151
|
Jha DK, Chanwala J, Sandeep IS, Dey N. Comprehensive identification and expression analysis of GRAS gene family under abiotic stress and phytohormone treatments in Pearl millet. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1039-1052. [PMID: 34266539 DOI: 10.1071/fp21051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Pearl millet is an important C4 cereal plant that possesses enormous capacity to survive under extreme climatic conditions. It serves as a major food source for people in arid and semiarid regions of south-east Asia and Africa. GRAS is an important transcription factor gene family of plant that play a critical role in regulating developmental processes, stress responses and phytohormonal signalling. In the present study, we have identified a total number of 57 GRAS members in pearl millet. Phylogenetic analysis clustered all the PgGRAS genes into eight groups (GroupI-GroupVIII). Motif analysis has shown that all the PgGRAS proteins had conserved GRAS domains and gene structure analysis revealed a high structural diversity among PgGRAS genes. Expression patterns of PgGRAS genes in different tissues (leaf, stem and root) and under various abiotic stress (drought, heat and salinity) were determined. Further, expression analysis was also carried out in response to various hormones (SA, MeJA, GA and ABA). The results provide a clear understanding of GRAS transcription factor family in pearl millet, and lay a good foundation for the functional characterisation of GRAS genes in pearl millet.
Collapse
Affiliation(s)
- Deepak Kumar Jha
- Department of Gene Function and Regulation, Institute of Life Sciences, Chandrasekharpur,Bhubaneswar, Odisha, India
| | - Jeky Chanwala
- Department of Gene Function and Regulation, Institute of Life Sciences, Chandrasekharpur,Bhubaneswar, Odisha, India; and Regional Centre for Biotechnology, Faridabad, 121001 Haryana, India
| | - I Sriram Sandeep
- Department of Gene Function and Regulation, Institute of Life Sciences, Chandrasekharpur,Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Department of Gene Function and Regulation, Institute of Life Sciences, Chandrasekharpur,Bhubaneswar, Odisha, India; and Corresponding author. ,
| |
Collapse
|
152
|
Li X, Zhong M, Qu L, Yang J, Liu X, Zhao Q, Liu X, Zhao X. AtMYB32 regulates the ABA response by targeting ABI3, ABI4 and ABI5 and the drought response by targeting CBF4 in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110983. [PMID: 34315599 DOI: 10.1016/j.plantsci.2021.110983] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
The Arabidopsis thaliana R2R3-MYB transcription factor AtMYB32 and its homologs AtMYB4 and AtMYB7 play crucial roles in the regulation of phenylpropanoid metabolism. In addition, AtMYB4 and AtMYB7 are involved in the response to abiotic stress. However, the function of AtMYB32 remains unclear. In this study, we found that AtMYB32 is induced by abscisic acid (ABA) and repressed by drought stress. AtMYB32 positively regulates ABA-mediated seed germination and early seedling development. The expression of ABSCISIC ACID-INSENSITIVE 3 (ABI3), ABI4 and ABI5, which encode key positive regulators of ABA signaling, was upregulated in response to ABA in AtMYB32-overexpressing plants and downregulated in the atmyb32-1 mutant. In addition, we found that the atmyb32-1 mutant was drought resistant. Consistent with the drought-resistant phenotype, the transcript levels of C-repeat binding factor 4 (CBF4) were higher in the atmyb32-1 mutant in response to drought stress. Electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation (ChIP) assays revealed that AtMYB32 binds directly to the ABI3, ABI4, ABI5 and CBF4 promoters both in vitro and in vivo. Genetically, ABI4 was found to be epistatic to AtMYB32 for ABA-induced inhibition of seed germination and early seedling development. Taken together, our findings revealed that AtMYB32 regulates the ABA response by directly promoting ABI3, ABI4 and ABI5 expression and that the drought stress response likely occurs because of repression of CBF4 expression.
Collapse
Affiliation(s)
- Xinmei Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Ming Zhong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Lina Qu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Jiaxin Yang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China
| | - Xueqing Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China
| | - Qiang Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China
| | - Xuanming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China.
| | - Xiaoying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Hybrid Rape Engineering and Technology Research Center, Hunan University, Changsha, 410082, China; Shenzhen Institute, Hunan University, Shenzhen, 518057, China.
| |
Collapse
|
153
|
Kurniawan A, Chuang HW. Rhizobacterial Bacillus mycoides functions in stimulating the antioxidant defence system and multiple phytohormone signalling pathways to regulate plant growth and stress tolerance. J Appl Microbiol 2021; 132:1260-1274. [PMID: 34365711 DOI: 10.1111/jam.15252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022]
Abstract
AIMS To analyse effects and mechanisms of plant growth promotion mediated by Bacillus mycoides strain A3 (BmA3), in Arabidopsis thaliana seedlings. METHODS AND RESULTS Bacillus mycoides strain A3 (BmA3) isolated from the bamboo rhizosphere produced phytohormones, including indole-3-acetic acid (IAA) and gibberellic acid (GA), and exhibited phosphate solubilization and radical scavenging activities. A. thaliana seedlings inoculated with BmA3 exhibited an altered root architecture including an increased number of lateral roots and root hairs. Likewise, enhanced photosynthetic efficiency through the accumulation of higher levels of chlorophyll and starch, and increased plant size and fresh weight were observed in the BmA3-treated seedlings. This bacterial inoculation stimulated the antioxidant defence system by increasing the activities of catalase (CAT), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and phenylalanine ammonia-lyase (PAL). Secondary metabolites, including phenolic compounds, flavonoids and glucosinolates, were induced to higher levels in the BmA3-treated plants. Under drought and heat stresses, lower levels of H2 O2 , malondialdehyde (MDA) and electrolyte leakage were noticed in the treated seedlings. Genes involved in the signalling pathway of jasmonic acid (JA) including MYC2 and lipoxygenase 1 (LOX1) and salicylic acid (SA) including SAR DEFICIENT 1 (SARD1) and CAM-BINDING PROTEIN 60-LIKE G (CBP60G), and the antioxidant defence system including Ascorbate peroxidase (AtAPX) and alternative oxidase (AOX) were upregulated in BmA3-treated plants. Moreover, pathogenesis-related protein 1 (PR-1) and PR-2, marker genes for disease resistance, as well as DREB2A and HsFA2, which function in abiotic stress regulation, were also upregulated. CONCLUSIONS BmA3 was able to activate JA and SA signalling pathways to induce plant growth and abiotic stress tolerance in A. thaliana seedlings. SIGNIFICANCE AND IMPACT OF STUDY The plant growth promotion and increased stress tolerance induced by BmA3 were the result of the combined effects of microbial metabolites and activated host plant responses, including phytohormone signalling pathways and antioxidant defence systems.
Collapse
Affiliation(s)
- Andi Kurniawan
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Huey-Wen Chuang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
154
|
Updates on the Role of ABSCISIC ACID INSENSITIVE 5 (ABI5) and ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTORs (ABFs) in ABA Signaling in Different Developmental Stages in Plants. Cells 2021; 10:cells10081996. [PMID: 34440762 PMCID: PMC8394461 DOI: 10.3390/cells10081996] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
The core abscisic acid (ABA) signaling pathway consists of receptors, phosphatases, kinases and transcription factors, among them ABA INSENSITIVE 5 (ABI5) and ABRE BINDING FACTORs/ABRE-BINDING PROTEINs (ABFs/AREBs), which belong to the BASIC LEUCINE ZIPPER (bZIP) family and control expression of stress-responsive genes. ABI5 is mostly active in seeds and prevents germination and post-germinative growth under unfavorable conditions. The activity of ABI5 is controlled at transcriptional and protein levels, depending on numerous regulators, including components of other phytohormonal pathways. ABFs/AREBs act redundantly in regulating genes that control physiological processes in response to stress during vegetative growth. In this review, we focus on recent reports regarding ABI5 and ABFs/AREBs functions during abiotic stress responses, which seem to be partially overlapping and not restricted to one developmental stage in Arabidopsis and other species. Moreover, we point out that ABI5 and ABFs/AREBs play a crucial role in the core ABA pathway’s feedback regulation. In this review, we also discuss increased stress tolerance of transgenic plants overexpressing genes encoding ABA-dependent bZIPs. Taken together, we show that ABI5 and ABFs/AREBs are crucial ABA-dependent transcription factors regulating processes essential for plant adaptation to stress at different developmental stages.
Collapse
|
155
|
Salvi P, Manna M, Kaur H, Thakur T, Gandass N, Bhatt D, Muthamilarasan M. Phytohormone signaling and crosstalk in regulating drought stress response in plants. PLANT CELL REPORTS 2021; 40:1305-1329. [PMID: 33751168 DOI: 10.1007/s00299-021-02683-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/15/2021] [Indexed: 05/23/2023]
Abstract
Phytohormones are ubiquitously involved in plant biological processes and regulate cellular signaling pertaining to unheralded environmental cues, such as salinity, drought, extreme temperature and nutrient deprivation. The association of phytohormones to nearly all the fundamental biological processes epitomizes the phytohormone syndicate as a candidate target for consideration during engineering stress endurance in agronomically important crops. The drought stress response is essentially driven by phytohormones and their intricate network of crosstalk, which leads to transcriptional reprogramming. This review is focused on the pivotal role of phytohormones in water deficit responses, including their manipulation for mitigating the effect of the stressor. We have also discussed the inherent complexity of existing crosstalk accrued among them during the progression of drought stress, which instigates the tolerance response. Therefore, in this review, we have highlighted the role and regulatory aspects of various phytohormones, namely abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, jasmonic acid, salicylic acid, ethylene and strigolactone, with emphasis on drought stress tolerance.
Collapse
Affiliation(s)
- Prafull Salvi
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India.
| | - Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | - Harmeet Kaur
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Tanika Thakur
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India
| | - Nishu Gandass
- DST-INSPIRE Faculty, Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar, Mohali, 140308, Punjab, India
| | - Deepesh Bhatt
- Department of Biotechnology, Shree Ramkrishna Institute of Computer Education and Applied Sciences, Veer Narmad South Gujarat University, Surat, Gujarat, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
156
|
Xie F, Hua Q, Chen C, Zhang Z, Zhang R, Zhao J, Hu G, Chen J, Qin Y. Genome-Wide Characterization of R2R3-MYB Transcription Factors in Pitaya Reveals a R2R3-MYB Repressor HuMYB1 Involved in Fruit Ripening through Regulation of Betalain Biosynthesis by Repressing Betalain Biosynthesis-Related Genes. Cells 2021; 10:cells10081949. [PMID: 34440718 PMCID: PMC8391165 DOI: 10.3390/cells10081949] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/23/2022] Open
Abstract
The MYB (myeloblastosis) superfamily constitutes one of the most abundant transcription factors (TFs) regulating various biological processes in plants. However, the molecular characteristics and functions of MYB TFs in pitaya remain unclear. To date, no genome-wide characterization analysis of this gene family has been conducted in the Cactaceae species. In this study, 105 R2R3-MYB members were identified from the genome data of Hylocereus undatus and their conserved motifs, physiological and biochemical characteristics, chromosome locations, synteny relationship, gene structure and phylogeny were further analyzed. Expression analyses suggested that three up-regulated HuMYBs and twenty-two down-regulated HuMYBs were probably involved in fruit ripening of pitaya. Phylogenetic analyses of R2R3-MYB repressors showed that seven HuMYBs (HuMYB1, HuMYB21, HuMYB48, HuMYB49, HuMYB72, HuMYB78 and HuMYB101) were in clades containing R2R3-MYB repressors. HuMYB1 and HuMYB21 were significantly down-regulated with the betalain accumulation during fruit ripening of ‘Guanhuahong’ pitaya (H. monacanthus). However, only HuMYB1 had R2 and R3 repeats with C1, C2, C3 and C4 motifs. HuMYB1 was localized exclusively to the nucleus and exhibited transcriptional inhibition capacities. Dual luciferase reporter assay demonstrated that HuMYB1 inhibited the expression of betalain-related genes: HuADH1, HuCYP76AD1-1 and HuDODA1. These results suggested that HuMYB1 is a potential repressor of betalain biosynthesis during pitaya fruit ripening. Our results provide the first genome-wide analyses of the R2R3-MYB subfamily involved in pitaya betalain biosynthesis and will facilitate functional analysis of this gene family in the future.
