151
|
Luo D, Bernard DG, Balk J, Hai H, Cui X. The DUF59 family gene AE7 acts in the cytosolic iron-sulfur cluster assembly pathway to maintain nuclear genome integrity in Arabidopsis. THE PLANT CELL 2012; 24:4135-48. [PMID: 23104832 PMCID: PMC3517241 DOI: 10.1105/tpc.112.102608] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/09/2012] [Accepted: 10/10/2012] [Indexed: 05/21/2023]
Abstract
Eukaryotic organisms have evolved a set of strategies to safeguard genome integrity, but the underlying mechanisms remain poorly understood. Here, we report that asymmetric leaves1/2 enhancer7 (AE7), an Arabidopsis thaliana gene encoding a protein in the evolutionarily conserved Domain of Unknown Function 59 family, participates in the cytosolic iron-sulfur (Fe-S) cluster assembly (CIA) pathway to maintain genome integrity. The severe ae7-2 allele is embryo lethal, whereas plants with the weak ae7 (ae7-1) allele are viable but exhibit highly accumulated DNA damage that activates the DNA damage response to arrest the cell cycle. AE7 is part of a protein complex with CIA1, NAR1, and MET18, which are highly conserved in eukaryotes and are involved in the biogenesis of cytosolic and nuclear Fe-S proteins. ae7-1 plants have lower activities of the cytosolic [4Fe-4S] enzyme aconitase and the nuclear [4Fe-4S] enzyme DNA glycosylase ROS1. Additionally, mutations in the gene encoding the mitochondrial ATP binding cassette transporter ATM3/ABCB25, which is required for the activity of cytosolic Fe-S enzymes in Arabidopsis, also result in defective genome integrity similar to that of ae7-1. These results indicate that AE7 is a central member of the CIA pathway, linking plant mitochondria to nuclear genome integrity through assembly of Fe-S proteins.
Collapse
Affiliation(s)
- Dexian Luo
- National Laboratory of Plant Molecular Genetics and Centre for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Delphine G. Bernard
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Janneke Balk
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
- The School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Huang Hai
- National Laboratory of Plant Molecular Genetics and Centre for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaofeng Cui
- National Laboratory of Plant Molecular Genetics and Centre for Plant Gene Research (Shanghai), Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- Address correspondence to
| |
Collapse
|
152
|
Moreno-Romero J, Armengot L, Mar Marquès-Bueno M, Britt A, Carmen Martínez M. CK2-defective Arabidopsis plants exhibit enhanced double-strand break repair rates and reduced survival after exposure to ionizing radiation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:627-638. [PMID: 22487192 DOI: 10.1111/j.1365-313x.2012.05019.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The multifunctional protein kinase CK2 is involved in several aspects of the DNA damage response (DDR) in mammals. To gain insight into the role of CK2 in plant genome maintenance, we studied the response to genotoxic agents of an Arabidopsis CK2 dominant-negative mutant (CK2mut plants). CK2mut plants were hypersensitive to a wide range of genotoxins that produce a variety of DNA lesions. However, they were able to activate the DDR after exposure to γ irradiation, as shown by accumulation of phosphorylated histone H2AX and up-regulation of sets of radio-modulated genes. Moreover, functional assays showed that mutant plants quickly repair the DNA damage produced by genotoxins, and that they exhibit preferential use of non-conservative mechanisms, which may explain plant lethality. The chromatin of CK2mut plants was more sensitive to digestion with micrococcal nuclease, suggesting compaction changes that agreed with the transcriptional changes detected for a number of genes involved in chromatin structure. Furthermore, CK2mut plants were prone to transcriptional gene silencing release upon genotoxic stress. Our results suggest that CK2 is required in the maintenance and control of genomic stability and chromatin structure in plants, and that this process affects several functions, including the DNA damage response and DNA repair.
Collapse
Affiliation(s)
- Jordi Moreno-Romero
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | |
Collapse
|
153
|
Kurzbauer MT, Uanschou C, Chen D, Schlögelhofer P. The recombinases DMC1 and RAD51 are functionally and spatially separated during meiosis in Arabidopsis. THE PLANT CELL 2012; 24:2058-70. [PMID: 22589466 PMCID: PMC3442587 DOI: 10.1105/tpc.112.098459] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/18/2012] [Accepted: 04/27/2012] [Indexed: 05/18/2023]
Abstract
Meiosis ensures the reduction of the genome before the formation of generative cells and promotes the exchange of genetic information between homologous chromosomes by recombination. Essential for these events are programmed DNA double strand breaks (DSBs) providing single-stranded DNA overhangs after their processing. These overhangs, together with the RADiation sensitive51 (RAD51) and DMC1 Disrupted Meiotic cDNA1 (DMC1) recombinases, mediate the search for homologous sequences. Current models propose that the two ends flanking a meiotic DSB have different fates during DNA repair, but the molecular details remained elusive. Here we present evidence, obtained in the model plant Arabidopsis thaliana, that the two recombinases, RAD51 and DMC1, localize to opposite sides of a meiotic DSB. We further demonstrate that the ATR kinase is involved in regulating DMC1 deposition at meiotic DSB sites, and that its elimination allows DMC1-mediated meiotic DSB repair even in the absence of RAD51. DMC1's ability to promote interhomolog DSB repair is not a property of the protein itself but the consequence of an ASYNAPTIC1 (Hop1)-mediated impediment for intersister repair. Taken together, these results demonstrate that DMC1 functions independently and spatially separated from RAD51 during meiosis and that ATR is an integral part of the regular meiotic program.
Collapse
|
154
|
Lang J, Smetana O, Sanchez-Calderon L, Lincker F, Genestier J, Schmit AC, Houlné G, Chabouté ME. Plant γH2AX foci are required for proper DNA DSB repair responses and colocalize with E2F factors. THE NEW PHYTOLOGIST 2012; 194:353-363. [PMID: 22339405 DOI: 10.1111/j.1469-8137.2012.04062.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Cellular responses to DNA double-strand breaks (DSBs) are linked in mammals and yeasts to the phosphorylated histones H2AX (γH2AX) repair foci which are multiproteic nuclear complexes responsible for DSB sensing and signalling. However, neither the components of these foci nor their role are yet known in plants. In this paper, we describe the effects of γH2AX deficiency in Arabidopsis thaliana plants challenged with DSBs in terms of genotoxic sensitivity and E2F-mediated transcriptional responses. We further establish the existence, restrictive to the G1/S transition, of specific DSB-induced foci containing tobacco E2F transcription factors, in both A. thaliana roots and BY-2 tobacco cells. These E2F foci partially colocalize with γH2AX foci while their formation is ataxia telangiectasia mutated (ATM)-dependent, requires the E2F transactivation domain with its retinoblastoma-binding site and is optimal in the presence of functional H2AXs. Overall, our results unveil a new interplay between plant H2AX and E2F transcriptional activators during the DSB response.
Collapse
Affiliation(s)
- Julien Lang
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Ondrej Smetana
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Lenin Sanchez-Calderon
- Laboratorio de Biología Molecular de Plantas Unidad Académica de Biología Experimental Universidad Autónoma de Zacatecas, Av. Revolución S/N Col. Tierra y Libertad CP, 98615 Guadalupe, Zacatecas, México
| | - Frédéric Lincker
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Julie Genestier
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Anne-Catherine Schmit
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Guy Houlné
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| | - Marie-Edith Chabouté
- Institut de Biologie Moléculaire des Plantes, laboratoire propre du CNRS, (UPR 2357) conventionné avec l'Université de Strasbourg 12, rue du Général Zimmer, 67084 Strasbourg Cedex, France
| |
Collapse
|
155
|
Smetana O, Široký J, Houlné G, Opatrný Z, Chabouté ME. Non-apoptotic programmed cell death with paraptotic-like features in bleomycin-treated plant cells is suppressed by inhibition of ATM/ATR pathways or NtE2F overexpression. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2631-44. [PMID: 22268149 DOI: 10.1093/jxb/err439] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In plants, different forms of programmed cell death (PCD) have been identified, but they only partially correspond to those described for animals, which is most probably due to structural differences between animal and plant cells. Here, the results show that in tobacco BY-2 cells, bleomycin (BLM), an inducer of double-strand breaks (DSBs), triggers a novel type of non-apoptotic PCD with paraptotic-like features. Analysis of numerous PCD markers revealed an extensive vacuolization, vacuolar rupture, and chromatin condensation, but no apoptotic DNA fragmentation, fragmentation of the nuclei, or sensitivity to caspase inhibitors. BLM-induced PCD was cell cycle regulated, occurring predominantly upon G(2)/M cell cycle checkpoint activation. In addition, this paraptotic-like PCD was at least partially inhibited by caffeine, a known inhibitor of DNA damage sensor kinases ATM and ATR. Interestingly, overexpression of one NtE2F transcriptional factor, whose homologues play a dual role in animal apoptosis and DNA repair, reduced PCD induction and modulated G(2)/M checkpoint activation in BY-2 cells. These observations provide a solid ground for further investigations into the paraptotic-like PCD in plants, which might represent an ancestral non-apoptotic form of PCD conserved among animals, protists, and plants.
Collapse
Affiliation(s)
- Ondřej Smetana
- Department of Plant Experimental Biology, Faculty of Sciences, Charles University, Prague 12844, Czech Republic
| | | | | | | | | |
Collapse
|
156
|
Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S, White CI, Rendtlew Danielsen JM, Yang YG, Qi Y. A role for small RNAs in DNA double-strand break repair. Cell 2012; 149:101-12. [PMID: 22445173 DOI: 10.1016/j.cell.2012.03.002] [Citation(s) in RCA: 443] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/15/2012] [Accepted: 03/07/2012] [Indexed: 12/13/2022]
Abstract
Eukaryotes have evolved complex mechanisms to repair DNA double-strand breaks (DSBs) through coordinated actions of protein sensors, transducers, and effectors. Here we show that ∼21-nucleotide small RNAs are produced from the sequences in the vicinity of DSB sites in Arabidopsis and in human cells. We refer to these as diRNAs for DSB-induced small RNAs. In Arabidopsis, the biogenesis of diRNAs requires the PI3 kinase ATR, RNA polymerase IV (Pol IV), and Dicer-like proteins. Mutations in these proteins as well as in Pol V cause significant reduction in DSB repair efficiency. In Arabidopsis, diRNAs are recruited by Argonaute 2 (AGO2) to mediate DSB repair. Knock down of Dicer or Ago2 in human cells reduces DSB repair. Our findings reveal a conserved function for small RNAs in the DSB repair pathway. We propose that diRNAs may function as guide molecules directing chromatin modifications or the recruitment of protein complexes to DSB sites to facilitate repair.
