151
|
Gómez G, Martínez G, Pallás V. Viroid-induced symptoms in Nicotiana benthamiana plants are dependent on RDR6 activity. PLANT PHYSIOLOGY 2008; 148:414-23. [PMID: 18599649 PMCID: PMC2528107 DOI: 10.1104/pp.108.120808] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 06/29/2008] [Indexed: 05/07/2023]
Abstract
Viroids are small self-replicating RNAs that infect plants. How these noncoding pathogenic RNAs interact with hosts to induce disease symptoms is a long-standing unanswered question. Recent experimental data have led to the suggestive proposal of a pathogenic model based on the RNA silencing mechanism. However, evidence of a direct relation between key components of the RNA silencing pathway and symptom expression in infected plants remains elusive. To address this issue, we used a symptomatic transgenic line of Nicotiana benthamiana that expresses and processes dimeric forms of Hop stunt viroid (HSVd). These plants were analyzed under different growing temperature conditions and were used as stocks in grafting assays with the rdr6i-Nb line, in which the RNA-dependent RNA polymerase 6 (RDR6) is constitutively silenced. Here, we show that the symptom expression in N. benthamiana plants is independent of HSVd accumulation levels but dependent on an active state of the viroid-specific RNA silencing pathway. The scion of rdr6i-Nb plants remained asymptomatic when grafted onto symptomatic plants, despite an accumulation of a high level of mature forms of HSVd, indicating the requirement of RDR6 for viroid-induced symptom production. In addition, the RDR6 requirement for symptom expression was also observed in wild-type N. benthamiana plants mechanically infected with HSVd. These results provide biological evidence of the involvement of the viroid-specific RNA silencing pathway in the symptom expression associated with viroid pathogenesis.
Collapse
Affiliation(s)
- Gustavo Gómez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | | | | |
Collapse
|
152
|
Henderson IR, Jacobsen SE. Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading. Genes Dev 2008; 22:1597-606. [PMID: 18559476 DOI: 10.1101/gad.1667808] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plants use siRNAs to target cytosine DNA methylation to both symmetrical CG and nonsymmetrical (CHG and CHH) sequence contexts. DNA methylation and siRNA clusters most frequently overlap with transposons in the Arabidopsis thaliana genome. However, a significant number of protein-coding genes also show promoter DNA methylation, and this can be used to silence their expression. Loss of the majority of non-CG DNA methylation in drm1 drm2 cmt3 triple mutants leads to developmental phenotypes. We identified the gene responsible for these phenotypes as SUPPRESSOR OF drm1 drm2 cmt3 (SDC), which encodes an F-box protein and possesses seven promoter tandem repeats. The SDC repeats show a unique silencing requirement for non-CG DNA methylation directed redundantly by histone methylation and siRNAs, and display spreading of siRNAs and methylation beyond the repeated region. In addition to revealing the complexity of DNA methylation control in A. thaliana, SDC has important implications for how plant genomes utilize gene silencing to repress endogenous genes.
Collapse
Affiliation(s)
- Ian R Henderson
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
153
|
Peretz Y, Levy M, Avisar E, Edelbaum O, Rabinowitch H, Sela I. A T7-driven silencing system in transgenic plants expressing T7 RNA polymerase is a nuclear process. Transgenic Res 2008; 17:665-77. [PMID: 17932780 DOI: 10.1007/s11248-007-9146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
Abstract
We previously demonstrated a case of silencing in transgenic plants expressing T7 RNA polymerase in which expression of a reporter gene placed under the control of the T7 promoter was silenced. Here we demonstrate that endogenous genes can be silenced by the same system. The T7-driven silencing system does not conform to several aspects characteristic of post-transcriptional RNA silencing in plants, and this prompted an investigation into the mechanisms underlying this type of silencing. The present paper demonstrates that T7-driven silencing is a post-transcriptional process that is restricted to the nucleus. Nuclear run-on assays indicated the presence of silenced gene transcripts in both orientations. SiRNA corresponding to the silenced gene could not be traced in the cytoplasm but was found in nuclei. The silenced gene was hypermethylated. We present evidence that a tobacco RNA-dependent RNA polymerase (RdRP) is not involved in T7-mediated silencing, but indicate the involvement of a nuclear RdRP in this type of silencing.
Collapse
Affiliation(s)
- Yuval Peretz
- Robert H. Smith Institute for Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
154
|
Eamens A, Vaistij FE, Jones L. NRPD1a and NRPD1b are required to maintain post-transcriptional RNA silencing and RNA-directed DNA methylation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:596-606. [PMID: 18433438 DOI: 10.1111/j.1365-313x.2008.03525.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In plants, both transcriptional (TGS) and post-transcriptional gene silencing (PTGS) can be self-reinforcing, and this allows maintenance of silencing once the initiator has been removed or suppressed. For TGS, this can be accomplished by the generation of small interfering RNAs (siRNAs) from methylated DNA templates by RNA polymerase IV (PolIV), RNA-dependent RNA polymerase 2 (RDR2), DICER-LIKE 3 (DCL3), and the RNA-directed DNA methylation (RdDM) machinery. Maintenance of PTGS requires RNA-dependent RNA polymerase 6 (RDR6), and may be associated with DNA methylation and transitive production of secondary siRNAs. In this work, mutants defective for the NRPD1a and NRPD1b alternative largest subunits of PolIV were tested for their ability to undergo RdDM, transitive RNA silencing and maintenance of PTGS. PTGS could be initiated in both nrpd1a and nrpd1b mutants, and this was associated with production of secondary siRNAs; silencing was not maintained however. nrpd1a mutants could support RdDM although this was lost upon reversal of silencing, as was methylation in rdr6 mutants. We conclude that components of the machinery that maintain TGS are required for maintenance of PTGS, and that RDR6 uses distinct templates in the initiation and maintenance phases of RNA silencing.
Collapse
|
155
|
Abstract
The methyl-CpG-binding protein MeCP2 was discovered over 15 years ago as part of a search for proteins that selectively bind methylated DNA. It is a nuclear protein that is largely chromatin-bound and has a strong preference for binding to methylated DNA sequences in vivo. Evidence from model systems shows that MeCP2 can recruit the Sin3a co-repressor complex to promoters leading to transcriptional repression, therefore suggesting that MeCP2 can interpret the DNA methylation signal to bring about gene silencing. Mutations in the human MECP2 gene cause the autism spectrum disorder Rett Syndrome. MeCP2 is most highly expressed in neurons, and mice lacking this protein show symptoms that strikingly parallel those of Rett patients. Surprisingly, these symptoms are efficiently reversed by delayed activation of a ‘stopped’ Mecp2 gene, raising hopes that human Rett syndrome may also be reversible. Future studies of MeCP2 promise to shed light upon brain function, neurological disease and the biology of DNA methylation.
Collapse
|
156
|
Lucioli A, Sallustio DE, Barboni D, Berardi A, Papacchioli V, Tavazza R, Tavazza M. A cautionary note on pathogen-derived sequences. Nat Biotechnol 2008; 26:617-9. [PMID: 18536679 DOI: 10.1038/nbt0608-617] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
157
|
Martínez-Priego L, Donaire L, Barajas D, Llave C. Silencing suppressor activity of the Tobacco rattle virus-encoded 16-kDa protein and interference with endogenous small RNA-guided regulatory pathways. Virology 2008; 376:346-56. [PMID: 18456303 DOI: 10.1016/j.virol.2008.03.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/20/2008] [Accepted: 03/19/2008] [Indexed: 10/22/2022]
Abstract
Higher plants use RNA silencing as a defense mechanism against viral infections, but viruses may encode suppressor proteins that counteract these defenses. Several virus-encoded suppressors also exert an inhibitory effect on endogenous small RNA regulatory pathways. Here we characterized the Tobacco rattle virus-encoded 16-kDa (TRV-16K) protein as a suppressor that blocked local RNA silencing induced by single (s)- and double-stranded (ds) RNA, indicating that TRV-16K interfered with a step in the silencing pathway downstream of dsRNA formation. The suppressor activity of TRV-16K was severely compromised by moderate to high dosages of dsRNA inducer. When silencing was locally triggered by ssRNA or low levels of dsRNA, silencing suppression by TRV-16K was associated with reduced accumulation of silencing-related siRNAs. TRV-16K also prevented partially cell-to-cell movement and systemic propagation of silencing but not transitive amplification of RNA silencing. We showed that neither TRV nor TRV-16K caused a global deregulation of the microRNA-regulatory pathway in Arabidopsis, suggesting that interference with microRNA biology was not a prerequisite for TRV, and probably many other plant viruses, to develop systemic infections in plants.
