151
|
Ramirez VE, Poppenberger B. Modes of Brassinosteroid Activity in Cold Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2020; 11:583666. [PMID: 33240301 PMCID: PMC7677411 DOI: 10.3389/fpls.2020.583666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Cold stress is a significant environmental factor that negatively affects plant growth and development in particular when it occurs during the growth phase. Plants have evolved means to protect themselves from damage caused by chilling or freezing temperatures and some plant species, in particular those from temperate geographical zones, can increase their basal level of freezing tolerance in a process termed cold acclimation. Cold acclimation improves plant survival, but also represses growth, since it inhibits activity of the growth-promoting hormones gibberellins (GAs). In addition to GAs, the steroid hormones brassinosteroids (BRs) also take part in growth promotion and cold stress signaling; however, in contrast to Gas, BRs can improve cold stress tolerance with fewer trade-offs in terms of growth and yields. Here we summarize our current understanding of the roles of BRs in cold stress responses with a focus on freezing tolerance and cold acclimation pathways.
Collapse
|
152
|
Zhang R, Gonze D, Hou X, You X, Goldbeter A. A Computational Model for the Cold Response Pathway in Plants. Front Physiol 2020; 11:591073. [PMID: 33250782 PMCID: PMC7674828 DOI: 10.3389/fphys.2020.591073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/16/2020] [Indexed: 01/27/2023] Open
Abstract
Understanding the mechanism by which plants respond to cold stress and strengthen their tolerance to low temperatures is an important and challenging task in plant sciences. Experiments have established that the first step in the perception and transduction of the cold stress signal consists of a transient influx of Ca2+. This Ca2+ influx triggers the activation of a cascade of phosphorylation-dephosphorylation reactions that eventually affects the expression of C-repeat-binding factors (CBFs, notably CBF3), which were shown in many plants to control resistance to cold stress by regulating the expression of cold-regulated (COR) genes. Based on experimental observations mostly made on Arabidopsis thaliana, we build a computational model for the cold response pathway in plants, from the transduction of the cold signal via the transient influx of Ca2+ to the activation of the phosphorylation cascade leading to CBF3 expression. We explore the dynamics of this regulatory network by means of numerical simulations and compare the results with experimental observations on the dynamics of the cold response, both for the wild type and for mutants. The simulations show how, in response to cold stress, a brief Ca2+ influx, which is over in minutes, is transduced along the successive steps of the network to trigger the expression of cold response genes such as CBF3 within hours. Sometimes, instead of a single Ca2+ spike the decrease in temperature brings about a train of high-frequency Ca2+ oscillations. The model is applied to both types of Ca2+ signaling. We determine the dynamics of the network in response to a series of identical cold stresses, to account for the observation of desensitization and resensitization. The analysis of the model predicts the possibility of an oscillatory expression of CBF3 originating from the negative feedback exerted by ZAT12, a factor itself controlled by CBF3. Finally, we extend the model to incorporate the circadian control of CBF3 expression, to account for the gating of the response to cold stress by the plant circadian clock.
Collapse
Affiliation(s)
- Ruqiang Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Didier Gonze
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Xilin Hou
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiong You
- College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Albert Goldbeter
- Unité de Chronobiologie Théorique, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
153
|
Baison J, Zhou L, Forsberg N, Mörling T, Grahn T, Olsson L, Karlsson B, Wu HX, Mellerowicz EJ, Lundqvist SO, García-Gil MR. Genetic control of tracheid properties in Norway spruce wood. Sci Rep 2020; 10:18089. [PMID: 33093525 PMCID: PMC7581746 DOI: 10.1038/s41598-020-72586-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 09/03/2020] [Indexed: 01/20/2023] Open
Abstract
Through the use of genome-wide association studies (GWAS) mapping it is possible to establish the genetic basis of phenotypic trait variation. Our GWAS study presents the first such effort in Norway spruce (Picea abies (L). Karst.) for the traits related to wood tracheid characteristics. The study employed an exome capture genotyping approach that generated 178 101 Single Nucleotide Polymorphisms (SNPs) from 40 018 probes within a population of 517 Norway spruce mother trees. We applied a least absolute shrinkage and selection operator (LASSO) based association mapping method using a functional multi-locus mapping approach, with a stability selection probability method as the hypothesis testing approach to determine significant Quantitative Trait Loci (QTLs). The analysis has provided 30 significant associations, the majority of which show specific expression in wood-forming tissues or high ubiquitous expression, potentially controlling tracheids dimensions, their cell wall thickness and microfibril angle. Among the most promising candidates based on our results and prior information for other species are: Picea abies BIG GRAIN 2 (PabBG2) with a predicted function in auxin transport and sensitivity, and MA_373300g0010 encoding a protein similar to wall-associated receptor kinases, which were both associated with cell wall thickness. The results demonstrate feasibility of GWAS to identify novel candidate genes controlling industrially-relevant tracheid traits in Norway spruce.
Collapse
Affiliation(s)
- J Baison
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Linghua Zhou
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Nils Forsberg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Tommy Mörling
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Thomas Grahn
- RISE Bioeconomy, Box 5604, 114 86, Stockholm, Sweden
| | - Lars Olsson
- RISE Bioeconomy, Box 5604, 114 86, Stockholm, Sweden
| | - Bo Karlsson
- Skogforsk, Ekebo 2250, 268 90, Svalov, Sweden
| | - Harry X Wu
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden
| | - Sven-Olof Lundqvist
- RISE Bioeconomy, Box 5604, 114 86, Stockholm, Sweden
- IIC, Rosenlundsgatan 48B, 11863, Stockholm, Sweden
| | - María Rosario García-Gil
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Science, Umeå, Sweden.
| |
Collapse
|
154
|
Sultana N, Islam S, Juhasz A, Yang R, She M, Alhabbar Z, Zhang J, Ma W. Transcriptomic Study for Identification of Major Nitrogen Stress Responsive Genes in Australian Bread Wheat Cultivars. Front Genet 2020; 11:583785. [PMID: 33193713 PMCID: PMC7554635 DOI: 10.3389/fgene.2020.583785] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
High nitrogen use efficiency (NUE) in bread wheat is pivotal to sustain high productivity. Knowledge about the physiological and transcriptomic changes that regulate NUE, in particular how plants cope with nitrogen (N) stress during flowering and the grain filling period, is crucial in achieving high NUE. Nitrogen response is differentially manifested in different tissues and shows significant genetic variability. A comparative transcriptome study was carried out using RNA-seq analysis to investigate the effect of nitrogen levels on gene expression at 0 days post anthesis (0 DPA) and 10 DPA in second leaf and grain tissues of three Australian wheat (Triticum aestivum) varieties that were known to have varying NUEs. A total of 12,344 differentially expressed genes (DEGs) were identified under nitrogen stress where down-regulated DEGs were predominantly associated with carbohydrate metabolic process, photosynthesis, light-harvesting, and defense response, whereas the up-regulated DEGs were associated with nucleotide metabolism, proteolysis, and transmembrane transport under nitrogen stress. Protein–protein interaction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis further revealed that highly interacted down-regulated DEGs were involved in light-harvesting and photosynthesis, and up-regulated DEGs were mostly involved in steroid biosynthesis under N stress. The common down-regulated genes across the cultivars included photosystem II 10 kDa polypeptide family proteins, plant protein 1589 of uncharacterized protein function, etc., whereas common up-regulated genes included glutamate carboxypeptidase 2, placenta-specific8 (PLAC8) family protein, and a sulfate transporter. On the other hand, high NUE cultivar Mace responded to nitrogen stress by down-regulation of a stress-related gene annotated as beta-1,3-endoglucanase and pathogenesis-related protein (PR-4, PR-1) and up-regulation of MYB/SANT domain-containing RADIALIS (RAD)-like transcription factors. The medium NUE cultivar Spitfire and low NUE cultivar Volcani demonstrated strong down-regulation of Photosystem II 10 kDa polypeptide family protein and predominant up-regulation of 11S globulin seed storage protein 2 and protein transport protein Sec61 subunit gamma. In grain tissue, most of the DEGs were related to nitrogen metabolism and proteolysis. The DEGs with high abundance in high NUE cultivar can be good candidates to develop nitrogen stress-tolerant variety with improved NUE.
Collapse
Affiliation(s)
- Nigarin Sultana
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Shahidul Islam
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Angela Juhasz
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia.,School of Science, Edith Cowan University, Joondalup, WA, Australia
| | - Rongchang Yang
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Maoyun She
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Zaid Alhabbar
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jingjuan Zhang
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Wujun Ma
- State Agriculture Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
155
|
Lange T, Krämer C, Pimenta Lange MJ. The Class III Gibberellin 2-Oxidases AtGA2ox9 and AtGA2ox10 Contribute to Cold Stress Tolerance and Fertility. PLANT PHYSIOLOGY 2020; 184:478-486. [PMID: 32661062 PMCID: PMC7479881 DOI: 10.1104/pp.20.00594] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/05/2020] [Indexed: 05/05/2023]
Abstract
Many developmental processes in plants are regulated by GA hormones. GA homeostasis is achieved via complex biosynthetic and catabolic pathways. GA catabolic enzymes include GA 2-oxidases that are classified into three classes. Members of class III GA 2-oxidases typically act on GA precursors containing a C20-skeleton. Here, we identified two further members of this class of GA 2-oxidases, namely AtGA2ox9 and AtGA2ox10, in the Arabidopsis (Arabidopsis thaliana) genome. Both genes encode enzymes that have functional similarities to AtGA2ox7 and AtGA2ox8, which are class III GA 2-oxidases that 2β-hydroxylate C20-GAs. Previously unknown for GA 2-oxidases, AtGA2ox9 performs 2α-hydroxylation of C19-GAs and harbors putative desaturating activity of C20-GAs. Additionally, AtGA2ox9 and AtGA2ox10 exhibit GA 20-oxidase activity. AtGA2ox9 oxidizes carbon-20 to form tricarboxylic acid C20-GAs, whereas AtGA2ox10 produces C19-GA9 AtGA2ox9 transcript levels increase after cold treatment and AtGA2ox10 is expressed mainly in the siliques of Arabidopsis plants. Atga2ox9 loss-of-function mutants are more sensitive to freezing temperatures, whereas Atga2ox10 loss-of-function mutants produce considerably more seeds per silique than wild-type plants. We conclude that in Arabidopsis, AtGA2ox9 contributes to freezing tolerance and AtGA2ox10 regulates seed production.
