parasitica. Taken together, we propose that CaPIMP1 plays distinct roles in both bacterial disease resistance and oomycete disease susceptibility.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Laboratory of Molecular Plant Pathology, School of Life Sciences and Biotechnology, Korea University, Anam-dong, Sungbuk-ku, Seoul, 136-713, Republic of Korea
| | | | | | | | | | | |
Collapse
|
168
|
Uematsu K, Fukui Y. Role and regulation of cAMP in seed germination of Phacelia tanacetifolia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:768-774. [PMID: 18657429 DOI: 10.1016/j.plaphy.2007.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Indexed: 05/26/2023]
Abstract
Although adenosine 3',5'-cyclic monophosphate (cAMP) is known as a key second messenger in many living organisms, regulating a wide range of cellular responses, its biological function in higher plants is not well understood. In this study, the role and the regulation mechanism of cAMP in seed germination of Phacelia tanacetifolia Benth. were examined. The cAMP level of the seeds incubated under optimal conditions for germination showed a transient elevation before germination. When the seeds were exposed to light or supraoptimal temperature during incubation, elevation of cAMP levels as well as germination of the seeds were inhibited. Addition of membrane-permeable cAMP to the medium restored the germination rates of these seeds, suggesting that cAMP functions during germination. Treatment of the seeds with gibberellin (GA) was also effective to restore the elevation of cAMP levels and germination of the seeds. Uniconazole, a potent inhibitor of GA biosynthesis, blocked elevation of cAMP level under optimal conditions for germination. These results suggest that cAMP plays a role in the regulation of germination and that the cAMP level is regulated by GA in P. tanacetifolia seeds.
Collapse
Affiliation(s)
- Kimio Uematsu
- Department of Applied Biological Chemistry, Laboratory of Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
169
|
Abstract
Salinity is a major abiotic stress affecting approximately 7% of the world's total land area resulting in billion dollar losses in crop production around the globe. Recent progress in molecular genetics and plant electrophysiology suggests that the ability of a plant to maintain a high cytosolic K+/Na+ ratio appears to be critical to plant salt tolerance. So far, the major efforts of plant breeders have been aimed at improving this ratio by minimizing Na+ uptake and transport to shoot. In this paper, we discuss an alternative approach, reviewing the molecular and ionic mechanisms contributing to potassium homeostasis in salinized plant tissues and discussing prospects for breeding for salt tolerance by targeting this trait. Major K+ transporters and their functional expression under saline conditions are reviewed and the multiple modes of their control are evaluated, including ameliorative effects of compatible solutes, polyamines and supplemental calcium. Subsequently, the genetic aspects of inheritance of K+ transport 'markers' are discussed in the general context of salt tolerance as a polygenic trait. The molecular identity of 'salt tolerance' genes is analysed, and prospects for future research and breeding are examined.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia.
| | | |
Collapse
|
170
|
Druka A, Potokina E, Luo Z, Bonar N, Druka I, Zhang L, Marshall DF, Steffenson BJ, Close TJ, Wise RP, Kleinhofs A, Williams RW, Kearsey MJ, Waugh R. Exploiting regulatory variation to identify genes underlying quantitative resistance to the wheat stem rust pathogen Puccinia graminis f. sp. tritici in barley. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2008; 117:261-72. [PMID: 18542913 DOI: 10.1007/s00122-008-0771-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 04/08/2008] [Indexed: 05/13/2023]
Abstract
We previously mapped mRNA transcript abundance traits (expression-QTL or eQTL) using the Barley1 Affymetrix array and 'whole plant' tissue from 139 progeny of the Steptoe x Morex (St/Mx) reference barley mapping population. Of the 22,840 probesets (genes) on the array, 15,987 reported transcript abundance signals that were suitable for eQTL analysis, and this revealed a genome-wide distribution of 23,738 significant eQTLs. Here we have explored the potential of using these mRNA abundance eQTL traits as surrogates for the identification of candidate genes underlying the interaction between barley and the wheat stem rust fungus Puccinia graminis f. sp. tritici. We re-analysed quantitative 'resistance phenotype' data collected on this population in 1990/1991 and identified six loci associated with barley's reaction to stem rust. One of these coincided with the major stem rust resistance locus Rpg1, that we had previously positionally cloned using this population. Correlation analysis between phenotype values for rust infection and mRNA abundance values reported by the 22,840 GeneChip probe sets placed Rpg1, which is on the Barley1 GeneChip, in the top five candidate genes for the major QTL on chromosome 7H corresponding to the location of Rpg1. A second co-located with the rpg4/Rpg5 stem rust resistance locus that has been mapped in a different population and the remaining four were novel. Correlation analyses identified candidate genes for the rpg4/Rpg5 locus on chromosome 5H. By combining our data with additional published mRNA profiling data sets, we identify a putative sensory transduction histidine kinase as a strong candidate for a novel resistance locus on chromosome 2H and compile candidate gene lists for the other three loci.
Collapse
Affiliation(s)
- Arnis Druka
- Genetics Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics 2008; 279:605-19. [PMID: 18357468 DOI: 10.1007/s00438-008-0337-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Accepted: 02/29/2008] [Indexed: 01/08/2023]
Abstract
Lesion mimic mutants are characterized by the formation of necrotic lesions in the absence of pathogens. Such genetic defects often result in enhanced resistance to pathogen infection and constitutive expression of defense response genes. To understand the genetic mechanisms leading to these mutations, we characterized 21 lesion mimic mutants isolated from IR64 rice mutant populations produced by mutagenesis with diepoxybutane (D), gamma rays (G), and fast neutrons (F). Four mutations are controlled by single dominant genes, one of which is inherited maternally. Five lesion mimics are allelic to known spotted leaf (spl) mutants spl1, spl2, spl3, or spl6. In total, 11 new lesion mimic mutations, named spl16, spl17, and spl19 through Spl27, were established based on allelism tests. Two lesion mimics, spl17 and Spl26 showed enhanced resistance to multiple strains of Magnaporthe oryzae, the rice blast pathogen, and Xanthomonas oryzae pv. oryzae, the bacterial blight (BB) pathogen. Co-segregation analyses of blast and BB resistance and lesion mimic phenotypes in segregating populations of spl17 and Spl26 indicate that enhanced resistance to the two diseases is conferred by mutations in the lesion mimic genes. A double mutant produced from two independent lesion mimics showed more severe lesions and higher level of resistance to X. o. pv. oryzae than their single mutant parents indicating a synergistic effect of the two mutations. In mutants that exhibit enhanced disease resistance to both pathogens, increases in expression of defense response genes PR-10a, POX22.3, and PO-C1 were correlated with lesion mimic development and enhancement of resistance. These lesion mimic mutants may provide essential materials for a comprehensive dissection of the disease resistance pathways in rice.