Collapse
Affiliation(s)
- Llucia Martínez-Priego
- Departamento de Biología de Plantas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
158
|
Mlotshwa S, Pruss GJ, Vance V. Small RNAs in viral infection and host defense. TRENDS IN PLANT SCIENCE 2008; 13:375-82. [PMID: 18550416 DOI: 10.1016/j.tplants.2008.04.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 04/23/2008] [Accepted: 04/28/2008] [Indexed: 05/24/2023]
Abstract
Small RNAs are the key mediators of RNA silencing and related pathways in plants and other eukaryotic organisms. Silencing pathways couple the destruction of double-stranded RNA with the use of the resulting small RNAs to target other nucleic acid molecules that contain the complementary sequence. This discovery has revolutionized our ideas about host defense and genetic regulatory mechanisms in eukaryotes. Small RNAs can direct the degradation of mRNAs and single-stranded viral RNAs, the modification of DNA and histones, and the inhibition of translation. Viruses might even use small RNAs to do some targeting of their own to manipulate host gene expression. This review highlights the current understanding and new insights concerning the roles of small RNAs in virus infection and host defense in plants.
Collapse
Affiliation(s)
- Sizolwenkosi Mlotshwa
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | | | | |
Collapse
|
159
|
Voinnet O. Use, tolerance and avoidance of amplified RNA silencing by plants. TRENDS IN PLANT SCIENCE 2008; 13:317-28. [PMID: 18565786 DOI: 10.1016/j.tplants.2008.05.004] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 05/13/2008] [Accepted: 05/16/2008] [Indexed: 05/23/2023]
Abstract
In plants and several other organisms, the effects of RNA silencing can be amplified by the action of cellular RNA-DEPENDENT RNA POLYMERASES (RDRs). These enzymes were primarily studied for their role in antiviral defense in plants, but it is becoming increasingly apparent that they also have important endogenous functions, including the control of chromatin structure and the regulation of cellular gene expression. Recent evidence suggests that endogenous RDR activities intercept several RNA quality control pathways that normally prevent or restrain widespread amplification of silencing, which is likely to be detrimental. Plants appear, however, to have evolved sophisticated measures to tolerate or exploit amplified silencing under specific biological circumstances.
Collapse
Affiliation(s)
- Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357; 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.
| |
Collapse
|
160
|
Donaire L, Barajas D, Martínez-García B, Martínez-Priego L, Pagán I, Llave C. Structural and genetic requirements for the biogenesis of tobacco rattle virus-derived small interfering RNAs. J Virol 2008; 82:5167-77. [PMID: 18353962 PMCID: PMC2395200 DOI: 10.1128/jvi.00272-08] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 03/06/2008] [Indexed: 01/24/2023] Open
Abstract
In plants, small RNA-guided processes referred to as RNA silencing control gene expression and serve as an efficient antiviral mechanism. Plant viruses are inducers and targets of RNA silencing as infection involves the production of functional virus-derived small interfering RNAs (siRNAs). Here we investigate the structural and genetic components influencing the formation of Tobacco rattle virus (TRV)-derived siRNAs. TRV siRNAs are mostly 21 nucleotides in length and derive from positive and negative viral RNA strands, although TRV siRNAs of positive polarity are significantly more abundant. This asymmetry appears not to correlate with the presence of highly structured regions of single-stranded viral RNA. The Dicer-like enzyme DCL4, DCL3, or DCL2 targets, alone or in combination, viral templates to promote synthesis of siRNAs of both polarities from all regions of the viral genome. The heterogeneous distribution profile of TRV siRNAs reveals differential contributions throughout the TRV genome to siRNA formation. Indirect evidence suggests that DCL2 is responsible for production of a subset of siRNAs derived from the 3' end region of TRV. TRV siRNA biogenesis and antiviral silencing are strongly dependent on the combined activity of the host-encoded RNA-dependent RNA polymerases RDR1, RDR2, and RDR6, thus providing evidence that perfectly complementary double-stranded RNA serves as a substrate for siRNA production. We conclude that the overall composition of viral siRNAs in TRV-infected plants reflects the combined action of several interconnected pathways involving different DCL and RDR activities.
Collapse
Affiliation(s)
- Livia Donaire
- Departamento de Biología de Plantas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
161
|
Zhang X, Du P, Lu L, Xiao Q, Wang W, Cao X, Ren B, Wei C, Li Y. Contrasting effects of HC-Pro and 2b viral suppressors from Sugarcane mosaic virus and Tomato aspermy cucumovirus on the accumulation of siRNAs. Virology 2008; 374:351-60. [PMID: 18280529 DOI: 10.1016/j.virol.2007.12.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 11/22/2007] [Accepted: 12/22/2007] [Indexed: 01/10/2023]
Abstract
RNA silencing and suppression of silencing are host and virus interactions for defense and counter-defense. Here, we explored the function effect of HC-Pro encoded by Sugarcane mosaic virus (SCMV) on the suppression of RNA silencing. siRNA northern blotting assay indicated that the replication of SCMV was regulated by host RNA silencing machinery. Co-expression assay demonstrated that the HC-Pro encoded by SCMV suppressed the RNA silencing induced by sense RNA and dsRNA. Transitive RNA silencing assay showed that HC-Pro down-regulated the accumulation of 3' secondary siRNA, but not 5' secondary and primary siRNA. Meanwhile, the 2b gene of Tomato aspermy cucumovirus (Tav) evidently down-regulated the accumulation of 5' secondary siRNA. Importantly, we found that HC-Pro and Tav2b down-regulated the accumulation of RDR6 mRNA. Thus, HC-Pro, an RNA silencing suppressor encoded by SCMV, regulates the accumulation of different siRNAs and has more than one target in the RNA silencing pathway.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Peking-Yale Joint Center for Plant Molecular Genetics and Agrobiotechnology, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
van West P, Shepherd SJ, Walker CA, Li S, Appiah AA, Grenville-Briggs LJ, Govers F, Gow NAR. Internuclear gene silencing in Phytophthora infestans is established through chromatin remodelling. Microbiology (Reading) 2008; 154:1482-1490. [DOI: 10.1099/mic.0.2007/015545-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Pieter van West
- Aberdeen Oomycete Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Samantha J. Shepherd
- Aberdeen Oomycete Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Claire A. Walker
- Aberdeen Oomycete Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Shuang Li
- Aberdeen Oomycete Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Alex A. Appiah
- Aberdeen Oomycete Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Laura J. Grenville-Briggs
- Aberdeen Oomycete Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Francine Govers
- Laboratory of Phytopathology, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | - Neil A. R. Gow
- Aberdeen Oomycete Group, College of Life Sciences and Medicine, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| |
Collapse
|
163
|
Wang MB, Helliwell CA, Wu LM, Waterhouse PM, Peacock WJ, Dennis ES. Hairpin RNAs derived from RNA polymerase II and polymerase III promoter-directed transgenes are processed differently in plants. RNA (NEW YORK, N.Y.) 2008; 14:903-13. [PMID: 18367720 PMCID: PMC2327362 DOI: 10.1261/rna.760908] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 02/06/2008] [Indexed: 05/21/2023]
Abstract
RNA polymerase III (Pol III) as well as Pol II (35S) promoters are able to drive hairpin RNA (hpRNA) expression and induce target gene silencing in plants. siRNAs of 21 nt are the predominant species in a 35S Pol II line, whereas 24- and/or 22-nucleotide (nt) siRNAs are produced by a Pol III line. The 35S line accumulated the loop of the hpRNA, in contrast to full-length hpRNA in the Pol III line. These suggest that Pol II and Pol III-transcribed hpRNAs are processed by different pathways. One Pol III transgene produced only 24-nt siRNAs but silenced the target gene efficiently, indicating that the 24-nt siRNAs can direct mRNA degradation; specific cleavage was confirmed by 5' rapid amplification of cDNA ends (RACE). Both Pol II- and Pol III-directed hpRNA transgenes induced cytosine methylation in the target DNA. The extent of methylation is not correlated with the level of 21-nt siRNAs, suggesting that they are not effective inducers of DNA methylation. The promoter of a U6 transgene was significantly methylated, whereas the promoter of the endogenous U6 gene was almost free of cytosine methylation, suggesting that endogenous sequences are more resistant to de novo DNA methylation than are transgene constructs.