Collapse
|
157
|
Zhang A, Ji Y, Sun M, Lin C, Zhou P, Ren J, Luo D, Wang X, Ma C, Zhang X, Feng G, Nie G, Huang L. Research on the drought tolerance mechanism of Pennisetum glaucum (L.) in the root during the seedling stage. BMC Genomics 2021; 22:568. [PMID: 34301177 PMCID: PMC8305952 DOI: 10.1186/s12864-021-07888-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drought is one of the major environmental stresses resulting in a huge reduction in crop growth and biomass production. Pearl millet (Pennisetum glaucum L.) has excellent drought tolerance, and it could be used as a model plant to study drought resistance. The root is a very crucial part of plant that plays important roles in plant growth and development, which makes it a focus of research. RESULTS In this study, we explored the mechanism of drought tolerance of pearl millet by comparing physiological and transcriptomic data under normal condition and drought treatment at three time points (1 h, 3 h and 7 h) in the root during the seedling stage. The relative electrical conductivity went up from 1 h to 7 h in both control and drought treatment groups while the content of malondialdehyde decreased. A total of 2004, 1538 and 605 differentially expressed genes were found at 1 h, 3 h and 7 h respectively and 12 genes showed up-regulation at all time points. Some of these differentially expressed genes were significantly enriched into 'metabolic processes', 'MAPK signaling pathway' and 'plant hormone signal transduction' such as the ABA signal transduction pathway in GO and KEGG enrichment analysis. CONCLUSIONS Pearl millet was found to have a quick drought response, which may occur before 1 h that contributes to its tolerance against drought stress. These results can provide a theoretical basis to enhance the drought resistance in other plant species.
Collapse
Affiliation(s)
- Ailing Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Ji
- Sichuan Animal Science Academy, Chengdu, 610066, China
| | - Min Sun
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chuang Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Puding Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Juncai Ren
- College of Animal Science and Technology, Southwest University, Rongchang Campus, Chongqing, 402460, China
| | - Dan Luo
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoshan Wang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Congyu Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinquan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linkai Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
158
|
Jin M, Gan S, Jiao J, He Y, Liu H, Yin X, Zhu Q, Rao J. Genome-wide analysis of the bZIP gene family and the role of AchnABF1 from postharvest kiwifruit (Actinidia chinensis cv. Hongyang) in osmotic and freezing stress adaptations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110927. [PMID: 34034875 DOI: 10.1016/j.plantsci.2021.110927] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/17/2021] [Accepted: 04/25/2021] [Indexed: 05/21/2023]
Abstract
Chilling injury (CI) is a barrier to the refrigeration of kiwifruit, resulting in decreased fruit quality and increased nutrient loss during storage. Understanding the molecular basis underlying the cold response and its regulation in refrigerated kiwifruit is therefore highly important. Basic (region) leucine zipper (bZIP) transcription factors (TFs) have been widely studied for their roles in abiotic stress resistance in various species. In this study, we identified 81 bZIP family proteins in kiwifruit and classified them into 11 groups. Further transcriptome analysis revealed that the expression of members of the AREB/ABF family was strongly induced by low temperature and abscisic acid (ABA). Ectopic expression of AchnABF1 enhanced plant cold tolerance by upregulating the expression of several key genes associated with ABA-dependent and ABA-independent pathways in Arabidopsis thaliana. Reactive oxygen species (ROS) metabolism was suggested to be involved in the AchnABF1-mediated osmotic stress response. For instance, enhanced ROS-scavenging ability was observed in transgenic plants with enhanced activity of catalase (CAT) and peroxidase (POD), which resulted in decreased in situ O2.- and H2O2 accumulation, ion leakage, and malondialdehyde (MDA) content under various abiotic stresses. In addition, AchnABF1 also participated in the osmotic stress response during both the germination and postgermination stages. We concluded that AchnABF1 may play an important role in kiwifruit during refrigeration.
Collapse
Affiliation(s)
- Mijing Jin
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Sufu Gan
- Biotechnology of Horticultural Crops, TUM School for Life Sciences Weihenstephan, Technische Universität München, Freising, D-85354, Germany
| | - Jianqing Jiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiheng He
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hui Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xueren Yin
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Qinggang Zhu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jingping Rao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
159
|
Chen Y, Dubois M, Vermeersch M, Inzé D, Vanhaeren H. Distinct cellular strategies determine sensitivity to mild drought of Arabidopsis natural accessions. PLANT PHYSIOLOGY 2021; 186:1171-1185. [PMID: 33693949 PMCID: PMC8195540 DOI: 10.1093/plphys/kiab115] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/14/2021] [Indexed: 05/18/2023]
Abstract
The worldwide distribution of Arabidopsis (Arabidopsis thaliana) accessions imposes different types of evolutionary pressures, which contributes to various responses of these accessions to environmental stresses. Responses to drought stress have mostly been studied in the Columbia accession, which is predominantly used in plant research. However, the reactions to drought stress are complex and our understanding of the responses that contribute to maintaining plant growth during mild drought (MD) is very limited. Here, we studied the mechanisms with which natural accessions react to MD at a physiological and molecular level during early leaf development. We documented variations in MD responses among natural accessions and used transcriptome sequencing of a drought-sensitive accession, ICE163, and a drought-insensitive accession, Yeg-1, to gain insights into the mechanisms underlying this discrepancy. This revealed that ICE163 preferentially induces jasmonate- and anthocyanin-related pathways, which are beneficial in biotic stress defense, whereas Yeg-1 has a more pronounced activation of abscisic acid signaling, the classical abiotic stress response. Related physiological traits, including the content of proline, anthocyanins, and reactive oxygen species, stomatal closure, and cellular leaf parameters, were investigated and linked to the transcriptional responses. We can conclude that most of these processes constitute general drought response mechanisms that are regulated similarly in drought-insensitive and -sensitive accessions. However, the capacity to close stomata and maintain cell expansion under MD appeared to be major factors that allow to better sustain leaf growth under MD.
Collapse
Affiliation(s)
- Ying Chen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Mattias Vermeersch
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Address for communication:
| | - Hannes Vanhaeren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, B-9052 Ghent, Belgium
| |
Collapse
|
160
|
Mubarik MS, Khan SH, Sajjad M, Raza A, Hafeez MB, Yasmeen T, Rizwan M, Ali S, Arif MS. A manipulative interplay between positive and negative regulators of phytohormones: A way forward for improving drought tolerance in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1269-1290. [PMID: 33421147 DOI: 10.1111/ppl.13325] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/20/2020] [Accepted: 12/23/2020] [Indexed: 05/28/2023]
Abstract
Among different abiotic stresses, drought stress is the leading cause of impaired plant growth and low productivity worldwide. It is therefore essential to understand the process of drought tolerance in plants and thus to enhance drought resistance. Accumulating evidence indicates that phytohormones are essential signaling molecules that regulate diverse processes of plant growth and development under drought stress. Plants can often respond to drought stress through a cascade of phytohormones signaling as a means of plant growth regulation. Understanding biosynthesis pathways and regulatory crosstalk involved in these vital compounds could pave the way for improving plant drought tolerance while maintaining overall plant health. In recent years, the identification of phytohormones related key regulatory genes and their manipulation through state-of-the-art genome engineering tools have helped to improve drought tolerance plants. To date, several genes linked to phytohormones signaling networks, biosynthesis, and metabolism have been described as a promising contender for engineering drought tolerance. Recent advances in functional genomics have shown that enhanced expression of positive regulators involved in hormone biosynthesis could better equip plants against drought stress. Similarly, knocking down negative regulators of phytohormone biosynthesis can also be very effective to negate the negative effects of drought on plants. This review explained how manipulating positive and negative regulators of phytohormone signaling could be improvised to develop future crop varieties exhibiting higher drought tolerance. In addition, we also discuss the role of a promising genome editing tool, CRISPR/Cas9, on phytohormone mediated plant growth regulation for tackling drought stress.
Collapse
Affiliation(s)
- Muhammad Salman Mubarik
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Ali Raza
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan, China
| | | | - Tahira Yasmeen
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Saleem Arif
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
161
|
Shrestha A, Cudjoe DK, Kamruzzaman M, Siddique S, Fiorani F, Léon J, Naz AA. Abscisic acid-responsive element binding transcription factors contribute to proline synthesis and stress adaptation in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153414. [PMID: 33895677 DOI: 10.1016/j.jplph.2021.153414] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/19/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Proline accumulation is one of the most common adaptive responses of higher plants against abiotic stresses like drought. It plays multiple roles in osmotic adjustment, cell homeostasis and stress recovery. Genetic regulation of proline accumulation under drought is complex, and transcriptional cascades modulating proline is poorly understood. Here, we employed quadruple mutant (abf1 abf2 abf3 abf4) to dissect the role of ABA-responsive elements (ABREs) binding transcription factors (ABFs) in modulating proline accumulation across varying stress scenarios. ABREs are present across the promoter of the P5CS1 gene, whose upregulation is considered a hallmark for drought inducible proline accumulation. Upon ABA treatment, P5CS1 mRNA expression and proline content in the shoot were significantly higher in Col-0 compared to the quadruple mutant. Similar results were found at 2 h and 3 h after acute dehydration. We quantified proline at different time points after drought stress treatment. The proline content was higher in wild type (Col-0) than the quadruple mutant at the early stage of drought. Notably, the proline accumulation in wild type increased at a slower rate than the quadruple mutant 7 d after drought stress. Besides, the quadruple mutant displayed significant oxidative damage, low tissue turgidity and higher membrane damage under terminal drought stress. Both terminal drought stress and long-term constant water stress revealed substantial differences in growth rate between wild type and quadruple mutant. The study provides evidence that ABFs are involved in drought stress response, such as proline biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Asis Shrestha
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Germany.
| | - Daniel Kingsley Cudjoe
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Germany.
| | - Mohammad Kamruzzaman
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Germany.
| | | | - Fabio Fiorani
- IBG-2- Plant Sciences, Forschungszentrum Jülich, Jülich, Germany.
| | - Jens Léon
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Germany.
| | - Ali Ahmad Naz
- Department of Plant Breeding, Institute of Crop Science and Resource Conservation, University of Bonn, Germany.
| |
Collapse
|
162
|
Punkkinen M, Mahfouz MM, Fujii H. Chemical activation of Arabidopsis SnRK2.6 by pladienolide B. PLANT SIGNALING & BEHAVIOR 2021; 16:1885165. [PMID: 33678153 PMCID: PMC8078514 DOI: 10.1080/15592324.2021.1885165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
Abscisic acid (ABA) is an important phytohormone mediating osmotic stress responses. SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASE 2.6 (SnRK2.6, also named OPEN STOMATA1 and SNF1-RELATED KINASE 2E) is central in the ABA signaling pathway; therefore, manipulating its activity may be useful to confer stress tolerance in plants. Pladienolide B (PB) is an mRNA splicing inhibitor and enhances ABA responses. Here, we analyzed the effect of PB on Arabidopsis SnRK2.6. PB enhanced the activity of recombinant SnRK2.6 in vitro through direct physical interaction as predicted by molecular docking simulations followed by mutation experiments and isothermal titration calorimetry. Structural modeling predicted probable interaction sites between PB and SnRK2.6, and experiments with mutated SnRK2.6 revealed that Leu-46 was the most essential amino acid residue for SnRK2.6 activation by PB. This study demonstrates the feasibility of SnRK2.6 chemical manipulation and paves the way for the modification of plant osmotic stress responses.