Collapse
Affiliation(s)
- Theo Lange
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| | - Carolin Krämer
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| | - Maria João Pimenta Lange
- Institut für Pflanzenbiologie, Technische Universität Braunschweig, D-38106 Braunschweig, Germany
| |
Collapse
|
156
|
Guo X, Li J, Zhang L, Zhang Z, He P, Wang W, Wang M, Wang A, Zhu J. Heterotrimeric G-protein α subunit (LeGPA1) confers cold stress tolerance to processing tomato plants (Lycopersicon esculentum Mill). BMC PLANT BIOLOGY 2020; 20:394. [PMID: 32847511 PMCID: PMC7448358 DOI: 10.1186/s12870-020-02615-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/19/2020] [Indexed: 06/02/2023]
Abstract
BACKGROUND Tomatoes (Lycopersicon esculentum Mill) are key foods, and their molecular biology and evolution have been well described. Tomato plants originated in the tropics and, thus, are cold sensitive. RESULTS Here, we generated LeGPA1 overexpressing and RNA-interference (RNAi) transgenic tomato plants, which we then used to investigate the function of LeGPA1 in response to cold stress. Functional LeGPA1 was detected at the plasma membrane, and endogenous LeGPA1 was highly expressed in the roots and leaves. Cold treatment positively induced the expression of LeGPA1. Overexpression of LeGPA1 conferred tolerance to cold conditions and regulated the expression of genes related to the INDUCER OF CBF EXPRESSION-C-REPEAT-BINDING FACTOR (ICE-CBF) pathway in tomato plants. In the LeGPA1-overexpressing transgenic plants, the superoxide dismutase, peroxidase, and catalase activities and soluble sugar and proline contents were increased, and the production of reactive oxygen species and membrane lipid peroxidation decreased under cold stress. CONCLUSIONS Our findings suggest that improvements in antioxidant systems can help plants cope with the oxidative damage caused by cold stress, thereby stabilizing cell membrane structures and increasing the rate of photosynthesis. The data presented here provide evidence for the key role of LeGPA1 in mediating cold signal transduction in plant cells. These findings extend our knowledge of the roles of G-proteins in plants and help to clarify the mechanisms through which growth and development are regulated in processing tomato plants.
Collapse
Affiliation(s)
- Xinyong Guo
- College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Juju Li
- College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Li Zhang
- College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Zhanwen Zhang
- College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Ping He
- College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Wenwen Wang
- College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Mei Wang
- College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Aiying Wang
- College of Life Science, Shihezi University, Shihezi, 832000, China
| | - Jianbo Zhu
- College of Life Science, Shihezi University, Shihezi, 832000, China.
| |
Collapse
|
157
|
Wang P, Zhang Q, Chen Y, Zhao Y, Ren F, Shi H, Wu X. Comprehensive identification and analysis of DELLA genes throughout the plant kingdom. BMC PLANT BIOLOGY 2020; 20:372. [PMID: 32762652 PMCID: PMC7409643 DOI: 10.1186/s12870-020-02574-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/23/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND DELLAs play key roles in plant gibberellin signaling pathways and are generally important in plant development and growth. However, DELLAs in many plant taxa have not yet been systematically analyzed. RESULTS In our study, we searched for DELLA genes across 58 green plant genomes and found 181 DELLAs. Structure analysis showed some DELLA domains do not contain "D-E-L-L-A" sequences and instead contain similar domains, including DGLLA and DSLLH domains. "VHYNP" motifs in plant DELLAs comprise 23 types of sequences, while some DELLAs did not contain GRAS domains. In grape, we found that the DELLA protein GSVIVT01015465001 contains an F-box domain, while apple DELLA proteins MDP0000220512 and MDP0000403162 contain a WW domain and a BCIP domain, respectively. These DELLAs can be divided into 22 homologous groups and 17 orthologous groups, and 35 paralogous genes were identified. In total, 35 positively selected genes (PSGs) and 121 negatively selected genes (NSGs) were found among DELLAs based on selective pressure analysis, with an average Ks of NSGs that was significantly higher than that of PSGs (P < 0.05). Among the paralogous groups, CBI and Fop were significantly positively correlated with GC, GC1, GC2, GC12, and GC3, while CAI was significantly positively correlated with GC, GC1, GC12, and GC. The paralogous groups with ω values exceeding 1 had significantly higher Ka values. We also found some paralogous groups with ω values exceeding 1 that differed in their motifs. CONCLUSIONS This study provides helpful insights into the evolution of DELLA genes and offers exciting opportunities for the investigation of DELLA functions in different plants.
Collapse
Affiliation(s)
- Pengfei Wang
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China.
- Key Laboratory of Urban Agriculture (East China), Ministry of Agriculture, Jinan, 250100, China.
| | - Qianqian Zhang
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China
| | - Yingchun Chen
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China
| | - Yanxia Zhao
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China
| | - Fengshan Ren
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China
- Key Laboratory of Urban Agriculture (East China), Ministry of Agriculture, Jinan, 250100, China
| | - Hongmei Shi
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China.
| | - Xinying Wu
- Shandong Academy of Grape, Shandong engineering research center for Grape cultivation and deep-processing, Jinan, 250100, China.
- Key Laboratory of Urban Agriculture (East China), Ministry of Agriculture, Jinan, 250100, China.
| |
Collapse
|
158
|
Beji S, Fontaine V, Devaux R, Thomas M, Negro SS, Bahrman N, Siol M, Aubert G, Burstin J, Hilbert JL, Delbreil B, Lejeune-Hénaut I. Genome-wide association study identifies favorable SNP alleles and candidate genes for frost tolerance in pea. BMC Genomics 2020; 21:536. [PMID: 32753054 PMCID: PMC7430820 DOI: 10.1186/s12864-020-06928-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Frost is a limiting abiotic stress for the winter pea crop (Pisum sativum L.) and identifying the genetic determinants of frost tolerance is a major issue to breed varieties for cold northern areas. Quantitative trait loci (QTLs) have previously been detected from bi-parental mapping populations, giving an overview of the genome regions governing this trait. The recent development of high-throughput genotyping tools for pea brings the opportunity to undertake genetic association studies in order to capture a higher allelic diversity within large collections of genetic resources as well as to refine the localization of the causal polymorphisms thanks to the high marker density. In this study, a genome-wide association study (GWAS) was performed using a set of 365 pea accessions. Phenotyping was carried out by scoring frost damages in the field and in controlled conditions. The association mapping collection was also genotyped using an Illumina Infinium® BeadChip, which allowed to collect data for 11,366 single nucleotide polymorphism (SNP) markers. RESULTS GWAS identified 62 SNPs significantly associated with frost tolerance and distributed over six of the seven pea linkage groups (LGs). These results confirmed 3 QTLs that were already mapped in multiple environments on LG III, V and VI with bi-parental populations. They also allowed to identify one locus, on LG II, which has not been detected yet and two loci, on LGs I and VII, which have formerly been detected in only one environment. Fifty candidate genes corresponding to annotated significant SNPs, or SNPs in strong linkage disequilibrium with the formers, were found to underlie the frost damage (FD)-related loci detected by GWAS. Additionally, the analyses allowed to define favorable haplotypes of markers for the FD-related loci and their corresponding accessions within the association mapping collection. CONCLUSIONS This study led to identify FD-related loci as well as corresponding favorable haplotypes of markers and representative pea accessions that might to be used in winter pea breeding programs. Among the candidate genes highlighted at the identified FD-related loci, the results also encourage further attention to the presence of C-repeat Binding Factors (CBF) as potential genetic determinants of the frost tolerance locus on LG VI.