Collapse
MESH Headings
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Base Sequence
- DNA Methylation
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Gene Silencing
- Genes, Plant
- Oryza/genetics
- Oryza/metabolism
- Plants/genetics
- Plants/metabolism
- Plants, Genetically Modified
- Promoter Regions, Genetic
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- RNA Polymerase III/genetics
- RNA Polymerase III/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Plant/genetics
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- Ming-Bo Wang
- Commonwealth Scientific and Industrial Research Organisation Plant Industry, Canberra, Australian Capital Territory 2601, Australia.
| | | | | | | | | | | |
Collapse
|
164
|
Kanno T, Bucher E, Daxinger L, Huettel B, Böhmdorfer G, Gregor W, Kreil DP, Matzke M, Matzke AJM. A structural-maintenance-of-chromosomes hinge domain-containing protein is required for RNA-directed DNA methylation. Nat Genet 2008; 40:670-5. [PMID: 18425128 DOI: 10.1038/ng.119] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 02/11/2008] [Indexed: 12/12/2022]
Abstract
RNA-directed DNA methylation (RdDM) is a process in which dicer-generated small RNAs guide de novo cytosine methylation at the homologous DNA region. To identify components of the RdDM machinery important for Arabidopsis thaliana development, we targeted an enhancer active in meristems for methylation, which resulted in silencing of a downstream GFP reporter gene. This silencing system also features secondary siRNAs, which trigger methylation that spreads beyond the targeted enhancer region. A screen for mutants defective in meristem silencing and enhancer methylation retrieved six dms complementation groups, which included the known factors DRD1 (ref. 3; a SNF2-like chromatin-remodeling protein) and Pol IVb subunits. Additionally, we identified a previously unknown gene DMS3 (At3g49250), encoding a protein similar to the hinge-domain region of structural maintenance of chromosomes (SMC) proteins. This finding implicates a putative chromosome architectural protein that can potentially link nucleic acids in facilitating an RNAi-mediated epigenetic modification involving secondary siRNAs and spreading of DNA methylation.
Collapse
Affiliation(s)
- Tatsuo Kanno
- Gregor Mendel Institute for Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohrgasse 3, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Dunoyer P, Voinnet O. Mixing and matching: the essence of plant systemic silencing? Trends Genet 2008; 24:151-4. [PMID: 18325623 DOI: 10.1016/j.tig.2008.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 01/18/2008] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
In plants and some animals, posttranscriptional RNA silencing can be manifested beyond its sites of initiation, because of the movement of signaling molecules that must have RNA components to account for the nucleotide sequence specificity of their effects. In a recent study carried out in Arabidopsis thaliana, interesting clues were provided that suggest mechanisms by which systemic RNA silencing signals might be produced and perceived between distant plant organs.
Collapse
Affiliation(s)
- Patrice Dunoyer
- Institut de Biologie Moléculaire des Plantes, CNRS UPR2357-Université Louis Pasteur, Strasbourg Cedex, France.
| | | |
Collapse
|
166
|
Curaba J, Chen X. Biochemical activities of Arabidopsis RNA-dependent RNA polymerase 6. J Biol Chem 2008. [PMID: 18063577 DOI: 10.1074/jbc.m708983200.biochemical] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
In Arabidopsis, genetic evidence demonstrates that RNA-dependent RNA polymerase 6 (RDR6) plays a fundamental role in at least four RNA silencing pathways whose functions range from defense against transgenes or viruses to endogene regulation in development and in stress responses. Despite its critical role in RNA silencing, the biochemical activities of RDR6 have yet to be characterized. In this study, we transiently expressed Arabidopsis RDR6 in Nicotiana benthamiana and investigated the biochemical activities of immunopurified RDR6 in vitro. We showed that RDR6 possesses terminal nucleotidyltransferase activity as well as primer-independent RNA polymerase activity on single-stranded RNAs. We found that RDR6 cannot distinguish RNAs with or without a cap or poly(A) tail. We also demonstrated that RDR6 has strong polymerase activity on single-stranded DNA. All these activities require the conserved catalytic Asp(867) residue. Our findings have important implications on the processes involving RDR6 in vivo and provide new biochemical insights into the mechanisms of RNA silencing in Arabidopsis.
Collapse
Affiliation(s)
- Julien Curaba
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Xuemei Chen
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521.
| |
Collapse
|
167
|
Abstract
In Arabidopsis, genetic evidence demonstrates that RNA-dependent RNA polymerase 6 (RDR6) plays a fundamental role in at least four RNA silencing pathways whose functions range from defense against transgenes or viruses to endogene regulation in development and in stress responses. Despite its critical role in RNA silencing, the biochemical activities of RDR6 have yet to be characterized. In this study, we transiently expressed Arabidopsis RDR6 in Nicotiana benthamiana and investigated the biochemical activities of immunopurified RDR6 in vitro. We showed that RDR6 possesses terminal nucleotidyltransferase activity as well as primer-independent RNA polymerase activity on single-stranded RNAs. We found that RDR6 cannot distinguish RNAs with or without a cap or poly(A) tail. We also demonstrated that RDR6 has strong polymerase activity on single-stranded DNA. All these activities require the conserved catalytic Asp(867) residue. Our findings have important implications on the processes involving RDR6 in vivo and provide new biochemical insights into the mechanisms of RNA silencing in Arabidopsis.
Collapse
Affiliation(s)
- Julien Curaba
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521
| | - Xuemei Chen
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521.
| |
Collapse
|
168
|
Frizzi A, Huang S, Gilbertson LA, Armstrong TA, Luethy MH, Malvar TM. Modifying lysine biosynthesis and catabolism in corn with a single bifunctional expression/silencing transgene cassette. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:13-21. [PMID: 17725550 DOI: 10.1111/j.1467-7652.2007.00290.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although it is one of the major crops in the world, corn has poor nutritional quality for human and animal consumption due to its low lysine content. Here, we report a method of simultaneous expression of a deregulated lysine biosynthetic enzyme, CordapA, and reduction of a bifunctional lysine degradation enzyme, lysine-ketoglutarate reductase/saccharophine dehydrogenase (LKR/SDH), in transgenic corn plants by a single transgene cassette. This is accomplished by inserting an inverted-repeat sequence targeting the maize LKR/SDH gene into an intron of a transgene cassette that expresses CordapA. This combination of LKR/SDH silencing and CordapA expression led to the accumulation of free lysine to over 4000 p.p.m. in transgenic corn grain, compared to less than 100 p.p.m. in wild-type controls. This intron-embedded silencing cassette design reduces the number of transgene cassettes needed in transgenic approaches for manipulating metabolic pathways that sometimes require expression of one gene and silencing of another.
Collapse
Affiliation(s)
- Alessandra Frizzi
- Mystic Research, Monsanto Company, 62 Maritime Drive, Mystic, CT 06355, USA
| | | | | | | | | | | |
Collapse
|
169
|
Yang JH, Seo HH, Han SJ, Yoon EK, Yang MS, Lee WS. Phytohormone abscisic acid control RNA-dependent RNA polymerase 6 gene expression and post-transcriptional gene silencing in rice cells. Nucleic Acids Res 2007; 36:1220-6. [PMID: 18160413 PMCID: PMC2275079 DOI: 10.1093/nar/gkm1133] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
RNA-dependent RNA polymerase 6 (RDR6) catalyses dsRNA synthesis for post-transcriptional gene silencing (PTGS)-associated amplification and the generation of endogeneous siRNAs involved in developmental determinations or stress responses. The functional importance of RDR6 in PTGS led us to examine its connection to the cellular regulatory network by analyzing the hormonal responses of RDR6 gene expression in a cultured cell system. Delivery of dsRNA, prepared in vitro, into cultured rice (Oryza sativa cv. Japonica Dongjin) cells successfully silenced the target isocitrate lyase (ICL) transcripts. Silencing was transient in the absence of abscisic acid (ABA), while it became persistent in the presence of ABA in growth medium. A transcription assay of the OsRDR6 promoter showed that it was positively regulated by ABA. OsRDR6-dependent siRNA(ICL) generation was also significantly up-regulated by ABA. The results showed that, among the five rice OsRDR isogenes, only OsRDR6 was responsible for the observed ABA-mediated amplification and silencing of ICL transcripts. We propose that ABA modulates PTGS through the transcriptional control of the OsRDR6 gene.