Collapse
Affiliation(s)
- Matleena Punkkinen
- Molecular Plant Biology Unit, Department of Biochemistry, University of Turku, Turku, Finland
| | - Magdy M. Mahfouz
- Laboratory for Genome Engineering & Synthetic Biology, Division of Biological Sciences & Center for Desert Agriculture, 4700 King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hiroaki Fujii
- Molecular Plant Biology Unit, Department of Biochemistry, University of Turku, Turku, Finland
- Department of Life Technologies, University of Turku, Turku,Finland
| |
Collapse
|
163
|
Cellular Phosphorylation Signaling and Gene Expression in Drought Stress Responses: ABA-Dependent and ABA-Independent Regulatory Systems. PLANTS 2021; 10:plants10040756. [PMID: 33924307 PMCID: PMC8068880 DOI: 10.3390/plants10040756] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022]
Abstract
Drought is a severe and complex abiotic stress that negatively affects plant growth and crop yields. Numerous genes with various functions are induced in response to drought stress to acquire drought stress tolerance. The phytohormone abscisic acid (ABA) accumulates mainly in the leaves in response to drought stress and then activates subclass III SNF1-related protein kinases 2 (SnRK2s), which are key phosphoregulators of ABA signaling. ABA mediates a wide variety of gene expression processes through stress-responsive transcription factors, including ABA-RESPONSIVE ELEMENT BINDING PROTEINS (AREBs)/ABRE-BINDING FACTORS (ABFs) and several other transcription factors. Seed plants have another type of SnRK2s, ABA-unresponsive subclass I SnRK2s, that mediates the stability of gene expression through the mRNA decay pathway and plant growth under drought stress in an ABA-independent manner. Recent research has elucidated the upstream regulators of SnRK2s, RAF-like protein kinases, involved in early responses to drought stress. ABA-independent transcriptional regulatory systems and ABA-responsive regulation function in drought-responsive gene expression. DEHYDRATION RESPONSIVE ELEMENT (DRE) is an important cis-acting element in ABA-independent transcription, whereas ABA-RESPONSIVE ELEMENT (ABRE) cis-acting element functions in ABA-responsive transcription. In this review article, we summarize recent advances in research on cellular and molecular drought stress responses and focus on phosphorylation signaling and transcription networks in Arabidopsis and crops. We also highlight gene networks of transcriptional regulation through two major regulatory pathways, ABA-dependent and ABA-independent pathways, that ABA-responsive subclass III SnRK2s and ABA-unresponsive subclass I SnRK2s mediate, respectively. We also discuss crosstalk in these regulatory systems under drought stress.
Collapse
|
164
|
Joo H, Baek W, Lim CW, Lee SC. Post-translational Modifications of bZIP Transcription Factors in Abscisic Acid Signaling and Drought Responses. Curr Genomics 2021; 22:4-15. [PMID: 34045920 PMCID: PMC8142349 DOI: 10.2174/1389202921999201130112116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/25/2020] [Accepted: 10/03/2020] [Indexed: 11/22/2022] Open
Abstract
Under drought stress, plants have developed various mechanisms to survive in the reduced water supply, of which the regulation of stress-related gene expression is responsible for several transcription factors. The basic leucine zippers (bZIPs) are one of the largest and most diverse transcription factor families in plants. Among the 10 Arabidopsis bZIP groups, group A bZIP transcription factors function as a positive or negative regulator in ABA signal transduction and drought stress response. These bZIP transcription factors, which are involved in the drought response, have also been isolated in various plant species such as rice, pepper, potato, and maize. Recent studies have provided substantial evidence that many bZIP transcription factors undergo the post-translational modifications, through which the regulation of their activity or stability affects plant responses to various intracellular or extracellular stimuli. This review aims to address the modulation of the bZIP proteins in ABA signaling and drought responses through phosphorylation, ubiquitination and sumoylation.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Woonhee Baek
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 Program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 06974, Republic of Korea
| |
Collapse
|
165
|
Mangat PK, Shim J, Gannaban RB, Singleton JJ, Angeles-Shim RB. Alien introgression and morpho-agronomic characterization of diploid progenies of Solanum lycopersicoides monosomic alien addition lines (MAALs) toward pre-breeding applications in tomato (S. lycopersicum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1133-1146. [PMID: 33386862 PMCID: PMC7973918 DOI: 10.1007/s00122-020-03758-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Alien introgressions that were captured in the genome of diploid plants segregating from progenies of monosomic alien addition lines of S. lycopersicoides confer novel phenotypes with commercial and agronomic value in tomato breeding. Solanum lycopersicoides is a wild relative of tomato with a natural adaptation to a wide array of biotic and abiotic challenges. In this study, we identified and characterized diploid plants segregating from the progenies of monosomic alien addition lines (MAALs) of S. lycopersicoides to establish their potential as donors in breeding for target trait improvement in tomato. Molecular genotyping identified 28 of 38 MAAL progenies having the complete chromosome complement of the cultivated tomato parent and limited chromosome introgressions from the wild S. lycopersicoides parent. Analysis of SSR and indel marker profiles identified 34 unique alien introgressions in the 28 MAAL-derived introgression lines (MDILs) in the genetic background of tomato. Conserved patterns of alien introgressions were detected among sibs of MDILs 2, 3, 4 and 8. Across MDILs, a degree of preferential transmission of specific chromosome segments was also observed. Morphologically, the MDILs closely resembled the cultivated tomato more than S. lycopersicoides. The appearance of novel phenotypes in the MDILs that are lacking in the cultivated parent or the source MAALs indicates the capture of novel genetic variation by the diploid introgression lines that can add commercial and agronomic value to tomato. In particular, screening of representative MDILs for drought tolerance at the vegetative stage identified MDIL 2 and MDIL 11III as drought tolerant based on visual scoring. A regulated increase in stomatal conductance of MDIL 2 under drought stress indicates better water use efficiency that allowed it to survive for 7 days under 0% moisture level.
Collapse
Affiliation(s)
- Puneet Kaur Mangat
- Department of Plant and Soil Science, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, 79409-2122, USA
| | - Junghyun Shim
- Department of Plant and Soil Science, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, 79409-2122, USA
| | - Ritchel B Gannaban
- Department of Plant and Soil Science, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, 79409-2122, USA
| | - Joshua J Singleton
- Department of Plant and Soil Science, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, 79409-2122, USA
| | - Rosalyn B Angeles-Shim
- Department of Plant and Soil Science, College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX, 79409-2122, USA.
| |
Collapse
|
166
|
Shahzad R, Jamil S, Ahmad S, Nisar A, Amina Z, Saleem S, Zaffar Iqbal M, Muhammad Atif R, Wang X. Harnessing the potential of plant transcription factors in developing climate resilient crops to improve global food security: Current and future perspectives. Saudi J Biol Sci 2021; 28:2323-2341. [PMID: 33911947 PMCID: PMC8071895 DOI: 10.1016/j.sjbs.2021.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 01/12/2021] [Indexed: 12/20/2022] Open
Abstract
Crop plants should be resilient to climatic factors in order to feed ever-increasing populations. Plants have developed stress-responsive mechanisms by changing their metabolic pathways and switching the stress-responsive genes. The discovery of plant transcriptional factors (TFs), as key regulators of different biotic and abiotic stresses, has opened up new horizons for plant scientists. TFs perceive the signal and switch certain stress-responsive genes on and off by binding to different cis-regulatory elements. More than 50 families of plant TFs have been reported in nature. Among them, DREB, bZIP, MYB, NAC, Zinc-finger, HSF, Dof, WRKY, and NF-Y are important with respect to biotic and abiotic stresses, but the potential of many TFs in the improvement of crops is untapped. In this review, we summarize the role of different stress-responsive TFs with respect to biotic and abiotic stresses. Further, challenges and future opportunities linked with TFs for developing climate-resilient crops are also elaborated.
Collapse
Affiliation(s)
- Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Shakra Jamil
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Shakeel Ahmad
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Amina Nisar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zarmaha Amina
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shazmina Saleem
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Zaffar Iqbal
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, University Road, 38040, Faisalabad, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| |
Collapse
|
167
|
Wu L, Chang Y, Wang L, Wu J, Wang S. Genetic dissection of drought resistance based on root traits at the bud stage in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1047-1061. [PMID: 33426592 DOI: 10.1007/s00122-020-03750-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
A whole-genome resequencing-derived SNP dataset used for genome-wide association analysis revealed 196 loci significantly associated with drought stress based on root traits. Candidate genes identified in the regions of these loci include homologs of known drought resistance genes in A. thaliana. Drought is the main abiotic constraint of the production of common bean. Improved adaptation to drought environments has become a main goal of crop breeding due to the increasing scarcity of water that will occur in the future. The overall objective of our study was to identify genomic regions associated with drought resistance based on root traits using genome-wide association analysis. A natural population of 438 common bean accessions was evaluated for root traits: root surface area, root average diameter, root volume, total root length, taproot length, lateral root number, root dry weight, lateral root length, special root weight/length, using seed germination pouches under drought conditions and in well-watered environments. The coefficient of variation ranged from 11.24% (root average diameter) to 38.19% (root dry weight) in the well-watered environment and from 9.61% (root average diameter) to 39.05% (lateral root length) under drought stress. A whole-genome resequencing-derived SNP dataset revealed 196 loci containing 230 candidate SNPs associated with drought resistance. Seventeen candidate SNPs were simultaneously associated with more than two traits. Forty-one loci were simultaneously associated with more than two traits, and eleven loci were colocated with loci previously reported to be related to drought resistance. Candidate genes of the associated loci included the ABA-responsive element-binding protein family, MYB, NAC, the protein kinase superfamily, etc. These results revealed promising alleles linked to drought resistance or root traits, providing insights into the genetic basis of drought resistance and roots, which will be useful for common bean improvement.
Collapse
Affiliation(s)
- Lei Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yujie Chang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lanfen Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jing Wu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shumin Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
168
|
Islam M, Inoue T, Hiraide M, Khatun N, Jahan A, Kuwata K, Katagiri S, Umezawa T, Yotsui I, Sakata Y, Takezawa D. Activation of SnRK2 by Raf-like kinase ARK represents a primary mechanism of ABA and abiotic stress responses. PLANT PHYSIOLOGY 2021; 185:533-546. [PMID: 33655297 PMCID: PMC8133623 DOI: 10.1093/plphys/kiaa046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 05/25/2023]
Abstract
The Raf-like protein kinase abscisic acid (ABA) and abiotic stress-responsive Raf-like kinase (ARK) previously identified in the moss Physcomitrium (Physcomitrella) patens acts as an upstream regulator of subgroup III SNF1-related protein kinase2 (SnRK2), the key regulator of ABA and abiotic stress responses. However, the mechanisms underlying activation of ARK by ABA and abiotic stress for the regulation of SnRK2, including the role of ABA receptor-associated group A PP2C (PP2C-A), are not understood. We identified Ser1029 as the phosphorylation site in the activation loop of ARK, which provided a possible mechanism for regulation of its activity. Analysis of transgenic P. patens ark lines expressing ARK-GFP with Ser1029-to-Ala mutation indicated that this replacement causes reductions in ABA-induced gene expression, stress tolerance, and SnRK2 activity. Immunoblot analysis using an anti-phosphopeptide antibody indicated that ABA treatments rapidly stimulate Ser1029 phosphorylation in the wild type (WT). The phosphorylation profile of Ser1029 in ABA-hypersensitive ppabi1 lacking protein phosphatase 2C-A (PP2C-A) was similar to that in the WT, whereas little Ser1029 phosphorylation was observed in ABA-insensitive ark missense mutant lines. Furthermore, newly isolated ppabi1 ark lines showed ABA-insensitive phenotypes similar to those of ark lines. Therefore, ARK is a primary activator of SnRK2, preceding negative regulation by PP2C-A in bryophytes, which provides a prototype mechanism for ABA and abiotic stress responses in plants.