Collapse
|
172
|
Raffaele S, Vailleau F, Léger A, Joubès J, Miersch O, Huard C, Blée E, Mongrand S, Domergue F, Roby D. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. THE PLANT CELL 2008; 20:752-67. [PMID: 18326828 PMCID: PMC2329921 DOI: 10.1105/tpc.107.054858] [Citation(s) in RCA: 299] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/30/2007] [Accepted: 02/20/2008] [Indexed: 05/18/2023]
Abstract
Plant immune responses to pathogen attack include the hypersensitive response (HR), a form of programmed cell death occurring at invasion sites. We previously reported on Arabidopsis thaliana MYB30, a transcription factor that acts as a positive regulator of a cell death pathway conditioning the HR. Here, we show by microarray analyses of Arabidopsis plants misexpressing MYB30 that the genes encoding the four enzymes forming the acyl-coA elongase complex are putative MYB30 targets. The acyl-coA elongase complex synthesizes very-long-chain fatty acids (VLCFAs), and the accumulation of extracellular VLCFA-derived metabolites (leaf epidermal wax components) was affected in MYB30 knockout mutant and overexpressing lines. In the same lines, a lipid extraction procedure allowing high recovery of sphingolipids revealed changes in VLCFA contents that were amplified in response to inoculation. Finally, the exacerbated HR phenotype of MYB30-overexpressing lines was altered by the loss of function of the acyl-ACP thioesterase FATB, which causes severe defects in the supply of fatty acids for VLCFA biosynthesis. Based on these findings, we propose a model in which MYB30 modulates HR via VLCFAs by themselves, or VLCFA derivatives, as cell death messengers in plants.
Collapse
Affiliation(s)
- Sylvain Raffaele
- Unité Mixte de Recherche 2594/441, 31320 Castanet-Tolosan cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Calmodulin-binding transcription activator (CAMTA) 3 mediates biotic defense responses in Arabidopsis. FEBS Lett 2008; 582:943-8. [PMID: 18298954 DOI: 10.1016/j.febslet.2008.02.037] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 01/25/2023]
Abstract
Calmodulin-binding transcription activator (CAMTA) 3 (also called SR1) is a calmodulin-binding transcription factor in Arabidopsis. Two homozygous T-DNA insertion mutants (camta3-1, camta3-2) showed enhanced spontaneous lesions. Transcriptome analysis of both mutants revealed 6 genes with attenuated expression and 99 genes with elevated expression. Of the latter, 32 genes are related to defense against pathogens (e.g. WRKY33, PR1 and chitinase). Propagation of a virulent strain of the bacterial pathogen Pseudomonas syringae and the fungal pathogen Botrytis cinerea were attenuated in both mutants. Moreover, both mutants accumulated high levels of H2O2. We suggest that CAMTA3 regulates the expression of a set of genes involved in biotic defense responses.
Collapse
|
174
|
Nemchinov LG, Shabala L, Shabala S. Calcium efflux as a component of the hypersensitive response of Nicotiana benthamiana to Pseudomonas syringae. PLANT & CELL PHYSIOLOGY 2008; 49:40-6. [PMID: 18048411 DOI: 10.1093/pcp/pcm163] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Using a model plant Nicotiana benthamiana, we have demonstrated that initial calcium uptake in response to the HR (hypersensitive response)-causing pathogen Pseudomonas syringae pv syringae 61 is followed by net calcium efflux initiated at about 12 h after the bacterial challenge and sustained for at least 48 h. Our data suggest that calcium not only acts as an important second messenger in the activation of resistance responses but may also be a downstream mediator of later cell death acceleration and completion of the defense reaction. Accordingly, we propose that the existing model of HR should be amended to include a PM Ca(2+) ATP pump as an important component of the HR to pathogens in plants.
Collapse
Affiliation(s)
- Lev G Nemchinov
- USDA/ARS, Plant Sciences Institute, Molecular Plant Pathology Laboratory, Beltsville, MD 20705, USA.
| | | | | |
Collapse
|
175
|
Gadjev I, Stone JM, Gechev TS. Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 270:87-144. [PMID: 19081535 DOI: 10.1016/s1937-6448(08)01403-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Programmed cell death (PCD), the highly regulated dismantling of cells, is essential for plant growth and survival. PCD plays key roles in embryo development, formation and maturation of many cell types and tissues, and plant reaction/adaptation to environmental conditions. Reactive oxygen species (ROS) are not only toxic by products of aerobic metabolism with strictly controlled cellular levels, but they also function as signaling agents regulating many biological processes and producing pleiotropic effects. Over the last decade, ROS have become recognized as important modulators of plant PCD. Molecular genetic approaches using plant mutants and transcriptome studies related to ROS-mediated PCD have revealed a wide array of plant-specific cell death regulators and have contributed to unraveling the elaborate redox signaling network. This review summarizes the biological processes, in which plant PCD participates and discusses the signaling functions of ROS with emphasis on hydrogen peroxide.