Collapse
Affiliation(s)
- Wei Wei
- Graduate Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Xu D, Huang W, Li Y, Wang H, Huang H, Cui X. Elongator complex is critical for cell cycle progression and leaf patterning in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:792-808. [PMID: 22026817 DOI: 10.1111/j.1365-313x.2011.04831.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The mitotic cell cycle in higher eukaryotes is of pivotal importance for organ growth and development. Here, we report that Elongator, an evolutionarily conserved histone acetyltransferase complex, acts as an important regulator of mitotic cell cycle to promote leaf patterning in Arabidopsis. Mutations in genes encoding Elongator subunits resulted in aberrant cell cycle progression, and the altered cell division affects leaf polarity formation. The defective cell cycle progression is caused by aberrant DNA replication and increased DNA damage, which activate the DNA replication checkpoint to arrest the cell cycle. Elongator interacts with proliferating cell nuclear antigen (PCNA) and is required for efficient histone 3 (H3) and H4 acetylation coupled with DNA replication. Levels of chromatin-bound H3K56Ac and H4K5Ac known to associate with replicons during DNA replication were reduced in the mutants of both Elongator and chromatin assembly factor 1 (CAF-1), another protein complex that physically interacts with PCNA for DNA replication-coupled chromatin assembly. Disruptions of CAF-1 also led to severe leaf polarity defects, which indicated that Elongator and CAF-1 act, at least partially, in the same pathway to promote cell cycle progression. Collectively, our results demonstrate that Elongator is an important regulator of mitotic cell cycle, and the Elongator pathway plays critical roles in promoting leaf polarity formation.
Collapse
Affiliation(s)
- Deyang Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China
| | | | | | | | | | | |
Collapse
|
158
|
Boltz KA, Leehy K, Song X, Nelson AD, Shippen DE. ATR cooperates with CTC1 and STN1 to maintain telomeres and genome integrity in Arabidopsis. Mol Biol Cell 2012; 23:1558-68. [PMID: 22357613 PMCID: PMC3327312 DOI: 10.1091/mbc.e11-12-1002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Telomeres protect chromosome ends from DNA damage. CTC1/STN1/TEN1 (CST), a core telomere-capping complex in plant and vertebrates, suppresses an ATR-dependent DNA damage response in Arabidopsis. Protracted ATR inactivation inhibits telomerase, hastening the onset of telomere dysfunction in CST mutants. The CTC1/STN1/TEN1 (CST) complex is an essential constituent of plant and vertebrate telomeres. Here we show that CST and ATR (ataxia telangiectasia mutated [ATM] and Rad3-related) act synergistically to maintain telomere length and genome stability in Arabidopsis. Inactivation of ATR, but not ATM, temporarily rescued severe morphological phenotypes associated with ctc1 or stn1. Unexpectedly, telomere shortening accelerated in plants lacking CST and ATR. In first-generation (G1) ctc1 atr mutants, enhanced telomere attrition was modest, but in G2 ctc1 atr, telomeres shortened precipitously, and this loss coincided with a dramatic decrease in telomerase activity in G2 atr mutants. Zeocin treatment also triggered a reduction in telomerase activity, suggesting that the prolonged absence of ATR leads to a hitherto-unrecognized DNA damage response (DDR). Finally, our data indicate that ATR modulates DDR in CST mutants by limiting chromosome fusions and transcription of DNA repair genes and also by promoting programmed cell death in stem cells. We conclude that the absence of CST in Arabidopsis triggers a multifaceted ATR-dependent response to facilitate maintenance of critically shortened telomeres and eliminate cells with severe telomere dysfunction.
Collapse
Affiliation(s)
- Kara A Boltz
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | | | | | |
Collapse
|
159
|
Nezames CD, Sjogren CA, Barajas JF, Larsen PB. The Arabidopsis cell cycle checkpoint regulators TANMEI/ALT2 and ATR mediate the active process of aluminum-dependent root growth inhibition. THE PLANT CELL 2012; 24:608-21. [PMID: 22345493 PMCID: PMC3315236 DOI: 10.1105/tpc.112.095596] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 01/06/2012] [Accepted: 02/02/2012] [Indexed: 05/17/2023]
Abstract
Aluminum (Al) toxicity is a global issue that severely limits root growth in acidic soils. Isolation of suppressors of the Arabidopsis thaliana Al-hypersensitive mutant, als3-1, resulted in identification of a cell cycle checkpoint factor, ALUMINUM TOLERANT2 (ALT2), which monitors and responds to DNA damage. ALT2 is required for active stoppage of root growth after Al exposure, because alt2 loss-of-function mutants fail to halt root growth after Al exposure, do not accumulate CyclinB1;1 in the root tip, and fail to force differentiation of the quiescent center. Thus, alt2-1 mutants are highly tolerant of Al levels that are severely inhibitory to the wild type. The alt2-1 allele is a loss-of-function mutation in a protein containing a putative DDB1-binding WD40 motif, previously identified as TANMEI, which is required for assessment of DNA integrity, including monitoring of DNA crosslinks. alt2-1 and atr loss-of-function mutants, the latter of which affects the cell cycle checkpoint ATAXIA TELANGIECTASIA-MUTATED AND RAD3-RELATED, are severely sensitive to DNA crosslinking agents and have increased Al tolerance. These results suggest that Al likely acts as a DNA-damaging agent in vivo and that Al-dependent root growth inhibition, in part, arises from detection of and response to this damage by TANMEI/ALT2 and ATR, both of which actively halt cell cycle progression and force differentiation of the quiescent center.
Collapse
Affiliation(s)
| | | | | | - Paul B. Larsen
- Department of Biochemistry, University of California, Riverside, California 92521
| |
Collapse
|
160
|
Waterworth WM, Drury GE, Bray CM, West CE. Repairing breaks in the plant genome: the importance of keeping it together. THE NEW PHYTOLOGIST 2011; 192:805-822. [PMID: 21988671 DOI: 10.1111/j.1469-8137.2011.03926.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
DNA damage threatens the integrity of the genome and has potentially lethal consequences for the organism. Plant DNA is under continuous assault from endogenous and environmental factors and effective detection and repair of DNA damage are essential to ensure the stability of the genome. One of the most cytotoxic forms of DNA damage are DNA double-strand breaks (DSBs) which fragment chromosomes. Failure to repair DSBs results in loss of large amounts of genetic information which, following cell division, severely compromises daughter cells that receive fragmented chromosomes. This review will survey recent advances in our understanding of plant responses to chromosomal breaks, including the sources of DNA damage, the detection and signalling of DSBs, mechanisms of DSB repair, the role of chromatin structure in repair, DNA damage signalling and the link between plant recombination pathways and transgene integration. These mechanisms are of critical importance for maintenance of plant genome stability and integrity under stress conditions and provide potential targets for the improvement of crop plants both for stress resistance and for increased precision in the generation of genetically improved varieties.
Collapse
Affiliation(s)
| | - Georgina E Drury
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Clifford M Bray
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
161
|
Amiard S, Depeiges A, Allain E, White CI, Gallego ME. Arabidopsis ATM and ATR kinases prevent propagation of genome damage caused by telomere dysfunction. THE PLANT CELL 2011; 23:4254-65. [PMID: 22158468 PMCID: PMC3269864 DOI: 10.1105/tpc.111.092387] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 05/18/2023]
Abstract
The ends of linear eukaryotic chromosomes are hidden in nucleoprotein structures called telomeres, and loss of the telomere structure causes inappropriate repair, leading to severe karyotypic and genomic instability. Although it has been shown that DNA damaging agents activate a DNA damage response (DDR), little is known about the signaling of dysfunctional plant telomeres. We show that absence of telomerase in Arabidopsis thaliana elicits an ATAXIA-TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR)-dependent DDR at telomeres, principally through ATM. By contrast, telomere dysfunction induces an ATR-dependent response in telomeric Conserved telomere maintenance component1 (Ctc1)-Suppressor of cdc thirteen (Stn1)-Telomeric pathways in association with Stn1 (CST)-complex mutants. These results uncover a new role for the CST complex in repressing the ATR-dependent DDR pathway in plant cells and show that plant cells use two different DNA damage surveillance pathways to signal telomere dysfunction. The absence of either ATM or ATR in ctc1 and stn1 mutants significantly enhances developmental and genome instability while reducing stem cell death. These data thus give a clear illustration of the action of ATM/ATR-dependent programmed cell death in maintaining genomic integrity through elimination of genetically unstable cells.
Collapse
|
162
|
González Besteiro MA, Bartels S, Albert A, Ulm R. Arabidopsis MAP kinase phosphatase 1 and its target MAP kinases 3 and 6 antagonistically determine UV-B stress tolerance, independent of the UVR8 photoreceptor pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:727-37. [PMID: 21790814 DOI: 10.1111/j.1365-313x.2011.04725.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants perceive UV-B radiation as an informational signal by a pathway involving UVR8 as UV-B photoreceptor, activating photomorphogenic and acclimation responses. In contrast, the response to UV-B as an environmental stress involves mitogen-activated protein kinase (MAPK) signalling cascades. Whereas the perception pathway is plant specific, the UV-B stress pathway is more broadly conserved. Knowledge of the UV-B stress-activated MAPK signalling pathway in plants is limited, and its potential interplay with the UVR8-mediated pathway has not been defined. Here, we show that loss of MAP kinase phosphatase 1 in the mutant mkp1 results in hypersensitivity to acute UV-B stress, but without impairing UV-B acclimation. The MKP1-interacting proteins MPK3 and MPK6 are activated by UV-B stress and are hyperactivated in mkp1. Moreover, mutants mpk3 and mpk6 exhibit elevated UV-B tolerance and partially suppress the UV-B hypersensitivity of mkp1. We show further that the MKP1-regulated stress-response MAPK pathway is independent of the UVR8 photoreceptor, but that MKP1 also contributes to survival under simulated sunlight. We conclude that, whereas UVR8-mediated acclimation in plants promotes UV-B-induced defence measures, MKP1-regulated stress signalling results when UV-B protection and repair are insufficient and damage occurs. The combined activity of these two mechanisms is crucial to UV-B tolerance in plants.