Collapse
Affiliation(s)
- Sana Beji
- BioEcoAgro, INRAE, Univ. Liège, Univ. Lille, Univ. Picardie Jules Verne, 2, Chaussée Brunehaut, F-80203 Estrées-Mons, France
| | - Véronique Fontaine
- BioEcoAgro, INRAE, Univ. Liège, Univ. Lille, Univ. Picardie Jules Verne, 2, Chaussée Brunehaut, F-80203 Estrées-Mons, France
| | | | | | - Sandra Silvia Negro
- GQE - Le Moulon, INRAE, Univ. Paris-Sud, CNRS, AgroParisTech, Univ. Paris-Saclay, F-91190 Gif-sur-Yvette, France
| | - Nasser Bahrman
- BioEcoAgro, INRAE, Univ. Liège, Univ. Lille, Univ. Picardie Jules Verne, 2, Chaussée Brunehaut, F-80203 Estrées-Mons, France
| | - Mathieu Siol
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Grégoire Aubert
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Judith Burstin
- Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jean-Louis Hilbert
- BioEcoAgro, INRAE, Univ. Liège, Univ. Lille, Univ. Picardie Jules Verne, 2, Chaussée Brunehaut, F-80203 Estrées-Mons, France
| | - Bruno Delbreil
- BioEcoAgro, INRAE, Univ. Liège, Univ. Lille, Univ. Picardie Jules Verne, 2, Chaussée Brunehaut, F-80203 Estrées-Mons, France
| | - Isabelle Lejeune-Hénaut
- BioEcoAgro, INRAE, Univ. Liège, Univ. Lille, Univ. Picardie Jules Verne, 2, Chaussée Brunehaut, F-80203 Estrées-Mons, France
| |
Collapse
|
159
|
Transcriptomic Analysis Revealed the Common and Divergent Responses of Maize Seedling Leaves to Cold and Heat Stresses. Genes (Basel) 2020; 11:genes11080881. [PMID: 32756433 PMCID: PMC7464670 DOI: 10.3390/genes11080881] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 11/17/2022] Open
Abstract
Temperature stresses (TS), including cold and heat stress, adversely affect the growth, development, and yield of maize (Zea mays L.). To clarify the molecular mechanisms of the tolerance of maize seedling leaves to TS, we applied transcriptomic sequencing of an inbred maize line, B73, with seedlings exposed to various temperature conditions, including normal temperature (NT, 25 °C), cold (4, 10, and 16 °C), and heat (37, 42, and 48 °C) stresses. Differentially expressed genes (DEGs) were detected in different comparison between the NT sample and each temperature-stressed sample, with 5358, 5485, 5312, 1095, 2006, and 4760 DEGs responding to TS of 4, 10, 16, 37, 42, and 48 °C, respectively. For cold and heat stresses, 189 DEGs enriched in the hydrogen peroxidase metabolic process, cellular modified amino acid metabolic process, and sulfur compound metabolic process were common. The DEGs encoding calcium signaling and reactive oxygen species scavenging enzymes demonstrated similar expression characterizations, whereas the DEGs encoding transcription factors, such as ERF, ARF, and HSF, hormone signaling, and heat shock proteins, displayed divergent expression models, implying both common and divergent responses to cold and heat stresses in maize seedling leaves. Co-expression network analysis showed that functional DEGs associated with the core regulators in response to cold and heat stresses were significantly correlated with TS, indicating their vital roles in cold and heat adaptation, respectively. Our investigation focused on the response to gradient TS, and the results presented a relatively comprehensive category of genes involved in differential TS responses. These will contribute a better understanding of the molecular mechanisms of maize seedling leaf responses to TS and provide valuable genetic resources for breeding TS tolerant varieties of maize.
Collapse
|
160
|
Chen T, Zhang W, Yang G, Chen JH, Chen BX, Sun R, Zhang H, An LZ. TRANSTHYRETIN-LIKE and BYPASS1-LIKE co-regulate growth and cold tolerance in Arabidopsis. BMC PLANT BIOLOGY 2020; 20:332. [PMID: 32664862 PMCID: PMC7362626 DOI: 10.1186/s12870-020-02534-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/28/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Cold stress inhibits normal physiological metabolism in plants, thereby seriously affecting plant development. Meanwhile, plants also actively adjust their metabolism and development to adapt to changing environments. Several cold tolerance regulators have been found to participate in the regulation of plant development. Previously, we reported that BYPASS1-LIKE (B1L), a DUF793 family protein, participates in the regulation of cold tolerance, at least partly through stabilizing C-REPEAT BINDING FACTORS (CBFs). In this study, we found that B1L interacts with TRANSTHYRETIN-LIKE (TTL) protein, which is involved in brassinosteroid (BR)-mediated plant growth and catalyses the synthesis of S-allantoin, and both proteins participate in modulating plant growth and cold tolerance. RESULTS The results obtained with yeast two hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays showed that B1L directly interacted with TTL. Similar to the ttl-1 and ttl-2 mutants, the b1l mutant displayed a longer hypocotyl and greater fresh weight than wild type, whereas B1L-overexpressing lines exhibited a shorter hypocotyl and reduced fresh weight. Moreover, ttl-1 displayed freezing tolerance to cold treatment compared with WT, whereas the b1l mutant and TTL-overexpressing lines were freezing-sensitive. The b1l ttl double mutant had a developmental phenotype and freezing tolerance that were highly similar to those of ttl-1 compared to b1l, indicating that TTL is important for B1L function. Although low concentrations of brassinolide (0.1 or 1 nM) displayed similarly promoted hypocotyl elongation of WT and b1l under normal temperature, it showed less effect to the hypocotyl elongation of b1l than to that of WT under cold conditions. In addition, the b1l mutant also contained less amount of allantoin than Col-0. CONCLUSION Our results indicate that B1L and TTL co-regulate development and cold tolerance in Arabidopsis, and BR and allantoin may participate in these processes through B1L and TTL.
Collapse
Affiliation(s)
- Tao Chen
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Wei Zhang
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Gang Yang
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jia-Hui Chen
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Bi-Xia Chen
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Rui Sun
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hua Zhang
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Li-Zhe An
- The Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- School of Forestry, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
161
|
Emamverdian A, Ding Y, Mokhberdoran F. The role of salicylic acid and gibberellin signaling in plant responses to abiotic stress with an emphasis on heavy metals. PLANT SIGNALING & BEHAVIOR 2020; 15:1777372. [PMID: 32508222 PMCID: PMC8570706 DOI: 10.1080/15592324.2020.1777372] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 05/20/2023]
Abstract
Salicylic acid (SA) and gibberellins (GAs), as two important plant growth hormones, play a key role in increasing plant tolerance to abiotic stress. They contribute to the increased plant antioxidant activities in ROS scavenging, which is related to the enzymes involved in H2O2-detoxifying. In photosynthetic cycles, the endogenous form of these phytohormones enhances photosynthetic properties such as stomatal conductance, net photosynthesis (PN), photosynthetic oxygen evolution, and efficiency of carboxylation. Furthermore, in cell cycle, they are able to influence division and expansion of cell growth in plants under stress, leading to increased growth of radicle cells in a meristem, and ultimately contributing to the increased germination rate and lengths of shoot and root in the stress-affected plants. In the case of crosstalk between SA and GA, exogenous GA3 can upregulate biosynthesis of SA and consequently result in rising levels of SA, enhancing plant defense response to environmental abiotic stresses. The aim of this paper was to investigate the mechanisms related to GA and SA phytohormones in amelioration of abiotic stress, in particular, heavy metal stress.
Collapse
Affiliation(s)
- Abolghassem Emamverdian
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
| | - Yulong Ding
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- CONTACT Yulong Ding NO.159, Londpan Road Nanjing, 210037, China
| | - Farzad Mokhberdoran
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| |
Collapse
|
162
|
Liu Y, Shi Y, Zhu N, Zhong S, Bouzayen M, Li Z. SlGRAS4 mediates a novel regulatory pathway promoting chilling tolerance in tomato. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1620-1633. [PMID: 31916348 PMCID: PMC7292549 DOI: 10.1111/pbi.13328] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/14/2019] [Accepted: 12/25/2019] [Indexed: 05/08/2023]
Abstract
Tomato (Solanum lycopersicum L.) plants are cold-sensitive, and the fruit are susceptible to postharvest chilling injury when stored at low temperature. However, the mechanisms underlying cold stress responses in tomato are poorly understood. We demonstrate that SlGRAS4, encoding a transcription factor induced by low temperature, promotes chilling tolerance in tomato leaves and fruit. Combined genome-wide ChIP-seq and RNA-seq approaches identified among cold stress-associated genes those being direct targets of SlGRAS4 and protein studies revealed that SlGRAS4 forms a homodimer to self-activate its own promoter. SlGRAS4 can also directly bind tomato SlCBF promoters to activate their transcription without inducing any growth retardation. The study identifies the SlGRAS4-regulon as a new cold response pathway conferring cold stress tolerance in tomato independently of the ICE1-CBF pathway. This provides new track for breeding strategies aiming to improve chilling tolerance of cultivated tomatoes and to preserve sensory qualities of tomato fruit often deteriorated by storage at low temperatures.
Collapse
Affiliation(s)
- Yudong Liu
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Yuan Shi
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| | - Ning Zhu
- State Key Laboratory of AgrobiotechnologySchool of Life SciencesChinese University of Hong KongHong KongChina
| | - Silin Zhong
- State Key Laboratory of AgrobiotechnologySchool of Life SciencesChinese University of Hong KongHong KongChina
| | - Mondher Bouzayen
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
- UMR990 INRA/INP‐ENSATUniversité de ToulouseCastanet‐TolosanFrance
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of ChongqingSchool of Life SciencesChongqing UniversityChongqingChina
- Center of Plant Functional GenomicsInstitute of Advanced Interdisciplinary StudiesChongqing UniversityChongqingChina
| |
Collapse
|
163
|
Matayoshi CL, Pena LB, Arbona V, Gómez-Cadenas A, Gallego SM. Early responses of maize seedlings to Cu stress include sharp decreases in gibberellins and jasmonates in the root apex. PROTOPLASMA 2020; 257:1243-1256. [PMID: 32350742 DOI: 10.1007/s00709-020-01504-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
Copper (Cu) interferes with numerous biological functions in plants, including plant growth, which is partly governed by plant hormones. In the present study, Cu stress effect on the roots of pre-emerging maize seedlings in terms of growth, nutrient composition, protein modifications, and root hormone homeostasis was investigated, focusing on possible metabolic differences between the root apex and the rest of the root tissues. Significant decreases in root length and root biomass after 72 h of Cu exposure (50 and 100 μM CuCl2), accompanied by reductions in Ca, Mg, and P root contents, were found. Cu also generated cell redox imbalance in both root tissues and revealed by altered enzymatic and non-enzymatic antioxidant defenses. Oxidative stress was evidenced by an increased protein carbonylation level in both tissues. Copper also induced protein ubiquitylation and SUMOylation and affected 20S proteasome peptidase activities in both tissues. Drastic reductions in ABA, IAA, JA (both free and conjugated), GA3, and GA4 levels in the root apex were detected under Cu stress. Our results show that Cu exposure generated oxidative damage and altered root hormonal homeostasis, mainly at the root apex, leading to a strong root growth inhibition. Severe protein post-translational modifications upon Cu exposure occurred in both tissues, suggesting that even when hormonal adjustments to cope with Cu stress occurred mainly at the root apex, the entire root is compromised in the protein turnover that seems to be necessary to trigger and/or to sustain defense mechanisms against Cu toxicity.