Collapse
Affiliation(s)
- Ilya Gadjev
- Department of Plant Physiology and Plant Molecular Biology, University of Plovdiv, Plovdiv 4000, Bulgaria
| | | | | |
Collapse
|
176
|
Furuichi T, Kawano T, Tatsumi H, Sokabe M. Roles of Ion Channels in the Environmental Responses of Plants. SENSING WITH ION CHANNELS 2008. [DOI: 10.1007/978-3-540-72739-2_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
177
|
Errakhi R, Dauphin A, Meimoun P, Lehner A, Reboutier D, Vatsa P, Briand J, Madiona K, Rona JP, Barakate M, Wendehenne D, Beaulieu C, Bouteau F. An early Ca2+ influx is a prerequisite to thaxtomin A-induced cell death in Arabidopsis thaliana cells. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:4259-70. [PMID: 19015217 DOI: 10.1093/jxb/ern267] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The pathogenicity of various Streptomyces scabies isolates involved in potato scab disease was correlated with the production of thaxtomin A. Since calcium is known as an essential second messenger associated with pathogen-induced plant responses and cell death, it was investigated whether thaxtomin A could induce a Ca2+ influx related to cell death and to other putative plant responses using Arabidopsis thaliana suspension cells, which is a convenient model to study plant-microbe interactions. A. thaliana cells were treated with micromolar concentrations of thaxtomin A. Cell death was quantified and ion flux variations were analysed from electrophysiological measurements with the apoaequorin Ca2+ reporter protein and by external pH measurement. Involvement of anion and calcium channels in signal transduction leading to programmed cell death was determined by using specific inhibitors. These data suggest that this toxin induces a rapid Ca2+ influx and cell death in A. thaliana cell suspensions. Moreover, these data provide strong evidence that the Ca2+ influx induced by thaxtomin A is necessary to achieve this cell death and is a prerequisite to early thaxtomin A-induced responses: anion current increase, alkalization of the external medium, and the expression of PAL1 coding for a key enzyme of the phenylpropanoid pathway.
Collapse
Affiliation(s)
- R Errakhi
- LEM (EA 3514), Université Paris Diderot-Paris7, 2, place Jussieu, F-75251 Paris cedex 05, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Hussain M, Mansoor S, Iram S, Zafar Y, Briddon RW. The hypersensitive response to tomato leaf curl New Delhi virus nuclear shuttle protein is inhibited by transcriptional activator protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1581-8. [PMID: 17990965 DOI: 10.1094/mpmi-20-12-1581] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The hypersensitive response (HR) is a common feature of plant disease resistance reactions and a type of programmed cell death (PCD). Many pathogens are able to modulate pathways involved in cell death. In contrast to animal viruses, inhibitors of PCD activity have not been identified for plant-infecting viruses. Previously, we have reported that the nuclear shuttle protein (NSP) of Tomato leaf curl New Delhi virus (ToLCNDV) induces an HR in Nicotiana tabacum and Lycopersicon esculentum plants when expressed under the control of the Cauliflower mosaic virus 35S promoter. However, HR is not evident in plants infected with ToLCNDV, suggesting that the virus encodes a factor (or factors) that counters this response. Analysis of all ToLCNDV-encoded genes pinpointed the transcriptional activator protein (TrAP) as the factor mediating the anti-HR effect. Deletion mutagenesis showed the central region of TrAP, containing a zinc finger domain and nuclear localization signal, to be important in inhibiting the HR. These results demonstrate that TrAP counters HR-induced cell death, the first such activity identified for a plant-infecting virus.
Collapse
Affiliation(s)
- Mazhar Hussain
- National Institute of Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | | | | | | | | |
Collapse
|
179
|
Urquhart W, Gunawardena AHLAN, Moeder W, Ali R, Berkowitz GA, Yoshioka K. The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent manner. PLANT MOLECULAR BIOLOGY 2007; 65:747-61. [PMID: 17885810 DOI: 10.1007/s11103-007-9239-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 09/05/2007] [Indexed: 05/17/2023]
Abstract
The hypersensitive response (HR) involves programmed cell death (PCD) in response to pathogen infection. To investigate the pathogen resistance signaling pathway, we previously identified the Arabidopsis mutant cpr22, which displays constitutive activation of multiple defense responses including HR like cell death. The cpr22 mutation has been identified as a 3 kb deletion that fuses two cyclic nucleotide-gated ion channel (CNGC)-encoding genes, ATCNGC11 and ATCNGC12, to generate a novel chimeric gene, ATCNGC11/12. In this study, we conducted a characterization of cell death induced by transient expression of ATCNGC11/12 in Nicotiana benthamiana. Electron microscopic analysis of this cell death showed similar characteristics to PCD, such as plasma membrane shrinkage and vesicle formation. The hallmark of animal PCD, fragmentation of nuclear DNA, was also observed in ATCNGC11/12-induced cell death. The development of cell death was significantly suppressed by caspase-1 inhibitors, suggesting the involvement of caspases in this process. Recently, vacuolar processing enzyme (VPE) was isolated as the first plant caspase-like protein, which is involved in HR development. In VPE-silenced plants development of cell death induced by ATCNGC11/12 was much slower and weaker compared to control plants, suggesting the involvement of VPE as a caspase in ATCNGC11/12-induced cell death. Complementation analysis using a Ca2+ uptake deficient yeast mutant demonstrated that the ATCNGC11/12 channel is permeable to Ca2+. Additionally, calcium channel blockers such as GdCl3 inhibited ATCNGC11/12-induced HR formation, whereas potassium channel blockers did not. Taken together, these results indicate that the cell death that develops in the cpr22 mutant is indeed PCD and that the chimeric channel, ATCNGC11/12, is at the point of, or up-stream of the calcium signal necessary for the development of HR.
Collapse
Affiliation(s)
- William Urquhart
- Department of Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, ON, Canada, M5S 3B2
| | | | | | | | | | | |
Collapse
|
180
|
Ahn IP. Disturbance of the Ca(2+)/calmodulin-dependent signalling pathway is responsible for the resistance of Arabidopsis dnd1 against Pectobacterium carotovorum infection. MOLECULAR PLANT PATHOLOGY 2007; 8:747-759. [PMID: 20507535 DOI: 10.1111/j.1364-3703.2007.00428.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Arabidopsis thaliana wild-type Col-0 and its mutant, 'defence, no death' (dnd) 1-1, were infected with biotrophic Pseudomonas syringae pv. tomato strain DC3000 and necrotrophic Pectobacterium carotovorum strain KACC 10228, and cellular and molecular responses among them were then analysed. Col-0 wild-type was susceptible to both pathogens. By contrast, neither DC3000 nor KACC 10228 infected dnd1-1 (Yu et al., 1998. Proc. Natl. Acad. Sci. USA 95: 7819-7824). Neither of the pathogens triggered cell death or accumulation of active oxygen species in dnd1-1. KACC 10228 induced accelerated transcriptions of PDF1.2 and AtEBP genes in wild-type Col-0, while DC3000-induced transcriptions of them were relatively retarded. Neither of the pathogens modified the constitutive transcription of PR1 in dnd1-1. PDF1.2 and AtEBP transcriptions were not induced by the same treatments. Hydrogen peroxide scavengers, catalase and ascorbic acid, and LaCl(3), an inhibitor of Ca(2+) influx, diminished cell death and protected the wild-type plant from KACC 10228 infection, while EGTA inhibited cell death and pathogen growth. Exogenous Ca(2+) nullified resistance against KACC 10228 challenge in dnd1-1. W-7 and chloropromazine, two calmodulin antagonists, also triggered cell death in dnd1-1 and abolished resistance against KACC 10228. In summary, cell death is correlated with KACC 10228 infection and disease development. Furthermore, the resistance of dnd1-1 against P. carotovorum is dependent on calmodulin and inhibition of cytosolic Ca(2+) increment.