Collapse
Affiliation(s)
- Marina A González Besteiro
- Department of Botany and Plant Biology, University of Geneva, Sciences III, CH-1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
163
|
Curtis MJ, Hays JB. Cooperative responses of DNA-damage-activated protein kinases ATR and ATM and DNA translesion polymerases to replication-blocking DNA damage in a stem-cell niche. DNA Repair (Amst) 2011; 10:1272-81. [PMID: 22018494 DOI: 10.1016/j.dnarep.2011.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 09/28/2011] [Accepted: 10/02/2011] [Indexed: 01/27/2023]
Abstract
Conserved DNA-damage responses (DDRs) efficiently cope with replication blocks and double-strand breaks (DSBs) in cultured eukaryotic cells; DDRs in tissues remain poorly understood. DDR-inactivating mutations lethal in animals are tolerated in Arabidopsis, whose root meristem provides a powerful stem-cell-niche model. We imaged UVB-induced death of specific meristem cells in single and double Arabidopsis mutants to elucidate cooperation among DNA translesion synthesis (TLS) polymerases (Polη, Polζ) and DNA-damage-activated protein kinases (ATR, ATM). Death was 100-fold higher in stem and progenitor (StPr) cells than in transiently amplifying cells. Quantitative analyses of dose-response plots showed that Polη and Polζ act redundantly to tolerate replication blocks and that Polζ-mediated TLS requires ATR. Deficient TLS resulted in ATM-signaled death, which first appeared 10-14h post-UVB. Although ssDNA downstream of blocks was likely cleaved into DSBs throughout S phase, death pathways appeared to initiate late in S. In atm mutants death appeared much later, likely signaled by a slow ATR-dependent pathway. To bypass replication blocks, tissues may use TLS rather than error-free pathways that could generate genomic aberrations. Dynamic balances among ATR and ATM death-avoidance and death-signaling functions determine how many DSB-burdened StPr cells are killed. Their replacement by less-burdened quiescent-center cells then restores growth homeostasis.
Collapse
Affiliation(s)
- Marc J Curtis
- Department of Environmental and Molecular Toxicology, Oregon State University, 1007 ALS, Campus Way, Corvallis, OR 97331, United States
| | | |
Collapse
|
164
|
Sakamoto T, Inui YT, Uraguchi S, Yoshizumi T, Matsunaga S, Mastui M, Umeda M, Fukui K, Fujiwara T. Condensin II alleviates DNA damage and is essential for tolerance of boron overload stress in Arabidopsis. THE PLANT CELL 2011; 23:3533-46. [PMID: 21917552 PMCID: PMC3203421 DOI: 10.1105/tpc.111.086314] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 08/07/2011] [Accepted: 08/29/2011] [Indexed: 05/18/2023]
Abstract
Although excess boron (B) is known to negatively affect plant growth, its molecular mechanism of toxicity is unknown. We previously isolated two Arabidopsis thaliana mutants, hypersensitive to excess B (heb1-1 and heb2-1). In this study, we found that HEB1 and HEB2 encode the CAP-G2 and CAP-H2 subunits, respectively, of the condensin II protein complex, which functions in the maintenance of chromosome structure. Growth of Arabidopsis seedlings in medium containing excess B induced expression of condensin II subunit genes. Simultaneous treatment with zeocin, which induces DNA double-strand breaks (DSBs), and aphidicolin, which blocks DNA replication, mimicked the effect of excess B on root growth in the heb mutants. Both excess B and the heb mutations upregulated DSBs and DSB-inducible gene transcription, suggesting that DSBs are a cause of B toxicity and that condensin II reduces the incidence of DSBs. The Arabidopsis T-DNA insertion mutant atr-2, which is sensitive to replication-blocking reagents, was also sensitive to excess B. Taken together, these data suggest that the B toxicity mechanism in plants involves DSBs and possibly replication blocks and that plant condensin II plays a role in DNA damage repair or in protecting the genome from certain genotoxic stressors, particularly excess B.
Collapse
Affiliation(s)
- Takuya Sakamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yayoi Tsujimoto Inui
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shimpei Uraguchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takeshi Yoshizumi
- Plant Functional Genomics Research Team, Plant Functional Genomics Research Group, Plant Science Center RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Minami Mastui
- Plant Functional Genomics Research Team, Plant Functional Genomics Research Group, Plant Science Center RIKEN Yokohama Institute, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masaaki Umeda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0101, Japan
| | - Kiichi Fukui
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toru Fujiwara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
- Core Research for Evolutional Science and Technology, Japan Science and 21 Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan
- Address correspondence to
| |
Collapse
|
165
|
Huefner ND, Mizuno Y, Weil CF, Korf I, Britt AB. Breadth by depth: expanding our understanding of the repair of transposon-induced DNA double strand breaks via deep-sequencing. DNA Repair (Amst) 2011; 10:1023-33. [PMID: 21889425 DOI: 10.1016/j.dnarep.2011.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 07/26/2011] [Indexed: 01/20/2023]
Abstract
The transposases of DNA transposable elements catalyze the excision of the element from the host genome, but are not involved in the repair of the resulting double-strand break. To elucidate the role of various host DNA repair and damage response proteins in the repair of the hairpin-ended double strand breaks (DSBs) generated during excision of the maize Ac element in Arabidopsis thaliana, we deep-sequenced hundreds of thousands of somatic excision products from a variety of repair- or response-defective mutants. We find that each of these repair/response defects negatively affects the preservation of the ends, resulting in an enhanced frequency of deletions, insertions, and inversions at the excision site. The spectra of the resulting repair products demonstrate, not unexpectedly, that the canonical nonhomologous end joining (NHEJ) proteins DNA ligase IV and KU70 play an important role in the repair of the lesion generated by Ac excision. Our data also indicate that auxiliary NHEJ repair proteins such as DNA ligase VI and DNA polymerase lambda are routinely involved in the repair of these lesions. Roles for the damage response kinases ATM and ATR in the repair of transposition-induced DSBs are also discussed.
Collapse
Affiliation(s)
- Neil D Huefner
- Department of Plant Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
166
|
Mannuss A, Trapp O, Puchta H. Gene regulation in response to DNA damage. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:154-65. [PMID: 21867786 DOI: 10.1016/j.bbagrm.2011.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 11/17/2022]
Abstract
To deal with different kinds of DNA damages, there are a number of repair pathways that must be carefully orchestrated to guarantee genomic stability. Many proteins that play a role in DNA repair are involved in multiple pathways and need to be tightly regulated to conduct the functions required for efficient repair of different DNA damage types, such as double strand breaks or DNA crosslinks caused by radiation or genotoxins. While most of the factors involved in DNA repair are conserved throughout the different kingdoms, recent results have shown that the regulation of their expression is variable between different organisms. In the following paper, we give an overview of what is currently known about regulating factors and gene expression in response to DNA damage and put this knowledge in context with the different DNA repair pathways in plants. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.
Collapse
Affiliation(s)
- Anja Mannuss
- Botanical Institute II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | |
Collapse
|
167
|
Böhmdorfer G, Schleiffer A, Brunmeir R, Ferscha S, Nizhynska V, Kozák J, Angelis KJ, Kreil DP, Schweizer D. GMI1, a structural-maintenance-of-chromosomes-hinge domain-containing protein, is involved in somatic homologous recombination in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:420-33. [PMID: 21481027 DOI: 10.1111/j.1365-313x.2011.04604.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
DNA double-strand breaks (DSBs) pose one of the most severe threats to genome integrity, potentially leading to cell death. After detection of a DSB, the DNA damage and repair response is initiated and the DSB is repaired by non-homologous end joining and/or homologous recombination. Many components of these processes are still unknown in Arabidopsis thaliana. In this work, we characterized γ-irradiation and mitomycin C induced 1 (GMI1), a member of the SMC-hinge domain-containing protein family. RT-PCR analysis and promoter-GUS fusion studies showed that γ-irradiation, the radio-mimetic drug bleocin, and the DNA cross-linking agent mitomycin C strongly enhance GMI1 expression particularly in meristematic tissues. The induction of GMI1 by γ-irradiation depends on the signalling kinase Ataxia telangiectasia-mutated (ATM) but not on ATM and Rad3-related (ATR). Epistasis analysis of single and double mutants demonstrated that ATM acts upstream of GMI1 while the atr gmi1-2 double mutant was more sensitive than the respective single mutants. Comet assay revealed a reduced rate of DNA double-strand break repair in gmi1 mutants during the early recovery phase after exposure to bleocin. Moreover, the rate of homologous recombination of a reporter construct was strongly reduced in gmi1 mutant plants upon exposure to bleocin or mitomycin C. GMI1 is the first member of its protein family known to be involved in DNA repair.
Collapse
MESH Headings
- Arabidopsis/drug effects
- Arabidopsis/genetics
- Arabidopsis/metabolism
- Arabidopsis/radiation effects
- Arabidopsis Proteins/genetics
- Arabidopsis Proteins/metabolism
- Chromosomes, Plant/metabolism
- Cloning, Molecular
- Comet Assay
- DNA Breaks, Double-Stranded
- DNA Repair
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Plant/genetics
- DNA, Plant/metabolism
- Flowers/drug effects
- Flowers/metabolism
- Flowers/radiation effects
- Gene Expression Regulation, Plant
- Gene Fusion
- Meristem/drug effects
- Meristem/metabolism
- Meristem/radiation effects
- Microarray Analysis
- Mitomycin/pharmacology
- Mutagenesis, Insertional
- Recombination, Genetic
- Reverse Transcriptase Polymerase Chain Reaction
- Seedlings/drug effects
- Seedlings/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Gudrun Böhmdorfer
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Programmed induction of endoreduplication by DNA double-strand breaks in Arabidopsis. Proc Natl Acad Sci U S A 2011; 108:10004-9. [PMID: 21613568 DOI: 10.1073/pnas.1103584108] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genome integrity is continuously threatened by external stresses and endogenous hazards such as DNA replication errors and reactive oxygen species. The DNA damage checkpoint in metazoans ensures genome integrity by delaying cell-cycle progression to repair damaged DNA or by inducing apoptosis. ATM and ATR (ataxia-telangiectasia-mutated and -Rad3-related) are sensor kinases that relay the damage signal to transducer kinases Chk1 and Chk2 and to downstream cell-cycle regulators. Plants also possess ATM and ATR orthologs but lack obvious counterparts of downstream regulators. Instead, the plant-specific transcription factor SOG1 (suppressor of gamma response 1) plays a central role in the transmission of signals from both ATM and ATR kinases. Here we show that in Arabidopsis, endoreduplication is induced by DNA double-strand breaks (DSBs), but not directly by DNA replication stress. When root or sepal cells, or undifferentiated suspension cells, were treated with DSB inducers, they displayed increased cell size and DNA ploidy. We found that the ATM-SOG1 and ATR-SOG1 pathways both transmit DSB-derived signals and that either one suffices for endocycle induction. These signaling pathways govern the expression of distinct sets of cell-cycle regulators, such as cyclin-dependent kinases and their suppressors. Our results demonstrate that Arabidopsis undergoes a programmed endoreduplicative response to DSBs, suggesting that plants have evolved a distinct strategy to sustain growth under genotoxic stress.
