151
|
Wu H, Kwaaitaal M, Strugala R, Schaffrath U, Bednarek P, Panstruga R. Chemical suppressors of mlo-mediated powdery mildew resistance. Biosci Rep 2017; 37:BSR20171389. [PMID: 29127104 PMCID: PMC5725617 DOI: 10.1042/bsr20171389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/27/2017] [Accepted: 11/07/2017] [Indexed: 01/19/2023] Open
Abstract
Loss-of-function of barley mildew locus o (Mlo) confers durable broad-spectrum penetration resistance to the barley powdery mildew pathogen, Blumeria graminis f. sp. hordei (Bgh). Given the importance of mlo mutants in agriculture, surprisingly few molecular components have been identified to be required for this type of resistance in barley. With the aim to identify novel cellular factors contributing to mlo-based resistance, we devised a pharmacological inhibitor screen. Of the 41 rationally chosen compounds tested, five caused a partial suppression of mlo resistance in barley, indicated by increased levels of Bgh host cell entry. These chemicals comprise brefeldin A (BFA), 2',3'-dideoxyadenosine (DDA), 2-deoxy-d-glucose, spermidine, and 1-aminobenzotriazole. Further inhibitor analysis corroborated a key role for both anterograde and retrograde endomembrane trafficking in mlo resistance. In addition, all four ribonucleosides, some ribonucleoside derivatives, two of the five nucleobases (guanine and uracil), some guanine derivatives as well as various polyamines partially suppress mlo resistance in barley via yet unknown mechanisms. Most of the chemicals identified to be effective in partially relieving mlo resistance in barley also to some extent compromised powdery mildew resistance in an Arabidopsis mlo2 mlo6 double mutant. In summary, our study identified novel suppressors of mlo resistance that may serve as valuable probes to unravel further the molecular processes underlying this unusual type of disease resistance.
Collapse
Affiliation(s)
- Hongpo Wu
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Mark Kwaaitaal
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Roxana Strugala
- Institute for Biology III, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Ulrich Schaffrath
- Institute for Biology III, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznán, Poland
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| |
Collapse
|
152
|
A Bacterial Type III Effector Targets the Master Regulator of Salicylic Acid Signaling, NPR1, to Subvert Plant Immunity. Cell Host Microbe 2017; 22:777-788.e7. [DOI: 10.1016/j.chom.2017.10.019] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/10/2017] [Accepted: 10/25/2017] [Indexed: 11/19/2022]
|
153
|
Patharkar OR, Gassmann W, Walker JC. Leaf shedding as an anti-bacterial defense in Arabidopsis cauline leaves. PLoS Genet 2017; 13:e1007132. [PMID: 29253890 PMCID: PMC5749873 DOI: 10.1371/journal.pgen.1007132] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/02/2018] [Accepted: 11/28/2017] [Indexed: 01/04/2023] Open
Abstract
Plants utilize an innate immune system to protect themselves from disease. While many molecular components of plant innate immunity resemble the innate immunity of animals, plants also have evolved a number of truly unique defense mechanisms, particularly at the physiological level. Plant's flexible developmental program allows them the unique ability to simply produce new organs as needed, affording them the ability to replace damaged organs. Here we develop a system to study pathogen-triggered leaf abscission in Arabidopsis. Cauline leaves infected with the bacterial pathogen Pseudomonas syringae abscise as part of the defense mechanism. Pseudomonas syringae lacking a functional type III secretion system fail to elicit an abscission response, suggesting that the abscission response is a novel form of immunity triggered by effectors. HAESA/HAESA-like 2, INFLORESCENCE DEFICIENT IN ABSCISSION, and NEVERSHED are all required for pathogen-triggered abscission to occur. Additionally phytoalexin deficient 4, enhanced disease susceptibility 1, salicylic acid induction-deficient 2, and senescence-associated gene 101 plants with mutations in genes necessary for bacterial defense and salicylic acid signaling, and NahG transgenic plants with low levels of salicylic acid fail to abscise cauline leaves normally. Bacteria that physically contact abscission zones trigger a strong abscission response; however, long-distance signals are also sent from distal infected tissue to the abscission zone, alerting the abscission zone of looming danger. We propose a threshold model regulating cauline leaf defense where minor infections are handled by limiting bacterial growth, but when an infection is deemed out of control, cauline leaves are shed. Together with previous results, our findings suggest that salicylic acid may regulate both pathogen- and drought-triggered leaf abscission.
Collapse
Affiliation(s)
- O. Rahul Patharkar
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States of America
| | - Walter Gassmann
- Division of Plant Sciences, CS Bond Life Sciences Center and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States of America
| | - John C. Walker
- Division of Biological Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States of America
| |
Collapse
|
154
|
Roth C, Lüdke D, Klenke M, Quathamer A, Valerius O, Braus GH, Wiermer M. The truncated NLR protein TIR-NBS13 is a MOS6/IMPORTIN-α3 interaction partner required for plant immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:808-821. [PMID: 28901644 DOI: 10.1111/tpj.13717] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 08/21/2017] [Accepted: 09/04/2017] [Indexed: 05/28/2023]
Abstract
Importin-α proteins mediate the translocation of nuclear localization signal (NLS)-containing proteins from the cytoplasm into the nucleus through nuclear pore complexes (NPCs). Genetically, Arabidopsis IMPORTIN-α3/MOS6 (MODIFIER OF SNC1, 6) is required for basal plant immunity and constitutive disease resistance activated in autoimmune mutant snc1 (suppressor of npr1-1, constitutive 1), suggesting that MOS6 plays a role in the nuclear import of proteins involved in plant defense signaling. Here, we sought to identify and characterize defense-regulatory cargo proteins and interaction partners of MOS6. We conducted both in silico database analyses and affinity purification of functional epitope-tagged MOS6 from pathogen-challenged stable transgenic plants coupled with mass spectrometry. We show that among the 13 candidate MOS6 interactors we selected for further functional characterization, the TIR-NBS-type protein TN13 is required for resistance against Pseudomonas syringae pv. tomato (Pst) DC3000 lacking the type-III effector proteins AvrPto and AvrPtoB. When expressed transiently in N. benthamiana leaves, TN13 co-immunoprecipitates with MOS6, but not with its closest homolog IMPORTIN-α6, and localizes to the endoplasmic reticulum (ER), consistent with a predicted N-terminal transmembrane domain in TN13. Our work uncovered the truncated NLR protein TN13 as a component of plant innate immunity that selectively binds to MOS6/IMPORTIN-α3 in planta. We speculate that the release of TN13 from the ER membrane in response to pathogen stimulus, and its subsequent nuclear translocation, is important for plant defense signal transduction.
Collapse
Affiliation(s)
- Charlotte Roth
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Daniel Lüdke
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Melanie Klenke
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Annalena Quathamer
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| | - Oliver Valerius
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, 37077, Goettingen, Germany
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics, Institute for Microbiology and Genetics, University of Goettingen, Grisebachstrasse 8, 37077, Goettingen, Germany
| | - Marcel Wiermer
- RG Molecular Biology of Plant-Microbe Interactions, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Julia-Lermontowa-Weg 3, 37077, Goettingen, Germany
| |
Collapse
|
155
|
Wang Y, Hu Q, Wu Z, Wang H, Han S, Jin Y, Zhou J, Zhang Z, Jiang J, Shen Y, Shi H, Yang W. HISTONE DEACETYLASE 6 represses pathogen defence responses in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2017; 40:2972-2986. [PMID: 28770584 DOI: 10.1111/pce.13047] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 07/23/2017] [Indexed: 05/18/2023]
Abstract
Plant defence mechanisms are suppressed in the absence of pathogen attack to prevent wasted energy and growth inhibition. However, how defence responses are repressed is not well understood. Histone deacetylase 6 (HDA6) is a negative regulator of gene expression, and its role in pathogen defence response in plants is not known. In this study, a novel allele of hda6 (designated as shi5) with spontaneous defence response was isolated from a forward genetics screening in Arabidopsis. The shi5 mutant exhibited increased resistance to hemibiotrophic bacterial pathogen Pst DC3000, constitutively activated expression of pathogen-responsive genes including PR1, PR2, etc. and increased histone acetylation levels at the promoters of most tested genes that were upregulated in shi5. In both wild type and shi5 plants, the expression and histone acetylation of these genes were upregulated by pathogen infection. HDA6 was found to bind to the promoters of these genes under both normal growth conditions and pathogen infection. Our research suggests that HDA6 is a general repressor of pathogen defence response and plays important roles in inhibiting and modulating the expression of pathogen-responsive genes in Arabidopsis.
Collapse
Affiliation(s)
- Yizhong Wang
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
| | - Qin Hu
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
| | - Zhenjiang Wu
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
| | - Hui Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Shiming Han
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
| | - Ye Jin
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
| | - Jin Zhou
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
| | - Zhengfeng Zhang
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
| | - Jiafu Jiang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Yun Shen
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Huazhong Shi
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Wannian Yang
- School of Life Sciences, Central China Normal University, Wuhan, 43009, Hubei, P.R. China
| |
Collapse
|
156
|
Matsui H, Nomura Y, Egusa M, Hamada T, Hyon GS, Kaminaka H, Watanabe Y, Ueda T, Trujillo M, Shirasu K, Nakagami H. The GYF domain protein PSIG1 dampens the induction of cell death during plant-pathogen interactions. PLoS Genet 2017; 13:e1007037. [PMID: 29073135 PMCID: PMC5657617 DOI: 10.1371/journal.pgen.1007037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/20/2017] [Indexed: 11/19/2022] Open
Abstract
The induction of rapid cell death is an effective strategy for plants to restrict biotrophic and hemi-biotrophic pathogens at the infection site. However, activation of cell death comes at a high cost, as dead cells will no longer be available for defense responses nor general metabolic processes. In addition, necrotrophic pathogens that thrive on dead tissue, take advantage of cell death-triggering mechanisms. Mechanisms by which plants solve this conundrum remain described. Here, we identify PLANT SMY2-TYPE ILE-GYF DOMAIN-CONTAINING PROTEIN 1 (PSIG1) and show that PSIG1 helps to restrict cell death induction during pathogen infection. Inactivation of PSIG1 does not result in spontaneous lesions, and enhanced cell death in psig1 mutants is independent of salicylic acid (SA) biosynthesis or reactive oxygen species (ROS) production. Moreover, PSIG1 interacts with SMG7, which plays a role in nonsense-mediated RNA decay (NMD), and the smg7-4 mutant allele mimics the cell death phenotype of the psig1 mutants. Intriguingly, the psig1 mutants display enhanced susceptibility to the hemi-biotrophic bacterial pathogen. These findings point to the existence and importance of the SA- and ROS-independent cell death constraining mechanism as a part of the plant immune system. Programmed cell death (PCD) has crucial roles in development and immunity in multicellular organisms. In plants, rapid PCD induction, so-called hypersensitive response (HR) cell death, can be triggered as a part of immune system, and plays an important role in restricting pathogen growth. Despite its importance, cell death induction can backfire on plants because of the diversified infection strategies of plant pathogens. It is therefore assumed that plants have mechanisms by which they are able to minimize PCD induction during plant-pathogen interactions. However, their existence and biological significance are not clear yet. Here, we demonstrate that PSIG1, which has the GYF domain that is highly conserved among diverse eukaryotic species, restricts cell death induction during pathogen invasions. Importantly, psig1 mutants do not display autoimmune phenotypes, and are more susceptible to the virulent bacterial pathogen. Our findings suggest that the restriction of cell death can have benefits for plants to defend themselves against hemi-biotrophic bacterial pathogen infections. We further provide evidence suggesting a mechanism by which PSIG1 may contain cell death by regulating the RNA metabolism machinery.
Collapse
Affiliation(s)
- Hidenori Matsui
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mayumi Egusa
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Gang-Su Hyon
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Ueda
- National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Japan
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Japan
| | - Marco Trujillo
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
157
|
Cheng W, Xiao Z, Cai H, Wang C, Hu Y, Xiao Y, Zheng Y, Shen L, Yang S, Liu Z, Mou S, Qiu A, Guan D, He S. A novel leucine-rich repeat protein, CaLRR51, acts as a positive regulator in the response of pepper to Ralstonia solanacearum infection. MOLECULAR PLANT PATHOLOGY 2017; 18:1089-1100. [PMID: 27438958 PMCID: PMC6638248 DOI: 10.1111/mpp.12462] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 07/11/2016] [Accepted: 07/18/2016] [Indexed: 05/23/2023]
Abstract
The leucine-rich repeat (LRR) proteins play important roles in the recognition of corresponding ligands and signal transduction networks in plant defence responses. Herein, a novel LRR protein from Capsicum annuum, CaLRR51, was identified and characterized. It was localized to the plasma membrane and transcriptionally up-regulated by Ralstonia solanacearum infection (RSI), as well as the exogenous application of salicylic acid (SA), jasmonic acid (JA) and ethephon (ETH). Virus-induced gene silencing of CaLRR51 significantly increased the susceptibility of pepper to RSI. By contrast, transient overexpression of CaLRR51 in pepper plants activated hypersensitive response (HR)-like cell death, and up-regulated the defence-related marker genes, including PO2, HIR1, PR1, DEF1 and ACO1. Moreover, ectopic overexpression of CaLRR51 in transgenic tobacco plants significantly enhanced the resistance to RSI. Transcriptional expression of the corresponding defence-related marker genes in transgenic tobacco plants was also found to be enhanced by the overexpression of CaLRR51, which was potentiated by RSI. These loss- and gain-of-function assays suggest that CaLRR51 acts as a positive regulator in the response of pepper to RSI. In addition, the putative signal peptide and transmembrane region were found to be required for plasma membrane targeting of CaLRR51, which is indispensable for the role of CaLRR51 in plant immunity.