Collapse
Affiliation(s)
- Carolina L Matayoshi
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Liliana B Pena
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Vicent Arbona
- Departament de Ciències Agràries i del Medi Natural, Ecofisiologia i Biotecnologia. Campus Riu Sec, Universitat Jaume I, E12071, Castelló de la Plana, Spain
| | - Aurelio Gómez-Cadenas
- Departament de Ciències Agràries i del Medi Natural, Ecofisiologia i Biotecnologia. Campus Riu Sec, Universitat Jaume I, E12071, Castelló de la Plana, Spain
| | - Susana M Gallego
- Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
164
|
Renau-Morata B, Carrillo L, Dominguez-Figueroa J, Vicente-Carbajosa J, Molina RV, Nebauer SG, Medina J. CDF transcription factors: plant regulators to deal with extreme environmental conditions. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3803-3815. [PMID: 32072179 DOI: 10.1093/jxb/eraa088] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/03/2020] [Indexed: 05/23/2023]
Abstract
In terrestrial environments, water and nutrient availabilities and temperature conditions are highly variable, and especially in extreme environments limit survival, growth, and reproduction of plants. To sustain growth and maintain cell integrity under unfavourable environmental conditions, plants have developed a variety of biochemical and physiological mechanisms, orchestrated by a large set of stress-responsive genes and a complex network of transcription factors. Recently, cycling DOF factors (CDFs), a group of plant-specific transcription factors (TFs), were identified as components of the transcriptional regulatory networks involved in the control of abiotic stress responses. The majority of the members of this TF family are activated in response to a wide range of adverse environmental conditions in different plant species. CDFs regulate different aspects of plant growth and development such as photoperiodic flowering-time control and root and shoot growth. While most of the functional characterization of CDFs has been reported in Arabidopsis, recent data suggest that their diverse roles extend to other plant species. In this review, we integrate information related to structure and functions of CDFs in plants, with special emphasis on their role in plant responses to adverse environmental conditions.
Collapse
Affiliation(s)
- Begoña Renau-Morata
- Departamento de Producción Vegetal, Universitat Politécnica de Valencia, Camino de Vera s/n, Valencia, Spain
| | - Laura Carrillo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), Madrid, Spain
| | - Jose Dominguez-Figueroa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), Madrid, Spain
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), Madrid, Spain
| | - Rosa V Molina
- Departamento de Producción Vegetal, Universitat Politécnica de Valencia, Camino de Vera s/n, Valencia, Spain
| | - Sergio G Nebauer
- Departamento de Producción Vegetal, Universitat Politécnica de Valencia, Camino de Vera s/n, Valencia, Spain
| | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo, Autopista M40 (km 38), Madrid, Spain
| |
Collapse
|
165
|
Kumari M, Joshi R, Kumar R. Metabolic signatures provide novel insights to Picrorhiza kurroa adaptation along the altitude in Himalayan region. Metabolomics 2020; 16:77. [PMID: 32577832 DOI: 10.1007/s11306-020-01698-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/15/2020] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Along the altitude, environmental conditions vary significantly that might influence plant performance and distribution. Adaptation to these changing conditions is a complex biological process that involves reprogramming of genes, proteins and metabolites. The metabolic response of medicinal plants along the altitude has been less explored yet. OBJECTIVES In the present study, we investigated the adaptation strategies of Picrorhiza kurroa Royle ex Benth. along the altitude in organ specific manner using metabolomic approach. METHODS Picrorhiza kurroa plants at flowering stage were randomly sampled from three altitudes viz. 3400, 3800 and 4100 masl in the Himalayan region. Leaf, root and rhizome were used for LC-MS based non-targeted metabolite profiling and targeted analysis of sugars, amino acids, picrosides and their corresponding phenolic acids. RESULTS A total of 220, primary and secondary metabolites (SMs) were identified (p < 0.05) representing an extensive inventory of metabolites and their spatial distribution in P. kurroa. Differential accumulation of metabolites suggests source-sink carbon partitioning, occurrence of partial TCA cycle, ascorbate metabolism, purine catabolism and salvage route, pyrimidine synthesis, lipid alteration besides gibberellins and cytokinin inhibition might be an adaptive strategy to alpine environmental stress along the altitude. Further, marked differences of organ and altitude specific SMs reflect alteration in secondary metabolic pathways. Significant accumulation of picrosides suggests their probable role in P. kurroa adaptation. CONCLUSION This study provides a platform that would be useful in deciphering the role of metabolites considered to be involved in plant adaptation.
Collapse
Affiliation(s)
- Manglesh Kumari
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - Robin Joshi
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
| | - Rajiv Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India.
| |
Collapse
|
166
|
Pimenta Lange MJ, Szperlinski M, Kalix L, Lange T. Cucumber gibberellin 1-oxidase/desaturase initiates novel gibberellin catabolic pathways. J Biol Chem 2020; 295:8442-8448. [PMID: 32345611 DOI: 10.1074/jbc.ra120.013708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Bioactive gibberellins (GAs) are central regulators of plant growth and development, including seed development. GA homeostasis is achieved via complex biosynthetic and catabolic pathways, whose exact activities remain to be elucidated. Here, we isolated two cDNAs from mature or imbibed cucumber seeds with high sequence similarity to known GA 3-oxidases. We found that one enzyme (designated here CsGA3ox5) has GA 3-oxidation activity. However, the second enzyme (designated CsGA1ox/ds) performed multiple reactions, including 1β-oxidation and 9,11-desaturation of GAs, but was lacking the 3-oxidation activity. CsGA1ox/ds overexpression in Arabidopsis plants resulted in severely dwarfed plants that could be rescued by the exogenous application of bioactive GA4, confirming that CsGA1ox/ds catabolizes GAs. Substitution of three amino acids in CsGA1ox/ds, Phe93, Pro106, and Ser202, with those typically conserved among GA 3-oxidases, Tyr93, Met106, and Thr202, respectively, conferred GA 3-oxidase activity to CsGA1ox/ds and thereby augmented its potential to form bioactive GAs in addition to catabolic products. Accordingly, overexpression of this amino acid-modified GA1ox/ds variant in Arabidopsis accelerated plant growth and development, indicating that this enzyme variant can produce bioactive GAs in planta Furthermore, a genetically modified GA3ox5 variant in which these three canonical GA 3-oxidase amino acids were changed to the ones present in CsGA1ox/ds was unable to convert GA9 to GA4, highlighting the importance of these three conserved amino acids for GA 3-oxidase activity.
Collapse
Affiliation(s)
- Maria João Pimenta Lange
- From the Institut für Pflanzenbiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Manuela Szperlinski
- From the Institut für Pflanzenbiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Leon Kalix
- From the Institut für Pflanzenbiologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Theo Lange
- From the Institut für Pflanzenbiologie, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
167
|
Feng K, Hou XL, Xing GM, Liu JX, Duan AQ, Xu ZS, Li MY, Zhuang J, Xiong AS. Advances in AP2/ERF super-family transcription factors in plant. Crit Rev Biotechnol 2020; 40:750-776. [PMID: 32522044 DOI: 10.1080/07388551.2020.1768509] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the whole life process, many factors including external and internal factors affect plant growth and development. The morphogenesis, growth, and development of plants are controlled by genetic elements and are influenced by environmental stress. Transcription factors contain one or more specific DNA-binding domains, which are essential in the whole life cycle of higher plants. The AP2/ERF (APETALA2/ethylene-responsive element binding factors) transcription factors are a large group of factors that are mainly found in plants. The transcription factors of this family serve as important regulators in many biological and physiological processes, such as plant morphogenesis, responsive mechanisms to various stresses, hormone signal transduction, and metabolite regulation. In this review, we summarized the advances in identification, classification, function, regulatory mechanisms, and the evolution of AP2/ERF transcription factors in plants. AP2/ERF family factors are mainly classified into four major subfamilies: DREB (Dehydration Responsive Element-Binding), ERF (Ethylene-Responsive-Element-Binding protein), AP2 (APETALA2) and RAV (Related to ABI3/VP), and Soloists (few unclassified factors). The review summarized the reports about multiple regulatory functions of AP2/ERF transcription factors in plants. In addition to growth regulation and stress responses, the regulatory functions of AP2/ERF in plant metabolite biosynthesis have been described. We also discussed the roles of AP2/ERF transcription factors in different phytohormone-mediated signaling pathways in plants. Genomic-wide analysis indicated that AP2/ERF transcription factors were highly conserved during plant evolution. Some public databases containing the information of AP2/ERF have been introduced. The studies of AP2/ERF factors will provide important bases for plant regulatory mechanisms and molecular breeding.
Collapse
Affiliation(s)
- Kai Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xi-Lin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guo-Ming Xing
- Collaborative Innovation Center for Improving Quality and Increased Profits of Protected Vegetables in Shanxi, Taigu, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Meng-Yao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
168
|
Jiang B, Shi Y, Peng Y, Jia Y, Yan Y, Dong X, Li H, Dong J, Li J, Gong Z, Thomashow MF, Yang S. Cold-Induced CBF-PIF3 Interaction Enhances Freezing Tolerance by Stabilizing the phyB Thermosensor in Arabidopsis. MOLECULAR PLANT 2020; 13:894-906. [PMID: 32311530 DOI: 10.1016/j.molp.2020.04.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 05/18/2023]
Abstract
Growth inhibition and cold-acclimation strategies help plants withstand cold stress, which adversely affects growth and survival. PHYTOCHROME B (phyB) regulates plant growth through perceiving both light and ambient temperature signals. However, the mechanism by which phyB mediates the plant response to cold stress remains elusive. Here, we show that the key transcription factors mediating cold acclimation, C-REPEAT BINDING FACTORs (CBFs), interact with PHYTOCHROME-INTERACTING FACTOR 3 (PIF3) under cold stress, thus attenuating the mutually assured destruction of PIF3-phyB. Cold-stabilized phyB acts downstream of CBFs to positively regulate freezing tolerance by modulating the expression of stress-responsive and growth-related genes. Consistent with this, phyB mutants exhibited a freezing-sensitive phenotype, whereas phyB-overexpression transgenic plants displayed enhanced freezing tolerance. Further analysis showed that the PIF1, PIF4, and PIF5 proteins, all of which negatively regulate plant freezing tolerance, were destabilized by cold stress in a phytochrome-dependent manner. Collectively, our study reveals that CBFs-PIF3-phyB serves as an important regulatory module for modulating plant response to cold stress.