Collapse
Affiliation(s)
- Ji Hyun Yang
- The Basic Science Research Institute, Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | | | | | |
Collapse
|
170
|
|
171
|
Ying SY, Chang DC, Lin SL. The microRNA (miRNA): overview of the RNA genes that modulate gene function. Mol Biotechnol 2007; 38:257-68. [PMID: 17999201 PMCID: PMC7091389 DOI: 10.1007/s12033-007-9013-8] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 10/22/2007] [Indexed: 12/30/2022]
Abstract
MicroRNAs (miRNAs), widely distributed, small regulatory RNA genes, target both messenger RNA (mRNA) degradation and suppression of protein translation based on sequence complementarity between the miRNA and its targeted mRNA. Different names have been used to describe various types of miRNA. During evolution, RNA retroviruses or transgenes invaded the eukaryotic genome and inserted in the non-coding regions of DNA, conceivably acting as transposon-like jumping genes, providing defense from viral invasion and fine-funing of gene expression as a secondary level of gene modulation in eukaryotes. When a transposon is inserted in the intron, it becomes an intronic miRNA, taking advantage of the protein synthesis machinery, i.e., mRNA transcription and splicing, as a means for processing and maturation. Recently, miRNAs have been found to play an important, but not life-threatening, role in embryonic development. They might play a pivotal role in diverse biological systems in various organisms, facilitating a quick response and accurate plotting of body physiology and structures. Based on these unique properties, man-made intronic miRNAs have been developed for in vitro evaluation of gene function, in vivo gene therapy and generation of transgenic animal models. The biogenesis and identification of miRNAs, potential applications, and future directions for research are presented, hopefully providing a guideline for further miRNA and gene function studies.
Collapse
Affiliation(s)
- Shao-Yao Ying
- Department of Cell and Neurobiology, Keck School of Medicine, University of Southern California, 1333 San Pablo Street, BMT-403, Los Angeles, CA, 90033, USA.
| | | | | |
Collapse
|
172
|
Abstract
The specificity of RNA silencing is conferred by small RNA guides that are processed from structured RNA or dsRNA. The core components for small RNA biogenesis and effector functions have proliferated and specialized in eukaryotic lineages, resulting in diversified pathways that control expression of endogenous and exogenous genes, invasive elements and viruses, and repeated sequences. Deployment of small RNA pathways for spatiotemporal regulation of the transcriptome has shaped the evolution of eukaryotic genomes and contributed to the complexity of multicellular organisms.
Collapse
|
173
|
Fairbairn DJ, Cavallaro AS, Bernard M, Mahalinga-Iyer J, Graham MW, Botella JR. Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. PLANTA 2007; 226:1525-33. [PMID: 17653759 DOI: 10.1007/s00425-007-0588-x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 07/02/2007] [Indexed: 05/16/2023]
Abstract
Root-knot nematodes (Meloidogyne spp.) are obligate, sedentary endoparasites that infect many plant species causing large economic losses worldwide. Available nematicides are being banned due to their toxicity or ozone-depleting properties and alternative control strategies are urgently required. We have produced transgenic tobacco (Nicotiana tabacum) plants expressing different dsRNA hairpin structures targeting a root-knot nematode (Meloidogyne javanica) putative transcription factor, MjTis11. We provide evidence that MjTis11 was consistently silenced in nematodes feeding on the roots of transgenic plants. The observed silencing was specific for MjTis11, with other sequence-unrelated genes being unaffected in the nematodes. Those transgenic plants able to induce silencing of MjTis11, also showed the presence of small interfering RNAs. Even though down-regulation of MjTis11 did not result in a lethal phenotype, this study demonstrates the feasibility of silencing root-knot nematode genes by expressing dsRNA in the host plant. Host-delivered RNA interference-triggered (HD-RNAi) silencing of parasite genes provides a novel disease resistance strategy with wide biotechnological applications. The potential of HD-RNAi is not restricted to parasitic nematodes but could be adapted to control other plant-feeding pests.
Collapse
Affiliation(s)
- David J Fairbairn
- Department of Botany, School of Integrative Biology, University of Queensland, Brisbane, QLD 4072, Australia
| | | | | | | | | | | |
Collapse
|
174
|
Molecular cloning and characterization of an inducible RNA-dependent RNA polymerase gene, GhRdRP, from cotton (Gossypium hirsutum L.). Mol Biol Rep 2007; 36:47-56. [PMID: 17929195 DOI: 10.1007/s11033-007-9150-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
The RNA-dependent RNA polymerase (RdRP) cDNA, designated as Gossypium hirsutum RdRP (GhRdRP) was cloned from cotton by rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR). The full-length cDNA was 3,672 bp in size and encoded an open reading frame (ORF) of 1,110 amino acids which contained the RdRP conserved functional domain and the signature motif DbDGD. Amino acid sequence alignment indicated that GhRdRP shared the highest identity (66.37%) with AtRdRP1 and had homology with other plant, fungal, yeast and nematode RdRPs. The corresponding genomic DNA containing five exons and four introns, was isolated and analyzed. Also a 5'-flanking region was cloned, and a group of putative cis-acting elements were identified. Southern blot analysis revealed a single copy of the GhRdRP gene in cotton genome. The expression analysis by semi-quantitative RT-PCR showed that GhRdRP was induced by salicylic acid (SA), 5-chloroSA (5-CSA) and fungal infection of Rhizoctonia solani Kuhn. The cloning and characterization of the GhRdRP gene will be useful for further studies of biological roles of GhRdRP in plants.
Collapse
|
175
|
Baumberger N, Tsai CH, Lie M, Havecker E, Baulcombe DC. The Polerovirus silencing suppressor P0 targets ARGONAUTE proteins for degradation. Curr Biol 2007; 17:1609-14. [PMID: 17869110 DOI: 10.1016/j.cub.2007.08.039] [Citation(s) in RCA: 259] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 08/14/2007] [Accepted: 08/15/2007] [Indexed: 10/22/2022]
Abstract
Plant and animal viruses encode suppressor proteins of an adaptive immunity mechanism in which viral double-stranded RNA is processed into 21-25 nt short interfering (si)RNAs. The siRNAs guide ARGONAUTE (AGO) proteins so that they target viral RNA. Most viral suppressors bind long dsRNA or siRNAs and thereby prevent production of siRNA or binding of siRNA to AGO. The one exception is the 2b suppressor of Cucumoviruses that binds to and inhibits AGO1. Here we describe a novel suppressor mechanism in which a Polerovirus-encoded F box protein (P0) targets the PAZ motif and its adjacent upstream sequence in AGO1 and mediates its degradation. F box proteins are components of E3 ubiquitin ligase complexes that add polyubiquitin tracts on selected lysine residues and thereby mark a protein for proteasome-mediated degradation. With P0, however, the targeted degradation of AGO is insensitive to inhibition of the proteasome, indicating that the proteasome is not involved. We also show that P0 does not block a mobile signal of silencing, indicating that the signal molecule does not have AGO protein components. The ability of P0 to block silencing without affecting signal movement may contribute to the phloem restriction of viruses in the Polerovirus group.
Collapse
Affiliation(s)
- Nicolas Baumberger
- Sainsbury Laboratory, Norwich Research Park, NR4 7UH Norwich, United Kingdom
| | | | | | | | | |
Collapse
|
176
|
Affiliation(s)
- Andrew Z Fire
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Room L235, Stanford, CA 94305-5324, USA.
| |
Collapse
|
177
|
|
178
|
Houmard NM, Mainville JL, Bonin CP, Huang S, Luethy MH, Malvar TM. High-lysine corn generated by endosperm-specific suppression of lysine catabolism using RNAi. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:605-14. [PMID: 17553105 DOI: 10.1111/j.1467-7652.2007.00265.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Because of the limited lysine content in corn grain, synthetic lysine supplements are added to corn meal-based rations for animal feed. The development of biotechnology, combined with the understanding of plant lysine metabolism, provides an alternative solution for increasing corn lysine content through genetic engineering. Here, we report that by suppressing lysine catabolism, transgenic maize kernels accumulated a significant amount of lysine. This was achieved by RNA interference (RNAi) through the endosperm-specific expression of an inverted-repeat (IR) sequence targeting the maize bifunctional lysine degradation enzyme, lysine-ketoglutarate reductase/saccharopine dehydrogenase (ZLKR/SDH). Although plant-short interfering RNA (siRNA) were reported to lack tissue specificity due to systemic spreading, we confirmed that the suppression of ZLKR/SDH in developing transgenic kernels was restricted to endosperm tissue. Furthermore, results from our cloning and sequencing of siRNA suggested the absence of transitive RNAi. These results support the practical use of RNAi for plant genetic engineering to specifically target gene suppression in desired tissues without eliciting systemic spreading and the transitive nature of plant RNAi silencing.