Collapse
Affiliation(s)
- Wei Cheng
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Zhuoli Xiao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Hanyang Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Chuanqing Wang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Yang Hu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Yueping Xiao
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Yuxing Zheng
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Lei Shen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Sheng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Zhiqin Liu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Shaoliang Mou
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Ailian Qiu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Life ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry UniversityFuzhouFujian350002China
- College of Crop ScienceFujian Agriculture and Forestry UniversityFuzhouFujian350002China
| |
Collapse
|
158
|
Acevedo-Garcia J, Gruner K, Reinstädler A, Kemen A, Kemen E, Cao L, Takken FLW, Reitz MU, Schäfer P, O'Connell RJ, Kusch S, Kuhn H, Panstruga R. The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens. Sci Rep 2017; 7:9319. [PMID: 28839137 PMCID: PMC5570895 DOI: 10.1038/s41598-017-07188-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/23/2017] [Indexed: 01/18/2023] Open
Abstract
Arabidopsis thaliana mlo2 mlo6 mlo12 triple mutant plants exhibit complete immunity against infection by otherwise virulent obligate biotrophic powdery mildew fungi such as Golovinomyces orontii. While this phenotype is well documented, the interaction profile of the triple mutant with other microbes is underexplored and incomplete. Here, we thoroughly assessed and quantified the infection phenotypes of two independent powdery mildew-resistant triple mutant lines with a range of microbes. These microorganisms belong to three kingdoms of life, engage in diverse trophic lifestyles, and deploy different infection strategies. We found that interactions with microbes that do not directly enter leaf epidermal cells were seemingly unaltered or showed even enhanced microbial growth or symptom formation in the mlo2 mlo6 mlo12 triple mutants, as shown for Pseudomonas syringae and Fusarium oxysporum. By contrast, the mlo2 mlo6 mlo12 triple mutants exhibited reduced host cell entry rates by Colletotrichum higginsianum, a fungal pathogen showing direct penetration of leaf epidermal cells comparable to G. orontii. Together with previous findings, the results of this study strengthen the notion that mutations in genes MLO2, MLO6 and MLO12 not only restrict powdery mildew colonization, but also affect interactions with a number of other phytopathogens.
Collapse
Affiliation(s)
- Johanna Acevedo-Garcia
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringerweg 1, 52074, Aachen, Germany
| | - Katrin Gruner
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringerweg 1, 52074, Aachen, Germany
| | - Anja Reinstädler
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringerweg 1, 52074, Aachen, Germany
| | - Ariane Kemen
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Eric Kemen
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Lingxue Cao
- University of Amsterdam, Swammerdam Institute for Life Sciences, Molecular Plant Pathology, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Frank L W Takken
- University of Amsterdam, Swammerdam Institute for Life Sciences, Molecular Plant Pathology, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Marco U Reitz
- University of Warwick, The School of Life Sciences, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Patrick Schäfer
- University of Warwick, The School of Life Sciences, Gibbet Hill Campus, Coventry, CV4 7AL, UK
| | - Richard J O'Connell
- UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Stefan Kusch
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringerweg 1, 52074, Aachen, Germany
| | - Hannah Kuhn
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringerweg 1, 52074, Aachen, Germany
| | - Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringerweg 1, 52074, Aachen, Germany.
| |
Collapse
|
159
|
Liu Z, Shi L, Yang S, Lin Y, Weng Y, Li X, Hussain A, Noman A, He S. Functional and Promoter Analysis of ChiIV3, a Chitinase of Pepper Plant, in Response to Phytophthora capsici Infection. Int J Mol Sci 2017; 18:E1661. [PMID: 28763001 PMCID: PMC5578051 DOI: 10.3390/ijms18081661] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/28/2017] [Accepted: 07/30/2017] [Indexed: 11/16/2022] Open
Abstract
Despite the involvement of many members of the chitinase family in plant immunity, the precise functions of the majority of the members remain poorly understood. Herein, the gene ChiIV3 in Capsicum annuum encoding a chitinase protein containing a chitin binding domain and targeting to the plasma membrane was found to be induced by Phytophthora capsici inoculation (PCI) and applied chitin treatment. Besides its direct inhibitory effect on growth of Phytophthora capsici (P. capsici), ChiIV3 was also found by virus-induced gene silencing (VIGS) and transient overexpression (TOE) in pepper plants to act as a positive regulator of plant cell death and in triggering defense signaling and upregulation of PR (pathogenesis related) genes against PCI. A 5' deletion assay revealed that pChiIV3-712 to -459 bp was found to be sufficient for ChiIV3' response to PCI. Furthermore, a mutation assay indicated that W-box-466 to -461 bp in pChiIV3-712 to -459 bp was noted to be the PCI-responsible element. These results collectively suggest that ChiIV3 acts as a likely antifungal protein and as a receptor for unidentified chitin in planta to trigger cell death and defense signaling against PCI.
Collapse
Affiliation(s)
- Zhiqin Liu
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lanping Shi
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Sheng Yang
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Youquan Lin
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yahong Weng
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xia Li
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ansar Hussain
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ali Noman
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Shuilin He
- Ministry of Education Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
160
|
Wang C, Zhou M, Zhang X, Yao J, Zhang Y, Mou Z. A lectin receptor kinase as a potential sensor for extracellular nicotinamide adenine dinucleotide in Arabidopsis thaliana. eLife 2017; 6:e25474. [PMID: 28722654 PMCID: PMC5560858 DOI: 10.7554/elife.25474] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/18/2017] [Indexed: 12/20/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) participates in intracellular and extracellular signaling events unrelated to metabolism. In animals, purinergic receptors are required for extracellular NAD+ (eNAD+) to evoke biological responses, indicating that eNAD+ may be sensed by cell-surface receptors. However, the identity of eNAD+-binding receptors still remains elusive. Here, we identify a lectin receptor kinase (LecRK), LecRK-I.8, as a potential eNAD+ receptor in Arabidopsis. The extracellular lectin domain of LecRK-I.8 binds NAD+ with a dissociation constant of 436.5 ± 104.8 nM, although much higher concentrations are needed to trigger in vivo responses. Mutations in LecRK-I.8 inhibit NAD+-induced immune responses, whereas overexpression of LecRK-I.8 enhances the Arabidopsis response to NAD+. Furthermore, LecRK-I.8 is required for basal resistance against bacterial pathogens, substantiating a role for eNAD+ in plant immunity. Our results demonstrate that lectin receptors can potentially function as eNAD+-binding receptors and provide direct evidence for eNAD+ being an endogenous signaling molecule in plants.
Collapse
Affiliation(s)
- Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
| | - Mingqi Zhou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
| | - Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
| | - Jin Yao
- Target Sciences, GlaxoSmithKline, King of Prussia, United States
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, United States
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, United States
| |
Collapse
|
161
|
Riedlmeier M, Ghirardo A, Wenig M, Knappe C, Koch K, Georgii E, Dey S, Parker JE, Schnitzler JP, Vlot AC. Monoterpenes Support Systemic Acquired Resistance within and between Plants. THE PLANT CELL 2017; 29:1440-1459. [PMID: 28536145 PMCID: PMC5502447 DOI: 10.1105/tpc.16.00898] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/08/2017] [Accepted: 05/19/2017] [Indexed: 05/19/2023]
Abstract
This study investigates the role of volatile organic compounds in systemic acquired resistance (SAR), a salicylic acid (SA)-associated, broad-spectrum immune response in systemic, healthy tissues of locally infected plants. Gas chromatography coupled to mass spectrometry analyses of SAR-related emissions of wild-type and non-SAR-signal-producing mutant plants associated SAR with monoterpene emissions. Headspace exposure of Arabidopsis thaliana to a mixture of the bicyclic monoterpenes α-pinene and β-pinene induced defense, accumulation of reactive oxygen species, and expression of SA- and SAR-related genes, including the SAR regulatory AZELAIC ACID INDUCED1 (AZI1) gene and three of its paralogs. Pinene-induced resistance was dependent on SA biosynthesis and signaling and on AZI1 Arabidopsis geranylgeranyl reductase1 mutants with reduced monoterpene biosynthesis were SAR-defective but mounted normal local resistance and methyl salicylate-induced defense responses, suggesting that monoterpenes act in parallel with SA The volatile emissions from SAR signal-emitting plants induced defense in neighboring plants, and this was associated with the presence of α-pinene, β-pinene, and camphene in the emissions of the "sender" plants. Our data suggest that monoterpenes, particularly pinenes, promote SAR, acting through ROS and AZI1, and likely function as infochemicals in plant-to-plant signaling, thus allowing defense signal propagation between neighboring plants.
Collapse
Affiliation(s)
- Marlies Riedlmeier
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Andrea Ghirardo
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, D-85764 Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Claudia Knappe
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Kerstin Koch
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, D-85764 Neuherberg, Germany
| | - Elisabeth Georgii
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Sanjukta Dey
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| | - Jane E Parker
- Max Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, D-50829 Cologne, Germany
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, D-85764 Neuherberg, Germany
| | - A Corina Vlot
- Helmholtz Zentrum Muenchen, Department of Environmental Sciences, Institute of Biochemical Plant Pathology, D-85764 Neuherberg, Germany
| |
Collapse
|
162
|
Positive regulatory role of sound vibration treatment in Arabidopsis thaliana against Botrytis cinerea infection. Sci Rep 2017; 7:2527. [PMID: 28559545 PMCID: PMC5449397 DOI: 10.1038/s41598-017-02556-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 04/13/2017] [Indexed: 01/24/2023] Open
Abstract
Sound vibration (SV), a mechanical stimulus, can trigger various molecular and physiological changes in plants like gene expression, hormonal modulation, induced antioxidant activity and calcium spiking. It also alters the seed germination and growth of plants. In this study, we investigated the effects of SV on the resistance of Arabidopsis thaliana against Botrytis cinerea infection. The microarray analysis was performed on infected Arabidopsis plants pre-exposed to SV of 1000 Hertz with 100 decibels. Broadly, the transcriptomic analysis revealed up-regulation of several defense and SA-responsive and/or signaling genes. Quantitative real-time PCR (qRT-PCR) analysis of selected genes also validated the induction of SA-mediated response in the infected Arabidopsis plants pre-exposed to SV. Corroboratively, hormonal analysis identified the increased concentration of salicylic acid (SA) in the SV-treated plants after pathogen inoculation. In contrast, jasmonic acid (JA) level in the SV-treated plants remained stable but lower than control plants during the infection. Based on these findings, we propose that SV treatment invigorates the plant defense system by regulating the SA-mediated priming effect, consequently promoting the SV-induced resistance in Arabidopsis against B. cinerea.
Collapse
|
163
|
Ariga H, Katori T, Tsuchimatsu T, Hirase T, Tajima Y, Parker JE, Alcázar R, Koornneef M, Hoekenga O, Lipka AE, Gore MA, Sakakibara H, Kojima M, Kobayashi Y, Iuchi S, Kobayashi M, Shinozaki K, Sakata Y, Hayashi T, Saijo Y, Taji T. NLR locus-mediated trade-off between abiotic and biotic stress adaptation in Arabidopsis. NATURE PLANTS 2017; 3:17072. [PMID: 28548656 DOI: 10.1038/nplants.2017.72] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/24/2017] [Indexed: 05/23/2023]
Abstract
Osmotic stress caused by drought, salt or cold decreases plant fitness. Acquired stress tolerance defines the ability of plants to withstand stress following an initial exposure1. We found previously that acquired osmotolerance after salt stress is widespread among Arabidopsis thaliana accessions2. Here, we identify ACQOS as the locus responsible for ACQUIRED OSMOTOLERANCE. Of its five haplotypes, only plants carrying group 1 ACQOS are impaired in acquired osmotolerance. ACQOS is identical to VICTR, encoding a nucleotide-binding leucine-rich repeat (NLR) protein3. In the absence of osmotic stress, group 1 ACQOS contributes to bacterial resistance. In its presence, ACQOS causes detrimental autoimmunity, thereby reducing osmotolerance. Analysis of natural variation at the ACQOS locus suggests that functional and non-functional ACQOS alleles are being maintained due to a trade-off between biotic and abiotic stress adaptation. Thus, polymorphism in certain plant NLR genes might be influenced by competing environmental stresses.