Collapse
Affiliation(s)
- Bochen Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yue Peng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuxin Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaojing Dong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hui Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Dong
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Michael F Thomashow
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
169
|
Barros KA, Esteves-Ferreira AA, Inaba M, Meally H, Finnan J, Barth S, Davis SJ, Sulpice R. Diurnal patterns of growth and transient reserves of sink and source tissues are affected by cold nights in barley. PLANT, CELL & ENVIRONMENT 2020; 43:1404-1420. [PMID: 32012288 DOI: 10.1111/pce.13735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/18/2019] [Accepted: 01/25/2020] [Indexed: 06/10/2023]
Abstract
Barley is described to mostly use sucrose for night carbon requirements. To understand how the transient carbon is accumulated and utilized in response to cold, barley plants were grown in a combination of cold days and/or nights. Both daytime and night cold reduced growth. Sucrose was the main carbohydrate supplying growth at night, representing 50-60% of the carbon consumed. Under warm days and nights, starch was the second contributor with 26% and malate the third with 15%. Under cold nights, the contribution of starch was severely reduced, due to an inhibition of its synthesis, including under warm days, and malate was the second contributor to C requirements with 24-28% of the total amount of carbon consumed. We propose that malate plays a critical role as an alternative carbon source to sucrose and starch in barley. Hexoses, malate, and sucrose mobilization and starch accumulation were affected in barley elf3 clock mutants, suggesting a clock regulation of their metabolism, without affecting growth and photosynthesis however. Altogether, our data suggest that the mobilization of sucrose and malate and/or barley growth machinery are sensitive to cold.
Collapse
Affiliation(s)
- Kallyne A Barros
- Plant Systems Biology Lab, School of Natural Sciences, Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| | - Alberto A Esteves-Ferreira
- Plant Systems Biology Lab, School of Natural Sciences, Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| | - Masami Inaba
- Plant Systems Biology Lab, School of Natural Sciences, Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| | - Helena Meally
- Crop Science Department, Teagasc, Carlow R93 XE12, Ireland
| | - John Finnan
- Crop Science Department, Teagasc, Carlow R93 XE12, Ireland
| | - Susanne Barth
- Crop Science Department, Teagasc, Carlow R93 XE12, Ireland
| | - Seth J Davis
- Department of Biology Heslington, University of York, York YO10 5NG, UK
- State Key Laboratory of Crop Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Ronan Sulpice
- Plant Systems Biology Lab, School of Natural Sciences, Ryan Institute, National University of Ireland, Galway H91 TK33, Ireland
| |
Collapse
|
170
|
Lu X, Liu W, Xiang C, Li X, Wang Q, Wang T, Liu Z, Zhang J, Gao L, Zhang W. Genome-Wide Characterization of GRAS Family and Their Potential Roles in Cold Tolerance of Cucumber ( Cucumis sativus L.). Int J Mol Sci 2020; 21:E3857. [PMID: 32485801 PMCID: PMC7312588 DOI: 10.3390/ijms21113857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cucumber (Cucumis sativus L.) is one of the most important cucurbit vegetables but is often subjected to stress during cultivation. GRAS (gibberellic acid insensitive, repressor of GAI, and scarecrow) genes encode a family of transcriptional factors that regulate plant growth and development. In the model plant Arabidopsis thaliana, GRAS family genes function in formation of axillary meristem and root radial structure, phytohormone (gibberellin) signal transduction, light signal transduction and abiotic/biological stress. In this study, a gene family was comprehensively analyzed from the aspects of evolutionary tree, gene structure, chromosome location, evolutionary and expression pattern by means of bioinformatics; 37 GRAS gene family members have been screened from cucumber. We reconstructed an evolutionary tree based on multiple sequence alignment of the typical GRAS domain and conserved motif sequences with those of other species (A. thaliana and Solanum lycopersicum). Cucumber GRAS family was divided into 10 groups according to the classification of Arabidopsis and tomato genes. We conclude that tandem and segmental duplication have played important roles in the expansion and evolution of the cucumber GRAS (CsaGRAS) family. Expression patterns of CsaGRAS genes in different tissues and under cold treatment, combined with gene ontology annotation and interaction network analysis, revealed potentially different functions for CsaGRAS genes in response to cold tolerance, with members of the SHR, SCR and DELLA subfamilies likely playing important roles. In conclusion, this study provides valuable information and candidate genes for improving cucumber tolerance to cold stress.
Collapse
Affiliation(s)
- Xiaohong Lu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Chenggang Xiang
- College of Life Science and Technology, HongHe University, Mengzi 661100, China;
| | - Xiaojun Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Qing Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Tao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Zixi Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Jiali Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| |
Collapse
|
171
|
Dong X, Yan Y, Jiang B, Shi Y, Jia Y, Cheng J, Shi Y, Kang J, Li H, Zhang D, Qi L, Han R, Zhang S, Zhou Y, Wang X, Terzaghi W, Gu H, Kang D, Yang S, Li J. The cold response regulator CBF1 promotes Arabidopsis hypocotyl growth at ambient temperatures. EMBO J 2020; 39:e103630. [PMID: 32449547 DOI: 10.15252/embj.2019103630] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/05/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022] Open
Abstract
Light and temperature are two core environmental factors that coordinately regulate plant growth and survival throughout their entire life cycle. However, the mechanisms integrating light and temperature signaling pathways in plants remain poorly understood. Here, we report that CBF1, an AP2/ERF-family transcription factor essential for plant cold acclimation, promotes hypocotyl growth under ambient temperatures in Arabidopsis. We show that CBF1 increases the protein abundance of PIF4 and PIF5, two phytochrome-interacting bHLH-family transcription factors that play pivotal roles in modulating plant growth and development, by directly binding to their promoters to induce their gene expression, and by inhibiting their interaction with phyB in the light. Moreover, our data demonstrate that CBF1 promotes PIF4/PIF5 protein accumulation and hypocotyl growth at both 22°C and 17°C, but not at 4°C, with a more prominent role at 17°C than at 22°C. Together, our study reveals that CBF1 integrates light and temperature control of hypocotyl growth by promoting PIF4 and PIF5 protein abundance in the light, thus providing insights into the integration mechanisms of light and temperature signaling pathways in plants.
Collapse
Affiliation(s)
- Xiaojing Dong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China.,MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yan Yan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Bochen Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuxin Jia
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jinkui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yihao Shi
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Juqing Kang
- College of Life Science, Shaanxi Normal University, Xi'an, China
| | - Hong Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dun Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China.,MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Lijuan Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Run Han
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shaoman Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China.,MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yangyang Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoji Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | | | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China
| | - Dingming Kang
- MOE Key Laboratory of Crop Heterosis and Utilization, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
172
|
Ben Saad R, Ben Romdhane W, Mihoubi W, Ben Hsouna A, Brini F. A Lobularia maritima LmSAP protein modulates gibberellic acid homeostasis via its A20 domain under abiotic stress conditions. PLoS One 2020; 15:e0233420. [PMID: 32428039 PMCID: PMC7237032 DOI: 10.1371/journal.pone.0233420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/05/2020] [Indexed: 01/09/2023] Open
Abstract
Stress-associated proteins (SAPs) are favorable targets to improve stress tolerance in plants, owing to their roles in developmental processes and stress responses. However, the role of SAPs and the molecular mechanisms by which they regulate plant stress responses remain poorly understood. Previously, it was reported that LmSAP expression was upregulated by various abiotic stressors in Lobularia maritima, and that transgenic tobacco lines with constitutively expressed LmSAPΔA20 and LmSAPΔA20-ΔAN1 showed dwarf phenotypes due to the deficiency of cell elongation under salt and osmotic stresses. In this study, we examined the function of A20 domain in the GA pathway in response to abiotic stresses. Transient expression of acGFP-LmSAPΔA20 and acGFP-LmSAPΔA20-ΔAN1 in onion epidermal cells demonstrated that these fused proteins were localized in the nucleo–cytoplasm. However, the truncated form acGFP-LmSAPΔAN1 was localized in the nucleus. Moreover, comparison of native and truncated LmSAP showed dramatic structural changes caused by the deletion of the A20 domain, leading to loss of function and localization. Interestingly, overexpression LmSAP and truncated LmSAPΔAN1 led to up-regulation of GA biosynthetic genes and increased total gibberellins (GAs) content, corresponding with accelerated development in transgenic tobacco plants. Moreover, the dwarf phenotype of the transgenic lines that express LmSAPΔA20 and LmSAPΔA20-ΔAN1 under stress conditions was fully restored by the application of exogenous GA3. These findings improve our understanding of the role of LmSAP in regulating GA homeostasis, which is important for regulating plant development under abiotic stress conditions.