Collapse
|
169
|
Hlavová M, Čížková M, Vítová M, Bišová K, Zachleder V. DNA damage during G2 phase does not affect cell cycle progression of the green alga Scenedesmus quadricauda. PLoS One 2011; 6:e19626. [PMID: 21603605 PMCID: PMC3095609 DOI: 10.1371/journal.pone.0019626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 04/11/2011] [Indexed: 11/19/2022] Open
Abstract
DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase.
Collapse
Affiliation(s)
- Monika Hlavová
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, ASCR, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Mária Čížková
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, ASCR, Třeboň, Czech Republic
| | - Milada Vítová
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, ASCR, Třeboň, Czech Republic
| | - Kateřina Bišová
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, ASCR, Třeboň, Czech Republic
- * E-mail:
| | - Vilém Zachleder
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, ASCR, Třeboň, Czech Republic
| |
Collapse
|
170
|
Spadafora ND, Doonan JH, Herbert RJ, Bitonti MB, Wallace E, Rogers HJ, Francis D. Arabidopsis T-DNA insertional lines for CDC25 are hypersensitive to hydroxyurea but not to zeocin or salt stress. ANNALS OF BOTANY 2011; 107:1183-92. [PMID: 20647223 PMCID: PMC3091795 DOI: 10.1093/aob/mcq142] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS In yeasts and animals, cyclin-dependent kinases are key regulators of cell cycle progression and are negatively and positively regulated by WEE1 kinase and CDC25 phosphatase, respectively. In higher plants a full-length orthologue of CDC25 has not been isolated but a shorter gene with homology only to the C-terminal catalytic domain is present. The Arabidopis thaliana;CDC25 can act as a phosphatase in vitro. Since in arabidopsis, WEE1 plays an important role in the DNA damage/DNA replication checkpoints, the role of Arath;CDC25 in conditions that induce these checkpoints or induce abiotic stress was tested. Methods arath;cdc25 T-DNA insertion lines, Arath;CDC25 over-expressing lines and wild type were challenged with hydroxyurea (HU) and zeocin, substances that stall DNA replication and damage DNA, respectively, together with an abiotic stressor, NaCl. A molecular and phenotypic assessment was made of all genotypes Key RESULTS There was a null phenotypic response to perturbation of Arath;CDC25 expression under control conditions. However, compared with wild type, the arath;cdc25 T-DNA insertion lines were hypersensitive to HU, whereas the Arath;CDC25 over-expressing lines were relatively insensitive. In particular, the over-expressing lines consistently outgrew the T-DNA insertion lines and wild type when challenged with HU. All genotypes were equally sensitive to zeocin and NaCl. CONCLUSIONS Arath;CDC25 plays a role in overcoming stress imposed by HU, an agent know to induce the DNA replication checkpoint in arabidopsis. However, it could not enhance tolerance to either a zeocin treatment, known to induce DNA damage, or salinity stress.
Collapse
Affiliation(s)
- Natasha D. Spadafora
- School of Biosciences, Cardiff University, Main College, Cardiff CF10 3AT, UK
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
| | - John H. Doonan
- Department of Cell Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
| | - Robert J. Herbert
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
| | - M. Beatrice Bitonti
- Dipartimento di Ecologia, Università della Calabria, Arcavacata di Rende, I-87030 Cosenza, Italy
| | - Emily Wallace
- School of Biosciences, Cardiff University, Main College, Cardiff CF10 3AT, UK
| | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Main College, Cardiff CF10 3AT, UK
| | - Dennis Francis
- School of Biosciences, Cardiff University, Main College, Cardiff CF10 3AT, UK
- For correspondence. E-mail
| |
Collapse
|
171
|
Abstract
BACKGROUND The complex events of mitosis rely on precise timing and on immaculate preparation for their success, but the G₂/M transition in the plant cell cycle is currently steeped in controversy and alternative models. SCOPE In this brief review, the regulation of the G₂/M transition in plants is commented on. The extent to which the G₂/M transition is phosphoregulated by WEE1 kinase and CDC25 phosphatase, as exemplified in yeasts and animals, is discussed together with an alternative model that excludes these proteins from this transition. Arabidopsis T-DNA insertional lines for WEE1 and CDC25 that develop normally prompted the latter model. An argument is then presented that environmental stress is the norm for higher plants in temperate conditions. If so, the repressive role that WEE1 has under checkpoint conditions might be part of the normal cell cycle for many proliferative plant cells. Arabidopsis CDC25 can function as either a phosphatase or an arsenate reductase and recent evidence suggests that cdc25 knockouts are hypersensitive to hydroxyurea, a drug that induces the DNA-replication checkpoint. That other data show a null response of these knockouts to hydroxyurea leads to an airing of the controversy surrounding the enigmatic plant CDC25 at the G₂/M transition.
Collapse
Affiliation(s)
- Dennis Francis
- School of Biosciences, Cardiff University, Main Building, Cardiff, UK.
| |
Collapse
|
172
|
Kempinski CF, Haffar R, Barth C. Toward the mechanism of NH(4) (+) sensitivity mediated by Arabidopsis GDP-mannose pyrophosphorylase. PLANT, CELL & ENVIRONMENT 2011; 34:847-58. [PMID: 21332510 DOI: 10.1111/j.1365-3040.2011.02290.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The ascorbic acid (AA)-deficient Arabidopsis thaliana mutant vtc1-1, which is defective in GDP-mannose pyrophosphorylase (GMPase), exhibits conditional hypersensitivity to ammonium (NH(4) (+) ), a phenomenon that is independent of AA deficiency. As GMPase is important for GDP-mannose biosynthesis, a nucleotide sugar necessary for protein N-glycosylation, it has been thought that GDP-mannose deficiency is responsible for the growth defect in vtc1-1 in the presence of NH(4) (+) . Therefore, the motivation for this work was to elucidate the growth and developmental processes that are affected in vtc1-1 in the presence of NH(4) (+) and to determine whether GDP-mannose deficiency generally causes NH(4) (+) sensitivity. Furthermore, as NH(4) (+) may alter cytosolic pH, we investigated the responses of vtc1-1 to pH changes in the presence and absence of NH(4) (+) . Using qRT-PCR and staining procedures, we demonstrate that defective N-glycosylation in vtc1-1 contributes to cell wall, membrane and cell cycle defects, resulting in root growth inhibition in the presence of NH(4) (+) . However, by using mutants acting upstream of vtc1-1 and contributing to GDP-mannose biosynthesis, we show that GDP-mannose deficiency does not generally lead to and is not the primary cause of NH(4) (+) sensitivity. Instead, our data suggest that GMPase responds to pH alterations in the presence of NH(4) (+) .
Collapse
Affiliation(s)
- Chase F Kempinski
- Department of Biology, West Virginia University, 5228 Life Sciences Building, 53 Campus Drive, Morgantown, West Virginia 26506-6057, USA
| | | | | |
Collapse
|
173
|
Jiang L, Wang Y, Björn LO, Li S. UV-B-induced DNA damage mediates expression changes of cell cycle regulatory genes in Arabidopsis root tips. PLANTA 2011; 233:831-41. [PMID: 21221633 DOI: 10.1007/s00425-010-1340-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 12/17/2010] [Indexed: 05/05/2023]
Abstract
Even though a number of studies have shown that UV-B radiation inhibits plant growth and regulates the cell cycle progress, little is known about the molecular and cellular mechanisms. Here, we developed a synchronous root-tip cell system to investigate expression changes of cell cycle marker genes and DNA damage under UV-B radiation. Expression analysis of cell cycle marker genes revealed that G1-to-S transition in root-tip cells was accomplished within 6 h. In the in vivo synchronous root-tip cells, high level of UV-B radiation (0.45 W m(-2)) induced expression changes of the cell cycle regulatory genes. Genes involved in G1-to-S transition, Histone H4 and E2Fa, were down-regulated by UV-B radiation during 2-6 h; whereas transcripts for KRP2, a negative regulator of G1-to-S transition, were up-regulated by UV-B at 2 h. The peak time for transcript level of CYCD3;1, a positive factor in G1-to-S transition, was delayed by UV-B radiation. Interestingly, a medium level of UV-B radiation (0.25 W m(-2)) did not change the expression of these genes in root tip cells from wild type. However, cell cycle regulatory genes were greatly affected in uvh1 mutant, which exhibited higher content of cyclobutane pyrimidine dimers (CPDs). Ascorbic acid treatment did not change the expression pattern of cell cycle regulatory genes that were affected by high-level UV-B. Our results implied that UV-B-induced DNA damage results in the delay of G1-to-S transition of plant cell cycle. UV-B-induced G1-to-S arrest may be a protective mechanism that prevents cells with damaged DNA from dividing and may explain the plant growth inhibition under increased solar UV-B radiation.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | | | | | | |
Collapse
|
174
|
Cools T, Iantcheva A, Weimer AK, Boens S, Takahashi N, Maes S, Van den Daele H, Van Isterdael G, Schnittger A, De Veylder L. The Arabidopsis thaliana checkpoint kinase WEE1 protects against premature vascular differentiation during replication stress. THE PLANT CELL 2011; 23:1435-48. [PMID: 21498679 PMCID: PMC3101530 DOI: 10.1105/tpc.110.082768] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 03/22/2011] [Accepted: 03/30/2011] [Indexed: 05/17/2023]
Abstract
A sessile lifestyle forces plants to respond promptly to factors that affect their genomic integrity. Therefore, plants have developed checkpoint mechanisms to arrest cell cycle progression upon the occurrence of DNA stress, allowing the DNA to be repaired before onset of division. Previously, the WEE1 kinase had been demonstrated to be essential for delaying progression through the cell cycle in the presence of replication-inhibitory drugs, such as hydroxyurea. To understand the severe growth arrest of WEE1-deficient plants treated with hydroxyurea, a transcriptomics analysis was performed, indicating prolonged S-phase duration. A role for WEE1 during S phase was substantiated by its specific accumulation in replicating nuclei that suffered from DNA stress. Besides an extended replication phase, WEE1 knockout plants accumulated dead cells that were associated with premature vascular differentiation. Correspondingly, plants without functional WEE1 ectopically expressed the vascular differentiation marker VND7, and their vascular development was aberrant. We conclude that the growth arrest of WEE1-deficient plants is due to an extended cell cycle duration in combination with a premature onset of vascular cell differentiation. The latter implies that the plant WEE1 kinase acquired an indirect developmental function that is important for meristem maintenance upon replication stress.