Collapse
Affiliation(s)
- Il-Pyung Ahn
- National Institute of Agricultural Biotechnology, Rural Development Administration, Suwon 441-100, Republic of Korea
| |
Collapse
|
181
|
Bouchez O, Huard C, Lorrain S, Roby D, Balagué C. Ethylene is one of the key elements for cell death and defense response control in the Arabidopsis lesion mimic mutant vad1. PLANT PHYSIOLOGY 2007; 145:465-77. [PMID: 17720753 PMCID: PMC2048732 DOI: 10.1104/pp.107.106302] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Although ethylene is involved in the complex cross talk of signaling pathways regulating plant defense responses to microbial attack, its functions remain to be elucidated. The lesion mimic mutant vad1-1 (for vascular associated death), which exhibits the light-conditional appearance of propagative hypersensitive response-like lesions along the vascular system, is a good model for studying the role of ethylene in programmed cell death and defense. Here, we demonstrate that expression of genes associated with ethylene synthesis and signaling is enhanced in vad1-1 under lesion-promoting conditions and after plant-pathogen interaction. Analyses of the progeny from crosses between vad1-1 plants and either 35SERF1 transgenic plants or ein2-1, ein3-1, ein4-1, ctr1-1, or eto2-1 mutants revealed that the vad1-1 cell death and defense phenotypes are dependent on ethylene biosynthesis and signaling. In contrast, whereas vad1-1-dependent increased resistance was abolished by ein2, ein3, and ein4 mutations, positive regulation of ethylene biosynthesis (eto2-1) or ethylene responses (35SERF1) did not exacerbate this phenotype. In addition, VAD1 expression in response to a hypersensitive response-inducing bacterial pathogen is dependent on ethylene perception and signaling. These results, together with previous data, suggest that VAD1 could act as an integrative node in hormonal signaling, with ethylene acting in concert with salicylic acid as a positive regulator of cell death propagation.
Collapse
Affiliation(s)
- Olivier Bouchez
- Laboratoire des Interactions Plantes-Microorganismes, UMR INRA/CNRS 441/2594, 31320 Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
182
|
Kang SG, Matin MN, Bae H, Natarajan S. Proteome analysis and characterization of phenotypes of lesion mimic mutant spotted leaf 6 in rice. Proteomics 2007; 7:2447-58. [PMID: 17623303 DOI: 10.1002/pmic.200600961] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Rice spotted leaf 6 (spl6) mutant produces lesions caused by spontaneous cell death in the absence of pathogenic infection. Expression of this genetic trait was developmentally programmed. After the tillering stage, small red and brown lesions were initiated in groups on the leaf blade. Eventually, the lesions formed parallel lines along the midrib of the leaf. Under light and transmission electron microscopy, we observed that thylakoid membranes of mesophyll chloroplasts were progressively damaged in the nonspotted section of the mutant leaf. However, chloroplasts were absent in the mesophyll cells of the spotted area of the spl6 mutant. These results indicated that lesion formation of the spl6 mutant might be caused by oxidative burst. Proteome analysis revealed that 159 protein spots were up or downregulated in comparison between spotted leaves of the spl6 mutant plants and normal leaves of the wild type. Among them, protein disulfide isomerase (PDI), transketolase, thioredoxin peroxidase (TPX), ATP synthase, RuBisCO large subunit, and RuBisCO activase small subunit were not identified in the spl6 mutant but were abundant in the wild type. Especially, the absence of TPX and PDI might be the cause of the failure to protect cells against oxidative burst resulting in degradation of the thylakoid membranes and leading to programmed cell death and lesion development.
Collapse
Affiliation(s)
- Sang Gu Kang
- Molecular Genetics Laboratory, School of Biotechnology, Institute of Biotechnology, Yeungnam University, Gyeongsan, Korea.
| | | | | | | |
Collapse
|
183
|
Christopher DA, Borsics T, Yuen CYL, Ullmer W, Andème-Ondzighi C, Andres MA, Kang BH, Staehelin LA. The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells. BMC PLANT BIOLOGY 2007; 7:48. [PMID: 17877833 PMCID: PMC2031891 DOI: 10.1186/1471-2229-7-48] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Accepted: 09/19/2007] [Indexed: 05/17/2023]
Abstract
BACKGROUND The cyclic nucleotide-gated ion channels (CNGCs) maintain cation homeostasis essential for a wide range of physiological processes in plant cells. However, the precise subcellular locations and trafficking of these membrane proteins are poorly understood. This is further complicated by a general deficiency of information about targeting pathways of membrane proteins in plants. To investigate CNGC trafficking and localization, we have measured Atcngc5 and Atcngc10 expression in roots and leaves, analyzed AtCNGC10-GFP fusions transiently expressed in protoplasts, and conducted immunofluorescence labeling of protoplasts and immunoelectron microscopic analysis of high pressure frozen leaves and roots. RESULTS AtCNGC10 mRNA and protein levels were 2.5-fold higher in roots than leaves, while AtCNGC5 mRNA and protein levels were nearly equal in these tissues. The AtCNGC10-EGFP fusion was targeted to the plasma membrane in leaf protoplasts, and lightly labeled several intracellular structures. Immunofluorescence microscopy with affinity purified CNGC-specific antisera indicated that AtCNGC5 and AtCNGC10 are present in the plasma membrane of protoplasts. Immunoelectron microscopy demonstrated that AtCNGC10 was associated with the plasma membrane of mesophyll, palisade parenchyma and epidermal cells of leaves, and the meristem, columella and cap cells of roots. AtCNCG10 was also observed in the endoplasmic reticulum and Golgi cisternae and vesicles of 50-150 nm in size. Patch clamp assays of an AtCNGC10-GFP fusion expressed in HEK293 cells measured significant cation currents. CONCLUSION AtCNGC5 and AtCNGC10 are plasma membrane proteins. We postulate that AtCNGC10 traffics from the endoplasmic reticulum via the Golgi apparatus and associated vesicles to the plasma membrane. The presence of the cation channel, AtCNGC10, in root cap meristem cells, cell plate, and gravity-sensing columella cells, combined with the previously reported antisense phenotypes of decreased gravitropic and cell enlargement responses, suggest roles of AtCNGC10 in modulating cation balance required for root gravitropism, cell division and growth.