Collapse
Affiliation(s)
- Hirotaka Ariga
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Taku Katori
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | | | - Taishi Hirase
- Graduate School of Biological Sciences, Nara Institute for Science and Technology, Ikoma 630-0192, Japan
| | - Yuri Tajima
- Graduate School of Biological Sciences, Nara Institute for Science and Technology, Ikoma 630-0192, Japan
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Rubén Alcázar
- Department of Plant Biology, University of Barcelona, 08028 Barcelona, Spain
| | - Maarten Koornneef
- Department of Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research D-50829 Cologne, Germany
| | - Owen Hoekenga
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Ithaca, 14853 New York, USA
| | - Alexander E Lipka
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Ithaca, 14853 New York, USA
| | - Michael A Gore
- United States Department of Agriculture, Agricultural Research Service (USDA-ARS), Maricopa, Arizona 85138, USA
| | - Hitoshi Sakakibara
- Plant Productivity Systems Research Group, RIKEN Centre for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Mikiko Kojima
- Plant Productivity Systems Research Group, RIKEN Centre for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | | | | | | | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan
| | - Yoichi Sakata
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Takahisa Hayashi
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute for Science and Technology, Ikoma 630-0192, Japan
- JST PRESTO, Ikoma 630-0192, Japan
| | - Teruaki Taji
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
164
|
Srouji JR, Xu A, Park A, Kirsch JF, Brenner SE. The evolution of function within the Nudix homology clan. Proteins 2017; 85:775-811. [PMID: 27936487 PMCID: PMC5389931 DOI: 10.1002/prot.25223] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/15/2016] [Accepted: 11/28/2016] [Indexed: 01/01/2023]
Abstract
The Nudix homology clan encompasses over 80,000 protein domains from all three domains of life, defined by homology to each other. Proteins with a domain from this clan fall into four general functional classes: pyrophosphohydrolases, isopentenyl diphosphate isomerases (IDIs), adenine/guanine mismatch-specific adenine glycosylases (A/G-specific adenine glycosylases), and nonenzymatic activities such as protein/protein interaction and transcriptional regulation. The largest group, pyrophosphohydrolases, encompasses more than 100 distinct hydrolase specificities. To understand the evolution of this vast number of activities, we assembled and analyzed experimental and structural data for 205 Nudix proteins collected from the literature. We corrected erroneous functions or provided more appropriate descriptions for 53 annotations described in the Gene Ontology Annotation database in this family, and propose 275 new experimentally-based annotations. We manually constructed a structure-guided sequence alignment of 78 Nudix proteins. Using the structural alignment as a seed, we then made an alignment of 347 "select" Nudix homology domains, curated from structurally determined, functionally characterized, or phylogenetically important Nudix domains. Based on our review of Nudix pyrophosphohydrolase structures and specificities, we further analyzed a loop region downstream of the Nudix hydrolase motif previously shown to contact the substrate molecule and possess known functional motifs. This loop region provides a potential structural basis for the functional radiation and evolution of substrate specificity within the hydrolase family. Finally, phylogenetic analyses of the 347 select protein domains and of the complete Nudix homology clan revealed general monophyly with regard to function and a few instances of probable homoplasy. Proteins 2017; 85:775-811. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John R. Srouji
- Plant and Microbial Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Present address: Molecular and Cellular Biology DepartmentHarvard UniversityCambridgeMassachusetts02138
| | - Anting Xu
- Graduate Study in Comparative Biochemistry, University of CaliforniaBerkeleyCalifornia94720
| | - Annsea Park
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
| | - Jack F. Kirsch
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Graduate Study in Comparative Biochemistry, University of CaliforniaBerkeleyCalifornia94720
| | - Steven E. Brenner
- Plant and Microbial Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Molecular and Cell Biology DepartmentUniversity of CaliforniaBerkeleyCalifornia94720
- Graduate Study in Comparative Biochemistry, University of CaliforniaBerkeleyCalifornia94720
| |
Collapse
|
165
|
Corwin JA, Kliebenstein DJ. Quantitative Resistance: More Than Just Perception of a Pathogen. THE PLANT CELL 2017; 29:655-665. [PMID: 28302676 PMCID: PMC5435431 DOI: 10.1105/tpc.16.00915] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/26/2017] [Accepted: 03/16/2017] [Indexed: 05/20/2023]
Abstract
Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition. Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative resistance.
Collapse
Affiliation(s)
- Jason A Corwin
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616
- DynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
166
|
Cui H, Gobbato E, Kracher B, Qiu J, Bautor J, Parker JE. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity. THE NEW PHYTOLOGIST 2017; 213:1802-1817. [PMID: 27861989 DOI: 10.1111/nph.14302] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/23/2016] [Indexed: 05/19/2023]
Abstract
Plant defenses induced by salicylic acid (SA) are vital for resistance against biotrophic pathogens. In basal and receptor-triggered immunity, SA accumulation is promoted by Enhanced Disease Susceptibility1 with its co-regulator Phytoalexin Deficient4 (EDS1/PAD4). Current models position EDS1/PAD4 upstream of SA but their functional relationship remains unclear. In a genetic and transcriptomic analysis of Arabidopsis autoimmunity caused by constitutive or conditional EDS1/PAD4 overexpression, intrinsic EDS1/PAD4 signaling properties and their relation to SA were uncovered. A core EDS1/PAD4 pathway works in parallel with SA in basal and effector-triggered bacterial immunity. It protects against disabled SA-regulated gene expression and pathogen resistance, and is distinct from a known SA-compensatory route involving MAPK signaling. Results help to explain previously identified EDS1/PAD4 regulated SA-dependent and SA-independent gene expression sectors. Plants have evolved an alternative route for preserving SA-regulated defenses against pathogen or genetic perturbations. In a proposed signaling framework, EDS1 with PAD4, besides promoting SA biosynthesis, maintains important SA-related resistance programs, thereby increasing robustness of the innate immune system.
Collapse
Affiliation(s)
- Haitao Cui
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Enrico Gobbato
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Barbara Kracher
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Jingde Qiu
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Jaqueline Bautor
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| |
Collapse
|
167
|
Kaurilind E, Brosché M. Stress Marker Signatures in Lesion Mimic Single and Double Mutants Identify a Crucial Leaf Age-Dependent Salicylic Acid Related Defense Signal. PLoS One 2017; 12:e0170532. [PMID: 28107453 PMCID: PMC5249244 DOI: 10.1371/journal.pone.0170532] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/05/2017] [Indexed: 12/12/2022] Open
Abstract
Plants are exposed to abiotic and biotic stress conditions throughout their lifespans that activates various defense programs. Programmed cell death (PCD) is an extreme defense strategy the plant uses to manage unfavorable environments as well as during developmentally induced senescence. Here we investigated the role of leaf age on the regulation of defense gene expression in Arabidopsis thaliana. Two lesion mimic mutants with misregulated cell death, catalase2 (cat2) and defense no death1 (dnd1) were used together with several double mutants to dissect signaling pathways regulating defense gene expression associated with cell death and leaf age. PCD marker genes showed leaf age dependent expression, with the highest expression in old leaves. The salicylic acid (SA) biosynthesis mutant salicylic acid induction deficient2 (sid2) had reduced expression of PCD marker genes in the cat2 sid2 double mutant demonstrating the importance of SA biosynthesis in regulation of defense gene expression. While the auxin- and jasmonic acid (JA)- insensitive auxin resistant1 (axr1) double mutant cat2 axr1 also led to decreased expression of PCD markers; the expression of several marker genes for SA signaling (ISOCHORISMATE SYNTHASE 1, PR1 and PR2) were additionally decreased in cat2 axr1 compared to cat2. The reduced expression of these SA markers genes in cat2 axr1 implicates AXR1 as a regulator of SA signaling in addition to its known role in auxin and JA signaling. Overall, the current study reinforces the important role of SA signaling in regulation of leaf age-related transcript signatures.
Collapse
Affiliation(s)
- Eve Kaurilind
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.,Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Mikael Brosché
- Division of Plant Biology, Viikki Plant Science Centre, Department of Biosciences, University of Helsinki, Helsinki, Finland.,Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
168
|
Song SK. Misexpression of AtTX12 encoding a Toll/interleukin-1 receptor domain induces growth defects and expression of defense-related genes partially independently of EDS1 in Arabidopsis. BMB Rep 2017; 49:693-698. [PMID: 27802841 PMCID: PMC5346315 DOI: 10.5483/bmbrep.2016.49.12.180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Indexed: 11/20/2022] Open
Abstract
In this study, a tissue-specific GAL4/UAS activation tagging system was used for the characterization of genes which could induce lethality when ubiquitously expressed. A dominant mutant exhibiting stunted growth was isolated and named defective root development 1-D (drd1-D). The T-DNA tag was located within the promoter region of AtTX12, which is predicted to encode a truncated nucleotide-binding leucine-rich repeat (NLR) protein, containing a Toll/interleukin-1 receptor (TIR) domain. The transcript levels of AtTX12 and defense-related genes were elevated in drd1-D, and the misexpression of AtTX12 recapitulated the drd1-D phenotypes. In the presence of ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), a key transducer of signals triggered by TIR-type NLRs, a low-level of AtTX12 misexpression induced strong defective phenotypes including seedling lethality whereas, in the absence of EDS1, a high-level of AtTX12 misexpression induced weak growth defects like dwarfism, suggesting that AtTX12 might function mainly in an EDS1-dependent and partially in an EDS1-independent manner. [BMB Reports 2016; 49(12): 693–698]
Collapse
Affiliation(s)
- Sang-Kee Song
- Department of Biology, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
169
|
Gao Y, Wu Y, Du J, Zhan Y, Sun D, Zhao J, Zhang S, Li J, He K. Both Light-Induced SA Accumulation and ETI Mediators Contribute to the Cell Death Regulated by BAK1 and BKK1. FRONTIERS IN PLANT SCIENCE 2017; 8:622. [PMID: 28487714 PMCID: PMC5403931 DOI: 10.3389/fpls.2017.00622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 04/06/2017] [Indexed: 05/10/2023]
Abstract
Receptor-like kinases BAK1 and BKK1 modulate multiple cellular processes including brassinosteroid signaling and PRR-mediated PTI in Arabidopsis. Our previous reports also demonstrated that bak1 bkk1 double mutants exhibit a spontaneous cell death phenotype under normal growth condition. With an unknown mechanism, the cell death in bak1 bkk1 is significantly suppressed when grown in dark but can be quickly induced by light. Furthermore, little is known about intrinsic components involved in BAK1 and BKK1-regulated cell death pathway. In this study, we analyzed how light functions as an initiator of cell death and identified ETI components to act as mediators of cell death signaling in bak1 bkk1. Cell death suppressed in bak1 bkk1 by growing in dark condition recurred upon exogenously treated SA. SA biosynthesis-related genes SID2 and EDS5, which encode chloroplast-localized proteins, were highly expressed in bak1-4 bkk1-1. When crossed to bak1-3 bkk1-1, sid2 or eds5 was capable of efficiently suppressing the cell death. It suggested that overly produced SA is crucial for inducing cell death in bak1 bkk1 grown in light. Notably, bak1-3 or bkk1-1 single mutant was shown to be more susceptible but bak1-3 bkk1-1 double mutant exhibited enhanced resistance to bacterial pathogen, suggesting immune signaling other than PTI is activated in bak1 bkk1. Moreover, genetic analyses showed that mutation in EDS1 or PAD4, key ETI mediator, significantly suppressed the cell death in bak1-3 bkk1-1. In this study, we revealed that light-triggered SA accumulation plays major role in inducing the cell death in bak1 bkk1, mediated by ETI components.
Collapse
|
170
|
Fukunaga S, Sogame M, Hata M, Singkaravanit-Ogawa S, Piślewska-Bednarek M, Onozawa-Komori M, Nishiuchi T, Hiruma K, Saitoh H, Terauchi R, Kitakura S, Inoue Y, Bednarek P, Schulze-Lefert P, Takano Y. Dysfunction of Arabidopsis MACPF domain protein activates programmed cell death via tryptophan metabolism in MAMP-triggered immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:381-393. [PMID: 27711985 DOI: 10.1111/tpj.13391] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 05/20/2023]
Abstract
Plant immune responses triggered upon recognition of microbe-associated molecular patterns (MAMPs) typically restrict pathogen growth without a host cell death response. We isolated two Arabidopsis mutants, derived from accession Col-0, that activated cell death upon inoculation with nonadapted fungal pathogens. Notably, the mutants triggered cell death also when treated with bacterial MAMPs such as flg22. Positional cloning identified NSL1 (Necrotic Spotted Lesion 1) as a responsible gene for the phenotype of the two mutants, whereas nsl1 mutations of the accession No-0 resulted in necrotic lesion formation without pathogen inoculation. NSL1 encodes a protein of unknown function containing a putative membrane-attack complex/perforin (MACPF) domain. The application of flg22 increased salicylic acid (SA) accumulation in the nsl1 plants derived from Col-0, while depletion of isochorismate synthase 1 repressed flg22-inducible lesion formation, indicating that elevated SA is needed for the cell death response. nsl1 plants of Col-0 responded to flg22 treatment with an RBOHD-dependent oxidative burst, but this response was dispensable for the nsl1-dependent cell death. Surprisingly, loss-of-function mutations in PEN2, involved in the metabolism of tryptophan (Trp)-derived indole glucosinolates, suppressed the flg22-induced and nsl1-dependent cell death. Moreover, the increased accumulation of SA in the nsl1 plants was abrogated by blocking Trp-derived secondary metabolite biosynthesis, whereas the nsl1-dependent hyperaccumulation of PEN2-dependent compounds was unaffected when the SA biosynthesis pathway was blocked. Collectively, these findings suggest that MAMP-triggered immunity activates a genetically programmed cell death in the absence of the functional MACPF domain protein NSL1 via Trp-derived secondary metabolite-mediated activation of the SA pathway.
Collapse
Affiliation(s)
| | - Miho Sogame
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masaki Hata
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | - Takumi Nishiuchi
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Kei Hiruma
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | | | | | - Saeko Kitakura
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiro Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Paul Schulze-Lefert
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | |
Collapse
|
171
|
Ordon J, Gantner J, Kemna J, Schwalgun L, Reschke M, Streubel J, Boch J, Stuttmann J. Generation of chromosomal deletions in dicotyledonous plants employing a user-friendly genome editing toolkit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:155-168. [PMID: 27579989 DOI: 10.1111/tpj.13319] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 05/20/2023]
Abstract
Genome editing facilitated by Cas9-based RNA-guided nucleases (RGNs) is becoming an increasingly important and popular technique for reverse genetics in both model and non-model species. So far, RGNs were mainly applied for the induction of point mutations, and one major challenge consists in the detection of genome-edited individuals from a mutagenized population. Also, point mutations are not appropriate for functional dissection of non-coding DNA. Here, the multiplexing capacity of a newly developed genome editing toolkit was exploited for the induction of inheritable chromosomal deletions at six different loci in Nicotiana benthamiana and Arabidopsis. In both species, the preferential formation of small deletions was observed, suggesting reduced efficiency with increasing deletion size. Importantly, small deletions (<100 bp) were detected at high frequencies in N. benthamiana T0 and Arabidopsis T2 populations. Thus, targeting of small deletions by paired nucleases represents a simple approach for the generation of mutant alleles segregating as size polymorphisms in subsequent generations. Phenotypically selected deletions of up to 120 kb occurred at low frequencies in Arabidopsis, suggesting larger population sizes for the discovery of valuable alleles from addressing gene clusters or non-coding DNA for deletion by programmable nucleases.