Collapse
Affiliation(s)
- Mousona Islam
- Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo 255, Sakura-ku, Saitama 338-8570, Japan
- Plant Tissue Culture Section, Biological Research Division, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| | - Takumi Inoue
- Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Mayuka Hiraide
- Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Nobiza Khatun
- Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Akida Jahan
- Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo 255, Sakura-ku, Saitama 338-8570, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Sotaro Katagiri
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei City, Tokyo 184-8588, Japan
| | - Taishi Umezawa
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei City, Tokyo 184-8588, Japan
| | - Izumi Yotsui
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | - Daisuke Takezawa
- Graduate School of Science and Engineering, Saitama University, Shimo-ohkubo 255, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
169
|
Mo F, Zhang N, Qiu Y, Meng L, Cheng M, Liu J, Yao L, Lv R, Liu Y, Zhang Y, Chen X, Wang A. Molecular Characterization, Gene Evolution and Expression Analysis of the F-Box Gene Family in Tomato ( Solanum lycopersicum). Genes (Basel) 2021; 12:417. [PMID: 33799396 PMCID: PMC7998346 DOI: 10.3390/genes12030417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/23/2022] Open
Abstract
F-box genes play an important role in the growth and development of plants, but there are few studies on its role in a plant's response to abiotic stresses. In order to further study the functions of F-box genes in tomato (Solanum lycopersicum, Sl), a total of 139 F-box genes were identified in the whole genome of tomato using bioinformatics methods, and the basic information, transcript structure, conserved motif, cis-elements, chromosomal location, gene evolution, phylogenetic relationship, expression patterns and the expression under cold stress, drought stress, jasmonic acid (JA) treatment and salicylic acid (SA) treatment were analyzed. The results showed that SlFBX genes were distributed on 12 chromosomes of tomato and were prone to TD (tandem duplication) at the ends of chromosomes. WGD (whole genome duplication), TD, PD (proximal duplication) and TRD (transposed duplication) modes seem play an important role in the expansion and evolution of tomato SlFBX genes. The most recent divergence occurred 1.3042 million years ago, between SlFBX89 and SlFBX103. The cis-elements in SlFBX genes' promoter regions were mainly responded to phytohormone and abiotic stress. Expression analysis based on transcriptome data and qRT-PCR (Real-time quantitative PCR) analysis of SlFBX genes showed that most SlFBX genes were differentially expressed under abiotic stress. SlFBX24 was significantly up-regulated at 12 h under cold stress. This study reported the SlFBX gene family of tomato for the first time, providing a theoretical basis for the detailed study of SlFBX genes in the future, especially the function of SlFBX genes under abiotic stress.
Collapse
Affiliation(s)
- Fulei Mo
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
| | - Nian Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Youwen Qiu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
| | - Lingjun Meng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Mozhen Cheng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
| | - Jiayin Liu
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (J.L.); (L.Y.)
| | - Lanning Yao
- College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; (J.L.); (L.Y.)
| | - Rui Lv
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Yuxin Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Yao Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| | - Aoxue Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; (F.M.); (Y.Q.); (M.C.); (Y.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (N.Z.); (L.M.); (R.L.); (Y.L.)
| |
Collapse
|
170
|
Lee M, Dominguez-Ferreras A, Kaliyadasa E, Huang WJ, Antony E, Stevenson T, Lehmann S, Schäfer P, Knight MR, Ntoukakis V, Knight H. Mediator Subunits MED16, MED14, and MED2 Are Required for Activation of ABRE-Dependent Transcription in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:649720. [PMID: 33777083 PMCID: PMC7991908 DOI: 10.3389/fpls.2021.649720] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/12/2021] [Indexed: 05/29/2023]
Abstract
The Mediator complex controls transcription of most eukaryotic genes with individual subunits required for the control of particular gene regulons in response to various perturbations. In this study, we reveal the roles of the plant Mediator subunits MED16, MED14, and MED2 in regulating transcription in response to the phytohormone abscisic acid (ABA) and we determine which cis elements are under their control. Using synthetic promoter reporters we established an effective system for testing relationships between subunits and specific cis-acting motifs in protoplasts. Our results demonstrate that MED16, MED14, and MED2 are required for the full transcriptional activation by ABA of promoters containing both the ABRE (ABA-responsive element) and DRE (drought-responsive element). Using synthetic promoter motif concatamers, we showed that ABA-responsive activation of the ABRE but not the DRE motif was dependent on these three Mediator subunits. Furthermore, the three subunits were required for the control of water loss from leaves but played no role in ABA-dependent growth inhibition, highlighting specificity in their functions. Our results identify new roles for three Mediator subunits, provide a direct demonstration of their function and highlight that our experimental approach can be utilized to identify the function of subunits of plant transcriptional regulators.
Collapse
Affiliation(s)
- Morgan Lee
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Anna Dominguez-Ferreras
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Ewon Kaliyadasa
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Wei-Jie Huang
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Edna Antony
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Tracey Stevenson
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Silke Lehmann
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Patrick Schäfer
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
- Institute of Molecular Botany, Ulm University, Ulm, Germany
| | - Marc R. Knight
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Vardis Ntoukakis
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom
| | - Heather Knight
- Department of Biosciences, Durham University, Durham, United Kingdom
| |
Collapse
|
171
|
Eriksen RL, Padgitt-Cobb LK, Townsend MS, Henning JA. Gene expression for secondary metabolite biosynthesis in hop (Humulus lupulus L.) leaf lupulin glands exposed to heat and low-water stress. Sci Rep 2021; 11:5138. [PMID: 33664420 PMCID: PMC7970847 DOI: 10.1038/s41598-021-84691-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Hops are valued for their secondary metabolites, including bitter acids, flavonoids, oils, and polyphenols, that impart flavor in beer. Previous studies have shown that hop yield and bitter acid content decline with increased temperatures and low-water stress. We looked at physiological traits and differential gene expression in leaf, stem, and root tissue from hop (Humulus lupulus) cv. USDA Cascade in plants exposed to high temperature stress, low-water stress, and a compound treatment of both high temperature and low-water stress for six weeks. The stress conditions imposed in these experiments caused substantial changes to the transcriptome, with significant reductions in the expression of numerous genes involved in secondary metabolite biosynthesis. Of the genes involved in bitter acid production, the critical gene valerophenone synthase (VPS) experienced significant reductions in expression levels across stress treatments, suggesting stress-induced lability in this gene and/or its regulatory elements may be at least partially responsible for previously reported declines in bitter acid content. We also identified a number of transcripts with homology to genes shown to affect abiotic stress tolerance in other plants that may be useful as markers for breeding improved abiotic stress tolerance in hop. Lastly, we provide the first transcriptome from hop root tissue.
Collapse
Affiliation(s)
- Renée L. Eriksen
- grid.512836.b0000 0001 2205 063XUSDA Agricultural Research Service, Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR 97331 USA
| | - Lillian K. Padgitt-Cobb
- grid.4391.f0000 0001 2112 1969Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331 USA
| | - M. Shaun Townsend
- grid.4391.f0000 0001 2112 1969Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331 USA
| | - John A. Henning
- grid.512836.b0000 0001 2205 063XUSDA Agricultural Research Service, Forage Seed and Cereal Research Unit, 3450 SW Campus Way, Corvallis, OR 97331 USA
| |
Collapse
|
172
|
Yoshida T, Yamaguchi-Shinozaki K. Metabolic engineering: Towards water deficiency adapted crop plants. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153375. [PMID: 33609854 DOI: 10.1016/j.jplph.2021.153375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Water deficiency caused by drought is one of the severe environmental conditions limiting plant growth, development, and yield. In this review article, we will summarize the changes in transcription, metabolism, and phytohormones under drought stress conditions and show the key transcription factors in these processes. We will also highlight the recent attempts to enhance stress tolerance without growth retardation and discuss the perspective on the development of stress adapted crops by engineering transcription factors.
Collapse
Affiliation(s)
- Takuya Yoshida
- Max-Planck-Institut Für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany; Centre of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria.
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 113-8657, Tokyo, Japan; Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 156-8502, Tokyo, Japan
| |
Collapse
|
173
|
Identification and Characterization of the APX Gene Family and Its Expression Pattern under Phytohormone Treatment and Abiotic Stress in Populus trichocarpa. Genes (Basel) 2021; 12:genes12030334. [PMID: 33668872 PMCID: PMC7996185 DOI: 10.3390/genes12030334] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Ascorbate peroxidase (APX) is a member of class I of the heme-containing peroxidase family. The enzyme plays important roles in scavenging reactive oxygen species for protection against oxidative damage and maintaining normal plant growth and development, as well as in biotic stress responses. In this study, we identified 11 APX genes in the Populus trichocarpa genome using bioinformatic methods. Phylogenetic analysis revealed that the PtrAPX proteins were classifiable into three clades and the members of each clade shared similar gene structures and motifs. The PtrAPX genes were distributed on six chromosomes and four segmental-duplicated gene pairs were identified. Promoter cis-elements analysis showed that the majority of PtrAPX genes contained a variety of phytohormone- and abiotic stress-related cis-elements. Tissue-specific expression profiles indicated that the PtrAPX genes primarily function in roots and leaves. Real-time quantitative PCR (RT-qPCR) analysis indicated that PtrAPX transcription was induced in response to drought, salinity, high ammonium concentration, and exogenous abscisic acid treatment. These results provide important information on the phylogenetic relationships and functions of the APX gene family in P. trichocarpa.
Collapse
|
174
|
Yong X, Zheng T, Zhuo X, Ahmad S, Li L, Li P, Yu J, Wang J, Cheng T, Zhang Q. Genome-wide identification, characterisation, and evolution of ABF/AREB subfamily in nine Rosaceae species and expression analysis in mei ( Prunus mume). PeerJ 2021; 9:e10785. [PMID: 33604183 PMCID: PMC7868070 DOI: 10.7717/peerj.10785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
Rosaceae is an important family containing some of the highly evolved fruit and ornamental plants. Abiotic stress responses play key roles in the seasonal growth and development of plants. However, the molecular basis of stress responses remains largely unknown in Rosaceae. Abscisic acid (ABA) is a stress hormone involving abiotic stress response pathways. The ABRE-binding factor/ABA-responsive element-binding protein (ABF/AREB) is a subfamily of the basic domain/leucine zipper (bZIP) transcription factor family. It plays an important role in the ABA-mediated signaling pathway. Here, we analyzed the ABF/AREB subfamily genes in nine Rosaceae species. A total of 64 ABF/AREB genes were identified, including 18, 28, and 18 genes in the Rosoideae, Amygdaloideae, and Maloideae traditional subfamilies, respectively. The evolutionary relationship of the ABF/AREB subfamily genes was studied through the phylogenetic analysis, the gene structure and conserved motif composition, Ka/Ks values, and interspecies colinearity. These gene sets were clustered into four groups. In the Prunus ABF/AREB (PmABF) promoters, several cis-elements related to light, hormone, and abiotic stress response were predicted. PmABFs expressed in five different tissues, except PmABF5, which expressed only in buds. In the dormancy stages, PmABF1, 2, 5 and 7 showed differential expression. The expression of PmABF3, 4 and 6 was positively correlated with the ABA concentration. Except for PmABF5, all the PmABFs were sensitive to ABA. Several ABRE elements were contained in the promoters of PmABF1, 3, 6, 7. Based on the findings of our study, we speculate that PmABFs may play a role in flower bud dormancy in P. mume.