Collapse
Affiliation(s)
- David A Christopher
- University of Hawaii, Dept. of Molecular Biosciences & Bioengineering, 1955 East-West Rd. Honolulu, HI 96822, USA
| | - Tamas Borsics
- University of Hawaii, Dept. of Molecular Biosciences & Bioengineering, 1955 East-West Rd. Honolulu, HI 96822, USA
| | - Christen YL Yuen
- University of Hawaii, Dept. of Molecular Biosciences & Bioengineering, 1955 East-West Rd. Honolulu, HI 96822, USA
| | - Wendy Ullmer
- University of Hawaii, Dept. of Molecular Biosciences & Bioengineering, 1955 East-West Rd. Honolulu, HI 96822, USA
| | - Christine Andème-Ondzighi
- University of Colorado at Boulder, Molecular, Cellular & Developmental Biology, UCB 347 Boulder, CO 80309-0347, USA
| | - Marilou A Andres
- University of Hawaii, Pacific Biosciences Research Center, Honolulu, HI 96822, USA
| | - Byung-Ho Kang
- University of Colorado at Boulder, Molecular, Cellular & Developmental Biology, UCB 347 Boulder, CO 80309-0347, USA
| | - L Andrew Staehelin
- University of Colorado at Boulder, Molecular, Cellular & Developmental Biology, UCB 347 Boulder, CO 80309-0347, USA
| |
Collapse
|
184
|
Peters J, Chin CK. Potassium loss is involved in tobacco cell death induced by palmitoleic acid and ceramide. Arch Biochem Biophys 2007; 465:180-6. [PMID: 17662229 DOI: 10.1016/j.abb.2007.05.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 05/28/2007] [Accepted: 05/30/2007] [Indexed: 12/18/2022]
Abstract
Tobacco cell death induced by palmitoleic acid (16:1), ceramide, and KCN was found to possess features associated with program cell death (PCD), including cell volume decrease, loss of membrane integrity, DNA damage, nuclear and plastid disorganization, and chromatin condensation. Cell volume decrease was found to be caused by loss of intracellular K(+). Ba(2+) was able to prevent the K(+) loss and it also protected the cells from death induced by 16:1 and ceramide but not KCN. The results suggest that K(+) loss is a critical step in plant PCD. The inability of Ba(2+) to prevent cell death was most likely due to its other effects of KCN, i.e., inhibition of cytochrome oxidase in the respiratory chain and generation of reactive oxygen species.
Collapse
Affiliation(s)
- Jeanne Peters
- Department of Plant Biology and Pathology, School of Environmental and Biological, Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
185
|
Abstract
Plant cells sensing pathogenic microorganisms evoke defence systems that can confer resistance to infection. This innate immune reaction can include triggering of basal defence responses as well as programmed cell death, or hypersensitive response (HR). In both cases (basal defence and HR), pathogen perception is translated into elevated cytosolic Ca(2+) (mediated by plasma membrane and intracellular channels) as an early step in a signalling cascade. Cyclic nucleotide-gated channels contribute to this influx of Ca(2+) into the cell. The molecular nature of other transport proteins contributing to the Ca(2+) elevation is unclear. Pathogen recognition occurs at two levels: the perception of pathogen-associated molecular pattern (PAMP) molecules widely present in microorganisms, and an interaction between pathogen avirulence gene products (if present) and corresponding plant R (resistance) gene products. The Ca(2+) elevation occurring in response to PAMP perception or R gene interactions could occur due to phosphorylation events, G-protein signalling and/or an increase in cyclic nucleotides. Downstream from the initial Ca(2+) rise, the signalling cascade includes: activation of calmodulin and protein kinases, and nitric oxide and reactive oxygen species generation. Some of these downstream events amplify the Ca(2+) signal by further activation of Ca(2+) transporters.
Collapse
Affiliation(s)
- Wei Ma
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, 1390 Storrs Rd., Storrs, CT 06269-4163, USA
| | | |
Collapse
|
186
|
Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 2007; 14:1583-9. [PMID: 17599094 DOI: 10.1038/sj.cdd.4402195] [Citation(s) in RCA: 1119] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammasomes are Nod-like receptor(NLR)- and caspase-1-containing cytoplasmic multiprotein complexes, which upon their assembly, process and activate the proinflammatory cytokines interleukin (IL)-1beta and IL-18. The inflammasomes harboring the NLR members NALP1, NALP3 and IPAF have been best characterized. While the IPAF inflammasome is activated by bacterial flagellin, activation of the NALP3 inflammasome is triggered not only by several microbial components, but also by a plethora of danger-associated host molecules such as uric acid. How NALP3 senses these chemically unrelated activators is not known. Here, we provide evidence that activation of NALP3, but not of the IPAF inflammasome, is blocked by inhibiting K(+) efflux from cells. Low intracellular K(+) is also a requirement for NALP1 inflammasome activation by lethal toxin of Bacillus anthracis. In vitro, NALP inflammasome assembly and caspase-1 recruitment occurs spontaneously at K(+) concentrations below 90 mM, but is prevented at higher concentrations. Thus, low intracellular K(+) may be the least common trigger of NALP-inflammasome activation.
Collapse
Affiliation(s)
- V Pétrilli
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, Center of Immunology Lausanne, Epalinges 1066, Switzerland
| | | | | | | | | | | |
Collapse
|
187
|
Apse MP, Blumwald E. Na+ transport in plants. FEBS Lett 2007; 581:2247-54. [PMID: 17459382 DOI: 10.1016/j.febslet.2007.04.014] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 04/10/2007] [Accepted: 04/11/2007] [Indexed: 11/26/2022]
Abstract
The ability of plants to grow in high NaCl concentrations is associated with the ability of the plants to transport, compartmentalize, extrude, and mobilize Na(+) ions. While the influx and efflux at the roots establish the steady state rate of entry of Na(+) into the plant, the compartmentation of Na(+) into the cell vacuoles and the radial transport of Na(+) to the stele and its loading into the xylem establish the homeostatic control of Na(+) in the cytosol of the root cells. Removal of Na(+) from the transpirational stream, its distribution within the plant and its progressive accumulation in the leaf vacuoles, will determine the ability to deal with the toxic effects of Na(+). The aim of this review is to highlight and discuss the recent progress in understanding of Na(+) transport in plants.