Collapse
Affiliation(s)
- Jana Ordon
- Department of Genetics, Martin Luther University Halle (Saale), Weinbergweg 10, 06120, Halle, Germany
| | - Johannes Gantner
- Department of Genetics, Martin Luther University Halle (Saale), Weinbergweg 10, 06120, Halle, Germany
| | - Jan Kemna
- Department of Genetics, Martin Luther University Halle (Saale), Weinbergweg 10, 06120, Halle, Germany
| | - Lennart Schwalgun
- Department of Genetics, Martin Luther University Halle (Saale), Weinbergweg 10, 06120, Halle, Germany
| | - Maik Reschke
- Department of Genetics, Martin Luther University Halle (Saale), Weinbergweg 10, 06120, Halle, Germany
| | - Jana Streubel
- Department of Genetics, Martin Luther University Halle (Saale), Weinbergweg 10, 06120, Halle, Germany
| | - Jens Boch
- Department of Genetics, Martin Luther University Halle (Saale), Weinbergweg 10, 06120, Halle, Germany
| | - Johannes Stuttmann
- Department of Genetics, Martin Luther University Halle (Saale), Weinbergweg 10, 06120, Halle, Germany
| |
Collapse
|
172
|
Yan Z, Xingfen W, Wei R, Jun Y, Zhiying M. Island Cotton Enhanced Disease Susceptibility 1 Gene Encoding a Lipase-Like Protein Plays a Crucial Role in Response to Verticillium dahliae by Regulating the SA Level and H 2O 2 Accumulation. FRONTIERS IN PLANT SCIENCE 2016; 7:1830. [PMID: 28018374 PMCID: PMC5156716 DOI: 10.3389/fpls.2016.01830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/21/2016] [Indexed: 05/23/2023]
Abstract
Cotton is one of the most economically important crops, but most cultivated varieties lack adequate innate immunity or resistance to Verticillium wilt. This results in serious losses to both yield and fiber quality. To identify the genetic resources for innate immunity and understand the pathways for pathogen defenses in this crop, here we focus on orthologs of the central Arabidopsis thaliana defense regulator Enhanced Disease Susceptibility 1 (EDS1). The full-length cDNA of GbEDS1 was obtained by screening the full-length cDNA library of Gossypium barbadense combining with RACE strategy. Its open reading frame is 1848 bp long, encoding 615 amino acid residues. Sequence analysis showed that GbEDS1 contains a conserved N-terminal lipase domain and an EDS1-specific KNEDT motif. Expression profiling indicated that the gene is induced by Verticillium dahliae as well as salicylic acid (SA) treatment. Subcellular localization assays revealed that GbEDS1 is located in the cell cytoplasm and nucleus. Overexpression of GbEDS1 in Arabidopsis dramatically up-regulated SA and H2O2 production, resulting in enhanced disease resistance to V. dahliae. Silencing of GbEDS1 in G. barbadense significantly decreased SA and H2O2 accumulation, leading to the cotton more susceptibility. Moreover, combining the gene expression results from transgenic Arabidopsis and silenced-GbEDS1 cotton, it indicated that GbEDS1 could activate GbNDR1 and GbBAK1 expression. These findings not only broaden our knowledge about the biological role of GbEDS1, but also provide new insights into the defense mechanisms of GbEDS1 against V. dahliae in cotton.
Collapse
|
173
|
Affiliation(s)
- Baomin Feng
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas, United States of America
| | - Chenglong Liu
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas, United States of America
| | - Libo Shan
- Department of Plant Pathology and Microbiology, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas, United States of America
| | - Ping He
- Department of Biochemistry and Biophysics, and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
174
|
Mei S, Hou S, Cui H, Feng F, Rong W. Characterization of the interaction between Oidium heveae and Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2016; 17:1331-1343. [PMID: 26724785 PMCID: PMC6638524 DOI: 10.1111/mpp.12363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 05/03/2023]
Abstract
Oidium heveae, an obligate biotrophic pathogen of rubber trees (Hevea brasiliensis), causes significant yield losses of rubber worldwide. However, the molecular mechanisms underlying the interplay between O. heveae and rubber trees remain largely unknown. In this study, we isolated an O. heveae strain, named HN1106, from cultivated H. brasiliensis in Hainan, China. We found that O. heveae HN1106 triggers the hypersensitive response in a manner that depends on the effector-triggered immunity proteins EDS1 (Enhanced Disease Susceptibility 1) and PAD4 (Phytoalexin Deficient 4) and on salicylic acid (SA) in the model plant Arabidopsis thaliana. However, SA-independent resistance also appears to limit O. heveae infection of Arabidopsis, because the pathogen does not produce conidiospores on npr1 (nonexpressor of pr1), sid2 (SA induction deficient 2) and NahG plants, which show disruptions in SA signalling. Furthermore, we found that the callose synthase PMR4 (Powdery Mildew Resistant 4) prevents O. heveae HN1106 penetration into leaves in the early stages of infection. To elucidate the potential mechanism of resistance of Arabidopsis to O. heveae HN1106, we inoculated 47 different Arabidopsis accessions with the pathogen, and analysed the plant disease symptoms and O. heveae HN1106 hyphal growth and conidiospore formation on the leaves. We found that the accession Lag2-2 showed significant susceptibility to O. heveae HN1106. Overall, this study provides a basis for future research aimed at combatting powdery mildew caused by O. heveae in rubber trees.
Collapse
Affiliation(s)
- Shuangshuang Mei
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourceHainan UniversityHaikouHainan570228China
- College of Environment and Plant ProtectionHainan UniversityHaikouHainan 570228China
| | - Shuguo Hou
- School of Municipal and Environmental EngineeringShandong Jianzhu University, Ligang Developmental ZoneJinanShandong 250100China
| | - Haitao Cui
- Department of Plant–Microbe InteractionsMax Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 1050829KölnGermany
| | - Feng Feng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing100101China
| | - Wei Rong
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourceHainan UniversityHaikouHainan570228China
| |
Collapse
|
175
|
Maruta T, Ogawa T, Tsujimura M, Ikemoto K, Yoshida T, Takahashi H, Yoshimura K, Shigeoka S. Loss-of-function of an Arabidopsis NADPH pyrophosphohydrolase, AtNUDX19, impacts on the pyridine nucleotides status and confers photooxidative stress tolerance. Sci Rep 2016; 6:37432. [PMID: 27874073 PMCID: PMC5118724 DOI: 10.1038/srep37432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/24/2016] [Indexed: 11/30/2022] Open
Abstract
The levels and redox states of pyridine nucleotides, such as NADP(H), regulate the cellular redox homeostasis, which is crucial for photooxidative stress response in plants. However, how they are controlled is poorly understood. An Arabidopsis Nudix hydrolase, AtNUDX19, was previously identified to have NADPH hydrolytic activity in vitro, suggesting this enzyme to be a regulator of the NADPH status. We herein examined the physiological role of AtNUDX19 using its loss-of-function mutants. NADPH levels were increased in nudx19 mutants under both normal and high light conditions, while NADP+ and NAD+ levels were decreased. Despite the high redox states of NADP(H), nudx19 mutants exhibited high tolerance to moderate light- or methylviologen-induced photooxidative stresses. This tolerance might be partially attributed to the activation of either or both photosynthesis and the antioxidant system. Furthermore, a microarray analysis suggested the role of ANUDX19 in regulation of the salicylic acid (SA) response in a negative manner. Indeed, nudx19 mutants accumulated SA and showed high sensitivity to the hormone. Our findings demonstrate that ANUDX19 acts as an NADPH pyrophosphohydrolase to modulate cellular levels and redox states of pyridine nucleotides and fine-tunes photooxidative stress response through the regulation of photosynthesis, antioxidant system, and possibly hormonal signaling.
Collapse
Affiliation(s)
- Takanori Maruta
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Takahisa Ogawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504, Japan
| | - Masaki Tsujimura
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Keisuke Ikemoto
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Tomofumi Yoshida
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| | - Hiro Takahashi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
| | - Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan (K.Y.)
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara 631-8505, Japan
| |
Collapse
|
176
|
Pétriacq P, Ton J, Patrit O, Tcherkez G, Gakière B. NAD Acts as an Integral Regulator of Multiple Defense Layers. PLANT PHYSIOLOGY 2016; 172:1465-1479. [PMID: 27621425 PMCID: PMC5100754 DOI: 10.1104/pp.16.00780] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/05/2016] [Indexed: 05/18/2023]
Abstract
Pyridine nucleotides, such as NAD, are crucial redox carriers and have emerged as important signaling molecules in stress responses. Previously, we have demonstrated in Arabidopsis (Arabidopsis thaliana) that the inducible NAD-overproducing nadC lines are more resistant to an avirulent strain of Pseudomonas syringae pv tomato (Pst-AvrRpm1), which was associated with salicylic acid-dependent defense. Here, we have further characterized the NAD-dependent immune response in Arabidopsis. Quinolinate-induced stimulation of intracellular NAD in transgenic nadC plants enhanced resistance against a diverse range of (a)virulent pathogens, including Pst-AvrRpt2, Dickeya dadantii, and Botrytis cinerea Characterization of the redox status demonstrated that elevated NAD levels induce reactive oxygen species (ROS) production and the expression of redox marker genes of the cytosol and mitochondrion. Using pharmacological and reverse genetics approaches, we show that NAD-induced ROS production functions independently of NADPH oxidase activity and light metabolism but depends on mitochondrial respiration, which was increased at higher NAD. We further demonstrate that NAD primes pathogen-induced callose deposition and cell death. Mass spectrometry analysis reveals that NAD simultaneously induces different defense hormones and that the NAD-induced metabolic profiles are similar to those of defense-expressing plants after treatment with pathogen-associated molecular patterns. We thus conclude that NAD triggers metabolic profiles rather similar to that of pathogen-associated molecular patterns and discuss how signaling cross talk between defense hormones, ROS, and NAD explains the observed resistance to pathogens.
Collapse
Affiliation(s)
- Pierre Pétriacq
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.);
- AgroParisTech, 75121 Paris cedex 05, France (O.P.);
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| | - Jurriaan Ton
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.)
- AgroParisTech, 75121 Paris cedex 05, France (O.P.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| | - Oriane Patrit
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.)
- AgroParisTech, 75121 Paris cedex 05, France (O.P.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| | - Guillaume Tcherkez
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.)
- AgroParisTech, 75121 Paris cedex 05, France (O.P.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| | - Bertrand Gakière
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.)
- AgroParisTech, 75121 Paris cedex 05, France (O.P.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| |
Collapse
|
177
|
Pétriacq P, Ton J, Patrit O, Tcherkez G, Gakière B. NAD Acts as an Integral Regulator of Multiple Defense Layers. PLANT PHYSIOLOGY 2016. [PMID: 27621425 PMCID: PMC5074631 DOI: 10.1104/pp.16.01260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Pyridine nucleotides, such as NAD, are crucial redox carriers and have emerged as important signaling molecules in stress responses. Previously, we have demonstrated in Arabidopsis (Arabidopsis thaliana) that the inducible NAD-overproducing nadC lines are more resistant to an avirulent strain of Pseudomonas syringae pv tomato (Pst-AvrRpm1), which was associated with salicylic acid-dependent defense. Here, we have further characterized the NAD-dependent immune response in Arabidopsis. Quinolinate-induced stimulation of intracellular NAD in transgenic nadC plants enhanced resistance against a diverse range of (a)virulent pathogens, including Pst-AvrRpt2, Dickeya dadantii, and Botrytis cinerea Characterization of the redox status demonstrated that elevated NAD levels induce reactive oxygen species (ROS) production and the expression of redox marker genes of the cytosol and mitochondrion. Using pharmacological and reverse genetics approaches, we show that NAD-induced ROS production functions independently of NADPH oxidase activity and light metabolism but depends on mitochondrial respiration, which was increased at higher NAD. We further demonstrate that NAD primes pathogen-induced callose deposition and cell death. Mass spectrometry analysis reveals that NAD simultaneously induces different defense hormones and that the NAD-induced metabolic profiles are similar to those of defense-expressing plants after treatment with pathogen-associated molecular patterns. We thus conclude that NAD triggers metabolic profiles rather similar to that of pathogen-associated molecular patterns and discuss how signaling cross talk between defense hormones, ROS, and NAD explains the observed resistance to pathogens.
Collapse
Affiliation(s)
- Pierre Pétriacq
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.);
- AgroParisTech, 75121 Paris cedex 05, France (O.P.);
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| | - Jurriaan Ton
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.)
- AgroParisTech, 75121 Paris cedex 05, France (O.P.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| | - Oriane Patrit
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.)
- AgroParisTech, 75121 Paris cedex 05, France (O.P.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| | - Guillaume Tcherkez
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.)
- AgroParisTech, 75121 Paris cedex 05, France (O.P.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| | - Bertrand Gakière
- biOMICS Facility, Department of Animal and Plant Sciences, University of Sheffield, S10 2TN Sheffield, United Kingdom (P.P., J.T.)
- AgroParisTech, 75121 Paris cedex 05, France (O.P.)