Collapse
Affiliation(s)
- Toon Cools
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Anelia Iantcheva
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Annika K. Weimer
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes–Centre National de Recherche Scientifique, Unité Propre de Recherche 2357, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Shannah Boens
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Naoki Takahashi
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Sara Maes
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Hilde Van den Daele
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Gert Van Isterdael
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes–Centre National de Recherche Scientifique, Unité Propre de Recherche 2357, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
- Address correspondence to
| |
Collapse
|
175
|
Vanderauwera S, Suzuki N, Miller G, van de Cotte B, Morsa S, Ravanat JL, Hegie A, Triantaphylidès C, Shulaev V, Van Montagu MCE, Van Breusegem F, Mittler R. Extranuclear protection of chromosomal DNA from oxidative stress. Proc Natl Acad Sci U S A 2011. [PMID: 21220338 DOI: 10.1073/pnas.101835910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023] Open
Abstract
Eukaryotic organisms evolved under aerobic conditions subjecting nuclear DNA to damage provoked by reactive oxygen species (ROS). Although ROS are thought to be a major cause of DNA damage, little is known about the molecular mechanisms protecting nuclear DNA from oxidative stress. Here we show that protection of nuclear DNA in plants requires a coordinated function of ROS-scavenging pathways residing in the cytosol and peroxisomes, demonstrating that nuclear ROS scavengers such as peroxiredoxin and glutathione are insufficient to safeguard DNA integrity. Both catalase (CAT2) and cytosolic ascorbate peroxidase (APX1) play a key role in protecting the plant genome against photorespiratory-dependent H(2)O(2)-induced DNA damage. In apx1/cat2 double-mutant plants, a DNA damage response is activated, suppressing growth via a WEE1 kinase-dependent cell-cycle checkpoint. This response is correlated with enhanced tolerance to oxidative stress, DNA stress-causing agents, and inhibited programmed cell death.
Collapse
|
176
|
Abstract
Eukaryotic organisms evolved under aerobic conditions subjecting nuclear DNA to damage provoked by reactive oxygen species (ROS). Although ROS are thought to be a major cause of DNA damage, little is known about the molecular mechanisms protecting nuclear DNA from oxidative stress. Here we show that protection of nuclear DNA in plants requires a coordinated function of ROS-scavenging pathways residing in the cytosol and peroxisomes, demonstrating that nuclear ROS scavengers such as peroxiredoxin and glutathione are insufficient to safeguard DNA integrity. Both catalase (CAT2) and cytosolic ascorbate peroxidase (APX1) play a key role in protecting the plant genome against photorespiratory-dependent H(2)O(2)-induced DNA damage. In apx1/cat2 double-mutant plants, a DNA damage response is activated, suppressing growth via a WEE1 kinase-dependent cell-cycle checkpoint. This response is correlated with enhanced tolerance to oxidative stress, DNA stress-causing agents, and inhibited programmed cell death.
Collapse
|
177
|
Inagaki S, Umeda M. Cell-Cycle Control and Plant Development. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 291:227-61. [DOI: 10.1016/b978-0-12-386035-4.00007-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
178
|
Charbonnel C, Gallego ME, White CI. Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:280-90. [PMID: 21070408 DOI: 10.1111/j.1365-313x.2010.04331.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Double-strand breakage (DSB) of DNA involves loss of information on the two strands of the DNA fibre and thus cannot be repaired by simple copying of the complementary strand which is possible with single-strand DNA damage. Homologous recombination (HR) can precisely repair DSB using another copy of the genome as template and non-homologous recombination (NHR) permits repair of DSB with little or no dependence on DNA sequence homology. In addition to the well-characterised Ku-dependent non-homologous end-joining (NHEJ) pathway, much recent attention has been focused on Ku-independent NHR. The complex interrelationships and regulation of NHR pathways remain poorly understood, even more so in the case of plants, and we present here an analysis of Ku-dependent and Ku-independent repair of DSB in Arabidopsis thaliana. We have characterised an Arabidopsis xrcc1 mutant and developed quantitative analysis of the kinetics of appearance and loss of γ-H2AX foci as a tool to measure DSB repair in dividing root tip cells of γ-irradiated plants in vivo. This approach has permitted determination of DSB repair kinetics in planta following a short pulse of γ-irradiation, establishing the existence of a Ku-independent, Xrcc1-dependent DSB repair pathway. Furthermore, our data show a role for Ku80 during the first minutes post-irradiation and that Xrcc1 also plays such a role, but only in the absence of Ku. The importance of Xrcc1 is, however, clearly visible at later times in the presence of Ku, showing that alternative end-joining plays an important role in DSB repair even in the presence of active NHEJ.
Collapse
Affiliation(s)
- Cyril Charbonnel
- Génétique, Reproduction et Développement, UMR CNRS 6247 - Clermont Université- INSERM U931, Université Blaise Pascal, UFR Sciences et Technologies, 24 Avenue des Landais, Aubière Cedex, France
| | | | | |
Collapse
|
179
|
Amiard S, Charbonnel C, Allain E, Depeiges A, White CI, Gallego ME. Distinct roles of the ATR kinase and the Mre11-Rad50-Nbs1 complex in the maintenance of chromosomal stability in Arabidopsis. THE PLANT CELL 2010; 22:3020-33. [PMID: 20876831 PMCID: PMC2965537 DOI: 10.1105/tpc.110.078527] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 09/04/2010] [Accepted: 09/13/2010] [Indexed: 05/17/2023]
Abstract
Signaling of chromosomal DNA breaks is of primary importance for initiation of repair and, thus, for global genomic stability. Although the Mre11-Rad50-Nbs1 (MRN) complex is the first sensor of double-strand breaks, its role in double-strand break (DSB) signaling is not fully understood. We report the absence of γ-ray-induced, ATM/ATR-dependent histone H2AX phosphorylation in Arabidopsis thaliana rad50 and mre11 mutants, confirming that the MRN complex is required for H2AX phosphorylation by the ATM and ATR kinases in response to irradiation-induced DSB in Arabidopsis. rad50 and mre11 mutants spontaneously activate a DNA damage response, as shown by the presence of γ-H2AX foci and activation of cell cycle arrest in nonirradiated plants. This response is ATR dependent as shown both by the absence of these spontaneous foci and by the wild-type mitotic indices of double rad50 atr and mre11 atr plants. EdU S-phase labeling and fluorescence in situ hybridization analysis using specific subtelomeric probes point to a replicative S-phase origin of this chromosome damage in the double mutants and not to telomere destabilization. Thus, the data presented here show the exclusive involvement of ATR in DNA damage signaling in MRN mutants and provide evidence for a role for ATR in the avoidance of S-phase DNA damage.
Collapse
|
180
|
Castells E, Molinier J, Drevensek S, Genschik P, Barneche F, Bowler C. det1-1-induced UV-C hyposensitivity through UVR3 and PHR1 photolyase gene over-expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 63:392-404. [PMID: 20487384 DOI: 10.1111/j.1365-313x.2010.04249.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Obligate photoautotrophs such as plants must capture energy from sunlight and are therefore exposed to the damaging collateral effects of ultraviolet (UV) irradiation, especially on DNA. Here we investigated the interconnection between light signaling and DNA repair, two concomitant pathways during photomorphogenesis, the developmental transition associated with the first light exposure. It is shown that combination of an enhanced sunscreen effect and photoreactivation confers a greater level of tolerance to damaging UV-C doses in the constitutive photomorphogenic de-etiolated1-1 (det1--1) Arabidopsis mutant. In darkness, expression of the PHR1 and UVR3 photolyase genes, responsible for photoreactivation, is maintained at a basal level through the positive action of HY5 and HYH photomorphogenesis-promoting transcription factors and the repressive effects of DET1 and COP1. Upon light exposure, HY5 and HYH activate PHR1 gene expression while the constitutively expressed nuclear-localized DET1 protein exerts a strong inhibitory effect. Altogether, the data presented indicate a dual role for DET1 in controlling expression of light-responsive and DNA repair genes, and describe more precisely the contribution of photomorphogenic regulators in the control of light-dependent DNA repair.