Collapse
Affiliation(s)
- Maris P Apse
- Arcadia Biosciences, 202 Cousteau Place, Suite 200, Davis, CA 95616, USA.
| | | |
Collapse
|
188
|
Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA. Death don't have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. THE PLANT CELL 2007; 19:1081-95. [PMID: 17384171 PMCID: PMC1867353 DOI: 10.1105/tpc.106.045096] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 02/09/2007] [Accepted: 03/05/2007] [Indexed: 05/14/2023]
Abstract
Plant innate immune response to pathogen infection includes an elegant signaling pathway leading to reactive oxygen species generation and resulting hypersensitive response (HR); localized programmed cell death in tissue surrounding the initial infection site limits pathogen spread. A veritable symphony of cytosolic signaling molecules (including Ca(2+), nitric oxide [NO], cyclic nucleotides, and calmodulin) have been suggested as early components of HR signaling. However, specific interactions among these cytosolic secondary messengers and their roles in the signal cascade are still unclear. Here, we report some aspects of how plants translate perception of a pathogen into a signal cascade leading to an innate immune response. We show that Arabidopsis thaliana CYCLIC NUCLEOTIDE GATED CHANNEL2 (CNGC2/DND1) conducts Ca(2+) into cells and provide a model linking this Ca(2+) current to downstream NO production. NO is a critical signaling molecule invoking plant innate immune response to pathogens. Plants without functional CNGC2 lack this cell membrane Ca(2+) current and do not display HR; providing the mutant with NO complements this phenotype. The bacterial pathogen-associated molecular pattern elicitor lipopolysaccharide activates a CNGC Ca(2+) current, which may be linked to NO generation due to buildup of cytosolic Ca(2+)/calmodulin.
Collapse
Affiliation(s)
- Rashid Ali
- Agricultural Biotechnology Laboratory, University of Conecticut, Storrs, Conecticut 06269-4163, USA
| | | | | | | | | | | | | |
Collapse
|
189
|
Bonaventure G, Gfeller A, Proebsting WM, Hörtensteiner S, Chételat A, Martinoia E, Farmer EE. A gain-of-function allele of TPC1 activates oxylipin biogenesis after leaf wounding in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:889-98. [PMID: 17253984 DOI: 10.1111/j.1365-313x.2006.03002.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Jasmonates, potent lipid mediators of defense gene expression in plants, are rapidly synthesized in response to wounding. These lipid mediators also stimulate their own production via a positive feedback circuit, which depends on both JA synthesis and JA signaling. To date, molecular components regulating the activation of jasmonate biogenesis and its feedback loop have been poorly characterized. We employed a genetic screen capable of detecting the misregulated activity of 13-lipoxygenase, which operates at the entry point of the jasmonate biosynthesis pathway. Leaf extracts from the Arabidopsis fou2 (fatty acid oxygenation upregulated 2) mutant displayed an increased capacity to catalyze the synthesis of lipoxygenase (LOX) metabolites. Quantitative oxylipin analysis identified less than twofold increased jasmonate levels in healthy fou2 leaves compared to wild-type; however, wounded fou2 leaves strongly increased jasmonate biogenesis compared to wounded wild-type. Furthermore, the plants displayed enhanced resistance to the fungus Botrytis cinerea. Higher than wild-type LOX activity and enhanced resistance in the fou2 mutant depend fully on a functional jasmonate response pathway. The fou2 mutant carries a missense mutation in the putative voltage sensor of the Two Pore Channel 1 gene (TPC1), which encodes a Ca(2+)-permeant non-selective cation channel. Patch-clamp analysis of fou2 vacuolar membranes showed faster time-dependent conductivity and activation of the mutated channel at lower membrane potentials than wild-type. The results indicate that cation fluxes exert strong control over the positive feedback loop whereby JA stimulates its own synthesis.
Collapse
Affiliation(s)
- Gustavo Bonaventure
- Gene Expression Laboratory, Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
190
|
Kaplan B, Sherman T, Fromm H. Cyclic nucleotide-gated channels in plants. FEBS Lett 2007; 581:2237-46. [PMID: 17321525 DOI: 10.1016/j.febslet.2007.02.017] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 02/08/2007] [Accepted: 02/08/2007] [Indexed: 11/21/2022]
Abstract
Until recently the role of cyclic nucleotide monophosphates (cNMPs) in plants had been controversial, with equivocal data about their concentrations, biosynthetic and degrading enzymes, and cellular targets. This review discusses the current knowledge in this field, with focus on the largest class of cNMP targets in plant cells, the cyclic nucleotide-gated channels (CNGCs). Aspects of structure and function are addressed, with reference to studies in heterologous systems and in planta. The picture emerging, albeit still fragmented, is of proteins with diverse functions in the control of ion homeostasis, development, and defense against biotic and abiotic threats.
Collapse
Affiliation(s)
- Boaz Kaplan
- Nirit Seeds Ltd., Moshav Hadar-Ham 42935, Israel.
| | | | | |
Collapse
|
191
|
Borsics T, Webb D, Andeme-Ondzighi C, Staehelin LA, Christopher DA. The cyclic nucleotide-gated calmodulin-binding channel AtCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana. PLANTA 2007; 225:563-73. [PMID: 16944199 DOI: 10.1007/s00425-006-0372-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 08/03/2006] [Indexed: 05/11/2023]
Abstract
Cyclic nucleotide gated channels (CNGCs) that are regulated by calmodulin (CaM) have been shown to play essential roles in signal transduction, metabolism, and growth in animals. By contrast, very little is known about the subcellular location and the function of these channels in plants. Here we report on the effects of antisense suppression of the expression of AtCNGC10, a putative K+ channel, and the immunolocalization of the protein using an AtCNGC10-specific antiserum. In Arabidopsis thaliana leaves, AtCNGC10 was localized to the plasma membrane of mesophyll and parenchyma cells. Antisense AtCNGC10 plants had 40% of the AtCNGC10 mRNA levels and virtually undetectable protein levels relative to wild type plants. Antisense expression of AtCNGC10 did not affect the mRNA levels of AtCNGC13, the most closely related CNGC family member in the genome. Relative to wild type Columbia, antisense AtCNGC10 plants flowered 10 days earlier, and had a 25% reduction in leaf surface area, thickness and palisade parenchyma cell length. Their roots responded more slowly to gravitropic changes and the chloroplasts accumulated more starch. We propose that AtCNGC10, through interactions with CaM and cGMP, modulates cellular K+ balance across the plasma membrane, and that perturbations of this K+ gradient affect numerous growth and developmental processes.