Collapse
Affiliation(s)
- Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- * E-mail:
| | - Walid Ben Romdhane
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Wafa Mihoubi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
- Department of Life Sciences, Faculty of Sciences of Gafsa, Gafsa, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
173
|
Hernández-García J, Briones-Moreno A, Blázquez MA. Origin and evolution of gibberellin signaling and metabolism in plants. Semin Cell Dev Biol 2020; 109:46-54. [PMID: 32414681 DOI: 10.1016/j.semcdb.2020.04.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
Gibberellins modulate multiple aspects of plant behavior. The molecular mechanism by which these hormones are perceived and how this information is translated into transcriptional changes has been elucidated in vascular plants: gibberellins are perceived by the nuclear receptor GID1, which then interacts with the DELLA nuclear proteins and promote their degradation, resulting in the modification of the activity of transcription factors with which DELLAs interact physically. However, several important questions are still pending: how does a single molecule perform such a vast array of functions along plant development? What property do gibberellins add to plant behavior? A closer look at gibberellin action from an evolutionary perspective can help answer these questions. DELLA proteins are conserved in all land plants, and predate the emergence of a full gibberellin metabolic pathway and the GID1 receptor in the ancestor of vascular plants. The origin of gibberellin signaling is linked to the exaptation by GID1 of the N-terminal domain in DELLA, which already acted as a transcriptional coactivator domain in the ancestral DELLA proteins. At least the ability to control plant growth seems to be encoded already in the ancestral DELLA protein too, suggesting that gibberellins' functional diversity is the direct consequence of DELLA protein activity. Finally, comparative network analysis suggests that gibberellin signaling increases the coordination of transcriptional responses, providing a theoretical framework for the role of gibberellins in plant adaptation at the evolutionary scale, which further needs experimental testing.
Collapse
Affiliation(s)
- Jorge Hernández-García
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Spain
| | - Asier Briones-Moreno
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Spain
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia), Spain.
| |
Collapse
|
174
|
Jung H, Jo SH, Jung WY, Park HJ, Lee A, Moon JS, Seong SY, Kim JK, Kim YS, Cho HS. Gibberellin Promotes Bolting and Flowering via the Floral Integrators RsFT and RsSOC1-1 under Marginal Vernalization in Radish. PLANTS 2020; 9:plants9050594. [PMID: 32392867 PMCID: PMC7284574 DOI: 10.3390/plants9050594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022]
Abstract
Gibberellic acid (GA) is one of the factors that promotes flowering in radish (Raphanus Sativus L.), although the mechanism mediating GA activation of flowering has not been determined. To identify this mechanism in radish, we compared the effects of GA treatment on late-flowering (NH-JS1) and early-flowering (NH-JS2) radish lines. GA treatment promoted flowering in both lines, but not without vernalization. NH-JS2 plants displayed greater bolting and flowering pathway responses to GA treatment than NH-JS1. This variation was not due to differences in GA sensitivity in the two lines. We performed RNA-seq analysis to investigate GA-mediated changes in gene expression profiles in the two radish lines. We identified 313 upregulated, differentially expressed genes (DEGs) and 207 downregulated DEGs in NH-JS2 relative to NH-JS1 in response to GA. Of these, 21 and 8 genes were identified as flowering time and GA-responsive genes, respectively. The results of RNA-seq and quantitative PCR (qPCR) analyses indicated that RsFT and RsSOC1-1 expression levels increased after GA treatment in NH-JS2 plants but not in NH-JS1. These results identified the molecular mechanism underlying differences in the flowering-time genes of NH-JS1 and NH-JS2 after GA treatment under insufficient vernalization conditions.
Collapse
Affiliation(s)
- Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Won Yong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
| | - Areum Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
| | - Jae Sun Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
| | - So Yoon Seong
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (S.Y.S.); (J.-K.K.)
| | - Ju-Kon Kim
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (S.Y.S.); (J.-K.K.)
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Youn-Sung Kim
- Department of Biotechnology, NongWoo Bio, Anseong 17558, Korea
- Correspondence: (Y.-S.K.); (H.S.C.); Tel.: +82-42-31-4323 (Y.-S.K.); +82-42-860-4469 (H.S.C.)
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea; (H.J.); (S.H.J.); (W.Y.J.); (H.J.P.); (A.L.); (J.S.M.)
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (Y.-S.K.); (H.S.C.); Tel.: +82-42-31-4323 (Y.-S.K.); +82-42-860-4469 (H.S.C.)
| |
Collapse
|
175
|
Lange T, Pimenta Lange MJ. The Multifunctional Dioxygenases of Gibberellin Synthesis. ACTA ACUST UNITED AC 2020; 61:1869-1879. [DOI: 10.1093/pcp/pcaa051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/14/2020] [Indexed: 12/22/2022]
Abstract
Abstract
Gibberellin (GA) hormones regulate the development of plants and their responses to environmental signals. The final part of GA biosynthesis is catalyzed by multifunctional 2-oxoglutarate-dependent dioxygenases, which are encoded by multigene families. According to their enzymatic properties and physiological functions, GA-oxidases are classified as anabolic or catabolic enzymes. Together they allow complex regulation of the GA biosynthetic pathway, which adapts the specific hormonal needs of a plant during development and interaction with its environment. In this review, we combine recent advances in enzymatic characterization of the multifunctional GA-oxidases, in particular, from cucumber and Arabidopsis that have been most comprehensively investigated.
Collapse
Affiliation(s)
- Theo Lange
- Institut f�r Pflanzenbiologie, Technische Universit�t Braunschweig, Mendelssohnstr. 4, D-38106 Braunschweig, Germany
| | - Maria Jo�o Pimenta Lange
- Institut f�r Pflanzenbiologie, Technische Universit�t Braunschweig, Mendelssohnstr. 4, D-38106 Braunschweig, Germany
| |
Collapse
|
176
|
Wingler A, Tijero V, Müller M, Yuan B, Munné-Bosch S. Interactions between sucrose and jasmonate signalling in the response to cold stress. BMC PLANT BIOLOGY 2020; 20:176. [PMID: 32321430 PMCID: PMC7178619 DOI: 10.1186/s12870-020-02376-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Jasmonates play an important role in plant stress and defence responses and are also involved in the regulation of anthocyanin synthesis in response to sucrose availability. Here we explore the signalling interactions between sucrose and jasmonates in response to cold stress in Arabidopsis. RESULTS Sucrose and cold treatments increased anthocyanin content additively. Comprehensive profiling of phytohormone contents demonstrated that jasmonates, salicylic acid and abscisic acid contents increased in response to sucrose treatment in plants grown on agar, but remained considerably lower than in plants grown in compost. The gibberellin GA3 accumulated in response to sucrose treatment but only at warm temperature. The role of jasmonate signalling was explored using the jasmonate response mutants jar1-1 and coi1-16. While the jar1-1 mutant lacked jasmonate-isoleucine and jasmonate-leucine, it accumulated 12-oxo-phytodienoic acid at low temperature on agar medium. Altered patterns of abscisic acid accumulation and higher sugar contents were found in the coi1-16 mutant when grown in compost. Both mutants were able to accumulate anthocyanin and to cold acclimate, but the jar-1-1 mutant showed a larger initial drop in whole-rosette photosystem II efficiency upon transfer to low temperature. CONCLUSIONS Hormone contents are determined by interactions between temperature and sucrose supply. Some of these effects may be caused indirectly through senescence initiation in response to sucrose availability. During cold stress, the adjustments of hormone contents may compensate for impaired jasmonate signalling, enabling cold acclimation and anthocyanin accumulation in Arabidopsis jasmonate response mutants, e.g. through antagonistic interactions between gibberellin and jasmonate signalling.
Collapse
Affiliation(s)
- Astrid Wingler
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland.
| | - Verónica Tijero
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Maren Müller
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Benqi Yuan
- School of Biological, Earth & Environmental Sciences and Environmental Research Institute, University College Cork, Distillery Fields, North Mall, Cork, Ireland
- Present address: Key Laboratory of Ecology and Environmental Science in Guangdong Higher Education, School of Life Science, South China Normal University, Guangzhou, 510631, China
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| |
Collapse
|
177
|
Liu Y, Wu C, Hu X, Gao H, Wang Y, Luo H, Cai S, Li G, Zheng Y, Lin C, Zhu Q. Transcriptome profiling reveals the crucial biological pathways involved in cold response in Moso bamboo (Phyllostachys edulis). TREE PHYSIOLOGY 2020; 40:538-556. [PMID: 31860727 DOI: 10.1093/treephys/tpz133] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 05/20/2023]
Abstract
Most bamboo species including Moso bamboo (Phyllostachys edulis) are tropical or subtropical plants that greatly contribute to human well-being. Low temperature is one of the main environmental factors restricting bamboo growth and geographic distribution. Our knowledge of the molecular changes during bamboo adaption to cold stress remains limited. Here, we provided a general overview of the cold-responsive transcriptional profiles in Moso bamboo by systematically analyzing its transcriptomic response under cold stress. Our results showed that low temperature induced strong morphological and biochemical alternations in Moso bamboo. To examine the global gene expression changes in response to cold, 12 libraries (non-treated, cold-treated 0.5, 1 and 24 h at -2 °C) were sequenced using an Illumina sequencing platform. Only a few differentially expressed genes (DEGs) were identified at early stage, while a large number of DEGs were identified at late stage in this study, suggesting that the majority of cold response genes in bamboo are late-responsive genes. A total of 222 transcription factors from 24 different families were differentially expressed during 24-h cold treatment, and the expressions of several well-known C-repeat/dehydration responsive element-binding factor negative regulators were significantly upregulated in response to cold, indicating the existence of special cold response networks. Our data also revealed that the expression of genes related to cell wall and the biosynthesis of fatty acids were altered in response to cold stress, indicating their potential roles in the acquisition of bamboo cold tolerance. In summary, our studies showed that both plant kingdom-conserved and species-specific cold response pathways exist in Moso bamboo, which lays the foundation for studying the regulatory mechanisms underlying bamboo cold stress response and provides useful gene resources for the construction of cold-tolerant bamboo through genetic engineering in the future.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chu Wu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Hu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongye Gao