- Research School of Biology, College of Medicine, Biology, and Environment, Australian National University, 2601 Australian Capital Territory, Australia (G.T.); and
- Institute of Plant Sciences Paris-Saclay, Unité Mixte de Recherche 9213, Université Paris-Sud, Bâtiment 630, 91405 Orsay cedex, France (B.G.)
| |
Collapse
|
178
|
Rocheta M, Coito JL, Ramos MJN, Carvalho L, Becker JD, Carbonell-Bejerano P, Amâncio S. Transcriptomic comparison between two Vitis vinifera L. varieties (Trincadeira and Touriga Nacional) in abiotic stress conditions. BMC PLANT BIOLOGY 2016; 16:224. [PMID: 27733112 PMCID: PMC5062933 DOI: 10.1186/s12870-016-0911-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/28/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Predicted climate changes announce an increase of extreme environmental conditions including drought and excessive heat and light in classical viticultural regions. Thus, understanding how grapevine responds to these conditions and how different genotypes can adapt, is crucial for informed decisions on accurate viticultural actions. Global transcriptome analyses are useful for this purpose as the response to these abiotic stresses involves the interplay of complex and diverse cascades of physiological, cellular and molecular events. The main goal of the present work was to evaluate the response to diverse imposed abiotic stresses at the transcriptome level and to compare the response of two grapevine varieties with contrasting physiological trends, Trincadeira (TR) and Touriga Nacional (TN). RESULTS Leaf transcriptomic response upon heat, high light and drought treatments in growth room controlled conditions, as well as full irrigation and non-irrigation treatments in the field, was compared in TR and TN using GrapeGene GeneChips®. Breakdown of metabolism in response to all treatments was evidenced by the functional annotation of down-regulated genes. However, circa 30 % of the detected stress-responsive genes are still annotated as «Unknown» function. Selected differentially expressed genes from the GrapeGene GeneChip® were analysed by RT-qPCR in leaves of growth room plants under the combination of individual stresses and of field plants, in both varieties. The transcriptomic results correlated better with those obtained after each individual stress than with the results of plants from field conditions. CONCLUSIONS From the transcriptomic comparison between the two Portuguese grapevine varieties Trincadeira and Touriga Nacional under abiotic stress main conclusions can be drawn: 1. A different level of tolerance to stress is evidenced by a lower transcriptome reprogramming in TN than in TR. Interestingly, this lack of response in TN associates with its higher adaptation to extreme conditions including environmental conditions in a changing climate; 2. A complex interplay between stress transcriptional cascades is evidenced by antagonistic and, in lower frequency, synergistic effects on gene expression when several stresses are imposed together; 3. The grapevine responses to stress under controlled conditions are not fully extrapolated to the complex vineyard scenario and should be cautiously considered for agronomic management decision purposes.
Collapse
Affiliation(s)
- Margarida Rocheta
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and Food, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - João L. Coito
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and Food, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Miguel J. N. Ramos
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and Food, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Luísa Carvalho
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and Food, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| | - Jörg D. Becker
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino, CSIC-Universidad de La Rioja-Gobierno de la Rioja, 26007 Logroño, Spain
| | - Sara Amâncio
- Instituto Superior de Agronomia, LEAF, Linking Landscape, Environment, Agriculture and Food, Universidade de Lisboa, 1349-017 Lisboa, Portugal
| |
Collapse
|
179
|
Ding P, Rekhter D, Ding Y, Feussner K, Busta L, Haroth S, Xu S, Li X, Jetter R, Feussner I, Zhang Y. Characterization of a Pipecolic Acid Biosynthesis Pathway Required for Systemic Acquired Resistance. THE PLANT CELL 2016; 28:2603-2615. [PMID: 27758894 PMCID: PMC5134984 DOI: 10.1105/tpc.16.00486] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/21/2016] [Accepted: 10/05/2016] [Indexed: 05/03/2023]
Abstract
Systemic acquired resistance (SAR) is an immune response induced in the distal parts of plants following defense activation in local tissue. Pipecolic acid (Pip) accumulation orchestrates SAR and local resistance responses. Here, we report the identification and characterization of SAR-DEFICIENT4 (SARD4), which encodes a critical enzyme for Pip biosynthesis in Arabidopsis thaliana Loss of function of SARD4 leads to reduced Pip levels and accumulation of a Pip precursor, Δ1-piperideine-2-carboxylic acid (P2C). In Escherichia coli, expression of the aminotransferase ALD1 leads to production of P2C and addition of SARD4 results in Pip production, suggesting that a Pip biosynthesis pathway can be reconstituted in bacteria by coexpression of ALD1 and SARD4. In vitro experiments showed that ALD1 can use l-lysine as a substrate to produce P2C and P2C is converted to Pip by SARD4. Analysis of sard4 mutant plants showed that SARD4 is required for SAR as well as enhanced pathogen resistance conditioned by overexpression of the SAR regulator FLAVIN-DEPENDENT MONOOXYGENASE1. Compared with the wild type, pathogen-induced Pip accumulation is only modestly reduced in the local tissue of sard4 mutant plants, but it is below detection in distal leaves, suggesting that Pip is synthesized in systemic tissue by SARD4-mediated reduction of P2C and biosynthesis of Pip in systemic tissue contributes to SAR establishment.
Collapse
Affiliation(s)
- Pingtao Ding
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Dmitrij Rekhter
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, D-37073 Goettingen, Germany
| | - Yuli Ding
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Kirstin Feussner
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, D-37073 Goettingen, Germany
| | - Lucas Busta
- Department of Chemistry, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Sven Haroth
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, D-37073 Goettingen, Germany
| | - Shaohua Xu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| | - Ivo Feussner
- Department of Plant Biochemistry, Georg-August-University, Albrecht-von-Haller-Institute for Plant Sciences, D-37073 Goettingen, Germany
- Department of Plant Biochemistry, Georg-August-University, Goettingen Center for Molecular Biosciences, D-37073 Goettingen, Germany
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver BC V6T 1Z4, Canada
| |
Collapse
|
180
|
Anderson C, Khan MA, Catanzariti AM, Jack CA, Nemri A, Lawrence GJ, Upadhyaya NM, Hardham AR, Ellis JG, Dodds PN, Jones DA. Genome analysis and avirulence gene cloning using a high-density RADseq linkage map of the flax rust fungus, Melampsora lini. BMC Genomics 2016; 17:667. [PMID: 27550217 PMCID: PMC4994203 DOI: 10.1186/s12864-016-3011-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/11/2016] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Rust fungi are an important group of plant pathogens that cause devastating losses in agricultural, silvicultural and natural ecosystems. Plants can be protected from rust disease by resistance genes encoding receptors that trigger a highly effective defence response upon recognition of specific pathogen avirulence proteins. Identifying avirulence genes is crucial for understanding how virulence evolves in the field. RESULTS To facilitate avirulence gene cloning in the flax rust fungus, Melampsora lini, we constructed a high-density genetic linkage map using single nucleotide polymorphisms detected in restriction site-associated DNA sequencing (RADseq) data. The map comprises 13,412 RADseq markers in 27 linkage groups that together span 5860 cM and contain 2756 recombination bins. The marker sequences were used to anchor 68.9 % of the M. lini genome assembly onto the genetic map. The map and anchored assembly were then used to: 1) show that M. lini has a high overall meiotic recombination rate, but recombination distribution is uneven and large coldspots exist; 2) show that substantial genome rearrangements have occurred in spontaneous loss-of-avirulence mutants; and 3) identify the AvrL2 and AvrM14 avirulence genes by map-based cloning. AvrM14 is a dual-specificity avirulence gene that encodes a predicted nudix hydrolase. AvrL2 is located in the region of the M. lini genome with the lowest recombination rate and encodes a small, highly-charged proline-rich protein. CONCLUSIONS The M. lini high-density linkage map has greatly advanced our understanding of virulence mechanisms in this pathogen by providing novel insights into genome variability and enabling identification of two new avirulence genes.
Collapse
Affiliation(s)
- Claire Anderson
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
| | - Muhammad Adil Khan
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
- Current address: ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 Australia
| | - Ann-Maree Catanzariti
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
| | - Cameron A. Jack
- ANU Bioinformatics Consulting Unit, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Acton, ACT 2601 Australia
| | - Adnane Nemri
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601 Australia
- Current address: KWS SAAT SE, Grimsehlstraße 31, Einbeck, 37574 Germany
| | | | | | - Adrienne R. Hardham
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
| | | | - Peter N. Dodds
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601 Australia
| | - David A. Jones
- Research School of Biology, The Australian National University, 134 Linnaeus Way, Acton, ACT 2601 Australia
| |
Collapse
|
181
|
Affiliation(s)
- Suomeng Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| | - Yuanchao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
| |
Collapse
|
182
|
Schreiber KJ, Baudin M, Hassan JA, Lewis JD. Die another day: Molecular mechanisms of effector-triggered immunity elicited by type III secreted effector proteins. Semin Cell Dev Biol 2016; 56:124-133. [DOI: 10.1016/j.semcdb.2016.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/02/2016] [Indexed: 11/27/2022]
|
183
|
Effector-Triggered Immune Response in Arabidopsis thaliana Is a Quantitative Trait. Genetics 2016; 204:337-53. [PMID: 27412712 PMCID: PMC5012398 DOI: 10.1534/genetics.116.190678] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022] Open
Abstract
We identified loci responsible for natural variation in Arabidopsis thaliana (Arabidopsis) responses to a bacterial pathogen virulence factor, HopAM1. HopAM1 is a type III effector protein secreted by the virulent Pseudomonas syringae strain Pto DC3000. Delivery of HopAM1 from disarmed Pseudomonas strains leads to local cell death, meristem chlorosis, or both, with varying intensities in different Arabidopsis accessions. These phenotypes are not associated with differences in bacterial growth restriction. We treated the two phenotypes as quantitative traits to identify host loci controlling responses to HopAM1. Genome-wide association (GWA) of 64 Arabidopsis accessions identified independent variants highly correlated with response to each phenotype. Quantitative trait locus (QTL) mapping in a recombinant inbred population between Bur-0 and Col-0 accessions revealed genetic linkage to regions distinct from the top GWA hits. Two major QTL associated with HopAM1-induced cell death were also associated with HopAM1-induced chlorosis. HopAM1-induced changes in Arabidopsis gene expression showed that rapid HopAM1-dependent cell death in Bur-0 is correlated with effector-triggered immune responses. Studies of the effect of mutations in known plant immune system genes showed, surprisingly, that both cell death and chlorosis phenotypes are enhanced by loss of EDS1, a regulatory hub in the plant immune-signaling network. Our results reveal complex genetic architecture for response to this particular type III virulence effector, in contrast to the typical monogenic control of cell death and disease resistance triggered by most type III effectors.
Collapse
|
184
|
Berriri S, Gangappa SN, Kumar SV. SWR1 Chromatin-Remodeling Complex Subunits and H2A.Z Have Non-overlapping Functions in Immunity and Gene Regulation in Arabidopsis. MOLECULAR PLANT 2016; 9:1051-65. [PMID: 27131447 PMCID: PMC4938710 DOI: 10.1016/j.molp.2016.04.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/28/2016] [Accepted: 04/10/2016] [Indexed: 05/17/2023]
Abstract
Incorporation of the histone variant H2A.Z into nucleosomes by the SWR1 chromatin remodeling complex is a critical step in eukaryotic gene regulation. In Arabidopsis, SWR1c and H2A.Z have been shown to control gene expression underlying development and environmental responses. Although they have been implicated in defense, the specific roles of the complex subunits and H2A.Z in immunity are not well understood. In this study, we analyzed the roles of the SWR1c subunits, PHOTOPERIOD-INDEPENDENT EARLY FLOWERING1 (PIE1), ACTIN-RELATED PROTEIN6 (ARP6), and SWR1 COMPLEX 6 (SWC6), as well as H2A.Z, in defense and gene regulation. We found that SWR1c components play different roles in resistance to different pathogens. Loss of PIE1 and SWC6 function as well as depletion of H2A.Z led to reduced basal resistance, while loss of ARP6 fucntion resulted in enhanced resistance. We found that mutations in PIE1 and SWC6 resulted in impaired effector-triggered immunity. Mutation in SWR1c components and H2A.Z also resulted in compromised jasmonic acid/ethylene-mediated immunity. Genome-wide expression analyses similarly reveal distinct roles for H2A.Z and SWR1c components in gene regulation, and suggest a potential role for PIE1 in the regulation of the cross talk between defense signaling pathways. Our data show that although they are part of the same complex, Arabidopsis SWR1c components could have non-redundant functions in plant immunity and gene regulation.
Collapse
Affiliation(s)
- Souha Berriri
- Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UH, UK
| | | | - S Vinod Kumar
- Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UH, UK.
| |
Collapse
|
185
|
Ogawa T, Muramoto K, Takada R, Nakagawa S, Shigeoka S, Yoshimura K. Modulation of NADH Levels by Arabidopsis Nudix Hydrolases, AtNUDX6 and 7, and the Respective Proteins Themselves Play Distinct Roles in the Regulation of Various Cellular Responses Involved in Biotic/Abiotic Stresses. PLANT & CELL PHYSIOLOGY 2016; 57:1295-308. [PMID: 27095738 DOI: 10.1093/pcp/pcw078] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/08/2016] [Indexed: 05/21/2023]
Abstract
Arabidopsis Nudix hydrolases, AtNUDX6 and 7, exhibit pyrophosphohydrolase activities toward NADH and contribute to the modulation of various defense responses, such as the poly(ADP-ribosyl)ation (PAR) reaction and salicylic acid (SA)-induced Nonexpresser of Pathogenesis-Related genes 1 (NPR1)-dependent defense pathway, against biotic and abiotic stresses. However, the mechanisms by which these enzymes regulate such cellular responses remain unclear. To clarify the functional role(s) of AtNUDX6 and 7 and NADH metabolism, we examined the effects of the transient expression of the active and inactive forms of AtNUDX6 and 7 under the control of an estrogen (ES)-inducible system on various stress responses. The transient expression of active AtNUDX6 and 7 proteins suppressed NADH levels and induced PAR activity, whereas that of their inactive forms did not, indicating the involvement of NADH metabolism in the regulation of the PAR reaction. A transcriptome analysis using KO-nudx6, KO-nudx7 and double KO-nudx6/7 plants, in which intracellular NADH levels increased, identified genes (NADH-responsive genes, NRGs) whose expression levels positively and negatively correlated with NADH levels. Many NRGs did not overlap with the genes whose expression was reported to be responsive to various types of oxidants and reductants, suggesting a novel role for intracellular NADH levels as a redox signaling cue. The active and inactive AtNUDX6 proteins induced the expression of thioredoxin-h5, the activator of NPR1 and SA-induced NPR1-dependent defense genes, while the active and inactive AtNUDX7 proteins suppressed the accumulation of SA and subsequent gene expression, indicating that AtNUDX6 and 7 proteins themselves play distinct roles in stress responses.