Collapse
Affiliation(s)
- Tamás Borsics
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Agsciences 218, Honolulu, HI 96822, USA
| | | | | | | | | |
Collapse
|
192
|
Guidetti-Gonzalez S, Freitas-Astúa J, Amaral AMD, Martins NF, Mehta A, Silva MS, Carrer H. Genes associated with hypersensitive response (HR) in the citrus EST database (CitEST). Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000500022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | - Juliana Freitas-Astúa
- Embrapa Mandioca e Fruticultura Tropical, Brazil; Instituto Agronômico de Campinas, Brazil
| | | | | | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia, Brazil
| | | | | |
Collapse
|
193
|
Demidchik V, Maathuis FJM. Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. THE NEW PHYTOLOGIST 2007; 175:387-404. [PMID: 17635215 DOI: 10.1111/j.1469-8137.2007.02128.x] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Nonselective cation channels (NSCCs) catalyse passive fluxes of cations through plant membranes. NSCCs do not, or only to a small extent, select between monovalent cations, and several are also permeable to divalent cations. Although a number of NSCC genes has been identified in plant genomes, a direct correlation between gene products and in vivo observed currents is still largely absent for most NSCCs. In this review, physiological functions and molecular properties of NSCCs are critically discussed. Recent studies have demonstrated that NSCCs are directly involved in a multitude of stress responses, growth and development, uptake of nutrients and calcium signalling. NSCCs can also function in the perception of external stimuli and as signal transducers for reactive oxygen species, pathogen elicitors, cyclic nucleotides, membrane stretch, amino acids and purines.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Biological Sciences, University of Essex CO4 3SQ, Colchester, UK
| | | |
Collapse
|
194
|
Hofius D, Tsitsigiannis DI, Jones JDG, Mundy J. Inducible cell death in plant immunity. Semin Cancer Biol 2006; 17:166-87. [PMID: 17218111 DOI: 10.1016/j.semcancer.2006.12.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 12/02/2006] [Indexed: 01/06/2023]
Abstract
Programmed cell death (PCD) occurs during vegetative and reproductive plant growth, as typified by autumnal leaf senescence and the terminal differentiation of the endosperm of cereals which provide our major source of food. PCD also occurs in response to environmental stress and pathogen attack, and these inducible PCD forms are intensively studied due their experimental tractability. In general, evidence exists for plant cell death pathways which have similarities to the apoptotic, autophagic and necrotic forms described in yeast and metazoans. Recent research aiming to understand these pathways and their molecular components in plants are reviewed here.
Collapse
Affiliation(s)
- Daniel Hofius
- Department of Molecular Biology, University of Copenhagen, Øster Farimagsgade 2A, 1353 Copenhagen K, Denmark
| | | | | | | |
Collapse
|
195
|
Garcia-Brugger A, Lamotte O, Vandelle E, Bourque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A. Early signaling events induced by elicitors of plant defenses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:711-24. [PMID: 16838784 DOI: 10.1094/mpmi-19-0711] [Citation(s) in RCA: 342] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plant pathogen attacks are perceived through pathogen-issued compounds or plant-derived molecules that elicit defense reactions. Despite the large variety of elicitors, general schemes for cellular elicitor signaling leading to plant resistance can be drawn. In this article, we review early signaling events that happen after elicitor perception, including reversible protein phosphorylations, changes in the activities of plasma membrane proteins, variations in free calcium concentrations in cytosol and nucleus, and production of nitric oxide and active oxygen species. These events occur within the first minutes to a few hours after elicitor perception. One specific elicitor transduction pathway can use a combination or a partial combination of such events which can differ in kinetics and intensity depending on the stimulus. The links between the signaling events allow amplification of the signal transduction and ensure specificity to get appropriate plant defense reactions. This review first describes the early events induced by cryptogein, an elicitor of tobacco defense reactions, in order to give a general scheme for signal transduction that will be use as a thread to review signaling events monitored in different elicitor or plant models.
Collapse
Affiliation(s)
- Angela Garcia-Brugger
- UMR 1088 INRA/CNRS 5184/Université de Bourgogne Plante Microbe Environnement, INRA, Dijon, France.
| | | | | | | | | | | | | | | |
Collapse
|
196
|
Ma W, Ali R, Berkowitz GA. Characterization of plant phenotypes associated with loss-of-function of AtCNGC1, a plant cyclic nucleotide gated cation channel. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2006; 44:494-505. [PMID: 17027276 DOI: 10.1016/j.plaphy.2006.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Accepted: 05/31/2006] [Indexed: 05/12/2023]
Abstract
Of the 57 cation channel genes in the Arabidopsis genome, over a third encode cyclic nucleotide gated cation channels (CNGCs). CNGCs are ion channels regulated by cytosolic signaling molecules (cyclic nucleotides, calmodulin, and Ca(2+)), and which conduct Ca(2+) as well as K(+) and in some cases Na(+). Little is currently known about the role CNGCs may play in plant growth and development. Here, we examined the hypothesis that an Arabidopsis thaliana genotype containing a null mutation in one of the CGNC genes (AtCNGC1) would display cation uptake-related growth phenotype differences from wild type (WT) plants. We determined that AtCNGC1 protein is primarily expressed in the roots of Arabidopsis seedlings. Seedlings lacking this protein had slightly (6-22%) lower shoot Ca(2+) than WT plants. Primary roots of Atcngc1 mutant seedlings grew faster than roots of WT plants, and had larger angles of gravicurvature and less nitric oxide generation upon gravistimulation. We conclude that channels formed (at least in part) by AtCNGC1 contribute (along with other channels) to Ca(2+) uptake into plants, and that Ca(2+) uptake into roots through AtCNGC1 affects some aspects of growth in the primary root of Arabidopsis seedlings.