Collapse
Affiliation(s)
- Xue Yong
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Tangchun Zheng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Xiaokang Zhuo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Sagheer Ahmad
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Lulu Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Ping Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Jiayao Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Forestry University, Beijing, China.,National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing, China.,Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China.,Engineering Research Center of Landscape Environment of Ministry of Education, Beijing Forestry University, Beijing, China.,Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Beijing Forestry University, Beijing, China
| |
Collapse
|
175
|
Rathor P, Borza T, Stone S, Tonon T, Yurgel S, Potin P, Prithiviraj B. A Novel Protein from Ectocarpus sp. Improves Salinity and High Temperature Stress Tolerance in Arabidopsis thaliana. Int J Mol Sci 2021; 22:1971. [PMID: 33671243 PMCID: PMC7922944 DOI: 10.3390/ijms22041971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/16/2022] Open
Abstract
Brown alga Ectocarpus sp. belongs to Phaeophyceae, a class of macroalgae that evolved complex multicellularity. Ectocarpus sp. is a dominant seaweed in temperate regions, abundant mostly in the intertidal zones, an environment with high levels of abiotic stresses. Previous transcriptomic analysis of Ectocarpus sp. revealed several genes consistently induced by various abiotic stresses; one of these genes is Esi0017_0056, which encodes a protein with unknown function. Bioinformatics analyses indicated that the protein encoded by Esi0017_0056 is soluble and monomeric. The protein was successfully expressed in Escherichia coli,Arabidopsis thaliana and Nicotiana benthamiana. In A. thaliana the gene was expressed under constitutive and stress inducible promoters which led to improved tolerance to high salinity and temperature stresses. The expression of several key abiotic stress-related genes was studied in transgenic and wild type A. thaliana by qPCR. Expression analysis revealed that genes involved in ABA-induced abiotic stress tolerance, K+ homeostasis, and chaperon activities were significantly up-regulated in the transgenic line. This study is the first report in which an unknown function Ectocarpus sp. gene, highly responsive to abiotic stresses, was successfully expressed in A. thaliana, leading to improved tolerance to salt and temperature stress.
Collapse
Affiliation(s)
- Pramod Rathor
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada; (P.R.); (T.B.); (S.Y.)
| | - Tudor Borza
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada; (P.R.); (T.B.); (S.Y.)
| | - Sophia Stone
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Thierry Tonon
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, UK;
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, UMR 8227, 29680 Roscoff, France;
| | - Svetlana Yurgel
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada; (P.R.); (T.B.); (S.Y.)
| | - Philippe Potin
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, UMR 8227, 29680 Roscoff, France;
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada; (P.R.); (T.B.); (S.Y.)
| |
Collapse
|
176
|
Fuhrmann-Aoyagi MB, de Fátima Ruas C, Barbosa EGG, Braga P, Moraes LAC, de Oliveira ACB, Kanamori N, Yamaguchi-Shinozaki K, Nakashima K, Nepomuceno AL, Mertz-Henning LM. Constitutive expression of Arabidopsis bZIP transcription factor AREB1 activates cross-signaling responses in soybean under drought and flooding stresses. JOURNAL OF PLANT PHYSIOLOGY 2021; 257:153338. [PMID: 33401097 DOI: 10.1016/j.jplph.2020.153338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Abiotic stress, such as drought and flooding, are responsible for considerable losses in grain production worldwide. Soybean, the main cultivated oilseed in the world, is sensitive to both stresses. Plant molecular mechanisms answer via crosstalk of several signaling pathways, in which particular genes can respond to different stresses. Previous studies confirmed that overexpression of transcription factor AtAREB1 confers drought tolerance in soybean. However, plants containing this gene have not yet been tested under flooding. Thus, the objective of this study was to characterize genetically modified (GM) soybean plants overexpressing AtAREB1 under drought and flooding conditions in comparison to its genetic background. Physiological and biochemical measurements were performed. In addition, the expression level of genes commonly activated under both stresses was evaluated. The results supported the role of the AtAREB1 gene in conferring tolerance to water deficit in soybeans. Furthermore, under flooding, the GM line was efficient in maintaining a higher photosynthetic rate, intrinsic efficiency in water use, and instantaneous carboxylation efficiency, resulting in higher grain yield under stress. The GM line also presented higher protein content, lower concentration of hydrogen peroxide, and lower expression levels of genes related to fermentative metabolism and alanine biosynthesis. These results indicate that in addition to drought stress, plants overexpressing AtAREB1 exhibited better performance under flooding when compared to the non-GM line, suggesting a cross-signaling response to both abiotic factors.
Collapse
Affiliation(s)
- Martina Bianca Fuhrmann-Aoyagi
- Department of General Biology, Londrina State University, Rodovia Celso Garcia Cid, Campus Universitário, 86.057-970, Londrina, PR, Brazil.
| | - Claudete de Fátima Ruas
- Department of General Biology, Londrina State University, Rodovia Celso Garcia Cid, Campus Universitário, 86.057-970, Londrina, PR, Brazil.
| | - Elton Gargioni Grisoste Barbosa
- Fundação de Apoio à Pesquisa e ao Desenvolvimento (FAPED), Rua Dr. Campos Júnior, 49 - Centro, 35700-039, Sete Lagoas, MG, Brazil.
| | - Patricia Braga
- Agronomy Department, Universidade Estadual de Londrina (UEL), Rodovia Celso Garcia Cid, Pr 445, Km 380, 86050-900, Londrina, PR, Brazil.
| | | | | | - Norihito Kanamori
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan.
| | - Kazuko Yamaguchi-Shinozaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan; Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
| | - Kazuo Nakashima
- Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, 305-8686, Japan.
| | - Alexandre Lima Nepomuceno
- Embrapa Soja, Rodovia Carlos João Strass, Acesso Orlando Amaral, Warta, PO. Box 231, 86001-970, Londrina, PR, Brazil.
| | - Liliane Marcia Mertz-Henning
- Embrapa Soja, Rodovia Carlos João Strass, Acesso Orlando Amaral, Warta, PO. Box 231, 86001-970, Londrina, PR, Brazil.
| |
Collapse
|
177
|
Fatma M, Iqbal N, Gautam H, Sehar Z, Sofo A, D’Ippolito I, Khan NA. Ethylene and Sulfur Coordinately Modulate the Antioxidant System and ABA Accumulation in Mustard Plants under Salt Stress. PLANTS 2021; 10:plants10010180. [PMID: 33478097 PMCID: PMC7835815 DOI: 10.3390/plants10010180] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 02/01/2023]
Abstract
This study explored the interactive effect of ethephon (2-chloroethyl phosphonic acid; an ethylene source) and sulfur (S) in regulating the antioxidant system and ABA content and in maintaining stomatal responses, chloroplast structure, and photosynthetic performance of mustard plants (Brassica juncea L. Czern.) grown under 100 mM NaCl stress. The treatment of ethephon (200 µL L−1) and S (200 mg S kg−1 soil) together markedly improved the activity of enzymatic and non-enzymatic components of the ascorbate-glutathione (AsA-GSH) cycle, resulting in declined oxidative stress through lesser content of sodium (Na+) ion and hydrogen peroxide (H2O2) in salt-stressed plants. These changes promoted the development of chloroplast thylakoids and photosynthetic performance under salt stress. Ethephon + S also reduced abscisic acid (ABA) accumulation in guard cell, leading to maximal stomatal conductance under salt stress. The inhibition of ethylene action by norbornadiene (NBD) in salt- plus non-stressed treated plants increased ABA and H2O2 contents, and reduced stomatal opening, suggesting the involvement of ethephon and S in regulating stomatal conductance. These findings suggest that ethephon and S modulate antioxidant system and ABA accumulation in guard cells, controlling stomatal conductance, and the structure and efficiency of the photosynthetic apparatus in plants under salt stress.
Collapse
Affiliation(s)
- Mehar Fatma
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (H.G.); (Z.S.)
| | - Noushina Iqbal
- Department of Botany, Jamia Hamdard, New Delhi 110062, India;
| | - Harsha Gautam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (H.G.); (Z.S.)
| | - Zebus Sehar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (H.G.); (Z.S.)
| | - Adriano Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment and Cultural Heritage (DiCEM), University of Basilicata, Via Lanera, 20, 75100 Matera, Italy;
- Correspondence: (A.S.); (N.A.K.)
| | - Ilaria D’Ippolito
- Department of European and Mediterranean Cultures: Architecture, Environment and Cultural Heritage (DiCEM), University of Basilicata, Via Lanera, 20, 75100 Matera, Italy;
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India; (M.F.); (H.G.); (Z.S.)
- Correspondence: (A.S.); (N.A.K.)
| |
Collapse
|
178
|
Bhadouriya SL, Mehrotra S, Basantani MK, Loake GJ, Mehrotra R. Role of Chromatin Architecture in Plant Stress Responses: An Update. FRONTIERS IN PLANT SCIENCE 2021; 11:603380. [PMID: 33510748 PMCID: PMC7835326 DOI: 10.3389/fpls.2020.603380] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/07/2020] [Indexed: 05/08/2023]
Abstract
Sessile plants possess an assembly of signaling pathways that perceive and transmit environmental signals, ultimately resulting in transcriptional reprogramming. Histone is a key feature of chromatin structure. Numerous histone-modifying proteins act under different environmental stress conditions to help modulate gene expression. DNA methylation and histone modification are crucial for genome reprogramming for tissue-specific gene expression and global gene silencing. Different classes of chromatin remodelers including SWI/SNF, ISWI, INO80, and CHD are reported to act upon chromatin in different organisms, under diverse stresses, to convert chromatin from a transcriptionally inactive to a transcriptionally active state. The architecture of chromatin at a given promoter is crucial for determining the transcriptional readout. Further, the connection between somatic memory and chromatin modifications may suggest a mechanistic basis for a stress memory. Studies have suggested that there is a functional connection between changes in nuclear organization and stress conditions. In this review, we discuss the role of chromatin architecture in different stress responses and the current evidence on somatic, intergenerational, and transgenerational stress memory.
Collapse
Affiliation(s)
- Sneha Lata Bhadouriya
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| | - Mahesh K. Basantani
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow, India
| | - Gary J. Loake
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburg, Edinburg, United Kingdom
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Sciences, Sancoale, India
| |
Collapse
|
179
|
Arabidopsis bZIP18 and bZIP52 Accumulate in Nuclei Following Heat Stress where They Regulate the Expression of a Similar Set of Genes. Int J Mol Sci 2021; 22:ijms22020530. [PMID: 33430325 PMCID: PMC7830406 DOI: 10.3390/ijms22020530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 01/07/2023] Open
Abstract
Heat stress (HS) is a major abiotic stress that negatively impacts crop yields across the globe. Plants respond to elevated temperatures by changing gene expression, mediated by transcription factors (TFs) functioning to enhance HS tolerance. The involvement of Group I bZIP TFs in the heat stress response (HSR) is not known. In this study, bZIP18 and bZIP52 were investigated for their possible role in the HSR. Localization experiments revealed their nuclear accumulation following heat stress, which was found to be triggered by dephosphorylation. Both TFs were found to possess two motifs containing serine residues that are candidates for phosphorylation. These motifs are recognized by 14–3–3 proteins, and bZIP18 and bZIP52 were found to bind 14–3–3 ε, the interaction of which sequesters them to the cytoplasm. Mutation of both residues abolished 14–3–3 ε interaction and led to a strict nuclear localization for both TFs. RNA-seq analysis revealed coordinated downregulation of several metabolic pathways including energy metabolism and translation, and upregulation of numerous lncRNAs in particular. These results support the idea that bZIP18 and bZIP52 are sequestered to the cytoplasm under control conditions, and that heat stress leads to their re-localization to nuclei, where they jointly regulate gene expression.