Collapse
Affiliation(s)
- Takahisa Ogawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Kohei Muramoto
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| | - Risa Takada
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Shouya Nakagawa
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Shigeru Shigeoka
- Department of Advanced Bioscience, Faculty of Agriculture, Kinki University, Nakamachi, Nara, 631-8505 Japan
| | - Kazuya Yoshimura
- Department of Food and Nutritional Science, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501 Japan
| |
Collapse
|
186
|
Kong Q, Sun T, Qu N, Ma J, Li M, Cheng YT, Zhang Q, Wu D, Zhang Z, Zhang Y. Two Redundant Receptor-Like Cytoplasmic Kinases Function Downstream of Pattern Recognition Receptors to Regulate Activation of SA Biosynthesis. PLANT PHYSIOLOGY 2016; 171:1344-54. [PMID: 27208222 PMCID: PMC4902587 DOI: 10.1104/pp.15.01954] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/03/2016] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) serves as a critical signaling molecule in plant defense. Two transcription factors, SARD1 and CBP60g, control SA biosynthesis through regulating pathogen-induced expression of Isochorismate Synthase1, which encodes a key enzyme for SA biosynthesis. Here, we report that Pattern-Triggered Immunity Compromised Receptor-like Cytoplasmic Kinase1 (PCRK1) and PCRK2 function as key regulators of SA biosynthesis. In the pcrk1 pcrk2 double mutant, pathogen-induced expression of SARD1, CBP60g, and ICS1 is greatly reduced. The pcrk1 pcrk2 double mutant, but neither of the single mutants, exhibits reduced accumulation of SA and enhanced disease susceptibility to bacterial pathogens. Both PCRK1 and PCRK2 interact with the pattern recognition receptor FLS2, and treatment with pathogen-associated molecular patterns leads to rapid phosphorylation of PCRK2. Our data suggest that PCRK1 and PCRK2 function downstream of pattern recognition receptor in a signal relay leading to the activation of SA biosynthesis.
Collapse
Affiliation(s)
- Qing Kong
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (Q.K., T.S., J.M., M.L., Y.-t.C., Q.Z., D.W., Z.Z., Y.Z.);National Institute of Biological Sciences, Beijing 102206, China (N.Q.); andCollege of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China (J.M.)
| | - Tongjun Sun
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (Q.K., T.S., J.M., M.L., Y.-t.C., Q.Z., D.W., Z.Z., Y.Z.);National Institute of Biological Sciences, Beijing 102206, China (N.Q.); andCollege of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China (J.M.)
| | - Na Qu
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (Q.K., T.S., J.M., M.L., Y.-t.C., Q.Z., D.W., Z.Z., Y.Z.);National Institute of Biological Sciences, Beijing 102206, China (N.Q.); andCollege of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China (J.M.)
| | - Junling Ma
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (Q.K., T.S., J.M., M.L., Y.-t.C., Q.Z., D.W., Z.Z., Y.Z.);National Institute of Biological Sciences, Beijing 102206, China (N.Q.); andCollege of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China (J.M.)
| | - Meng Li
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (Q.K., T.S., J.M., M.L., Y.-t.C., Q.Z., D.W., Z.Z., Y.Z.);National Institute of Biological Sciences, Beijing 102206, China (N.Q.); andCollege of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China (J.M.)
| | - Yu-Ti Cheng
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (Q.K., T.S., J.M., M.L., Y.-t.C., Q.Z., D.W., Z.Z., Y.Z.);National Institute of Biological Sciences, Beijing 102206, China (N.Q.); andCollege of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China (J.M.)
| | - Qian Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (Q.K., T.S., J.M., M.L., Y.-t.C., Q.Z., D.W., Z.Z., Y.Z.);National Institute of Biological Sciences, Beijing 102206, China (N.Q.); andCollege of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China (J.M.)
| | - Di Wu
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (Q.K., T.S., J.M., M.L., Y.-t.C., Q.Z., D.W., Z.Z., Y.Z.);National Institute of Biological Sciences, Beijing 102206, China (N.Q.); andCollege of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China (J.M.)
| | - Zhibin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (Q.K., T.S., J.M., M.L., Y.-t.C., Q.Z., D.W., Z.Z., Y.Z.);National Institute of Biological Sciences, Beijing 102206, China (N.Q.); andCollege of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China (J.M.)
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 (Q.K., T.S., J.M., M.L., Y.-t.C., Q.Z., D.W., Z.Z., Y.Z.);National Institute of Biological Sciences, Beijing 102206, China (N.Q.); andCollege of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China (J.M.)
| |
Collapse
|
187
|
Small Molecule DFPM Derivative-Activated Plant Resistance Protein Signaling in Roots Is Unaffected by EDS1 Subcellular Targeting Signal and Chemical Genetic Isolation of victr R-Protein Mutants. PLoS One 2016; 11:e0155937. [PMID: 27219122 PMCID: PMC4878808 DOI: 10.1371/journal.pone.0155937] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/08/2016] [Indexed: 11/25/2022] Open
Abstract
The small molecule DFPM ([5-(3,4-dichlorophenyl)furan-2-yl]-piperidine-1-ylmethanethione) was recently shown to trigger signal transduction via early effector-triggered immunity signaling genes including EDS1 and PAD4 in Arabidopsis thaliana accession Col-0. Chemical genetic analyses of A. thaliana natural variants identified the plant Resistance protein-like Toll/Interleukin1 Receptor (TIR)-Nucleotide Binding (NB)-Leucine-Rich Repeat (LRR) protein VICTR as required for DFPM-mediated root growth arrest. Here a chemical genetic screen for mutants which disrupt DFPM-mediated root growth arrest in the Col-0 accession identified new mutant alleles of the TIR-NB-LRR gene VICTR. One allele, victr-6, carries a Gly216-to-Asp mutation in the Walker A domain supporting an important function of the VICTR nucleotide binding domain in DFPM responses consistent with VICTR acting as a canonical Resistance protein. The essential nucleo-cytoplasmic regulator of TIR-NB-LRR-mediated effector-triggered immunity, EDS1, was reported to have both nuclear and cytoplasmic actions in pathogen resistance. DFPM was used to investigate the requirements for subcellular EDS1 localization in DFPM-mediated root growth arrest. EDS1-YFP fusions engineered to localize mainly in the cytoplasm or the nucleus by tagging with a nuclear export signal (NES) or a nuclear localization signal (NLS), respectively, were tested. We found that wild-type EDS1-YFP and both the NES and NLS-tagged EDS1 variants were induced by DFPM treatments and fully complemented eds1 mutant plants in root responses to DFPM, suggesting that enrichment of EDS1 in either compartment could confer DFPM-mediated root growth arrest. We further found that a light and O2-dependent modification of DFPM is necessary to mediate DFPM signaling in roots. Chemical analyses including Liquid Chromatography-Mass Spectrometry and High-Resolution Atmospheric Pressure Chemical Ionization Mass Spectrometry identified a DFPM modification product that is likely responsible for bioactivity mediating root growth arrest. We propose a chemical structure of this product and a possible reaction mechanism for DFPM modification.
Collapse
|
188
|
Gan P, Narusaka M, Kumakura N, Tsushima A, Takano Y, Narusaka Y, Shirasu K. Genus-Wide Comparative Genome Analyses of Colletotrichum Species Reveal Specific Gene Family Losses and Gains during Adaptation to Specific Infection Lifestyles. Genome Biol Evol 2016; 8:1467-81. [PMID: 27189990 PMCID: PMC4898803 DOI: 10.1093/gbe/evw089] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 12/21/2022] Open
Abstract
Members from Colletotrichum genus adopt a diverse range of lifestyles during infection of plants and represent a group of agriculturally devastating pathogens. In this study, we present the draft genome of Colletotrichum incanum from the spaethianum clade of Colletotrichum and the comparative analyses with five other Colletotrichum species from distinct lineages. We show that the C. incanum strain, originally isolated from Japanese daikon radish, is able to infect both eudicot plants, such as certain ecotypes of the eudicot Arabidopsis, and monocot plants, such as lily. Being closely related to Colletotrichum species both in the graminicola clade, whose members are restricted strictly to monocot hosts, and to the destructivum clade, whose members are mostly associated with dicot infections, C. incanum provides an interesting model system for comparative genomics to study how fungal pathogens adapt to monocot and dicot hosts. Genus-wide comparative genome analyses reveal that Colletotrichum species have tailored profiles of their carbohydrate-degrading enzymes according to their infection lifestyles. In addition, we show evidence that positive selection acting on secreted and nuclear localized proteins that are highly conserved may be important in adaptation to specific hosts or ecological niches.
Collapse
Affiliation(s)
- Pamela Gan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mari Narusaka
- Research Institute for Biological Sciences Okayama, Okayama, Japan
| | | | - Ayako Tsushima
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113–0033, Japan
| | | | | | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113–0033, Japan
| |
Collapse
|
189
|
Ma X, Wang W, Bittner F, Schmidt N, Berkey R, Zhang L, King H, Zhang Y, Feng J, Wen Y, Tan L, Li Y, Zhang Q, Deng Z, Xiong X, Xiao S. Dual and Opposing Roles of Xanthine Dehydrogenase in Defense-Associated Reactive Oxygen Species Metabolism in Arabidopsis. THE PLANT CELL 2016; 28:1108-26. [PMID: 27152019 PMCID: PMC4904670 DOI: 10.1105/tpc.15.00880] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 05/18/2023]
Abstract
While plants produce reactive oxygen species (ROS) for stress signaling and pathogen defense, they need to remove excessive ROS induced during stress responses in order to minimize oxidative damage. How can plants fine-tune this balance and meet such conflicting needs? Here, we show that XANTHINE DEHYDROGENASE1 (XDH1) in Arabidopsis thaliana appears to play spatially opposite roles to serve this purpose. Through a large-scale genetic screen, we identified three missense mutations in XDH1 that impair XDH1's enzymatic functions and consequently affect the powdery mildew resistance mediated by RESISTANCE TO POWDERY MILDEW8 (RPW8) in epidermal cells and formation of xanthine-enriched autofluorescent objects in mesophyll cells. Further analyses revealed that in leaf epidermal cells, XDH1 likely functions as an oxidase, along with the NADPH oxidases RbohD and RbohF, to generate superoxide, which is dismutated into H2O2 The resulting enrichment of H2O2 in the fungal haustorial complex within infected epidermal cells helps to constrain the haustorium, thereby contributing to RPW8-dependent and RPW8-independent powdery mildew resistance. By contrast, in leaf mesophyll cells, XDH1 carries out xanthine dehydrogenase activity to produce uric acid in local and systemic tissues to scavenge H2O2 from stressed chloroplasts, thereby protecting plants from stress-induced oxidative damage. Thus, XDH1 plays spatially specified dual and opposing roles in modulation of ROS metabolism during defense responses in Arabidopsis.
Collapse
Affiliation(s)
- Xianfeng Ma
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850 Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wenming Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Florian Bittner
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Nadine Schmidt
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Robert Berkey
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| | - Lingli Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Harlan King
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| | - Yi Zhang
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| | - Jiayue Feng
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850 College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yinqiang Wen
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850 College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Liqiang Tan
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| | - Yue Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742
| | - Qiong Zhang
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| | - Ziniu Deng
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China
| | - Xingyao Xiong
- Hunan Provincial Key Laboratory for Germplasm Innovation and Utilization of Crop, Hunan Agricultural University, Changsha 410128, China The Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shunyuan Xiao
- Institute of Biosciences and Biotechnology Research and Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland 20850
| |
Collapse
|
190
|
Nguyen PDT, Pike S, Wang J, Nepal Poudel A, Heinz R, Schultz JC, Koo AJ, Mitchum MG, Appel HM, Gassmann W. The Arabidopsis immune regulator SRFR1 dampens defences against herbivory by Spodoptera exigua and parasitism by Heterodera schachtii. MOLECULAR PLANT PATHOLOGY 2016; 17:588-600. [PMID: 26310916 PMCID: PMC6638418 DOI: 10.1111/mpp.12304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Plants have developed diverse mechanisms to fine tune defence responses to different types of enemy. Cross-regulation between signalling pathways may allow the prioritization of one response over another. Previously, we identified SUPPRESSOR OF rps4-RLD1 (SRFR1) as a negative regulator of ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)-dependent effector-triggered immunity against the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4. The use of multiple stresses is a powerful tool to further define gene function. Here, we examined whether SRFR1 also impacts resistance to a herbivorous insect in leaves and to a cyst nematode in roots. Interestingly, srfr1-1 plants showed increased resistance to herbivory by the beet army worm Spodoptera exigua and to parasitism by the cyst nematode Heterodera schachtii compared with the corresponding wild-type Arabidopsis accession RLD. Using quantitative real-time PCR (qRT-PCR) to measure the transcript levels of salicylic acid (SA) and jasmonate/ethylene (JA/ET) pathway genes, we found that enhanced resistance of srfr1-1 plants to S. exigua correlated with specific upregulation of the MYC2 branch of the JA pathway concurrent with suppression of the SA pathway. In contrast, the greater susceptibility of RLD was accompanied by simultaneously increased transcript levels of SA, JA and JA/ET signalling pathway genes. Surprisingly, mutation of either SRFR1 or EDS1 increased resistance to H. schachtii, indicating that the concurrent presence of both wild-type genes promotes susceptibility. This finding suggests a novel form of resistance in Arabidopsis to the biotrophic pathogen H. schachtii or a root-specific regulation of the SA pathway by EDS1, and places SRFR1 at an intersection between multiple defence pathways.