Collapse
Affiliation(s)
- Wei Ma
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, Storrs, CT 06269-163, USA
| | | | | |
Collapse
|
197
|
Zago E, Morsa S, Dat JF, Alard P, Ferrarini A, Inzé D, Delledonne M, Van Breusegem F. Nitric oxide- and hydrogen peroxide-responsive gene regulation during cell death induction in tobacco. PLANT PHYSIOLOGY 2006; 141:404-11. [PMID: 16603664 PMCID: PMC1475440 DOI: 10.1104/pp.106.078444] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 03/28/2006] [Accepted: 03/29/2006] [Indexed: 05/08/2023]
Abstract
Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) are regulatory molecules in various developmental processes and stress responses. Tobacco (Nicotiana tabacum) leaves exposed to moderate high light dramatically potentiated NO-mediated cell death in catalase-deficient (CAT1AS) but not in wild-type plants, providing genetic evidence for a partnership between NO and H(2)O(2) during the induction of programmed cell death. With this experimental model system, the specific impact on gene expression was characterized by either NO or H(2)O(2) alone or both molecules combined. By means of genome-wide cDNA-amplified fragment length polymorphism analysis, transcriptional changes were compared in high light-treated CAT1AS and wild-type leaves treated with or without the NO donor sodium nitroprusside. Differential gene expression was detected for 214 of the approximately 8,000 transcript fragments examined. For 108 fragments, sequence analysis revealed homology to genes with a role in signal transduction, defense response, hormone interplay, proteolysis, transport, and metabolism. Surprisingly, only 16 genes were specifically induced by the combined action of NO and H(2)O(2), whereas the majority were regulated by either of them alone. At least seven transcription factors were mutually up-regulated, indicating significant overlap between NO and H(2)O(2) signaling pathways. These results consolidate significant cross-talk between NO and H(2)O(2), provide new insight into the early transcriptional response of plants to increased NO and H(2)O(2) levels, and identify target genes of the combined action of NO and H(2)O(2) during the induction of plant cell death.
Collapse
Affiliation(s)
- Elisa Zago
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Ghent, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
198
|
Ranty B, Aldon D, Galaud JP. Plant calmodulins and calmodulin-related proteins: multifaceted relays to decode calcium signals. PLANT SIGNALING & BEHAVIOR 2006; 1:96-104. [PMID: 19521489 PMCID: PMC2635005 DOI: 10.4161/psb.1.3.2998] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 05/09/2006] [Indexed: 05/18/2023]
Abstract
The calmodulin (CaM) family is a major class of calcium sensor proteins which collectively play a crucial role in cellular signaling cascades through the regulation of numerous target proteins. Although CaM is one of the most conserved proteins in all eukaryotes, several features of CaM and its downstream effector proteins are unique to plants. The continuously growing repertoire of CaM-binding proteins includes several plant-specific proteins. Plants also possess a particular set of CaM isoforms and CaM-like proteins (CMLs) whose functions have just begun to be elucidated. This review summarizes recent insights that help to understand the role of this multigene family in plant development and adaptation to environmental stimuli.
Collapse
Affiliation(s)
- Benoît Ranty
- UMR 5546 CNRS-Université Paul Sabatier; Pôle de Biotechnologie végétale; Castanet-Tolosan; France
| | | | | |
Collapse
|
199
|
Jiang J, Fan LW, Wu WH. Evidences for involvement of endogenous cAMP in Arabidopsis defense responses to Verticillium toxins. Cell Res 2006; 15:585-92. [PMID: 16117848 DOI: 10.1038/sj.cr.7290328] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Although there were reports suggesting the involvement of endogenous cAMP in plant defense signaling cascades, there is no direct evidence supporting this notion yet and the detailed mechanism is unclear. In the present study, we have used pathogenic fungi Verticillium dahliae and Arabidopsis plants as a model system of plant-microb interaction to demonstrate the function of endogenous cAMP in Arabidopsis defense responses. Both V. dahliae inoculation and Verticillium toxins injection induced typical "wilt" symptoms in Arabidopsis seedlings. When either 8-Br-AMP (a membrane permeable cAMP analogue) or salicylic acid (SA) was applied to Arabidopsis, the plants became resistant to V. dahliae toxins. However, addition of 8-Br-AMP did not increase the resistance of Arabidopsis transgenic plants deficient in SA to the toxins, suggesting that cAMP might act upstream of SA in plant defense signaling pathway. Indeed, 8-Br-cAMP and forskolin, an activator of adenylyl cyclase, significantly stimulated the endogenous SA level in plants, whereas DDA, an inhibitor of adenylyl cyclase dramatically reduced toxin-induced SA increase. Both the endogenous cAMP and SA increased significantly in Arabidopsis seedlings treated with toxins. Furthermore, transcription level of pathogenesis-related protein 1 gene (PR1) was strongly induced by both 8-Br-cAMP and the toxin treatment. Taken together, our data demonstrate that endogenous cAMP is involved in plant defense responses against Verticillium-secreted toxins by regulating the production of the known signal SA in plant defense pathway.
Collapse
Affiliation(s)
- Jing Jiang
- The State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | | | | |
Collapse
|
200
|
Maathuis FJM. cGMP modulates gene transcription and cation transport in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2006; 45:700-11. [PMID: 16460505 DOI: 10.1111/j.1365-313x.2005.02616.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Summary The occurrence of the second messenger 3',5'-cyclic guanyl monophosphate (cGMP) has been shown in a number of plant species, including barley, tobacco and Arabidopsis. Physiological processes where cGMP signalling has been observed, or has been inferred, to play a role include chloroplast development, alpha-amylase production in aleurone tissue, NO-dependent expression of defence-related genes and salt/osmotic stress. In most cases, it is unknown how cGMP exerts its effects and what the downstream targets are. A transcriptomics approach was therefore used to identify putative targets for cGMP signalling. Root exposure to 10 mum membrane permeable cGMP induced changes in abundance for many transcripts involved in metabolism, gene transcription, signalling and defence. In particular, monovalent cation transporters such as non-selective ion channels and cation:proton antiporters were found to be affected in cGMP exposed roots. In addition, exposure to cGMP was found to modulate influx and efflux of the monovalent cations Na+ and K+.
Collapse
|