Collapse
|
180
|
Zhou J, Chen S, Shi W, David-Schwartz R, Li S, Yang F, Lin Z. Transcriptome profiling reveals the effects of drought tolerance in Giant Juncao. BMC PLANT BIOLOGY 2021; 21:2. [PMID: 33390157 PMCID: PMC7780708 DOI: 10.1186/s12870-020-02785-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/06/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Giant Juncao is often used as feed for livestock because of its huge biomass. However, drought stress reduces forage production by affecting the normal growth and development of plants. Therefore, investigating the molecular mechanisms of drought tolerance will provide important information for the improvement of drought tolerance in this grass. RESULTS A total of 144.96 Gb of clean data was generated and assembled into 144,806 transcripts and 93,907 unigenes. After 7 and 14 days of drought stress, a total of 16,726 and 46,492 differentially expressed genes (DEGs) were observed, respectively. Compared with normal irrigation, 16,247, 23,503, and 11,598 DEGs were observed in 1, 5, and 9 days following rehydration, respectively. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed abiotic stress-responsive genes and pathways related to catalytic activity, methyltransferase activity, transferase activity, and superoxide metabolic process. We also identified transcription factors belonging to several families, including basic helix-loop-helix (bHLH), WRKY, NAM (no apical meristem), ATAF1/2 and CUC2 (cup-shaped cotyledon) (NAC), fatty acyl-CoA reductase (FAR1), B3, myeloblastosis (MYB)-related, and basic leucine zipper (bZIP) families, which are important drought-rehydration-responsive proteins. Weighted gene co-expression network analysis was also used to analyze the RNA-seq data to predict the interrelationship between genes. Twenty modules were obtained, and four of these modules may be involved in photosynthesis and plant hormone signal transduction that respond to drought and rehydration conditions. CONCLUSIONS Our research is the first to provide a more comprehensive understanding of DEGs involved in drought stress at the transcriptome level in Giant Juncao with different drought and recovery conditions. These results may reveal insights into the molecular mechanisms of drought tolerance in Giant Juncao and provide diverse genetic resources involved in drought tolerance research.
Collapse
Affiliation(s)
- Jing Zhou
- National Engineering Research Center of Juncao, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Siqi Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenjiao Shi
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Volcani Center, Agriculture Research Organization, 50250, Bet Dagan, Israel
| | - Sutao Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Fulin Yang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhanxi Lin
- National Engineering Research Center of Juncao, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
181
|
Li Y, Niu L, Wu X, Faleri C, Tai F, Zhang M, Liu H, Wang W, Cai G. Genome-Wide Identification and Comparison of Cysteine Proteases in the Pollen Coat and Other Tissues in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:709534. [PMID: 34630461 PMCID: PMC8494779 DOI: 10.3389/fpls.2021.709534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/24/2021] [Indexed: 05/07/2023]
Abstract
Cysteine proteases, belonging to the C1-papain family, play a major role in plant growth and development, senescence, and immunity. There is evidence to suggest that pollen cysteine protease (CP) (ZmCP03) is involved in regulating the anther development and pollen formation in maize. However, there is no report on the genome-wide identification and comparison of CPs in the pollen coat and other tissues in maize. In this study, a total of 38 homologous genes of ZmCP03 in maize were identified. Subsequently, protein motifs, conserved domains, gene structures, and duplication patterns of 39 CPs are analyzed to explore their evolutionary relationship and potential functions. The cis-elements were identified in the upstream sequence of 39 CPs, especially those that are related to regulating growth and development and responding to environmental stresses and hormones. The expression patterns of these genes displayed remarked difference at a tissue or organ level in maize based on the available transcriptome data in the public database. Quantitative reverse transcription PCR (RT-qPCR) analysis showed that ZmCP03 was preferably expressed at a high level in maize pollen. Analyses by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot, immunofluorescence and immunogold electron microscopy all validated the cellular localization of ZmCP03 in both the pollen coat and pollen cytoplasm. In addition, 142 CP genes from Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa) and cotton (Gossypium hirsutum), together with 39 maize CPs, were retrieved to analyze their evolution by comparing with orthologous genes. The results suggested that ZmCP03 was relatively conservative and stable during evolution. This study may provide a referential evidence on the function of ZmCP03 in pollen development and germination in maize.
Collapse
Affiliation(s)
- Yanhua Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Fuju Tai
| | - Man Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Hui Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- Wei Wang
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Siena, Italy
- Giampiero Cai
| |
Collapse
|
182
|
Min MK, Kim R, Hong WJ, Jung KH, Lee JY, Kim BG. OsPP2C09 Is a Bifunctional Regulator in Both ABA-Dependent and Independent Abiotic Stress Signaling Pathways. Int J Mol Sci 2021; 22:ijms22010393. [PMID: 33401385 PMCID: PMC7795834 DOI: 10.3390/ijms22010393] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Clade A Type 2C protein phosphatases (PP2CAs) negatively regulate abscisic acid (ABA) signaling and have diverse functions in plant development and in response to various stresses. In this study, we showed that overexpression of the rice ABA receptor OsPYL/RCAR3 reduces the growth retardation observed in plants exposed to osmotic stress. By contrast, overexpression of the OsPYL/RCAR3-interacting protein OsPP2C09 rendered plant growth more sensitive to osmotic stress. We tested whether OsPP2CAs activate an ABA-independent signaling cascade by transfecting rice protoplasts with luciferase reporters containing the drought-responsive element (DRE) or ABA-responsive element (ABRE). We observed that OsPP2CAs activated gene expression via the cis-acting drought-responsive element. In agreement with this observation, transcriptome analysis of plants overexpressing OsPP2C09 indicated that OsPP2C09 induces the expression of genes whose promoters contain DREs. Further analysis showed that OsPP2C09 interacts with DRE-binding (DREB) transcription factors and activates reporters containing DRE. We conclude that, through activating DRE-containing promoters, OsPP2C09 positively regulates the drought response regulon and activates an ABA-independent signaling pathway.
Collapse
Affiliation(s)
- Myung Ki Min
- Division of Metabolic Engineering, National Institute of Agricultural Sciences, RDA, Jeonju-si 54874, Korea; (M.K.M.); (R.K.); (J.-Y.L.)
| | - Rigyeong Kim
- Division of Metabolic Engineering, National Institute of Agricultural Sciences, RDA, Jeonju-si 54874, Korea; (M.K.M.); (R.K.); (J.-Y.L.)
| | - Woo-Jong Hong
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (W.-J.H.); (K.-H.J.)
| | - Ki-Hong Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 17104, Korea; (W.-J.H.); (K.-H.J.)
| | - Jong-Yeol Lee
- Division of Metabolic Engineering, National Institute of Agricultural Sciences, RDA, Jeonju-si 54874, Korea; (M.K.M.); (R.K.); (J.-Y.L.)
| | - Beom-Gi Kim
- Division of Metabolic Engineering, National Institute of Agricultural Sciences, RDA, Jeonju-si 54874, Korea; (M.K.M.); (R.K.); (J.-Y.L.)
- Correspondence:
| |
Collapse
|
183
|
Zhang L, Chen WS, Lv ZY, Sun WJ, Jiang R, Chen JF, Ying X. Phytohormones jasmonic acid, salicylic acid, gibberellins, and abscisic acid are key mediators of plant secondary metabolites. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2021. [DOI: 10.4103/wjtcm.wjtcm_20_21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
184
|
Zhan X, Lu Y, Zhu JK, Botella JR. Genome editing for plant research and crop improvement. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:3-33. [PMID: 33369120 DOI: 10.1111/jipb.13063] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/22/2020] [Indexed: 05/27/2023]
Abstract
The advent of clustered regularly interspaced short palindromic repeat (CRISPR) has had a profound impact on plant biology, and crop improvement. In this review, we summarize the state-of-the-art development of CRISPR technologies and their applications in plants, from the initial introduction of random small indel (insertion or deletion) mutations at target genomic loci to precision editing such as base editing, prime editing and gene targeting. We describe advances in the use of class 2, types II, V, and VI systems for gene disruption as well as for precise sequence alterations, gene transcription, and epigenome control.
Collapse
Affiliation(s)
- Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Xianyang, 712100, China
| | - Yuming Lu
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
185
|
Wang YH, Que F, Li T, Zhang RR, Khadr A, Xu ZS, Tian YS, Xiong AS. DcABF3, an ABF transcription factor from carrot, alters stomatal density and reduces ABA sensitivity in transgenic Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110699. [PMID: 33288012 DOI: 10.1016/j.plantsci.2020.110699] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 05/27/2023]
Abstract
Abscisic acid-responsive element (ABRE)-binding factors (ABFs) are important transcription factors involved in various physiological processes in plants. Stomata are micro channels for water and gas exchange of plants. Previous researches have demonstrated that ABFs can modulate the stomatal development in some plants. However, little is known about stomata-related functions of ABFs in carrots. In our study, DcABF3, a gene encoding for ABF transcription factor, was isolated from carrot. The open reading frame of DcABF3 was 1329 bp, encoding 442 amino acids. Expression profiles of DcABF3 indicated that DcABF3 can respond to drought, salt or ABA treatment in carrots. Overexpressing DcABF3 in Arabidopsis led to the increase of stomatal density which caused severe water loss. Expression assay indicated that overexpression of DcABF3 caused high expression of stomatal development-related transcription factor genes, SPCH, FAMA, MUTE and SCRMs. Increased antioxidant enzyme activities and higher expression levels of stress-related genes were also found in transgenic lines after water deficit treatment. Changes in expression of ABA synthesis-related genes and AtABIs indicated the potential role of DcABF3 in ABA signaling pathway. Under the treatment of exogenous ABA, DcABF3-overexpression Arabidopsis seedlings exhibited increased root length and germination rate. Our findings demonstrated that heterologous overexpression of DcABF3 positively affected stomatal development and also reduced ABA sensitivity in transgenic Arabidopsis.
Collapse
Affiliation(s)
- Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ahmed Khadr
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yong-Sheng Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
186
|
Yang Y, Li HG, Wang J, Wang HL, He F, Su Y, Zhang Y, Feng CH, Niu M, Li Z, Liu C, Yin W, Xia X. ABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating ADF5 in Populus euphratica. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:7270-7285. [PMID: 32822499 DOI: 10.1093/jxb/eraa383] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/17/2020] [Indexed: 05/20/2023]
Abstract
Water availability is a main limiting factor for plant growth, development, and distribution throughout the world. Stomatal movement mediated by abscisic acid (ABA) is particularly important for drought adaptation, but the molecular mechanisms in trees are largely unclear. Here, we isolated an ABA-responsive element binding factor, PeABF3, in Populus euphratica. PeABF3 was preferentially expressed in the xylem and young leaves, and was induced by dehydration and ABA treatments. PeABF3 showed transactivation activity and was located in the nucleus. To study its functional mechanism in poplar responsive to drought stress, transgenic triploid white poplars (Populus tomentosa 'YiXianCiZhu B385') overexpressing PeABF3 were generated. PeABF3 overexpression significantly enhanced stomatal sensitivity to exogenous ABA. When subjected to drought stress, PeABF3 overexpression maintained higher photosynthetic activity and promoted cell membrane integrity, resulting in increased water-use efficiency and enhanced drought tolerance compared with wild-type controls. Moreover, a yeast one-hybrid assay and an electrophoretic mobility shift assay revealed that PeABF3 activated the expression of Actin-Depolymerizing Factor-5 (PeADF5) by directly binding to its promoter, promoting actin cytoskeleton remodeling and stomatal closure in poplar under drought stress. Taken together, our results indicate that PeABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating PeADF5 expression.
Collapse
Affiliation(s)
- Yanli Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hui-Guang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jie Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hou-Ling Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fang He
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yanyan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Ying Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cong-Hua Feng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mengxue Niu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chao Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Weilun Yin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
187
|
Jung C, Nguyen NH, Cheong JJ. Transcriptional Regulation of Protein Phosphatase 2C Genes to Modulate Abscisic Acid Signaling. Int J Mol Sci 2020; 21:ijms21249517. [PMID: 33327661 PMCID: PMC7765119 DOI: 10.3390/ijms21249517] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Accepted: 12/12/2020] [Indexed: 01/04/2023] Open
Abstract
The plant hormone abscisic acid (ABA) triggers cellular tolerance responses to osmotic stress caused by drought and salinity. ABA controls the turgor pressure of guard cells in the plant epidermis, leading to stomatal closure to minimize water loss. However, stomatal apertures open to uptake CO2 for photosynthesis even under stress conditions. ABA modulates its signaling pathway via negative feedback regulation to maintain plant homeostasis. In the nuclei of guard cells, the clade A type 2C protein phosphatases (PP2Cs) counteract SnRK2 kinases by physical interaction, and thereby inhibit activation of the transcription factors that mediate ABA-responsive gene expression. Under osmotic stress conditions, PP2Cs bind to soluble ABA receptors to capture ABA and release active SnRK2s. Thus, PP2Cs function as a switch at the center of the ABA signaling network. ABA induces the expression of genes encoding repressors or activators of PP2C gene transcription. These regulators mediate the conversion of PP2C chromatins from a repressive to an active state for gene transcription. The stress-induced chromatin remodeling states of ABA-responsive genes could be memorized and transmitted to plant progeny; i.e., transgenerational epigenetic inheritance. This review focuses on the mechanism by which PP2C gene transcription modulates ABA signaling.