Collapse
Affiliation(s)
- Phuong Dung T Nguyen
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Sharon Pike
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Jianying Wang
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Arati Nepal Poudel
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Division of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Robert Heinz
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Jack C Schultz
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Abraham J Koo
- Division of Biochemistry and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Melissa G Mitchum
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Heidi M Appel
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| | - Walter Gassmann
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211-7310, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211-7310, USA
| |
Collapse
|
191
|
An C, Ding Y, Zhang X, Wang C, Mou Z. Elongator Plays a Positive Role in Exogenous NAD-Induced Defense Responses in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:396-404. [PMID: 26926998 DOI: 10.1094/mpmi-01-16-0005-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Extracellular NAD is emerging as an important signal molecule in animal cells, but its role in plants has not been well-established. Although it has been shown that exogenous NAD(+) activates defense responses in Arabidopsis, components in the exogenous NAD(+)-activated defense pathway remain to be fully discovered. In a genetic screen for mutants insensitive to exogenous NAD(+) (ien), we isolated a mutant named ien2. Map-based cloning revealed that IEN2 encodes ELONGATA3 (ELO3)/AtELP3, a subunit of the Arabidopsis Elongator complex, which functions in multiple biological processes, including histone modification, DNA (de)methylation, and transfer RNA modification. Mutations in the ELO3/AtELP3 gene compromise exogenous NAD(+)-induced expression of pathogenesis-related (PR) genes and resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326, and transgenic expression of the coding region of ELO3/AtELP3 in elo3/Atelp3 restores NAD(+) responsiveness to the mutant plants, demonstrating that ELO3/AtELP3 is required for exogenous NAD(+)-induced defense responses. Furthermore, mutations in genes encoding the other five Arabidopsis Elongator subunits (ELO2/AtELP1, AtELP2, ELO1/AtELP4, AtELP5, and AtELP6) also compromise exogenous NAD(+)-induced PR gene expression and resistance to P. syringae pv. maculicola ES4326. These results indicate that the Elongator complex functions as a whole in exogenous NAD(+)-activated defense signaling in Arabidopsis.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, U.S.A
| | - Yezhang Ding
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, U.S.A
| | - Xudong Zhang
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, U.S.A
| | - Chenggang Wang
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, U.S.A
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611, U.S.A
| |
Collapse
|
192
|
Stuttmann J, Peine N, Garcia AV, Wagner C, Choudhury SR, Wang Y, James GV, Griebel T, Alcázar R, Tsuda K, Schneeberger K, Parker JE. Arabidopsis thaliana DM2h (R8) within the Landsberg RPP1-like Resistance Locus Underlies Three Different Cases of EDS1-Conditioned Autoimmunity. PLoS Genet 2016; 12:e1005990. [PMID: 27082651 PMCID: PMC4833295 DOI: 10.1371/journal.pgen.1005990] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 03/24/2016] [Indexed: 11/18/2022] Open
Abstract
Plants have a large panel of nucleotide-binding/leucine rich repeat (NLR) immune receptors which monitor host interference by diverse pathogen molecules (effectors) and trigger disease resistance pathways. NLR receptor systems are necessarily under tight control to mitigate the trade-off between induced defenses and growth. Hence, mis-regulated NLRs often cause autoimmunity associated with stunting and, in severe cases, necrosis. Nucleocytoplasmic ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) is indispensable for effector-triggered and autoimmune responses governed by a family of Toll-Interleukin1-Receptor-related NLR receptors (TNLs). EDS1 operates coincidently or immediately downstream of TNL activation to transcriptionally reprogram cells for defense. We show here that low levels of nuclear-enforced EDS1 are sufficient for pathogen resistance in Arabidopsis thaliana, without causing negative effects. Plants expressing higher nuclear EDS1 amounts have the genetic, phenotypic and transcriptional hallmarks of TNL autoimmunity. In a screen for genetic suppressors of nuclear EDS1 autoimmunity, we map multiple, independent mutations to one gene, DM2h, lying within the polymorphic DANGEROUS MIX2 cluster of TNL RPP1-like genes from A. thaliana accession Landsberg erecta (Ler). The DM2 locus is a known hotspot for deleterious epistatic interactions leading to immune-related incompatibilities between A. thaliana natural accessions. We find that DM2hLer underlies two further genetic incompatibilities involving the RPP1-likeLer locus and EDS1. We conclude that the DM2hLer TNL protein and nuclear EDS1 cooperate, directly or indirectly, to drive cells into an immune response at the expense of growth. A further conclusion is that regulating the available EDS1 nuclear pool is fundamental for maintaining homeostatic control of TNL immune pathways. Plants tune their cellular and developmental programs to different environmental stimuli. Central players in the plant biotic stress response network are intracellular NLR receptors which intercept specific disease-inducing molecules (effectors) produced by pathogenic microbes. Variation in NLR gene repertoires between plant genetic lines is driven by pathogen selection pressure. One evolutionary question is how new, functional NLRs are assembled within a plant genome without mis-activating defense pathways, which can have strong negative effects on growth and fitness. This study focuses on a large, polymorphic sub-class of NLR receptors called TNLs present in dicotyledenous plant lineages. TNL receptors confer immunity to a broad range of pathogens. They also frequently underlie autoimmunity caused by their mis-regulation or deleterious allelic interactions with other genes in crosses between different genetic lines (hybrid incompatibility, HI). TNL pathogen-triggered and autoimmune responses require the conserved nucleocytoplasmic protein EDS1 to transcriptionally reprogram cells for defense. We discover in Arabidopsis thaliana that high levels of nuclear-enriched EDS1 induce transcriptional activation of defenses and growth inhibition without a pathogen effector stimulus. In a mutational screen, we identify one rapidly evolving TNL gene, DM2hLer, as a driver of nuclear EDS1 autoimmunity. DM2hLer also contributes to two separate cases of EDS1-dependent autoimmunity. Genetic cooperation between DM2hLer and EDS1 suggests a functional relationship in the transcriptional feed-forward regulation of defense pathways.
Collapse
Affiliation(s)
- Johannes Stuttmann
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Genetics, Martin Luther University Halle (Saale), Halle, Germany
- * E-mail: (JS); (JEP)
| | - Nora Peine
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ana V. Garcia
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Christine Wagner
- Department of Genetics, Martin Luther University Halle (Saale), Halle, Germany
| | - Sayan R. Choudhury
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Yiming Wang
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Geo Velikkakam James
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Thomas Griebel
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ruben Alcázar
- Department of Natural Products, Plant Biology and Soil Science, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Kenichi Tsuda
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail: (JS); (JEP)
| |
Collapse
|
193
|
Mukaihara T, Hatanaka T, Nakano M, Oda K. Ralstonia solanacearum Type III Effector RipAY Is a Glutathione-Degrading Enzyme That Is Activated by Plant Cytosolic Thioredoxins and Suppresses Plant Immunity. mBio 2016; 7:e00359-16. [PMID: 27073091 PMCID: PMC4959522 DOI: 10.1128/mbio.00359-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The plant pathogen Ralstonia solanacearum uses a large repertoire of type III effector proteins to succeed in infection. To clarify the function of effector proteins in host eukaryote cells, we expressed effectors in yeast cells and identified seven effector proteins that interfere with yeast growth. One of the effector proteins, RipAY, was found to share homology with the ChaC family proteins that function as γ-glutamyl cyclotransferases, which degrade glutathione (GSH), a tripeptide that plays important roles in the plant immune system. RipAY significantly inhibited yeast growth and simultaneously induced rapid GSH depletion when expressed in yeast cells. The in vitro GSH degradation activity of RipAY is specifically activated by eukaryotic factors in the yeast and plant extracts. Biochemical purification of the yeast protein identified that RipAY is activated by thioredoxin TRX2. On the other hand, RipAY was not activated by bacterial thioredoxins. Interestingly, RipAY was activated by plant h-type thioredoxins that exist in large amounts in the plant cytosol, but not by chloroplastic m-, f-, x-, y- and z-type thioredoxins, in a thiol-independent manner. The transient expression of RipAY decreased the GSH level in plant cells and affected the flg22-triggered production of reactive oxygen species (ROS) and expression of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) marker genes in Nicotiana benthamiana leaves. These results indicate that RipAY is activated by host cytosolic thioredoxins and degrades GSH specifically in plant cells to suppress plant immunity. IMPORTANCE Ralstonia solanacearum is the causal agent of bacterial wilt disease of plants. This pathogen injects virulence effector proteins into host cells to suppress disease resistance responses of plants. In this article, we report a biochemical activity of R. solanacearum effector protein RipAY. RipAY can degrade GSH, a tripeptide that plays important roles in the plant immune system, with its γ-glutamyl cyclotransferase activity. The high GSH degradation activity of RipAY is considered to be a good weapon for this bacterium to suppress plant immunity. However, GSH also plays important roles in bacterial tolerance to various stresses and growth. Interestingly, RipAY has an excellent safety mechanism to prevent unwanted firing of its enzyme activity in bacterial cells because RipAY is specifically activated by host eukaryotic thioredoxins. This study also reveals a novel host plant protein acting as a molecular switch for effector activation.
Collapse
Affiliation(s)
- Takafumi Mukaihara
- Research Institute for Biological Sciences, Okayama (RIBS), Yoshikawa, Okayama, Japan
| | - Tadashi Hatanaka
- Research Institute for Biological Sciences, Okayama (RIBS), Yoshikawa, Okayama, Japan
| | - Masahito Nakano
- Research Institute for Biological Sciences, Okayama (RIBS), Yoshikawa, Okayama, Japan
| | - Kenji Oda
- Research Institute for Biological Sciences, Okayama (RIBS), Yoshikawa, Okayama, Japan
| |
Collapse
|
194
|
Sahu R, Sharaff M, Pradhan M, Sethi A, Bandyopadhyay T, Mishra VK, Chand R, Chowdhury AK, Joshi AK, Pandey SP. Elucidation of defense-related signaling responses to spot blotch infection in bread wheat (Triticum aestivum L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:35-49. [PMID: 26932764 DOI: 10.1111/tpj.13149] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/13/2016] [Accepted: 02/15/2016] [Indexed: 05/20/2023]
Abstract
Spot blotch disease, caused by Bipolaris sorokiniana, is an important threat to wheat, causing an annual loss of ~17%. Under epidemic conditions, these losses may be 100%, yet the molecular responses of wheat to spot blotch remain almost uncharacterized. Moreover, defense-related phytohormone signaling genes have been poorly characterized in wheat. Here, we have identified 18 central components of salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and enhanced disease susceptibility 1 (EDS1) signaling pathways as well as the genes of the phenylpropanoid pathway in wheat. In time-course experiments, we characterized the reprogramming of expression of these pathways in two contrasting genotypes: Yangmai #6 (resistant to spot blotch) and Sonalika (susceptible to spot blotch). We further evaluated the performance of a population of recombinant inbred lines (RILs) by crossing Yangmai#6 and Sonalika (parents) and subsequent selfing to F10 under field conditions in trials at multiple locations. We characterized the reprogramming of defense-related signaling in these RILs as a consequence of spot blotch attack. During resistance to spot blotch attack, wheat strongly elicits SA signaling (SA biogenesis as well as the NPR1-dependent signaling pathway), along with WRKY33 transcription factor, followed by an enhanced expression of phenylpropanoid pathway genes. These may lead to accumulation of phenolics-based defense metabolites that may render resistance against spot blotch. JA signaling may synergistically contribute to the resistance. Failure to elicit SA (and possibly JA) signaling may lead to susceptibility against spot blotch infection in wheat.