Collapse
Affiliation(s)
- Enric Castells
- Environmental and Evolutionary Genomics, CNRS UMR8197, Institut de Biologie de l'Ecole Normale Supérieure, 46 rue d'Ulm, F-75230 Paris Cedex 05, FranceInstitut de Biologie Moléculaire des Plantes du CNRS (UPR2357), conventionné avec l'Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
181
|
Liu Q, Wang J, Miki D, Xia R, Yu W, He J, Zheng Z, Zhu JK, Gong Z. DNA replication factor C1 mediates genomic stability and transcriptional gene silencing in Arabidopsis. THE PLANT CELL 2010; 22:2336-52. [PMID: 20639449 PMCID: PMC2929113 DOI: 10.1105/tpc.110.076349] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 05/18/2023]
Abstract
Genetic screening identified a suppressor of ros1-1, a mutant of REPRESSOR OF SILENCING1 (ROS1; encoding a DNA demethylation protein). The suppressor is a mutation in the gene encoding the largest subunit of replication factor C (RFC1). This mutation of RFC1 reactivates the unlinked 35S-NPTII transgene, which is silenced in ros1 and also increases expression of the pericentromeric Athila retrotransposons named transcriptional silent information in a DNA methylation-independent manner. rfc1 is more sensitive than the wild type to the DNA-damaging agent methylmethane sulphonate and to the DNA inter- and intra- cross-linking agent cisplatin. The rfc1 mutant constitutively expresses the G2/M-specific cyclin CycB1;1 and other DNA repair-related genes. Treatment with DNA-damaging agents mimics the rfc1 mutation in releasing the silenced 35S-NPTII, suggesting that spontaneously induced genomic instability caused by the rfc1 mutation might partially contribute to the released transcriptional gene silencing (TGS). The frequency of somatic homologous recombination is significantly increased in the rfc1 mutant. Interestingly, ros1 mutants show increased telomere length, but rfc1 mutants show decreased telomere length and reduced expression of telomerase. Our results suggest that RFC1 helps mediate genomic stability and TGS in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junguo Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Daisuke Miki
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Center for Plant Stress Genomics and Technology, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Ran Xia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenxiang Yu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junna He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhimin Zheng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Center for Plant Stress Genomics and Technology, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jian-Kang Zhu
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, California 92521
- Center for Plant Stress Genomics and Technology, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
- China Agricultural University–University of California, Riverside Center for Biological Sciences and Biotechnology, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University–University of California, Riverside Center for Biological Sciences and Biotechnology, Beijing 100193, China
- National Center for Plant Gene Research, Beijing 100193, China
- Address correspondence to
| |
Collapse
|
182
|
Tai HH, Percy KE, Karnosky DF. DNA damage in Populus tremuloides clones exposed to elevated O3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:969-976. [PMID: 19879681 DOI: 10.1016/j.envpol.2009.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Revised: 09/28/2009] [Accepted: 10/04/2009] [Indexed: 05/28/2023]
Abstract
The effects of elevated concentrations of atmospheric tropospheric ozone (O(3)) on DNA damage in five trembling aspen (Populus tremuloides Michx.) clones growing in a free-air enrichment experiment in the presence and absence of elevated concentrations of carbon dioxide (CO(2)) were examined. Growing season mean hourly O(3) concentrations were 36.3 and 47.3 ppb for ambient and elevated O(3) plots, respectively. The 4th highest daily maximum 8-h ambient and elevated O(3) concentrations were 79 and 89 ppb, respectively. Elevated CO(2) averaged 524 ppm (+150 ppm) over the growing season. Exposure to O(3) and CO(2) in combination with O(3) increased DNA damage levels above background as measured by the comet assay. Ozone-tolerant clones 271 and 8L showed the highest levels of DNA damage under elevated O(3) compared with ambient air; whereas less tolerant clone 216 and sensitive clones 42E and 259 had comparably lower levels of DNA damage with no significant differences between elevated O(3) and ambient air. Clone 8L was demonstrated to have the highest level of excision DNA repair. In addition, clone 271 had the highest level of oxidative damage as measured by lipid peroxidation. The results suggest that variation in cellular responses to DNA damage between aspen clones may contribute to O(3) tolerance or sensitivity.
Collapse
Affiliation(s)
- Helen H Tai
- Agriculture and Agri-Food Canada, Potato Research Centre, Fredericton, New Brunswick, Canada.
| | | | | |
Collapse
|
183
|
Wu S, Scheible WR, Schindelasch D, Van Den Daele H, De Veylder L, Baskin TI. A conditional mutation in Arabidopsis thaliana separase induces chromosome non-disjunction, aberrant morphogenesis and cyclin B1;1 stability. Development 2010; 137:953-61. [PMID: 20150278 DOI: 10.1242/dev.041939] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The caspase family protease, separase, is required at anaphase onset to cleave the cohesin complex, which joins sister chromatids. However, among eukaryotes, separases have acquired novel functions. Here, we show that Arabidopsis thaliana radially swollen 4 (rsw4), a temperature-sensitive mutant isolated previously on the basis of root swelling, harbors a mutation in At4g22970, the A. thaliana separase. Loss of separase function in rsw4 at the restrictive temperature is indicated by the widespread failure of replicated chromosomes to disjoin. Surprisingly, rsw4 has neither pronounced cell cycle arrest nor anomalous spindle formation, which occur in other eukaryotes upon loss of separase activity. However, rsw4 roots have disorganized cortical microtubules and accumulate the mitosis-specific cyclin, cyclin B1;1, excessive levels of which have been associated with altered microtubules and morphology. Cyclin B1;1 also accumulates in certain backgrounds in response to DNA damage, but we find no evidence for aberrant responses to DNA damage in rsw4. Our characterization of rsw4 leads us to hypothesize that plant separase, in addition to cleaving cohesin, regulates cyclin B1;1, with profound ramifications for morphogenesis.
Collapse
Affiliation(s)
- Shuang Wu
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
184
|
Klink VP, Hosseini P, Matsye P, Alkharouf NW, Matthews BF. A gene expression analysis of syncytia laser microdissected from the roots of the Glycine max (soybean) genotype PI 548402 (Peking) undergoing a resistant reaction after infection by Heterodera glycines (soybean cyst nematode). PLANT MOLECULAR BIOLOGY 2009; 71:525-67. [PMID: 19787434 DOI: 10.1007/s11103-009-9539-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Accepted: 08/09/2009] [Indexed: 05/07/2023]
Abstract
The syncytium is a nurse cell formed within the roots of Glycine max by the plant parasitic nematode Heterodera glycines. Its development and maintenance are essential for nematode survival. The syncytium appears to undergo two developmental phases during its maturation into a functional nurse cell. The first phase is a parasitism phase where the nematode establishes the molecular circuitry that during the second phase ensures a compatible interaction with the plant cell. The cytological features of syncytia undergoing susceptible or resistant reactions appear the same during the parasitism phase. Depending on the outcome of any defense response, the second phase is a period of syncytium maintenance (susceptible reaction) or failure (resistant reaction). In the analyses presented here, the localized gene expression occurring at the syncytium during the resistant reaction was studied. This was accomplished by isolating syncytial cells from Glycine max genotype Peking (PI 548402) by laser capture microdissection. Microarray analyses using the Affymetrix soybean GeneChip directly compared Peking syncytia undergoing a resistant reaction to those undergoing a susceptible reaction during the parasitism phase of the resistant reaction. Those analyses revealed lipoxygenase-9 and lipoxygenase-4 as the most highly induced genes in the resistant reaction. The analysis also identified induced levels of components of the phenylpropanoid pathway. These genes included phenylalanine ammonia lyase, chalcone isomerase, isoflavone reductase, cinnamoyl-CoA reductase and caffeic acid O-methyltransferase. The presence of induced levels of these genes implies the importance of jasmonic acid and phenylpropanoid signaling pathways locally at the site of the syncytium during the resistance phase of the resistant reaction. The analysis also identified highly induced levels of four S-adenosylmethionine synthetase genes, the EARLY-RESPONSIVE TO DEHYDRATION 2 gene and the 14-3-3 gene known as GENERAL REGULATORY FACTOR 2. Subsequent analyses studied microdissected syncytial cells at 3, 6 and 9 days post infection (dpi) during the course of the resistant reaction, resulting in the identification of signature gene expression profiles at each time point in a single G. max genotype, Peking.
Collapse
Affiliation(s)
- Vincent P Klink
- Department of Biological Sciences, Mississippi State University, Harned Hall, Mississippi State, MS 39762, USA.
| | | | | | | | | |
Collapse
|
185
|
Abstract
The growing apices of plants contain stem cells that continually produce tissues, which, in the shoot, include the germline. These stem cell populations remain active throughout the plant's life, which can last for centuries, and are particularly exposed to environmental hazards that cause DNA damage and mutations. It is not known whether plants have mechanisms to safeguard the genome specifically in these crucial cell populations. Here, we show that root and shoot stem cells and their early descendants are selectively killed by mild treatment with radiomimetic drugs, x-rays, or mutations that disrupt DNA repair by nonhomologous end-joining. Stem cell death required transduction of DNA damage signals by the ATAXIA-TELANGIECTASIA MUTATED (ATM) kinase and, specifically in the root, also the ATM/RAD3-RELATED (ATR) kinase. Consistent with the absence of p53 and the core apoptotic machinery in plants, death of the stem cells did not show apoptotic but autolytic features as seen in other cases of plant developmentally programmed cell death. We propose that plants have independently evolved selective death as a stringent mechanism to safeguard genome integrity in their stem cell populations.
Collapse
|
186
|
Sweeney PR, Britt AB, Culligan KM. The Arabidopsis ATRIP ortholog is required for a programmed response to replication inhibitors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:518-26. [PMID: 19619158 DOI: 10.1111/j.1365-313x.2009.03975.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The programmed response to replication inhibitors in eukaryotic cells requires the protein kinase ATR (ataxia telangiectasia mutated and rad3-related), which is activated primarily through the persistence of replication protein A (RPA)-bound single-stranded DNA at stalled replication forks and sites of DNA damage undergoing excision repair. Once activated, ATR initiates a cascade of events, including cell-cycle arrest and induction of DNA repair, to mitigate the mutagenic effects of DNA replication in the presence of damage and/or blockage. While many of the molecular regulators of ATR have been determined in yeast and animal cells, little is known about ATR regulation in plants. To genetically define ATR regulatory pathways in Arabidopsis, we describe here a genetic screen for identifying mutants that display a characteristic phenotype of Arabidopsis atr null mutants - hypersensitivity to the replication blocking agent hydroxyurea (HU). Employing this screen, we isolated a novel mutant, termed hus2 (hydroxyurea-sensitive), that displays hypersensitivity to HU, aphidicolin and ionizing radiation, similar to atr mutants. In addition, cell-cycle progression in response to replication blocks and ionizing radiation is defective in hus2, displaying a nearly identical phenotype to atr mutants. Positional cloning of hus2 reveals a gene sequence similar to yeast Rad26/Ddc2 and ATRIP (ATR interacting protein), suggesting that hus2 encodes an Arabidopsis ATRIP ortholog.