Collapse
Affiliation(s)
- Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology, Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
- Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam;
| | - Jong-Joo Cheong
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-4888; Fax: +82-2-873-5260
| |
Collapse
|
188
|
Li F, Mei F, Zhang Y, Li S, Kang Z, Mao H. Genome-wide analysis of the AREB/ABF gene lineage in land plants and functional analysis of TaABF3 in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:558. [PMID: 33302868 PMCID: PMC7731569 DOI: 10.1186/s12870-020-02783-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 12/03/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND Previous studies have shown that ABFs (abscisic acid-responsive transcription factors) are important ABA-signaling components that participate in abiotic stress response. However, little is known about the function of ABFs in Triticum aestivum. In addition, although various ABFs have been identified in other species, the phylogenetic relationship between ABF transcription factors has not been systemically investigated in land plants. RESULTS In this study, we systemically collected ABFs from land plants and analyzed the phylogenetic relationship of these ABF genes. The ABF genes are present in all the land plants we investigated, including moss, lycophyte, monocots, and eudicots. Furthermore, these ABF genes are phylogenetically divided into seven subgroups, differentiations that are supported by variation in the gene structure, protein properties, and motif patterns. We further demonstrated that the expression of ABF genes varies among different tissues and developmental stages, and are induced by one or more environmental stresses. Furthermore, we found that three wheat ABFs (TaABF1, TaABF2, and TaABF3) were significantly induced by drought stress. Compared with wild-type (WT) plants, transgenic Arabidopsis plants overexpressing TaABF3 displayed enhanced drought tolerance. CONCLUSIONS These results provide important ground work for understanding the phylogenetic relationships between plant ABF genes. Our results also indicate that TaABFs may participate in regulating plant response to abiotic stresses.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Fangming Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yifang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shumin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
189
|
Zhang H, Zhao Y, Zhu JK. Thriving under Stress: How Plants Balance Growth and the Stress Response. Dev Cell 2020; 55:529-543. [DOI: 10.1016/j.devcel.2020.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/21/2020] [Accepted: 10/17/2020] [Indexed: 12/24/2022]
|
190
|
Zhang M, Liu Y, Cai H, Guo M, Chai M, She Z, Ye L, Cheng Y, Wang B, Qin Y. The bZIP Transcription Factor GmbZIP15 Negatively Regulates Salt- and Drought-Stress Responses in Soybean. Int J Mol Sci 2020; 21:E7778. [PMID: 33096644 PMCID: PMC7589023 DOI: 10.3390/ijms21207778] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 12/03/2022] Open
Abstract
Soybean (Glycine max), as an important oilseed crop, is constantly threatened by abiotic stress, including that caused by salinity and drought. bZIP transcription factors (TFs) are one of the largest TF families and have been shown to be associated with various environmental-stress tolerances among species; however, their function in abiotic-stress response in soybean remains poorly understood. Here, we characterized the roles of soybean transcription factor GmbZIP15 in response to abiotic stresses. The transcript level of GmbZIP15 was suppressed under salt- and drought-stress conditions. Overexpression of GmbZIP15 in soybean resulted in hypersensitivity to abiotic stress compared with wild-type (WT) plants, which was associated with lower transcript levels of stress-responsive genes involved in both abscisic acid (ABA)-dependent and ABA-independent pathways, defective stomatal aperture regulation, and reduced antioxidant enzyme activities. Furthermore, plants expressing a functional repressor form of GmbZIP15 exhibited drought-stress resistance similar to WT. RNA-seq and qRT-PCR analyses revealed that GmbZIP15 positively regulates GmSAHH1 expression and negatively regulates GmWRKY12 and GmABF1 expression in response to abiotic stress. Overall, these data indicate that GmbZIP15 functions as a negative regulator in response to salt and drought stresses.
Collapse
Affiliation(s)
- Man Zhang
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (Y.L.); (H.C.); (M.G.); (M.C.); (L.Y.); (Y.C.)
| | - Yanhui Liu
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (Y.L.); (H.C.); (M.G.); (M.C.); (L.Y.); (Y.C.)
| | - Hanyang Cai
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (Y.L.); (H.C.); (M.G.); (M.C.); (L.Y.); (Y.C.)
| | - Mingliang Guo
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (Y.L.); (H.C.); (M.G.); (M.C.); (L.Y.); (Y.C.)
| | - Mengnan Chai
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (Y.L.); (H.C.); (M.G.); (M.C.); (L.Y.); (Y.C.)
| | - Zeyuan She
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Li Ye
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (Y.L.); (H.C.); (M.G.); (M.C.); (L.Y.); (Y.C.)
| | - Yan Cheng
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (Y.L.); (H.C.); (M.G.); (M.C.); (L.Y.); (Y.C.)
| | - Bingrui Wang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Qin
- Key Lab of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Plant Protection, College of Life Sciences, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.Z.); (Y.L.); (H.C.); (M.G.); (M.C.); (L.Y.); (Y.C.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China;
| |
Collapse
|
191
|
Qiu F, Bachle S, Estes R, Duvall MR, Nippert JB, Ungerer MC. Transcriptional responses to water stress and recovery in a drought-tolerant fescue wild grass ( Festuca ovina; Poaceae). Genome 2020; 64:15-27. [PMID: 33002373 DOI: 10.1139/gen-2020-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Water stress associated with drought-like conditions is a major factor limiting plant growth and impacts productivity of natural plant communities and agricultural crops. Molecular responses of plants to water stress have been studied most extensively in model species and crops, few of which have evolved natural drought tolerance. In the current study, we examined physiological and transcriptomic responses at multiple timepoints during increasing water stress and following initial recovery from stress in a drought-tolerant C3 species, Festuca ovina. Results demonstrated non-linear transcriptomic changes during increasing stress, but largely linear declines in physiological measurements during this same period. Transcription factors represented approximately 12.7% of all differentially expressed genes. In total, 117 F. ovina homologs of previously identified and molecularly characterized drought-responsive plant genes were identified. This information will be valuable for further investigations of the molecular mechanisms involved in drought tolerance in C3 plants.
Collapse
Affiliation(s)
- Fan Qiu
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Seton Bachle
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Ryan Estes
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Melvin R Duvall
- Department of Biological Sciences and Plant Molecular and Bioinformatics Center, Northern Illinois University, DeKalb, IL, USA
| | - Jesse B Nippert
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Mark C Ungerer
- Division of Biology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
192
|
de Melo BP, Lourenço-Tessutti IT, Paixão JFR, Noriega DD, Silva MCM, de Almeida-Engler J, Fontes EPB, Grossi-de-Sa MF. Transcriptional modulation of AREB-1 by CRISPRa improves plant physiological performance under severe water deficit. Sci Rep 2020; 10:16231. [PMID: 33004844 PMCID: PMC7530729 DOI: 10.1038/s41598-020-72464-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022] Open
Abstract
Plants are sessile organisms, which are vulnerable to environmental stresses. As such, plants have developed multiple molecular, physiological, and cellular mechanisms to cope with natural stressors. However, these environmental adversities, including drought, are sources of the main agribusiness problems since they interfere with plant growth and productivity. Particularly under water deprivation conditions, the abscisic acid-responsive element-binding protein AREB1/ABF2 plays an important role in drought stress response and physiological adaptation. In this investigation, we provide substantial confirmation for the role of AREB1/ABF2 in plant survival under severe water deficit using the CRISPR activation (CRISPRa) technique to enhance the AREB1 gene expression. In our strategy, the inactive nuclease dCas9 was fused with an Arabidopsis histone acetyltransferase 1, which improves gene expression by remodeling chromatin. The AREB1 overexpression promotes an improvement in the physiological performance of the transgenic homozygous plants under drought, which was associated with an increase in chlorophyll content, antioxidant enzyme activity, and soluble sugar accumulation, leading to lower reactive oxygen species accumulation. Finally, we found that the CRISPR-mediated up-regulation of AREB1 changes the abundance of several downstream ABA-inducible genes, allowing us to report that CRISPRa dCas9-HAT is a valuable biotechnological tool to improve drought stress tolerance through the positive regulation of AREB1.
Collapse
Affiliation(s)
- Bruno Paes de Melo
- Embrapa Genetic Resources and Biotechnology-EMBRAPA CENARGEN, Brasília, DF, Brazil
- Biochemistry and Molecular Biology, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | | | - Joaquin Felipe Roca Paixão
- Embrapa Genetic Resources and Biotechnology-EMBRAPA CENARGEN, Brasília, DF, Brazil
- Medical Biochemistry Institute, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Daniel David Noriega
- Embrapa Genetic Resources and Biotechnology-EMBRAPA CENARGEN, Brasília, DF, Brazil
- Genomic Sciences and Biotechnology, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil
| | | | | | - Elizabeth Pacheco Batista Fontes
- Biochemistry and Molecular Biology, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
- National Institute of Science and Technology in Plant-Pest Interactions (INCTIPP)-BIOAGRO, Viçosa, MG, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology-EMBRAPA CENARGEN, Brasília, DF, Brazil.
- Genomic Sciences and Biotechnology, Universidade Católica de Brasília (UCB), Brasília, DF, Brazil.
- National Institute of Science and Technology-INCT PlantStress Biotech-EMBRAPA, Brasília, DF, Brazil.
| |
Collapse
|
193
|
Liu B, Wang XY, Cao Y, Arora R, Zhou H, Xia YP. Factors affecting freezing tolerance: a comparative transcriptomics study between field and artificial cold acclimations in overwintering evergreens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2279-2300. [PMID: 32593208 DOI: 10.1111/tpj.14899] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 05/06/2023]
Abstract
Cold acclimation (CA) is a well-known strategy employed by plants to enhance freezing tolerance (FT) in winter. Global warming could disturb CA and increase the potential for winter freeze-injury. Thus, developing robust FT through complete CA is essential. To explore the molecular mechanisms of CA in woody perennials, we compared field and artificial CAs. Transcriptomic data showed that photosynthesis/photoprotection and fatty acid metabolism pathways were specifically enriched in field CA; carbohydrate metabolism, secondary metabolism and circadian rhythm pathways were commonly enriched in both field and artificial CAs. When compared with plants in vegetative growth in the chamber, we found that the light signals with warm air temperatures in the fall might induce the accumulation of leaf abscisic acid (ABA) and jasmonic acid (JA) concentrations, and activate Ca2+ , ABA and JA signaling transductions in plants. With the gradual cooling occurrence in winter, more accumulation of anthocyanin, chlorophyll degradation, closure/degradation of photosystem II reaction centers, and substantial accumulation of glucose and fructose contributed to obtaining robust FT during field CA. Moreover, we observed that in Rhododendron 'Elsie Lee', ABA and JA decreased in winter, which may be due to the strong requirement of zeaxanthin for rapid thermal dissipation and unsaturated fatty acids for membrane fluidity. Taken together, our results indicate that artificial CA has limitations to understand the field CA and field light signals (like short photoperiod, light intensity and/or light quality) before the low temperature in fall might be essential for complete CA.