Collapse
Affiliation(s)
- Ranabir Sahu
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur Campus, Mohanpur, 741246, West Bengal, India
| | - Murali Sharaff
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur Campus, Mohanpur, 741246, West Bengal, India
| | - Maitree Pradhan
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur Campus, Mohanpur, 741246, West Bengal, India
| | - Avinash Sethi
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur Campus, Mohanpur, 741246, West Bengal, India
| | - Tirthankar Bandyopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur Campus, Mohanpur, 741246, West Bengal, India
| | - Vinod K Mishra
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 22105, India
| | - Ramesh Chand
- Department of Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 22105, India
| | - Apurba K Chowdhury
- Uttar Banga Krishi Viswavidyalaya, Cooch Behar, Varanasi, 736165, West Bengal, India
| | - Arun K Joshi
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 22105, India
- The International Maize and Wheat Improvement Center (CIMMYT) South Asia Office, Singh Durbar Plaza Marg, Kathmandu, Nepal
| | - Shree P Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research - Kolkata, Mohanpur Campus, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
195
|
Shen L, Liu Z, Yang S, Yang T, Liang J, Wen J, Liu Y, Li J, Shi L, Tang Q, Shi W, Hu J, Liu C, Zhang Y, Lin W, Wang R, Yu H, Mou S, Hussain A, Cheng W, Cai H, He L, Guan D, Wu Y, He S. Pepper CabZIP63 acts as a positive regulator during Ralstonia solanacearum or high temperature-high humidity challenge in a positive feedback loop with CaWRKY40. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2439-51. [PMID: 26936828 PMCID: PMC4809298 DOI: 10.1093/jxb/erw069] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
CaWRKY40 is known to act as a positive regulator in the response of pepper (Capsicum annuum) to Ralstonia solanacearum inoculation (RSI) or high temperature-high humidity (HTHH), but the underlying mechanism remains elusive. Herein, we report that CabZIP63, a pepper bZIP family member, participates in this process by regulating the expression of CaWRKY40. CabZIP63 was found to localize in the nuclei, be up-regulated by RSI or HTHH, bind to promoters of both CabZIP63(pCabZIP63) and CaWRKY40(pCaWRKY40), and activate pCabZIP63- and pCaWRKY40-driven β-glucuronidase expression in a C- or G-box-dependent manner. Silencing of CabZIP63 by virus-induced gene silencing (VIGS) in pepper plants significantly attenuated their resistance to RSI and tolerance to HTHH, accompanied by down-regulation of immunity- or thermotolerance-associated CaPR1, CaNPR1, CaDEF1, and CaHSP24. Hypersensitive response-mediated cell death and expression of the tested immunity- and thermotolerance-associated marker genes were induced by transient overexpression (TOE) of CabZIP63, but decreased by that of CabZIP63-SRDX. Additionally, binding of CabZIP63 to pCaWRKY40 was up-regulated by RSI or HTHH, and the transcript level of CaWRKY40 and binding of CaWRKY40 to the promoters of CaPR1, CaNPR1, CaDEF1 and CaHSP24 were up-regulated by TOE of CabZIP63. On the other hand, CabZIP63 was also up-regulated transcriptionally by TOE of CaWRKY40. The data suggest collectively that CabZIP63 directly or indirectly regulates the expression of CaWRKY40 at both the transcriptional and post-transcriptional level, forming a positive feedback loop with CaWRKY40 during pepper's response to RSI or HTHH. Altogether, our data will help to elucidate the underlying mechanism of crosstalk between pepper's response to RSI and HTHH.
Collapse
Affiliation(s)
- Lei Shen
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhiqin Liu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Sheng Yang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Tong Yang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiaqi Liang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiayu Wen
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yanyan Liu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiazhi Li
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lanping Shi
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qian Tang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Shi
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiong Hu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Cailing Liu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yangwen Zhang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Lin
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Rongzhang Wang
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Huanxin Yu
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shaoliang Mou
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Ansar Hussain
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Cheng
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Hanyang Cai
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Li He
- College of Life Science, Jinggang Shan University, Ji'an, Jiangxi 343000, PR China
| | - Deyi Guan
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yang Wu
- College of Life Science, Jinggang Shan University, Ji'an, Jiangxi 343000, PR China
| | - Shuilin He
- National Education Minister, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
196
|
Kim MK, Yeo BE, Park H, Huh YD, Kwon C, Yun HS. Dual Effect of the Cubic Ag3PO4 Crystal on Pseudomonas syringae Growth and Plant Immunity. THE PLANT PATHOLOGY JOURNAL 2016; 32:168-170. [PMID: 27147937 PMCID: PMC4853107 DOI: 10.5423/ppj.nt.09.2015.0191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/06/2015] [Accepted: 11/23/2015] [Indexed: 06/05/2023]
Abstract
We previously found that the antibacterial activity of silver phosphate crystals on Escherichia coli depends on their structure. We here show that the cubic form of silver phosphate crystal (SPC) can also be applied to inhibit the growth of a plant-pathogenic Pseudomonas syringae bacterium. SPC pretreatment resulted in reduced in planta multiplication of P. syringae. Induced expression of a plant defense marker gene PR1 by SPC alone is suggestive of its additional plant immunity-stimulating activity. Since SPC can simultaneously inhibit P. syringae growth and induce plant defense responses, it might be used as a more effective plant disease-controlling agent.
Collapse
Affiliation(s)
- Mi Kyung Kim
- Department of Molecular Biology, Dankook University, Yongin 16890,
Korea
| | - Byul-Ee Yeo
- Department of Chemistry, Dankook University, Yongin 16890,
Korea
| | - Heonyong Park
- Department of Molecular Biology, Dankook University, Yongin 16890,
Korea
| | - Young-Duk Huh
- Department of Chemistry, Dankook University, Yongin 16890,
Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Yongin 16890,
Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul 05029,
Korea
| |
Collapse
|
197
|
Shen L, Yang S, Yang T, Liang J, Cheng W, Wen J, Liu Y, Li J, Shi L, Tang Q, Shi W, Hu J, Liu C, Zhang Y, Mou S, Liu Z, Cai H, He L, Guan D, Wu Y, He S. CaCDPK15 positively regulates pepper responses to Ralstonia solanacearum inoculation and forms a positive-feedback loop with CaWRKY40 to amplify defense signaling. Sci Rep 2016; 6:22439. [PMID: 26928570 PMCID: PMC4772545 DOI: 10.1038/srep22439] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/15/2016] [Indexed: 01/28/2023] Open
Abstract
CaWRKY40 is a positive regulator of pepper (Capsicum annum) response to Ralstonia solanacearum inoculation (RSI), but the underlying mechanism remains largely unknown. Here, we functionally characterize CaCDPK15 in the defense signaling mediated by CaWRKY40. Pathogen-responsive TGA, W, and ERE boxes were identified in the CaCDPK15 promoter (pCaCDPK15), and pCaCDPK15-driven GUS expression was significantly enhanced in response to RSI and exogenously applied salicylic acid, methyl jasmonate, abscisic acid, and ethephon. Virus-induced gene silencing (VIGS) of CaCDPK15 significantly increased the susceptibility of pepper to RSI and downregulated the immunity-associated markers CaNPR1, CaPR1, and CaDEF1. By contrast, transient CaCDPK15 overexpression significantly activated hypersensitive response associated cell death, upregulated the immunity-associated marker genes, upregulated CaWRKY40 expression, and enriched CaWRKY40 at the promoters of its targets genes. Although CaCDPK15 failed to interact with CaWRKY40, the direct binding of CaWRKY40 to pCaCDPK15 was detected by chromatin immunoprecipitation, which was significantly potentiated by RSI in pepper plants. These combined results suggest that RSI in pepper induces CaCDPK15 and indirectly activates downstream CaWRKY40, which in turn potentiates CaCDPK15 expression. This positive-feedback loop would amplify defense signaling against RSI and efficiently activate strong plant immunity.
Collapse
Affiliation(s)
- Lei Shen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Sheng Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Tong Yang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiaqi Liang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Cheng
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiayu Wen
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yanyan Liu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiazhi Li
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Lanping Shi
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Qian Tang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Wei Shi
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jiong Hu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Cailing Liu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yangwen Zhang
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shaoliang Mou
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Zhiqin Liu
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Hanyang Cai
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Li He
- College of Life Science, Jinggang Shan University, Ji'an, Jiangxi 343000, PR China
| | - Deyi Guan
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yang Wu
- College of Life Science, Jinggang Shan University, Ji'an, Jiangxi 343000, PR China
| | - Shuilin He
- National Education Ministry, Key Laboratory of Plant Genetic Improvement and Comprehensive Utilization, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China.,College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| |
Collapse
|
198
|
Bethke G, Thao A, Xiong G, Li B, Soltis NE, Hatsugai N, Hillmer RA, Katagiri F, Kliebenstein DJ, Pauly M, Glazebrook J. Pectin Biosynthesis Is Critical for Cell Wall Integrity and Immunity in Arabidopsis thaliana. THE PLANT CELL 2016; 28:537-56. [PMID: 26813622 PMCID: PMC4790862 DOI: 10.1105/tpc.15.00404] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 12/11/2015] [Accepted: 01/19/2016] [Indexed: 05/19/2023]
Abstract
Plant cell walls are important barriers against microbial pathogens. Cell walls of Arabidopsis thaliana leaves contain three major types of polysaccharides: cellulose, various hemicelluloses, and pectins. UDP-D-galacturonic acid, the key building block of pectins, is produced from the precursor UDP-D-glucuronic acid by the action of glucuronate 4-epimerases (GAEs). Pseudomonas syringae pv maculicola ES4326 (Pma ES4326) repressed expression of GAE1 and GAE6 in Arabidopsis, and immunity to Pma ES4326 was compromised in gae6 and gae1 gae6 mutant plants. These plants had brittle leaves and cell walls of leaves had less galacturonic acid. Resistance to specific Botrytis cinerea isolates was also compromised in gae1 gae6 double mutant plants. Although oligogalacturonide (OG)-induced immune signaling was unaltered in gae1 gae6 mutant plants, immune signaling induced by a commercial pectinase, macerozyme, was reduced. Macerozyme treatment or infection with B. cinerea released less soluble uronic acid, likely reflecting fewer OGs, from gae1 gae6 cell walls than from wild-type Col-0. Although both OGs and macerozyme-induced immunity to B. cinerea in Col-0, only OGs also induced immunity in gae1 gae6. Pectin is thus an important contributor to plant immunity, and this is due at least in part to the induction of immune responses by soluble pectin, likely OGs, that are released during plant-pathogen interactions.
Collapse
Affiliation(s)
- Gerit Bethke
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Amanda Thao
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Guangyan Xiong
- Energy Biosciences Institute, University of California, Berkeley, California 94720
| | - Baohua Li
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Nicole E Soltis
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Noriyuki Hatsugai
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | - Rachel A Hillmer
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108 Plant Biological Sciences Graduate Program, University of Minnesota, St. Paul, Minnesota 55108
| | - Fumiaki Katagiri
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| | | | - Markus Pauly
- Energy Biosciences Institute, University of California, Berkeley, California 94720 Department of Plant and Microbial Biology, University of California, Berkeley, California, 94720
| | - Jane Glazebrook
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
199
|
de Torres Zabala M, Zhai B, Jayaraman S, Eleftheriadou G, Winsbury R, Yang R, Truman W, Tang S, Smirnoff N, Grant M. Novel JAZ co-operativity and unexpected JA dynamics underpin Arabidopsis defence responses to Pseudomonas syringae infection. THE NEW PHYTOLOGIST 2016; 209:1120-34. [PMID: 26428397 PMCID: PMC4791170 DOI: 10.1111/nph.13683] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/19/2015] [Indexed: 05/21/2023]
Abstract
Pathogens target phytohormone signalling pathways to promote disease. Plants deploy salicylic acid (SA)-mediated defences against biotrophs. Pathogens antagonize SA immunity by activating jasmonate signalling, for example Pseudomonas syringae pv. tomato DC3000 produces coronatine (COR), a jasmonic acid (JA) mimic. This study found unexpected dynamics between SA, JA and COR and co-operation between JAZ jasmonate repressor proteins during DC3000 infection. We used a systems-based approach involving targeted hormone profiling, high-temporal-resolution micro-array analysis, reverse genetics and mRNA-seq. Unexpectedly, foliar JA did not accumulate until late in the infection process and was higher in leaves challenged with COR-deficient P. syringae or in the more resistant JA receptor mutant coi1. JAZ regulation was complex and COR alone was insufficient to sustainably induce JAZs. JAZs contribute to early basal and subsequent secondary plant defence responses. We showed that JAZ5 and JAZ10 specifically co-operate to restrict COR cytotoxicity and pathogen growth through a complex transcriptional reprogramming that does not involve the basic helix-loop-helix transcription factors MYC2 and related MYC3 and MYC4 previously shown to restrict pathogen growth. mRNA-seq predicts compromised SA signalling in a jaz5/10 mutant and rapid suppression of JA-related components on bacterial infection.
Collapse
Affiliation(s)
- Marta de Torres Zabala
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Bing Zhai
- College of Biological SciencesChina Agricultural UniversityBeijing100093China
| | - Siddharth Jayaraman
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Garoufalia Eleftheriadou
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Rebecca Winsbury
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Ron Yang
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - William Truman
- Department of Plant BiologyUniversity of MinnesotaSaint PaulMN55108USA
| | - Saijung Tang
- College of Biological SciencesChina Agricultural UniversityBeijing100093China
| | - Nicholas Smirnoff
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| | - Murray Grant
- BiosciencesCollege of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterEX4 4QDUK
| |
Collapse
|
200
|
Ross A, Somssich IE. A DNA-based real-time PCR assay for robust growth quantification of the bacterial pathogen Pseudomonas syringae on Arabidopsis thaliana. PLANT METHODS 2016; 12:48. [PMID: 27895701 PMCID: PMC5117497 DOI: 10.1186/s13007-016-0149-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 11/14/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND The interaction of Pseudomonas syringae with Arabidopsis is one of the most commonly used systems to study various bacterial-host interrelationships. Currently, most studies are based on the growth quantification of the pathogen to characterize resistance or virulence targets. However, the standard available method for determining bacterial proliferation in planta is laborious and has several limitations. RESULTS Here we present an alternative robust approach, which is based on the quantification of bacterial DNA by real-time PCR. We directly compared this assay with the routinely used plate counting method to access bacterial titers in a number of well described Arabidopsis mutants. CONCLUSIONS These studies showed that the DNA-based technique is highly reliable and comparable. Moreover, the technique is easily applicable, robust, and ideal for routine experiments or for larger scale analyses.
Collapse
Affiliation(s)
- Annegret Ross
- Department for Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | - Imre E. Somssich
- Department for Plant-Microbe Interactions, Max-Planck-Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| |
Collapse
|