Collapse
Affiliation(s)
- Nancy M Houmard
- Mystic Research, Monsanto Company, 62 Maritime Drive, Mystic, CT 06355, USA
| | | | | | | | | | | |
Collapse
|
179
|
Filichkin SA, DiFazio SP, Brunner AM, Davis JM, Yang ZK, Kalluri UC, Arias RS, Etherington E, Tuskan GA, Strauss SH. Efficiency of gene silencing in Arabidopsis: direct inverted repeats vs. transitive RNAi vectors. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:615-26. [PMID: 17573806 DOI: 10.1111/j.1467-7652.2007.00267.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We investigated the efficiency of RNA interference (RNAi) in Arabidopsis using transitive and homologous inverted repeat (hIR) vectors. hIR constructs carry self-complementary intron-spliced fragments of the target gene whereas transitive vectors have the target sequence fragment adjacent to an intron-spliced, inverted repeat of heterologous origin. Both transitive and hIR constructs facilitated specific and heritable silencing in the three genes studied (AP1, ETTIN and TTG1). Both types of vectors produced a phenotypic series that phenocopied reduction of function mutants for the respective target gene. The hIR yielded up to fourfold higher proportions of events with strongly manifested reduction of function phenotypes compared to transitive RNAi. We further investigated the efficiency and potential off-target effects of AP1 silencing by both types of vectors using genome-scale microarrays and quantitative RT-PCR. The depletion of AP1 transcripts coincided with reduction of function phenotypic changes among both hIR and transitive lines and also showed similar expression patterns among differentially regulated genes. We did not detect significant silencing directed against homologous potential off-target genes when constructs were designed with minimal sequence similarity. Both hIR and transitive methods are useful tools in plant biotechnology and genomics. The choice of vector will depend on specific objectives such as cloning throughput, number of events and degree of suppression required.
Collapse
Affiliation(s)
- Sergei A Filichkin
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Moissiard G, Parizotto EA, Himber C, Voinnet O. Transitivity in Arabidopsis can be primed, requires the redundant action of the antiviral Dicer-like 4 and Dicer-like 2, and is compromised by viral-encoded suppressor proteins. RNA (NEW YORK, N.Y.) 2007; 13:1268-78. [PMID: 17592042 PMCID: PMC1924903 DOI: 10.1261/rna.541307] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In plants, worms, and fungi, RNA-dependent RNA polymerases (RDRs) amplify the production of short-interfering RNAs (siRNAs) that mediate RNA silencing. In Arabidopsis, RDR6 is thought to copy endogenous and exogenous RNA templates into double-stranded RNAs (dsRNAs), which are subsequently processed into siRNAs by one or several of the four Dicer-like enzymes (DCL1-->4). This reaction produces secondary siRNAs corresponding to sequences outside the primary targeted regions of a transcript, a phenomenon called transitivity. One recognized role of RDR6 is to strengthen the RNA silencing response mounted by plants against viruses. Accordingly, suppressor proteins deployed by viruses inhibit this defense. However, interactions between silencing suppressors and RDR6 have not yet been documented. Additionally, the mechanism underlying transitivity remains poorly understood. Here, we report how several viral silencing suppressors inhibit the RDR6-dependent amplification of virus-induced and transgene-induced gene silencing. Viral suppression of primary siRNA accumulation shows that transitivity can be initiated with minute amounts of DCL4-dependent 21-nucleotide (nt)-long siRNAs, whereas DCL3-dependent 24-nt siRNAs appear dispensable for this process. We further show that unidirectional (3-->5') transitivity requires the hierarchical and redundant functions of DCL4 and DCL2 acting downstream from RDR6 to produce 21- and 22-nt-long siRNAs, respectively. The 3-->5' transitive reaction is likely to be processive over >750 nt, with secondary siRNA production progressively decreasing as the reaction proceeds toward the 5'-proximal region of target transcripts. Finally, we show that target cleavage by a primary small RNA and 3-->5' transitivity can be genetically uncoupled, and we provide in vivo evidence supporting a key role for priming in this specific reaction.
Collapse
|
181
|
Gammelgård E, Mohan M, Valkonen JPT. Potyvirus-induced gene silencing: the dynamic process of systemic silencing and silencing suppression. J Gen Virol 2007; 88:2337-2346. [PMID: 17622640 DOI: 10.1099/vir.0.82928-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Potato virus A (PVA; genus Potyvirus) was used for virus-induced gene silencing in a model system that included transgenic Nicotiana benthamiana (line 16c) expressing the gfp transgene for green fluorescent protein (GFP) and chimeric PVA (PVA-GFP) carrying gfp in the P1-encoding region. Infection of the 16c plants with PVA-GFP in five experiments resulted in a reproducible pattern of systemic gfp transgene silencing, despite the presence of the strong silencing-suppressor protein, HC-Pro, produced by the virus. PVA-GFP was also targeted by silencing, and virus-specific short interfering RNA accumulated from the length of the viral genome. Viral deletion mutants lacking the gfp insert appeared in systemically infected leaves and reversed silencing of the gfp transgene in limited areas. However, systemic gfp silencing continued in newly emerging leaves in the absence of the gfp-carrying virus, which implicated a systemic silencing signal that moved from lower leaves without interference by HC-Pro. Use of GFP as a visual marker revealed a novel, mosaic-like recovery phenotype in the top leaves. The leaf areas appearing red or purple under UV light (no GFP expression) contained little PVA and gfp mRNA, and corresponded to the dark-green islands observed under visible light. The surrounding green fluorescent tissues contained actively replicating viral deletion mutants that suppressed GFP silencing. Taken together, systemic progression of gene silencing and antiviral defence (RNA silencing) and circumvention of the silencing by the virus could be visualized and analysed in a novel manner.
Collapse
Affiliation(s)
- Elin Gammelgård
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences (SLU), PO Box 7080, SE-750 07 Uppsala, Sweden
| | - Maradumane Mohan
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences (SLU), PO Box 7080, SE-750 07 Uppsala, Sweden
| | - Jari P T Valkonen
- Department of Applied Biology, PO Box 27, FIN-00014 University of Helsinki, Finland
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences (SLU), PO Box 7080, SE-750 07 Uppsala, Sweden
| |
Collapse
|
182
|
|
183
|
Haque AKMN, Yamaoka N, Nishiguchi M. Cytosine methylation is associated with RNA silencing in silenced plants but not with systemic and transitive RNA silencing through grafting. Gene 2007; 396:321-31. [PMID: 17521830 DOI: 10.1016/j.gene.2007.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 04/04/2007] [Accepted: 04/04/2007] [Indexed: 10/23/2022]
Abstract
RNA silencing is often associated with methylation of the target gene. The DNA methylation level of transgenes was investigated in post-transcriptionally silenced or non-silenced Nicotiana benthamiana carrying either the 5' region (200 or 400 bp) or the entire region of the coat protein gene (CP, including the 3' non-translated region) of Sweet potato feathery mottle virus. Higher levels of transgene cytosine methylation were observed in both symmetrical (CpG, CpNpG) and non-symmetrical (CpHpH) contexts (CpG>CpNpG>CpHpH) in silenced lines, but there was very lower levels or no transgene methylation in non-silenced lines. RNA silencing was induced in non-silenced scions from silenced rootstocks and spread to the 3' region of the transgene mRNA (Haque et al., Plant Mol. Biol. 2007; 63: 35-47). In this system, transgene methylation levels were analyzed in scions at different time intervals after being grafted onto silenced or non-silenced rootstocks to investigate if transgene methylation was associated with induction or transitivity of RNA silencing. We observed that, there was no change of transgene methylation level in the initial target or in extended regions in scions. These results showed that transgene methylation was associated with RNA silencing in individual transformants, but it was not associated with systemic RNA silencing and/or transitive RNA silencing through grafting.