Collapse
Affiliation(s)
- Paul R Sweeney
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | | | | |
Collapse
|
187
|
Sakamoto AN, Lan VTT, Puripunyavanich V, Hase Y, Yokota Y, Shikazono N, Nakagawa M, Narumi I, Tanaka A. A UVB-hypersensitive mutant in Arabidopsis thaliana is defective in the DNA damage response. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:509-17. [PMID: 19619159 DOI: 10.1111/j.1365-313x.2009.03974.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
To investigate UVB DNA damage response in higher plants, we used a genetic screen to isolate Arabidopsis thaliana mutants that are hypersensitive to UVB irradiation, and isolated a UVB-sensitive mutant, termed suv2 (for sensitive to UV 2) that also displayed hypersensitivity to gamma-radiation and hydroxyurea. This phenotype is reminiscent of the Arabidopsis DNA damage-response mutant atr. The suv2 mutation was mapped to the bottom of chromosome 5, and contains an insertion in an unknown gene annotated as MRA19.1. RT-PCR analysis with specific primers to MRA19.1 detected a transcript consisting of 12 exons. The transcript is predicted to encode a 646 amino acid protein that contains a coiled-coil domain and two instances of predicted PIKK target sequences within the N-terminal region. Fusion proteins consisting of the predicted MRA19.1 and DNA-binding or activation domain of yeast transcription factor GAL4 interacted with each other in a yeast two-hybrid system, suggesting that the proteins form a homodimer. Expression of CYCB1;1:GUS gene, which encodes a labile cyclin:GUS fusion protein to monitor mitotic activity by GUS activity, was weaker in the suv2 plant after gamma-irradiation than in the wild-type plants and was similar to that in the atr plants, suggesting that the suv2 mutant is defective in cell-cycle arrest in response to DNA damage. Overall, these results suggest that the gene disrupted in the suv2 mutant encodes an Arabidopsis homologue of the ATR-interacting protein ATRIP.
Collapse
Affiliation(s)
- Ayako N Sakamoto
- Radiation-Applied Biology Division, Japan Atomic Energy Agency, Watanuki-machi 1233, Takasaki, Gumma 370-1292, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Roa H, Lang J, Culligan KM, Keller M, Holec S, Cognat V, Montané MH, Houlné G, Chabouté ME. Ribonucleotide reductase regulation in response to genotoxic stress in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:461-71. [PMID: 19571309 PMCID: PMC2735997 DOI: 10.1104/pp.109.140053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 06/28/2009] [Indexed: 05/17/2023]
Abstract
Ribonucleotide reductase (RNR) is an essential enzyme that provides dNTPs for DNA replication and repair. Arabidopsis (Arabidopsis thaliana) encodes three AtRNR2-like catalytic subunit genes (AtTSO2, AtRNR2A, and AtRNR2B). However, it is currently unclear what role, if any, each gene contributes to the DNA damage response, and in particular how each gene is transcriptionally regulated in response to replication blocks and DNA damage. To address this, we investigated transcriptional changes of 17-d-old Arabidopsis plants (which are enriched in S-phase cells over younger seedlings) in response to the replication-blocking agent hydroxyurea (HU) and to the DNA double-strand break inducer bleomycin (BLM). Here we show that AtRNR2A and AtRNR2B are specifically induced by HU but not by BLM. Early AtRNR2A induction is decreased in an atr mutant, and this induction is likely required for the replicative stress checkpoint since rnr2a mutants are hypersensitive to HU, whereas AtRNR2B induction is abolished in the rad9-rad17 double mutant. In contrast, AtTSO2 transcription is only activated in response to double-strand breaks (BLM), and this activation is dependent upon AtE2Fa. Both TSO2 and E2Fa are likely required for the DNA damage response since tso2 and e2fa mutants are hypersensitive to BLM. Interestingly, TSO2 gene expression is increased in atr versus wild type, possibly due to higher ATM expression in atr. On the other hand, a transient ATR-dependent H4 up-regulation was observed in wild type in response to HU and BLM, perhaps linked to a transient S-phase arrest. Our results therefore suggest that individual RNR2-like catalytic subunit genes participate in unique aspects of the cellular response to DNA damage in Arabidopsis.
Collapse
Affiliation(s)
- Hélène Roa
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Schuermann D, Fritsch O, Lucht JM, Hohn B. Replication stress leads to genome instabilities in Arabidopsis DNA polymerase delta mutants. THE PLANT CELL 2009; 21:2700-14. [PMID: 19789281 PMCID: PMC2768921 DOI: 10.1105/tpc.109.069682] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 08/25/2009] [Accepted: 09/09/2009] [Indexed: 05/19/2023]
Abstract
Impeded DNA replication or a deficiency of its control may critically threaten the genetic information of cells, possibly resulting in genome alterations, such as gross chromosomal translocations, microsatellite instabilities, or increased rates of homologous recombination (HR). We examined an Arabidopsis thaliana line derived from a forward genetic screen, which exhibits an elevated frequency of somatic HR. These HR events originate from replication stress in endoreduplicating cells caused by reduced expression of the gene coding for the catalytic subunit of the DNA polymerase delta (POLdelta1). The analysis of recombination types induced by diverse alleles of poldelta1 and by replication inhibitors allows the conclusion that two not mutually exclusive mechanisms lead to the generation of recombinogenic breaks at replication forks. In plants with weak poldelta1 alleles, we observe genome instabilities predominantly at sites with inverted repeats, suggesting the formation and processing of aberrant secondary DNA structures as a result of the accumulation of unreplicated DNA. Stalled and collapsed replication forks account for the more drastic enhancement of HR in plants with strong poldelta1 mutant alleles. Our data suggest that efficient progression of DNA replication, foremost on the lagging strand, relies on the physiological level of the polymerase delta complex and that even a minor disturbance of the replication process critically threatens genomic integrity of Arabidopsis cells.
Collapse
Affiliation(s)
- David Schuermann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | | | | | | |
Collapse
|
190
|
Inagaki S, Nakamura K, Morikami A. A link among DNA replication, recombination, and gene expression revealed by genetic and genomic analysis of TEBICHI gene of Arabidopsis thaliana. PLoS Genet 2009; 5:e1000613. [PMID: 19696887 PMCID: PMC2721414 DOI: 10.1371/journal.pgen.1000613] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 07/24/2009] [Indexed: 12/28/2022] Open
Abstract
Spatio-temporal regulation of gene expression during development depends on many factors. Mutations in Arabidopsis thaliana TEBICHI (TEB) gene encoding putative helicase and DNA polymerase domains-containing protein result in defects in meristem maintenance and correct organ formation, as well as constitutive DNA damage response and a defect in cell cycle progression; but the molecular link between these phenotypes of teb mutants is unknown. Here, we show that mutations in the DNA replication checkpoint pathway gene, ATR, but not in ATM gene, enhance developmental phenotypes of teb mutants, although atr suppresses cell cycle defect of teb mutants. Developmental phenotypes of teb mutants are also enhanced by mutations in RAD51D and XRCC2 gene, which are involved in homologous recombination. teb and teb atr double mutants exhibit defects in adaxial-abaxial polarity of leaves, which is caused in part by the upregulation of ETTIN (ETT)/AUXIN RESPONSIVE FACTOR 3 (ARF3) and ARF4 genes. The Helitron transposon in the upstream of ETT/ARF3 gene is likely to be involved in the upregulation of ETT/ARF3 in teb. Microarray analysis indicated that teb and teb atr causes preferential upregulation of genes nearby the Helitron transposons. Furthermore, interestingly, duplicated genes, especially tandemly arrayed homologous genes, are highly upregulated in teb or teb atr. We conclude that TEB is required for normal progression of DNA replication and for correct expression of genes during development. Interplay between these two functions and possible mechanism leading to altered expression of specific genes will be discussed. DNA replication, repair, and recombination are interrelated processes. Chromatin structure, into which DNA is packaged, is important for regulation of DNA replication, repair, and recombination, as well as gene transcription. After DNA replication and repair, chromatin status including its structure and modification has to be reproduced, and defects in these processes can alter gene expression program because of change in chromatin regulation. Our series of genetic analysis of tebichi (teb) mutant of model plant Arabidopsis thaliana suggest that TEB gene is involved in DNA replication and recombination. We also show here that TEB gene is required for correct expression of many genes including genes regulating development. From these results we propose that TEB gene function is important for maintenance of gene expression pattern after DNA replication and recombination. Furthermore, preferential upregulation of genes near highly duplicated transposons and tandemly arrayed homologous genes are observed in teb mutants, suggesting the interrelationship between homologous recombination and gene transcription around the repetitive sequences.
Collapse
Affiliation(s)
- Soichi Inagaki
- Laboratory of Biochemistry, Graduate School of Bio-agricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan.
| | | | | |
Collapse
|
191
|
Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage. Proc Natl Acad Sci U S A 2009; 106:12843-8. [PMID: 19549833 DOI: 10.1073/pnas.0810304106] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Arabidopsis sog1-1 (suppressor of gamma response) mutant was originally isolated as a second-site suppressor of the radiosensitive phenotype of seeds defective in the repair endonuclease XPF. Here, we report that SOG1 encodes a putative transcription factor. This gene is a member of the NAC domain [petunia NAM (no apical meristem) and Arabidopsis ATAF1, 2 and CUC2] family (a family of proteins unique to land plants). Hundreds of genes are normally up-regulated in Arabidopsis within an hour of treatment with ionizing radiation; the induction of these genes requires the damage response protein kinase ATM, but not the related kinase ATR. Here, we find that SOG1 is also required for this transcriptional up-regulation. In contrast, the SOG1-dependent checkpoint response observed in xpf mutant seeds requires ATR, but does not require ATM. Thus, phenotype of the sog1-1 mutant mimics aspects of the phenotypes of both atr and atm mutants in Arabidopsis, suggesting that SOG1 participates in pathways governed by both of these sensor kinases. We propose that, in plants, signals related to genomic stress are processed through a single, central transcription factor, SOG1.