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yue Wang
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Luo
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sen Cai
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guowei Li
- College of Life Science, Shandong Normal University, Jinan 250000, China
| | - Yushan Zheng
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Qiang Zhu
- Basic Forestry and Proteomics Center, College of Forestry, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
178
|
Ahmad S, Yuan C, Yang Q, Yang Y, Cheng T, Wang J, Pan H, Zhang Q. Morpho-physiological integrators, transcriptome and coexpression network analyses signify the novel molecular signatures associated with axillary bud in chrysanthemum. BMC PLANT BIOLOGY 2020; 20:145. [PMID: 32264822 PMCID: PMC7140574 DOI: 10.1186/s12870-020-02336-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Axillary bud is an important agronomic and economic trait in cut chrysanthemum. Bud outgrowth is an intricate process controlled by complex molecular regulatory networks, physio-chemical integrators and environmental stimuli. Temperature is one of the key regulators of bud's fate. However, little is known about the temperature-mediated control of axillary bud at molecular levels in chrysanthemum. A comprehensive study was designed to study the bud outgrowth at normal and elevated temperature in cut chrysanthemum. Leaf morphology, histology, physiological parameters were studied to correlate the leaf activity with bud morphology, sucrose and hormonal regulation and the molecular controllers. RESULTS Temperature caused differential bud outgrowth along bud positions. Photosynthetic leaf area, physiological indicators and sucrose utilization were changed considerable due to high temperature. Comparative transcriptome analysis identified a significant proportion of bud position-specific genes.Weighted Gene Co-expression Network Analysis (WGCNA) showed that axillary bud control can be delineated by modules of coexpressed genes; especially, MEtan3, MEgreen2 and MEantiquewhite presented group of genes specific to bud length. A comparative analysis between different bud positions in two temperatures revealed the morpho-physiological traits associated with specific modules. Moreover, the transcriptional regulatory networks were configured to identify key determinants of bud outgrowth. Cell division, organogenesis, accumulation of storage compounds and metabolic changes were prominent during the bud emergence. CONCLUSIONS RNA-seq data coupled with morpho-physiological integrators from three bud positions at two temperature regimes brings a robust source to understand bud outgrowth status influenced by high temperature in cut chrysanthemum. Our results provide helpful information for elucidating the regulatory mechanism of temperature on axillary bud growth in chrysanthemum.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Cunquan Yuan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qingqing Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yujie Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
179
|
Lantzouni O, Alkofer A, Falter-Braun P, Schwechheimer C. GROWTH-REGULATING FACTORS Interact with DELLAs and Regulate Growth in Cold Stress. THE PLANT CELL 2020; 32:1018-1034. [PMID: 32060178 PMCID: PMC7145461 DOI: 10.1105/tpc.19.00784] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/02/2020] [Accepted: 02/12/2020] [Indexed: 05/18/2023]
Abstract
DELLA proteins are repressors of the gibberellin (GA) hormone signaling pathway that act mainly by regulating transcription factor activities in plants. GAs induce DELLA repressor protein degradation and thereby control a number of critical developmental processes as well as responses to stresses such as cold. The strong effect of cold temperatures on many physiological processes has rendered it difficult to assess, based on phenotypic criteria, the role of GA and DELLAs in plant growth during cold stress. Here, we uncover substantial differences in the GA transcriptomes between plants grown at ambient temperature (21°C) and plants exposed to cold stress (4°C) in Arabidopsis (Arabidopsis thaliana). We further identify over 250, to the largest extent previously unknown, DELLA-transcription factor interactions using the yeast two-hybrid system. By integrating both data sets, we reveal that most members of the nine-member GRF (GROWTH REGULATORY FACTOR) transcription factor family are DELLA interactors and, at the same time, that several GRF genes are targets of DELLA-modulated transcription after exposure to cold stress. We find that plants with altered GRF dosage are differentially sensitive to the manipulation of GA and hence DELLA levels, also after cold stress, and identify a subset of cold stress-responsive genes that qualify as targets of this DELLA-GRF regulatory module.
Collapse
Affiliation(s)
- Ourania Lantzouni
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Angela Alkofer
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Pascal Falter-Braun
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Claus Schwechheimer
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
180
|
Yao L, Hao X, Cao H, Ding C, Yang Y, Wang L, Wang X. ABA-dependent bZIP transcription factor, CsbZIP18, from Camellia sinensis negatively regulates freezing tolerance in Arabidopsis. PLANT CELL REPORTS 2020; 39:553-565. [PMID: 32060604 DOI: 10.1007/s00299-020-02512-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/21/2020] [Indexed: 05/21/2023]
Abstract
Overexpression of the tea plant gene CsbZIP18 in Arabidopsis impaired freezing tolerance, and CsbZIP18 is a negative regulator of ABA signaling and cold stress. Basic region/leucine zipper (bZIP) transcription factors play important roles in the abscisic acid (ABA) signaling pathway and abiotic stress response in plants. However, few bZIP transcription factors have been functionally characterized in tea plants (Camellia sinensis). In this study, a bZIP transcription factor, CsbZIP18, was found to be strongly induced by natural cold acclimation, and the expression level of CsbZIP18 was lower in cold-resistant cultivars than in cold-susceptible cultivars. Compared with wild-type (WT) plants, Arabidopsis plants constitutively overexpressing CsbZIP18 exhibited decreased sensitivity to ABA, increased levels of relative electrolyte leakage (REL) and reduced values of maximal quantum efficiency of photosystem II (Fv/Fm) under freezing conditions. The expression of ABA homeostasis- and signal transduction-related genes and abiotic stress-inducible genes, such as RD22, RD26 and RAB18, was suppressed in overexpression lines under freezing conditions. However, there was no significant change in the expression of genes involved in the C-repeat binding factor (CBF)-mediated ABA-independent pathway between WT and CsbZIP18 overexpression plants. These results indicate that CsbZIP18 is a negative regulator of freezing tolerance via an ABA-dependent pathway.
Collapse
Affiliation(s)
- Lina Yao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Hongli Cao
- Department of Tea Science, College of Horticulture, Fujian A&F University, Fuzhou, 350002, China
| | - Changqing Ding
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| | - Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China.
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China.
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture and Rural Affairs, Hangzhou, 310008, China
| |
Collapse
|
181
|
Wang F, Chen X, Dong S, Jiang X, Wang L, Yu J, Zhou Y. Crosstalk of PIF4 and DELLA modulates CBF transcript and hormone homeostasis in cold response in tomato. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1041-1055. [PMID: 31584235 PMCID: PMC7061876 DOI: 10.1111/pbi.13272] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 09/29/2019] [Indexed: 05/02/2023]
Abstract
The ability to interpret daily and seasonal fluctuations, latitudinal and vegetation canopy variations in light and temperature signals is essential for plant survival. However, the precise molecular mechanisms transducing the signals from light and temperature perception to maintain plant growth and adaptation remain elusive. We show that far-red light induces PHYTOCHROME-INTERACTING TRANSCRIPTION 4 (SlPIF4) accumulation under low-temperature conditions via phytochrome A in Solanum lycopersicum (tomato). Reverse genetic approaches revealed that knocking out SlPIF4 increases cold susceptibility, while overexpressing SlPIF4 enhances cold tolerance in tomato plants. SlPIF4 not only directly binds to the promoters of the C-REPEAT BINDING FACTOR (SlCBF) genes and activates their expression but also regulates plant hormone biosynthesis and signals, including abscisic acid, jasmonate and gibberellin (GA), in response to low temperature. Moreover, SlPIF4 directly activates the SlDELLA gene (GA-INSENSITIVE 4, SlGAI4) under cold stress, and SlGAI4 positively regulates cold tolerance. Additionally, SlGAI4 represses accumulation of the SlPIF4 protein, thus forming multiple coherent feed-forward loops. Our results reveal that plants integrate light and temperature signals to better adapt to cold stress through shared hormone pathways and transcriptional regulators, which may provide a comprehensive understanding of plant growth and survival in a changing environment.
Collapse
Affiliation(s)
- Feng Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
- Present address:
College of HorticultureShenyang Agricultural UniversityShenyangChina
| | - Xiaoxiao Chen
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Sangjie Dong
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Xiaochun Jiang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Lingyu Wang
- Department of HorticultureZhejiang UniversityHangzhouChina
| | - Jingquan Yu
- Department of HorticultureZhejiang UniversityHangzhouChina
- Key Laboratory of Plant GrowthDevelopment and Quality ImprovementAgricultural Ministry of ChinaHangzhouChina
| | - Yanhong Zhou
- Department of HorticultureZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhouChina
| |
Collapse
|
182
|
Gong Z, Xiong L, Shi H, Yang S, Herrera-Estrella LR, Xu G, Chao DY, Li J, Wang PY, Qin F, Li J, Ding Y, Shi Y, Wang Y, Yang Y, Guo Y, Zhu JK. Plant abiotic stress response and nutrient use efficiency. SCIENCE CHINA-LIFE SCIENCES 2020; 63:635-674. [PMID: 32246404 DOI: 10.1007/s11427-020-1683-x] [Citation(s) in RCA: 624] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022]
Abstract
Abiotic stresses and soil nutrient limitations are major environmental conditions that reduce plant growth, productivity and quality. Plants have evolved mechanisms to perceive these environmental challenges, transmit the stress signals within cells as well as between cells and tissues, and make appropriate adjustments in their growth and development in order to survive and reproduce. In recent years, significant progress has been made on many fronts of the stress signaling research, particularly in understanding the downstream signaling events that culminate at the activation of stress- and nutrient limitation-responsive genes, cellular ion homeostasis, and growth adjustment. However, the revelation of the early events of stress signaling, particularly the identification of primary stress sensors, still lags behind. In this review, we summarize recent work on the genetic and molecular mechanisms of plant abiotic stress and nutrient limitation sensing and signaling and discuss new directions for future studies.