Collapse
Affiliation(s)
- A K M Nazmul Haque
- The United Graduate School of Agricultural Sciences, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | | | | |
Collapse
|
184
|
Baulcombe DC. Short silencing RNA: the dark matter of genetics? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:13-20. [PMID: 17381275 DOI: 10.1101/sqb.2006.71.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Plants and animals have single-stranded silencing RNAs (sRNAs) of 21-25 nucleotides in length that are derived from a double-stranded (ds)RNA precursor by Dicer (DCL) processing. These RNAs are the guide RNA for nucleases of the AGO class that cleave targeted RNA in a nucleotide sequence-specific manner. The cleaved RNAs are then degraded further or they are the template for an RNA-dependent RNA polymerase (RDR) that generates a dsRNA. In this paper, I discuss the possibility that this RDR-generated dsRNA initiates a cascade in which there are multiple rounds of secondary sRNA production. I propose that these secondary sRNAs feature in mechanisms that can either buffer mRNA populations against change or, in certain circumstances, mediate extensive changes in mRNA populations. The RNA cascades may also have RNA-mediated epigenetic characteristics in addition to the DNA and chromatin transcriptional silencing potential that has been previously linked with RNA silencing.
Collapse
|
185
|
Locke SM, Martienssen RA. Slicing and spreading of heterochromatic silencing by RNA interference. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:497-503. [PMID: 17381332 DOI: 10.1101/sqb.2006.71.062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RNA interference (RNAi) can mediate gene silencing posttranscriptionally by target RNA cleavage, or transcriptionally by chromatin and DNA modification. Argonaute is an essential component of the RNAi machinery that displays endonucleolytic activity guided by bound small RNAs. This slicing activity has recently been shown to be required for gene silencing and spreading of histone modifications characteristic of heterochromatin in Schizosaccharomyces pombe. Argonaute proteins with catalytic and nucleic acid binding capacities are found to function in RNAi within both the plant and animal kingdoms. Here we review the requirement of slicing for silencing and spreading in S. pombe, plants, and humans.
Collapse
Affiliation(s)
- S M Locke
- Cold Spring Harbor Laboratory and Watson School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | | |
Collapse
|
186
|
Poethig RS, Peragine A, Yoshikawa M, Hunter C, Willmann M, Wu G. The function of RNAi in plant development. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 71:165-70. [PMID: 17381293 DOI: 10.1101/sqb.2006.71.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The morphological phenotype of mutations in genes required for posttranscriptional gene silencing (PTGS) or RNA interference (RNAi) in Arabidopsis demonstrates that this process is critical for normal development. One way in which RNAi contributes to gene regulation is through its involvement in the biogenesis of trans-acting small interfering RNAs (siRNAs). These endogenous siRNAs are derived from noncoding transcripts that are cleaved by a microRNA (miRNA) and mediate the silencing of protein-coding transcripts. Some protein-coding genes are also subject to miRNA-initiated transitive silencing. Several developmentally important transcription factors regulated by these silencing mechanisms have been identified.
Collapse
Affiliation(s)
- R S Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | | | | | | | | | |
Collapse
|
187
|
Qiu S, Lane T. Implications of phase transitions in knockdown networks of transitive RNAi. IEEE Trans Nanobioscience 2007; 6:68-76. [PMID: 17393852 DOI: 10.1109/tnb.2007.891904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gene silencing by RNA interference (RNAi) has been observed even in the presence of imperfect complementarity in the siRNA-mRNA hybridization. Since more permissive mismatches gives rise to higher chances of off-target gene silencing, the number of mismatched nucleotides allowed by nature becomes an important quantity in characterizing RNAi specificity and RNAi design. To estimate the allowable flexibility, we use scale-free graphs to model the knockdown interactions among genes by examining transitive RNAi (tRNAi), which amplifies siRNA and cyclically silences targets. We removed inefficient siRNA sequences using the commonly used siRNA efficacy rules, avoided redundant siRNAs using barcoding techniques, and employed both contiguous and scattered mismatches to emulate the siRNA-mRNA binding. Simulations in multiple organisms indicate that the fraction of the transcriptome silenced by tRNAi rises drastically with increased number of allowed mismatches and eventually tRNAi became self-destructive rather than defensive. At the phase transition, the number of mismatches implies a critical value beyond which tRNAi would cause the transcription of an organism to be instable. This critical value suggests an upper limit of no more than 6 nt mismatches in the hybridization in general.
Collapse
Affiliation(s)
- Shibin Qiu
- Department of Computer Science, University of New Mexico, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
188
|
Pandey SP, Baldwin IT. RNA-directed RNA polymerase 1 (RdR1) mediates the resistance of Nicotiana attenuata to herbivore attack in nature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:40-53. [PMID: 17346266 DOI: 10.1111/j.1365-313x.2007.03030.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Small RNAs are important regulators of plant development and resistance to viruses. To determine whether small RNAs mediate defense responses to herbivore attack, we silenced the expression of three RNA-directed RNA polymerases (RdRs) in the native tobacco Nicotiana attenuata by virus-induced gene silencing. Larvae of the leaf-chewing solanaceous specialist Manduca sexta grew faster on the RdR1-silenced plants than on empty vector (EV) controls; silencing RdR3 and 2 had little to no effect on larval performance. NaRdR1 transcripts were strongly elicited when puncture wounds were treated with M. sexta oral secretions (OS) to simulate herbivore attack, and with SA and JA, phytohormones that are elicited by herbivore attack. Stably silencing RdR1 by transforming N. attenuata with an inverted-repeat RdR1 construct produced plants (irRdR1) that grew normally but were highly susceptible to both M. sexta larvae and the cell-content-feeder Tupiocoris notatus. When irRdR1 lines were planted into N. attenuata's native habitat in the Great Basin Desert (Utah, USA), they were highly susceptible to herbivore attack, due to deficiencies in direct rather than indirect defenses. Microarray analysis revealed the downregulation of ADC and ODC genes, which supply substrates for synthesizing the chemical defense compound nicotine; irRdR1 lines failed to accumulate nicotine after attack. We conclude that RdR1 mediates herbivore resistance, and infer that the small RNAs produced by RdR1 are probably involved in orchestrating some of the rapid metabolic adjustments required for plants to survive herbivore attack in their natural habitats. The experiment highlights the value of carrying out 'real-world' tests of gene function early in the discovery process.
Collapse
Affiliation(s)
- Shree P Pandey
- Department of Molecular Ecology, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Str. 8, Jena 07745, Germany
| | | |
Collapse
|
189
|
Shimamura K, Oka SI, Shimotori Y, Ohmori T, Kodama H. Generation of secondary small interfering RNA in cell-autonomous and non-cell autonomous RNA silencing in tobacco. PLANT MOLECULAR BIOLOGY 2007; 63:803-13. [PMID: 17225952 DOI: 10.1007/s11103-006-9124-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 12/15/2006] [Indexed: 05/13/2023]
Abstract
Small interfering RNA (siRNA) species with 21-25 nucleotides in length guide mRNA cleavage, translational arrest, and heterochromatin formation in RNA interference (RNAi). To delineate the target region of RNAi, a construct harboring a transcriptional fusion between parts of the target mRNA and the beta-glucuronidase gene was biolistically delivered into tobacco leaves showing an RNAi phenotype and the assay sequence was transiently expressed. The RNAi effect was monitored by amplification of this chimeric transcript. By using this assay method, we addressed the transitive RNA silencing of a tobacco endoplasmic reticulum omega-3 fatty acid desaturase gene (NtFAD3). In the NtFAD3 RNAi plants, the target region of RNAi was restricted in the inducer region corresponding to a stem sequence of the hairpin double-stranded RNA, indicating that endogenous NtFAD3 mRNA was not a template for an RNA-dependent RNA polymerase. The secondary NtFAD3 siRNAs were produced in the crossbred plants between the NtFAD3 overexpressed plant and the NtFAD3 RNAi plant. Similarly, the secondary siRNAs were generated in the systemically silenced scion. Although these secondary siRNAs originated preferentially from the 3' region downstream of the inducer region, the secondary siRNAs produced in the silenced scion (non-cell autonomous secondary siRNAs) resulted in the strong degradation of the target mRNA, but the secondary siRNAs in the crossbred plants (cell-autonomous secondary siRNAs) showed limited RNA degradation activity. These results showed that this in vivo assay for determination of RNAi efficiency is a useful tool to delineate RNAi mechanisms.