Collapse
|
192
|
Abstract
UV-B radiation is a key environmental signal that initiates diverse responses in plants that affect metabolism, development, and viability. Many effects of UV-B involve the differential regulation of gene expression. The response to UV-B depends on the nature of the UV-B treatment, the extent of adaptation and acclimation to UV-B, and interaction with other environmental factors. Responses to UV-B are mediated by both nonspecific signaling pathways, involving DNA damage, reactive oxygen species, and wound/defense signaling molecules, and UV-B-specific pathways that mediate photomorphogenic responses to low levels of UV-B. Importantly, photomorphogenic signaling stimulates the expression of genes involved in UV-protection and hence promotes plant survival in UV-B. Photomorphogenic UV-B signaling is mediated by the UV-B-specific component UV RESISTANCE LOCUS8 (UVR8). Both UVR8 and CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) are required for UV-B-induced expression of the ELONGATED HYPOCOTYL5 (HY5) transcription factor, which plays a central role in the regulation of genes involved in photomorphogenic UV-B responses.
Collapse
Affiliation(s)
- Gareth I. Jenkins
- Plant Science Group, Division of Molecular and Cellular Biology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
193
|
Genotoxic stress in plants: Shedding light on DNA damage, repair and DNA repair helicases. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2009; 681:134-149. [DOI: 10.1016/j.mrrev.2008.06.004] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 06/24/2008] [Accepted: 06/24/2008] [Indexed: 01/03/2023]
|
194
|
Repair and tolerance of oxidative DNA damage in plants. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2009; 681:169-179. [DOI: 10.1016/j.mrrev.2008.07.003] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/11/2008] [Accepted: 07/17/2008] [Indexed: 11/19/2022]
|
195
|
Cools T, De Veylder L. DNA stress checkpoint control and plant development. CURRENT OPINION IN PLANT BIOLOGY 2009; 12:23-28. [PMID: 19010080 DOI: 10.1016/j.pbi.2008.09.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/15/2008] [Accepted: 09/29/2008] [Indexed: 05/27/2023]
Abstract
Plants are sedentary, and so have unavoidably close contact with agents that target their genome integrity. To sense and react to these threats, plants have evolved DNA stress checkpoint mechanisms that arrest the cell cycle and activate the DNA repair machinery to preserve the genome content. Although the pathways that maintain DNA integrity are largely conserved among eukaryotic organisms, plants put different accents on cell cycle control under DNA stress and might have their own way to cope with it.
Collapse
Affiliation(s)
- Toon Cools
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), Ghent, Belgium
| | | |
Collapse
|
196
|
Abe K, Osakabe K, Ishikawa Y, Tagiri A, Yamanouchi H, Takyuu T, Yoshioka T, Ito T, Kobayashi M, Shinozaki K, Ichikawa H, Toki S. Inefficient double-strand DNA break repair is associated with increased fasciation in Arabidopsis BRCA2 mutants. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2751-61. [PMID: 19457980 PMCID: PMC2692019 DOI: 10.1093/jxb/erp135] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BRCA2 is a breast tumour susceptibility factor with functions in maintaining genome stability through ensuring efficient double-strand DNA break (DSB) repair via homologous recombination. Although best known in vertebrates, fungi, and higher plants also possess BRCA2-like genes. To investigate the role of Arabidopsis BRCA2 genes in DNA repair in somatic cells, transposon insertion mutants of the AtBRCA2a and AtBRCA2b genes were identified and characterized. atbrca2a-1 and atbrca2b-1 mutant plants showed hypersensitivity to genotoxic stresses compared to wild-type plants. An atbrca2a-1/atbrca2b-1 double mutant showed an additive increase in sensitivity to genotoxic stresses compared to each single mutant. In addition, it was found that atbrca2 mutant plants displayed fasciation and abnormal phyllotaxy phenotypes with low incidence, and that the ratio of plants exhibiting these phenotypes is increased by gamma-irradiation. Interestingly, these phenotypes were also induced by gamma-irradiation in wild-type plants. Moreover, it was found that shoot apical meristems of the atbrca2a-1/atbrca2b-1 double mutant show altered cell cycle progression. These data suggest that inefficient DSB repair in the atbrca2a-1/atbrca2b-1 mutant leads to disorganization of the programmed cell cycle of apical meristems.
Collapse
Affiliation(s)
- Kiyomi Abe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Keishi Osakabe
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yuichi Ishikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Akemi Tagiri
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Hiroaki Yamanouchi
- Institute of Radiation Breeding, National Institute of Agrobiological Sciences, 2425 Kamimurata, Hitachi-ohmiya, Ibaraki 319-2293, Japan
| | - Toshio Takyuu
- Institute of Radiation Breeding, National Institute of Agrobiological Sciences, 2425 Kamimurata, Hitachi-ohmiya, Ibaraki 319-2293, Japan
| | - Terutaka Yoshioka
- Institute of Radiation Breeding, National Institute of Agrobiological Sciences, 2425 Kamimurata, Hitachi-ohmiya, Ibaraki 319-2293, Japan
| | - Takuya Ito
- Laboratory of Plant Molecular Biology, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Masatomo Kobayashi
- Experimental Plant Division, RIKEN BioResources Center, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Plant Science Center, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroaki Ichikawa
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Seiichi Toki
- Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka Yokohama, Kanagawa 244-0813 Japan
- To whom correspondence should be addressed in Ibaraki. E-mail.
| |
Collapse
|
197
|
|
198
|
Rounds MA, Larsen PB. Aluminum-dependent root-growth inhibition in Arabidopsis results from AtATR-regulated cell-cycle arrest. Curr Biol 2008; 18:1495-500. [PMID: 18835170 DOI: 10.1016/j.cub.2008.08.050] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/08/2008] [Accepted: 08/12/2008] [Indexed: 11/17/2022]
Abstract
Aluminum (Al) toxicity is a global problem severely limiting agricultural productivity in acid-soil regions comprising upwards of 50% of the world's arable land [1, 2]. Although Al-exclusion mechanisms have been intensively studied [3-9], little is known about tolerance to internalized Al, which is predicted to be mechanistically complex because of the plethora of predicted cellular targets for Al(3+)[2, 10]. An Arabidopsis mutant with Al hypersensitivity, als3-1, was found to represent a lesion in a phloem and root-tip-localized factor similar to the bacterial ABC transporter ybbm, with ALS3 likely responsible for Al transfer from roots to less-sensitive tissues [10-12]. To identify mutations that enhance mechanisms of Al resistance or tolerance, a suppressor screen for mutants that mask the Al hypersensitivity of als3-1 was performed [13]. Two allelic suppressors conferring increased Al tolerance were found to represent dominant-negative mutations in a factor required for monitoring DNA integrity, AtATR[14-17]. From this work, Al-dependent root-growth inhibition primarily arises from DNA damage coupled with AtATR-controlled blockage of cell-cycle progression and terminal differentiation because of loss of the root-quiescent center, with mutations that prevent response to this damage resulting in quiescent-center maintenance and sustained vigorous growth in an Al-toxic environment.
Collapse
Affiliation(s)
- Megan A Rounds
- Department of Biochemistry, University of California, Riverside, California 92521, USA
| | | |
Collapse
|
199
|
Culligan KM, Britt AB. Both ATM and ATR promote the efficient and accurate processing of programmed meiotic double-strand breaks. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:629-38. [PMID: 18435824 DOI: 10.1111/j.1365-313x.2008.03530.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The ATM and ATR protein kinases play central roles in the cellular response to double-strand breaks (DSBs) by regulating DNA repair, cell-cycle arrest and apoptosis. During meiosis, SPO11-dependent DSBs are generated, initiating recombination between homologous chromosomes. Previous studies in mice and plants have shown that defects in ATM result in the appearance of abnormally fragmented chromosomes. However, the role of ATR in promoting normal meiosis has not yet been elucidated. Employing null Arabidopsis mutants of ATR and ATM, we demonstrate here that although atr mutants display no obvious defects in any phase of meiotic progression, the combination of defects in atr and atm exacerbates the fragmentation observed in the atm single mutant, prevents complete synapsis of chromosomes, and results in extensive and persistent interactions between non-homologous DNAs. The observed non-homologous interactions require the induction of programmed breaks: the combination of either the atm single or the atr atm double mutant with a spo11 defect eliminates the ectopic interactions observed in the double mutant, as well as significantly reducing the fragmentation seen in atm or in atr atm. Our results suggest that ATM is required for the efficient processing of SPO11-dependent DSBs during meiosis. They also indicate that ATM and ATR act redundantly to inhibit sustained interactions between non-homologous chromatids, and that these ectopic interactions require SPO11 activity.
Collapse
Affiliation(s)
- Kevin M Culligan
- Department of Biochemistry and Molecular Biology, University of New Hampshire, Durham, NH 03824, USA.
| | | |
Collapse
|
200
|
Molinier J, Lechner E, Dumbliauskas E, Genschik P. Regulation and role of Arabidopsis CUL4-DDB1A-DDB2 in maintaining genome integrity upon UV stress. PLoS Genet 2008; 4:e1000093. [PMID: 18551167 PMCID: PMC2396500 DOI: 10.1371/journal.pgen.1000093] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 05/12/2008] [Indexed: 11/18/2022] Open
Abstract
Plants use the energy in sunlight for photosynthesis, but as a consequence are exposed to the toxic effect of UV radiation especially on DNA. The UV-induced lesions on DNA affect both transcription and replication and can also have mutagenic consequences. Here we investigated the regulation and the function of the recently described CUL4-DDB1-DDB2 E3 ligase in the maintenance of genome integrity upon UV-stress using the model plant Arabidopsis. Physiological, biochemical, and genetic evidences indicate that this protein complex is involved in global genome repair (GGR) of UV-induced DNA lesions. Moreover, we provide evidences for crosstalks between GGR, the plant-specific photo reactivation pathway and the RAD1-RAD10 endonucleases upon UV exposure. Finally, we report that DDB2 degradation upon UV stress depends not only on CUL4, but also on the checkpoint protein kinase Ataxia telangiectasia and Rad3-related (ATR). Interestingly, we found that DDB1A shuttles from the cytoplasm to the nucleus in an ATR-dependent manner, highlighting an upstream level of control and a novel mechanism of regulation of this E3 ligase.
Collapse
Affiliation(s)
- Jean Molinier
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357), conventionné avec l'Université Louis Pasteur, Strasbourg, France
| | - Esther Lechner
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357), conventionné avec l'Université Louis Pasteur, Strasbourg, France
| | - Eva Dumbliauskas
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357), conventionné avec l'Université Louis Pasteur, Strasbourg, France
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes du CNRS (UPR2357), conventionné avec l'Université Louis Pasteur, Strasbourg, France
- * E-mail:
| |
Collapse
|