Collapse
Affiliation(s)
- Bing Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Genomics and Genetic Engineering Laboratory of Ornamental Plants, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, P. R. China
| | - Xiu-Yun Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Genomics and Genetic Engineering Laboratory of Ornamental Plants, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, P. R. China
| | - Yan Cao
- Department of Horticulture, College of Agriculture and Biotechnology, Genomics and Genetic Engineering Laboratory of Ornamental Plants, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, P. R. China
| | - Rajeev Arora
- Department of Horticulture, Iowa State University, Ames, IA, 50010, USA
| | - Hong Zhou
- Department of Horticulture, College of Agriculture and Biotechnology, Genomics and Genetic Engineering Laboratory of Ornamental Plants, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, P. R. China
| | - Yi-Ping Xia
- Department of Horticulture, College of Agriculture and Biotechnology, Genomics and Genetic Engineering Laboratory of Ornamental Plants, Zhejiang University, 866 Yuhangtang Road, Zhejiang, 310058, P. R. China
| |
Collapse
|
194
|
Wu M, Liu R, Gao Y, Xiong R, Shi Y, Xiang Y. PheASR2, a novel stress-responsive transcription factor from moso bamboo (Phyllostachys edulis), enhances drought tolerance in transgenic rice via increased sensitivity to abscisic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:184-194. [PMID: 32563042 DOI: 10.1016/j.plaphy.2020.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Abscisic acid, stress and ripening (ASR) transcription factors comprise a small family of proteins that play a key role in stress responses in plants. ASR genes involved in drought tolerance in moso bamboo (Phyllostachys edulis) are largely unknown. In our study, an ASR gene, PheASR2, was isolated and characterized. The expression of PheASR2 was up-regulated under various abiotic stresses, including drought, salt and abscisic acid (ABA). PheASR2 was localized in the nucleus in tobacco cells, and displayed transactivation activity in yeast. Ectopic expression of PheASR2 in rice conferred enhanced tolerance to drought stress, as determined through physiological analyses of germination rate, plant height, water loss and survival rate. The PheASR2-overexpressing transgenic plants showed an increase in reactive oxygen species (ROS), electrolyte leakage and malondialdehyde levels, reduced enzyme (CAT and SOD) activities, and higher expression of genes encoding ROS-scavenging enzymes. Consequently, the transgenic plants exhibited increased tolerance to oxidative stress compared with wild-type plants. Moreover, following ABA treatment, the seed germination rate and plant height of the PheASR2-overexpressing lines were inhibited, and stomatal closure was reduced. The expression of marker genes, including, OsAREB, OsP5CS1, OsLEA, and OsNCED2, was up-regulated in the PheASR2-overexpressing lines when subjected to drought treatment. Together, these results indicate that PheASR2 functions in drought stress tolerance through ABA signaling.
Collapse
Affiliation(s)
- Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Rui Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yameng Gao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Rui Xiong
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yanan Shi
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China; National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
195
|
Tu M, Wang X, Yin W, Wang Y, Li Y, Zhang G, Li Z, Song J, Wang X. Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes. HORTICULTURE RESEARCH 2020; 7:150. [PMID: 32922822 PMCID: PMC7458916 DOI: 10.1038/s41438-020-00372-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 05/20/2023]
Abstract
Drought stress severely affects grapevine quality and yield, and recent reports have revealed that lignin plays an important role in protection from drought stress. Since little is known about lignin-mediated drought resistance in grapevine, we investigated its significance. Herein, we show that VlbZIP30 mediates drought resistance by activating the expression of lignin biosynthetic genes and increasing lignin deposition. Transgenic grapevine plants overexpressing VlbZIP30 exhibited lignin deposition (mainly G and S monomers) in the stem secondary xylem under control conditions, which resulted from the upregulated expression of VvPRX4 and VvPRX72. Overexpression of VlbZIP30 improves drought tolerance, characterized by a reduction in the water loss rate, maintenance of an effective photosynthesis rate, and increased lignin content (mainly G monomer) in leaves under drought conditions. Electrophoretic mobility shift assay, luciferase reporter assays, and chromatin immunoprecipitation-qPCR assays indicated that VlbZIP30 directly binds to the G-box cis-element in the promoters of lignin biosynthetic (VvPRX N1) and drought-responsive (VvNAC17) genes to regulate their expression. In summary, we report a novel VlbZIP30-mediated mechanism linking lignification and drought tolerance in grapevine. The results of this study may be of value for the development of molecular breeding strategies to produce drought-resistant fruit crops.
Collapse
Affiliation(s)
- Mingxing Tu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xianhang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- College of Enology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Wuchen Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Ya Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yajuan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Guofeng Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Junyang Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
196
|
Baek D, Kim WY, Cha JY, Park HJ, Shin G, Park J, Lim CJ, Chun HJ, Li N, Kim DH, Lee SY, Pardo JM, Kim MC, Yun DJ. The GIGANTEA-ENHANCED EM LEVEL Complex Enhances Drought Tolerance via Regulation of Abscisic Acid Synthesis. PLANT PHYSIOLOGY 2020; 184:443-458. [PMID: 32690755 PMCID: PMC7479899 DOI: 10.1104/pp.20.00779] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/09/2020] [Indexed: 05/22/2023]
Abstract
Drought is one of the most critical environmental stresses limiting plant growth and crop productivity. The synthesis and signaling of abscisic acid (ABA), a key phytohormone in the drought stress response, is under photoperiodic control. GIGANTEA (GI), a key regulator of photoperiod-dependent flowering and the circadian rhythm, is also involved in the signaling pathways for various abiotic stresses. In this study, we isolated ENHANCED EM LEVEL (EEL)/basic Leu zipper 12, a transcription factor involved in ABA signal responses, as a GI interactor in Arabidopsis (Arabidopsis thaliana). The diurnal expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3), a rate-limiting ABA biosynthetic enzyme, was reduced in the eel, gi-1, and eel gi-1 mutants under normal growth conditions. Chromatin immunoprecipitation and electrophoretic mobility shift assays revealed that EEL and GI bind directly to the ABA-responsive element motif in the NCED3 promoter. Furthermore, the eel, gi-1, and eel gi-1 mutants were hypersensitive to drought stress due to uncontrolled water loss. The transcript of NCED3, endogenous ABA levels, and stomatal closure were all reduced in the eel, gi-1, and eel gi-1 mutants under drought stress. Our results suggest that the EEL-GI complex positively regulates diurnal ABA synthesis by affecting the expression of NCED3, and contributes to the drought tolerance of Arabidopsis.
Collapse
Affiliation(s)
- Dongwon Baek
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Joon-Yung Cha
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hee Jin Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Korea
| | - Gilok Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Junghoon Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Chae Jin Lim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
| | - Hyun Jin Chun
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Ning Li
- State Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Doh Hoon Kim
- College of Life Science and Natural Resources, Dong-A University, Busan 49315, Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Jose M Pardo
- Instituto de Bioquímica Vegetal y Fotosíntesis, cicCartuja, CSIC-Universidad de Sevilla, Sevilla 41092, Spain
| | - Min Chul Kim
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
- Institute of Glocal Disease Control, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
197
|
Yu Y, Qian Y, Jiang M, Xu J, Yang J, Zhang T, Gou L, Pi E. Regulation Mechanisms of Plant Basic Leucine Zippers to Various Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2020; 11:1258. [PMID: 32973828 PMCID: PMC7468500 DOI: 10.3389/fpls.2020.01258] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/30/2020] [Indexed: 05/05/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
198
|
Ahmed RF, Irfan M, Shakir HA, Khan M, Chen L. Engineering drought tolerance in plants by modification of transcription and signalling factors. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1805359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Rida Fatima Ahmed
- Department of Biotechnology, Faculty of Science, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Irfan
- Department of Biotechnology, Faculty of Science, University of Sargodha, Sargodha, Pakistan
| | - Hafiz Abdullah Shakir
- Department of Zoology, Faculty of life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Muhammad Khan
- Department of Zoology, Faculty of life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Lijing Chen
- Department of Biotechnology, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, PR China
| |
Collapse
|
199
|
Xu Y, Zhao X, Aiwaili P, Mu X, Zhao M, Zhao J, Cheng L, Ma C, Gao J, Hong B. A zinc finger protein BBX19 interacts with ABF3 to affect drought tolerance negatively in chrysanthemum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1783-1795. [PMID: 32488968 PMCID: PMC7496117 DOI: 10.1111/tpj.14863] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 05/17/2020] [Accepted: 05/21/2020] [Indexed: 05/09/2023]
Abstract
Drought is an environmental factor that can severely influence plant development and distribution, and greatly affect the yield and economic value of crops. We characterized CmBBX19, a BBX family subgroup IV member gene, from the transcriptome database of Chrysanthemum morifolium in response to drought stress. Drought stress and ABA treatments downregulated the expression of CmBBX19. We generated CmBBX19-overexpressing (CmBBX19-OX) lines and CmBBX19-suppressing lines (CmBBX19-RNAi), and found that suppressed expression of CmBBX19 led to enhanced drought tolerance compared with the wild-type (WT) controls, while CmBBX19-OX lines exhibited reduced drought tolerance. Downstream gene analysis showed that CmBBX19 modulates drought tolerance mainly through inducing changes in the expression of ABA-dependent pathway genes, including protective protein, redox balance and cell wall biogenesis genes, such as responsive to ABA 18, peroxidase 12, and cellulose synthase-like protein G2. Moreover, CmBBX19 was shown to interact with CmABF3, a master ABA signaling component, to suppress expression of these downstream genes. We conclude that BBX19-ABF3 module functions in the regulation of drought tolerance of chrysanthemum through an ABA-dependent pathway.
Collapse
Affiliation(s)
- Yanjie Xu
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Xin Zhao
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Palinuer Aiwaili
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Xianying Mu
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Meng Zhao
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Jian Zhao
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Lina Cheng
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Chao Ma
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Junping Gao
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| | - Bo Hong
- State Key Laborary of AgrobiotechnologyBeijing Key Laboratory of Development and Quality Control of Ornamental CropsDepartment of Ornamental HorticultureCollege of HorticultureChina Agricultural UniversityBeijing100193China
| |
Collapse
|
200
|
Yin JM, Wang HL, Yang ZK, Wang J, Wang Z, Duan LS, Li ZH, Tan WM. Engineering Lignin Nanomicroparticles for the Antiphotolysis and Controlled Release of the Plant Growth Regulator Abscisic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7360-7368. [PMID: 32627551 DOI: 10.1021/acs.jafc.0c02835] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Lignin is the most abundant aromatic biopolymer in nature and is a major byproduct from the paper industry. The unlocking of lignin's potential for high-value applications has gained increasing attention in recent years. In this study, alkali lignin (AL), with a rigid conjugated structure and amphiphilic property, was used as a sustainable and eco-friendly encapsulation material for the protection and controlled release of photosensitive abscisic acid (ABA), an important and widely used plant growth regulator. Cetyltrimethylammonium bromide (CTAB) was used to induce the formation of AL-CTAB nanomicroparticles by self-assembly. The size and morphology of AL-CTAB particles were modified by changing the AL concentration and the dispersion agent. AL (0.3 M) dissolved in tetrahydrofuran could form a uniform size (300 nm) of particles with a regular spherical structure. Subsequently, ABA was loaded on the prepared nanomicroparticles to synthesize the capsule formulation of ABA@AL-CTAB. The controlled-release behavior and the antiphotolysis performance as well as the thermal stability of ABA@AL-CTAB were proved to be superior. Lasting inhibition of Arabidopsis and rice seed germination by ABA@AL-CTAB under light irradiations implied protection of ABA from photolysis. In addition, ABA@AL-CTAB could effectively regulate plant stomata, thereby increasing plant drought resistance. Overall, lignin is suitable for the preparation of agrochemical formulations with excellent controlled release and antiphotolysis performances.
Collapse
Affiliation(s)
- Jia-Ming Yin
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong-Liang Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhi-Kun Yang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhao Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Liu-Sheng Duan
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Zhao-Hu Li
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wei-Ming Tan
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Department of Agronomy, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|