Collapse
|
190
|
Luo Z, Chen Z. Improperly terminated, unpolyadenylated mRNA of sense transgenes is targeted by RDR6-mediated RNA silencing in Arabidopsis. THE PLANT CELL 2007; 19:943-58. [PMID: 17384170 PMCID: PMC1867362 DOI: 10.1105/tpc.106.045724] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
RNA silencing can be induced by highly transcribed transgenes through a pathway dependent on RNA-DEPENDENT RNA POLYMERASE6 (RDR6) and may function as a genome protection mechanism against excessively expressed genes. Whether all transcripts or just aberrant transcripts activate this protection mechanism is unclear. Consistent RNA silencing induced by a transgene with three direct repeats of the beta-glucuronidase (GUS) open reading frame (ORF) is associated with high levels of truncated, unpolyadenylated transcripts, probably from abortive transcription elongation. Truncated, unpolyadenylated transcripts from triple GUS ORF repeats were degraded in the wild type but accumulated in an rdr6 mutant, suggesting targeting for degradation by RDR6-mediated RNA silencing. A GUS transgene without a 3' transcription terminator produced unpolyadenylated readthrough mRNA and consistent RDR6-dependent RNA silencing. Both GUS triple repeats and terminator-less GUS transgenes silenced an expressed GUS transgene in trans in the wild type but not in the rdr6 mutant. Placing two 3' terminators in the GUS transgene 3' reduced mRNA 3' readthrough, decreased GUS-specific small interfering RNA accumulation, and enhanced GUS gene expression. Moreover, RDR6 was localized in the nucleus. We propose that improperly terminated, unpolyadenylated mRNA from transgene transcription is subject to RDR6-mediated RNA silencing, probably by acting as templates for the RNA polymerase, in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Zhenghua Luo
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907-2054, USA
| | | |
Collapse
|
191
|
Vanderschuren H, Stupak M, Fütterer J, Gruissem W, Zhang P. Engineering resistance to geminiviruses--review and perspectives. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:207-20. [PMID: 17309676 DOI: 10.1111/j.1467-7652.2006.00217.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Following the conceptual development of virus resistance strategies ranging from coat protein-mediated interference of virus propagation to RNA-mediated virus gene silencing, much progress has been achieved to protect plants against RNA and DNA virus infections. Geminiviruses are a major threat to world agriculture, and breeding resistant crops against these DNA viruses is one of the major challenges faced by plant virologists and biotechnologists. In this article, we review the most recent transgene-based approaches that have been developed to achieve durable geminivirus resistance. Although most of the strategies have been tested in model plant systems, they are ready to be adopted for the protection of crop plants. Furthermore, a better understanding of geminivirus gene and protein functions, as well as the native immune system which protects plants against viruses, will allow us to develop novel tools to expand our current capacity to stabilize crop production in geminivirus epidemic zones.
Collapse
Affiliation(s)
- Hervé Vanderschuren
- Institute of Plant Sciences, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
192
|
Brunner AM, Li J, DiFazio SP, Shevchenko O, Montgomery BE, Mohamed R, Wei H, Ma C, Elias AA, VanWormer K, Strauss SH. Genetic containment of forest plantations. TREE GENETICS & GENOMES 2007; 3:75-100. [PMID: 0 DOI: 10.1007/s11295-006-0067-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
|
193
|
Sijen T, Steiner FA, Thijssen KL, Plasterk RHA. RETRACTED: Secondary siRNAs result from unprimed RNA synthesis and form a distinct class. Science 2007; 315:244-7. [PMID: 17158288 DOI: 10.1126/science.1136699] [Citation(s) in RCA: 301] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In Caenorhabditis elegans, an effective RNA interference (RNAi) response requires the production of secondary short interfering RNAs (siRNAs) by RNA-directed RNA polymerases (RdRPs). We cloned secondary siRNAs from transgenic C. elegans lines expressing a single 22-nucleotide primary siRNA. Several secondary siRNAs start a few nucleotides downstream of the primary siRNA, indicating that non-RISC (RNA-induced silencing complex)-cleaved mRNAs are substrates for secondary siRNA production. In lines expressing primary siRNAs with single-nucleotide mismatches, secondary siRNAs do not carry the mismatch but contain the nucleotide complementary to the mRNA. We infer that RdRPs perform unprimed RNA synthesis. Secondary siRNAs are only of antisense polarity, carry 5' di- or triphosphates, and are only in the minority associated with RDE-1, the RNAi-specific Argonaute protein. Therefore, secondary siRNAs represent a distinct class of small RNAs. Their biogenesis depends on RdRPs, and we propose that each secondary siRNA is an individual RdRP product.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Base Pairing
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Caenorhabditis elegans Proteins/metabolism
- Cloning, Molecular
- Phosphates/analysis
- RNA Interference
- RNA, Antisense/biosynthesis
- RNA, Antisense/chemistry
- RNA, Antisense/metabolism
- RNA, Complementary/biosynthesis
- RNA, Helminth/biosynthesis
- RNA, Helminth/genetics
- RNA, Helminth/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/biosynthesis
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/metabolism
- RNA-Dependent RNA Polymerase/metabolism
- Ribonuclease III/metabolism
Collapse
Affiliation(s)
- Titia Sijen
- Hubrecht Laboratory (NIOB-KNAW), Uppsalalaan 8, 3584 CT, the Netherlands
| | | | | | | |
Collapse
|
194
|
Haque AKMN, Tanaka Y, Sonoda S, Nishiguchi M. Analysis of transitive RNA silencing after grafting in transgenic plants with the coat protein gene of Sweet potato feathery mottle virus. PLANT MOLECULAR BIOLOGY 2007; 63:35-47. [PMID: 17160454 DOI: 10.1007/s11103-006-9070-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 08/02/2006] [Indexed: 05/09/2023]
Abstract
We have previously reported the graft transmission of target specificity for RNA silencing using transgenic Nicotiana benthamiana plants expressing the coat protein gene (CP, including the 3' non-translated region) of Sweet potato feathery mottle virus. Transgenic plants carrying the 5' 200 and 400 bp regions of CP were newly produced. From these plants, two silenced and two non-silenced lines were selected to investigate the manifestation of transitive RNA silencing by graft experiments. Non-silenced scions carrying the entire transgene were grafted onto either 5' or 3' silencing inducer rootstocks. When non-silenced scions were grafted onto 5' silencing inducer rootstocks, RNA silencing was induced in the non-silenced scions and spread toward the 3' region of the transgene mRNA. Similarly, when non-silenced scions were grafted onto 3' silencing inducer rootstocks, RNA silencing was induced in the non-silenced scions, but was restricted to the 3' region of the transgene and did not spread to the 5' region. In addition, results from crossing experiments, involving non-silenced and 3' silencing inducer plants, confirmed the above finding. This indicates that RNA silencing spreads in the 5'-3' direction, not in the 3'-5' direction, along the transgene mRNA.
Collapse
Affiliation(s)
- A K M Nazmul Haque
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan.
| | | | | | | |
Collapse
|
195
|
Abstract
Viruses are obligate, intracellular pathogens that must manipulate and exploit host molecular mechanisms to prosper in the hostile cellular environment. Here we review the strategies used by viruses to evade the immunity controlled by 21- to 26-nt small RNAs. Viral suppressors of RNA silencing (VSRs) are encoded by genetically diverse viruses infecting plants, invertebrates, and vertebrates. VSRs target key steps in the small RNA pathways by inhibiting small RNA production, sequestering small RNAs, or preventing short- and long-distance spread of RNA silencing. However, although VSRs are required for infection, explicit data demonstrating a role of silencing suppression in virus infection are available only for a few VSRs. A subset of VSRs bind double-stranded RNA, but a distinct protein fold is revealed for each of the four VSRs examined. We propose that VSR families are evolved independently as a viral adaptation to immunity. Unresolved issues on the role of RNA silencing in virus-host interactions are highlighted.
Collapse
Affiliation(s)
- Feng Li
- Graduate Program for Microbiology, University of California, Riverside, California 92521
| | - Shou-Wei Ding
- Graduate Program for Microbiology, University of California, Riverside, California 92521
- Department of Plant Pathology and Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, California 92521
| |
Collapse
|
196
|
Pak J, Fire A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 2006; 315:241-4. [PMID: 17124291 DOI: 10.1126/science.1132839] [Citation(s) in RCA: 436] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
RNA interference (RNAi) is a phylogenetically widespread gene-silencing process triggered by double-stranded RNA. In plants and Caenorhabditis elegans, two distinct populations of small RNAs have been proposed to participate in RNAi: "Primary siRNAs" (derived from DICER nuclease-mediated cleavage of the original trigger) and "secondary siRNAs" [additional small RNAs whose synthesis requires an RNA-directed RNA polymerase (RdRP)]. Analyzing small RNAs associated with ongoing RNAi in C. elegans, we found that secondary siRNAs constitute the vast majority. The bulk of secondary siRNAs exhibited structure and sequence indicative of a biosynthetic mode whereby each molecule derives from an independent de novo initiation by RdRP. Analysis of endogenous small RNAs indicated that a fraction derive from a biosynthetic mechanism that is similar to that of secondary siRNAs formed during RNAi, suggesting that small antisense transcripts derived from cellular messenger RNAs by RdRP activity may have key roles in cellular regulation.
Collapse
MESH Headings
- Animals
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/metabolism
- Caenorhabditis elegans Proteins/metabolism
- Cloning, Molecular
- MicroRNAs/metabolism
- Models, Genetic
- RNA Interference
- RNA, Antisense/biosynthesis
- RNA, Antisense/chemistry
- RNA, Antisense/metabolism
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Helminth/chemistry
- RNA, Helminth/genetics
- RNA, Helminth/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/biosynthesis
- RNA, Small Interfering/chemistry
- RNA, Small Interfering/metabolism
- RNA-Dependent RNA Polymerase/metabolism
Collapse
Affiliation(s)
- Julia Pak
- Departments of Pathology and Genetics, Stanford University School of Medicine, Stanford, CA 94305-5324, USA
| | | |
Collapse
|
197
|
Mitter N, Mitchell R, Dietzgen RG. Fate of hairpin transcript components during RNA silencing and its suppression in transgenic virus-resistant tobacco. J Biotechnol 2006; 126:115-22. [PMID: 16697483 DOI: 10.1016/j.jbiotec.2006.03.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 03/22/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
Transgenic tobacco plants, carrying a Potato virus Y (PVY)-NIa hairpin sequence separated by a unique unrelated spacer sequence were specifically silenced and highly resistant to PVY infection. In such plants neither PVY-NIa nor spacer transgene transcripts were detectable by specific quantitative real time reverse transcriptase PCR (RT-qPCR) assays of similar relative efficiencies developed for direct comparative analysis. However, small interfering RNAs (siRNAs) specific for the PVY sequence of the transgene and none specific for the LNYV spacer sequence were detected. Following infection with Cucumber mosaic virus (CMV), which suppresses dsRNA-induced RNA silencing, transcript levels of PVY-NIa as well as spacer sequence increased manifold with the same time course. The cellular abundance of the single-stranded (ss) spacer sequence was consistently higher than that of PVY dsRNA in all cases. The results show that during RNA silencing and its suppression of a hairpin transcript in transgenic tobacco, the ssRNA spacer sequence is affected differently than the dsRNA. In PVY-silenced plants, the spacer is efficiently degraded by a mechanism not involving the accumulation of siRNAs, while following suppression of RNA silencing by CMV, the spacer appears protected from degradation.
Collapse
Affiliation(s)
- Neena Mitter
- Department of Primary Industries and Fisheries, Emerging Technologies, Queensland Agricultural Biotechnology Centre, Queensland Bioscience Precinct, The University of Queensland, St. Lucia, Qld. 4072, Australia
| | | | | |
Collapse
|
198
|
Bleys A, Vermeersch L, Van Houdt H, Depicker A. The frequency and efficiency of endogene suppression by transitive silencing signals is influenced by the length of sequence homology. PLANT PHYSIOLOGY 2006; 142:788-96. [PMID: 16891552 PMCID: PMC1586036 DOI: 10.1104/pp.106.083956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 07/31/2006] [Indexed: 05/11/2023]
Abstract
Transitivity, the spread of RNA silencing along primary target sequences, leads to the degradation of secondary targets that have no sequence homology to the initial silencing trigger. We demonstrate that increasing the distance between direct and adjacent target sequences in a transgenic primary target delays the onset of silencing of a secondary target gene. Silencing can spread in a 3' to 5' direction over a distance of at least 500 nucleotides (nt), but this requires consistently more time compared to a distance of 98 nt or 250 nt. The efficiency and frequency of transitive silencing of an endogene depends on the length of its sequence homology with the primary target. With a length of 500 nt, efficient silencing can eventually be established in all plants, whereas lengths of 250 nt and 98 nt homology result in less efficient and less frequent suppression. These results suggest that amplification of secondary small interfering RNAs (siRNAs) is a time-requiring process that gradually expands the population of siRNAs until a steady-state level is reached. Moreover, the length of the sequence homology in the primary target providing secondary siRNAs determines whether this steady-state level readily exceeds the threshold necessary for efficient silencing.
Collapse
Affiliation(s)
- Annick Bleys
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Gent, Belgium
| | | | | | | |
Collapse
|
199
|
Herr AJ, Molnàr A, Jones A, Baulcombe DC. Defective RNA processing enhances RNA silencing and influences flowering of Arabidopsis. Proc Natl Acad Sci U S A 2006; 103:14994-5001. [PMID: 17008405 PMCID: PMC1581427 DOI: 10.1073/pnas.0606536103] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many eukaryotic cells use RNA-directed silencing mechanisms to protect against viruses and transposons and to suppress endogenous gene expression at the posttranscriptional level. RNA silencing also is implicated in epigenetic mechanisms affecting chromosome structure and transcriptional gene silencing. Here, we describe enhanced silencing phenotype (esp) mutants in Arabidopsis thaliana that reveal how proteins associated with RNA processing and 3' end formation can influence RNA silencing. These proteins were a putative DEAH RNA helicase homologue of the yeast PRP2 RNA splicing cofactor and homologues of mRNA 3' end formation proteins CstF64, symplekin/PTA1, and CPSF100. The last two proteins physically associated with the flowering time regulator FY in the 3' end formation complex AtCPSF. The phenotypes of the 3' end formation esp mutants include impaired termination of the transgene transcripts, early flowering, and enhanced silencing of the FCA-beta mRNA. Based on these findings, we propose that the ESP-containing 3' end formation complexes prevent transgene and endogenous mRNAs from entering RNA-silencing pathways. According to this proposal, in the absence of these ESP proteins, these RNAs have aberrant 3' termini. The aberrant RNAs would enter the RNA silencing pathways because they are converted into dsRNA by RNA-dependent RNA polymerases.
Collapse
Affiliation(s)
- Alan J. Herr
- Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Attila Molnàr
- Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Alex Jones
- Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - David C. Baulcombe
- Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, United Kingdom
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
200
|
Bleys A, Van Houdt H, Depicker A. Down-regulation of endogenes mediated by a transitive silencing signal. RNA (NEW YORK, N.Y.) 2006; 12:1633-9. [PMID: 16943416 PMCID: PMC1557701 DOI: 10.1261/rna.108106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Some RNA silencing systems in plants, nematodes, and fungi show spreading of silencing along target sequences, termed transitive silencing. Here, we address the question of whether endogenous targets can be silenced by a transitive silencing signal in plants. In transgenic Arabidopsis thaliana plants that harbored a silencing-inducing locus and a transgenic chimeric primary target, silencing of a secondary transgenic target occurred and the expression of the endogenous catalase genes was down-regulated, coinciding with a knock-down phenotype. Strikingly, the efficiency of the catalase silencing appeared to be correlated with the zygosity of the primary target locus and, to a lesser extent, with that of the silencing-inducing locus. These data suggest that silencing of an endogene induced by transgenic secondary small interfering RNAs (siRNAs) might depend on the amount of primary target transcripts that can act as template for the production of an efficient transitive silencing signal.
Collapse
Affiliation(s)
- Annick Bleys
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, B-9052 Gent, Belgium
| | | | | |
Collapse
|