Collapse
Affiliation(s)
- Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Kowlong Tong, Hong Kong, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Luis R Herrera-Estrella
- Plant and Soil Science Department (IGCAST), Texas Tech University, Lubbock, TX, 79409, USA.,Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados, Irapuato, 36610, México.,College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dai-Yin Chao
- National Key laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jingrui Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Peng-Yun Wang
- School of Life Science, Henan University, Kaifeng, 457000, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jijang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
183
|
Fan T, Zhang Q, Hu Y, Wang Z, Huang Y. Genome-wide identification of lncRNAs during hickory (Carya cathayensis) flowering. Funct Integr Genomics 2020; 20:591-607. [PMID: 32215772 DOI: 10.1007/s10142-020-00737-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/04/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Non-coding RNAs with lengths greater than 200 bp are known as long non-coding RNAs (lncRNAs), and these RNAs play important role in gene regulation and plant development. However, to date, little is known regarding the role played by lncRNAs during flowering in hickory (Carya cathayensis). Here, we performed whole transcriptome RNA-sequencing of samples from hickory female and male floral buds, in which three samples (H0311PF, H0318PF, and H0402PF) represent pre-flowering, flowering, and post-flowering, respectively, while eight male samples collected from May 8th to June 13th as this time course are the key stage for male floral bud differentiation. We identified 2163 lncRNAs in hickory during flowering, containing 213 intronic, 1488 intergenic, and 462 antisense lncRNAs. We noticed that 510 and 648 lncRNAs were differentially expressed corresponding to female and male floral buds, respectively. And some of the lncRNAs were in a tightly tissue-specific or stage-specific manner. To further understand the roles of the lncRNAs, we predicted the function of the lncRNAs in cis- and trans-acting modes. The results showed that 924 lncRNAs were cis-correlated with 1536 protein-coding genes, while 1207 lncRNAs co-expressed (trans-acting) with 7432 protein-coding genes (R > 0.95 or R < - 0.95). These lncRNAs were all enriched in flower development-associated biological processes, i.e., circadian rhythm, vernalization response, response to gibberellin, inflorescence development, floral organ development, etc. To further understand the relationships between lncRNAs and floral-core genes, we build a co-expressing lncRNA-mRNA flowering network. We classified these floral genes into different pathway (photoperiod, vernalization, gibberellin, autonomous, and sucrose pathway) according to their particular functions. We found a set of lncRNAs that preferentially expressed in these pathways. The network showed that some lncRNAs (i.e., XLOC_038669, XLOC_017938) functioned in a particular flowering time pathway, while others (i.e., XLOC_011251, XLOC_04110) were involved in multiple pathway. Furthermore, some lncRNAs (i.e., XLOC_038669, XLOC_009597, and XLOC_049539) played roles in single or multiple pathways via interaction with each other. This study provides a genome-wide survey of hickory flower-related lncRNAs and will contribute to further understanding of the molecular mechanism underpinning flowering in hickory.
Collapse
Affiliation(s)
- Tongqiang Fan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, People's Republic of China
| | - Qixiang Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, People's Republic of China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, People's Republic of China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, People's Republic of China.
| | - Youjun Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, People's Republic of China.
| |
Collapse
|
184
|
Ge Q, Zhang Y, Xu Y, Bai M, Luo W, Wang B, Niu Y, Zhao Y, Li S, Weng Y, Wang Z, Qian Q, Chong K. Cyclophilin OsCYP20-2 with a novel variant integrates defense and cell elongation for chilling response in rice. THE NEW PHYTOLOGIST 2020; 225:2453-2467. [PMID: 31736073 PMCID: PMC7064896 DOI: 10.1111/nph.16324] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/31/2019] [Indexed: 05/20/2023]
Abstract
Coordinating stress defense and plant growth is a survival strategy for adaptation to different environments that contains a series of processes, such as, cell growth, division and differentiation. However, little is known about the coordination mechanism for protein conformation change. A cyclophilin OsCYP20-2 with a variant interacts with SLENDER RICE1 (SLR1) and OsFSD2 in the nucleus and chloroplasts, respectively, to integrate chilling tolerance and cell elongation in rice (Oryza sativa) (FSD2, Fe-superoxide dismutase 2). Mass spectrum assay showed that OsNuCYP20-2 localized at the nucleus (nuclear located OsCYP20-2) was a new variant of OsCYP20-2 that truncated 71 amino-acid residues in N-terminal. The loss-of function OsCYP20-2 mutant showed sensitivity to chilling stress with accumulation of extra reactive oxygen species (ROS). In chloroplasts, the full-length OsCYP20-2 promotes OsFSD2 forming homodimers which enhance its activity, eliminating the accumulation of ROS under chilling stress. However, the mutant had shorter epidermal cells in comparison with wild-type Hwayoung (HY). In the nucleus, OsCYP20-2 caused conformation change of SLR1 to promote its degradation for cell elongation. Our data reveal a cyclophilin with a variant with dual-localization in chloroplasts and the nucleus, which mediate chilling tolerance and cell elongation.
Collapse
Affiliation(s)
- Qiang Ge
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yuanyuan Zhang
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- Innovation Academy for Seed DesignChinese Academy of SciencesBeijing100101China
| | - Mingyi Bai
- The Key Laboratory of Plant Cell Engineering and Germplasm InnovationMinistry of EducationSchool of Life SciencesShandong UniversityJinan250100China
| | - Wei Luo
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Bo Wang
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yuda Niu
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
| | - Yuan Zhao
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- University of Chinese Academy of SciencesBeijing100049China
| | - Shanshan Li
- Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Yuxiang Weng
- Laboratory of Soft Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Zhiyong Wang
- Department of Plant BiologyCarnegie Institution for ScienceStanfordCA94305USA
| | - Qian Qian
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteChinese Academy of Agricultural SciencesHangzhou310006China
| | - Kang Chong
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijing100093China
- University of Chinese Academy of SciencesBeijing100049China
- Innovation Academy for Seed DesignChinese Academy of SciencesBeijing100101China
| |
Collapse
|
185
|
Zhang C, Wang Q, Zhang B, Zhang F, Liu P, Zhou S, Liu X. Hormonal and enzymatic responses of maize seedlings to chilling stress as affected by triazoles seed treatments. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:220-227. [PMID: 31978750 DOI: 10.1016/j.plaphy.2020.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/26/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Triazole fungicides have been used for seed treatment to control soilborne diseases of maize, but seedlings coming from triazole-coated seed show serious phytotoxicity under chilling stress. To understand this phytotoxic impact, maize seed was treated with four triazoles fungicides and the corresponding seedlings were analysed on growth and gene expression. We found that maize seed coated with difenoconazole and tebuconazole exhibited either no or increased effects on germination and growth of maize at 25 °C, regardless of chemical concentrations. When maize seedlings were subjected to chilling treatment, however, their growth was significantly inhibited, and the inhibition was positively correlated with the rate of triazole application. Mesocotyl length decreased by 32.19-44.73% by difenoconazole, and 23.53-32.08% by tebuconazolet at rates of 1:50 and 1:25, respectively. However, myclobutanil did not have any effects at any temperatures. The contents of the gibberellin GA12 and abscisic acid in maize seedlings developed from difenoconazole- or tebuconazole-coated seed were significantly increased under chilling stress. The expression of two key catabolic enzyme genes, GA2ox3 and GA2ox4, was significantly up-regulated immediately following chilling stress and 2 days after recovery at 25 °C in the seedlings treated with difenoconazole or tebuconazole. This imbalance in phytohormones may explain why difenoconazole- or tebuconazole-coated seed more likely results in the phytotoxicity of maize seedlings under a low temperature condition during seed emergence and seedling growth. Since myclobutanil did not have this negative effect, it can be applied for seed coating in areas where temperatures are low during early seedling growth.
Collapse
Affiliation(s)
- Can Zhang
- China Agricultural University, Beijing, 100193, China
| | - Qiushi Wang
- China Agricultural University, Beijing, 100193, China
| | - Borui Zhang
- China Agricultural University, Beijing, 100193, China
| | - Fan Zhang
- China Agricultural University, Beijing, 100193, China
| | - Pengfei Liu
- China Agricultural University, Beijing, 100193, China
| | - Shunli Zhou
- China Agricultural University, Beijing, 100193, China
| | - Xili Liu
- China Agricultural University, Beijing, 100193, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
186
|
Huang X, Song X, Chen R, Zhang B, Li C, Liang Y, Qiu L, Fan Y, Zhou Z, Zhou H, Lakshmanan P, Li Y, Wu J. Genome-Wide Analysis of the DREB Subfamily in Saccharum spontaneum Reveals Their Functional Divergence During Cold and Drought Stresses. Front Genet 2020; 10:1326. [PMID: 32117408 PMCID: PMC7013043 DOI: 10.3389/fgene.2019.01326] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 12/05/2019] [Indexed: 01/24/2023] Open
Abstract
Drought and cold stresses are the main environmental factors that affect the yield of sugarcane, and DREB genes play very important roles in tolerance to drought, cold, and other environmental stresses. In this study, bioinformatics analysis was performed to characterize Saccharum spontaneum SsDREB genes. RNA sequencing (RNA-seq) was used to detect the expression profiles of SsDREBs induced by cold and drought stresses. According to our results, there are 110 SsDREB subfamily proteins in S. spontaneum, which can be classified into six groups; 106 of these genes are distributed among 29 chromosomes. Inter- and intraspecies synteny analyses suggested that all DREB groups have undergone gene duplication, highlighting the polyploid events that played an important role in the expansion of the DREB subfamily. Furthermore, RNA-seq results showed that 45 SsDREBs were up- or downregulated under cold stress; 35 of them were found to be involved in responding to drought stress. According to protein–protein interaction analysis, SsDREB100, SsDREB102, and SsDREB105 play key roles during the response to cold stress. These results reveal that functional divergence exists between collinear homologous genes or among common origin genes in the DREB subfamily of S. spontaneum. This study presents a comprehensive analysis and systematic understanding of the precise mechanism of SsDREBs in response to abiotic stress and will lead to improvements in sugarcane.
Collapse
Affiliation(s)
- Xing Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Xiupeng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Rongfa Chen
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Baoqing Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Changning Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Yongsheng Liang
- Nanning Institute of Agricultural Sciences, Guangxi Academy of Agricultural Science, Nanning, China
| | - Lihang Qiu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Yegeng Fan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Zhongfeng Zhou
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Huiwen Zhou
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Prakash Lakshmanan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Yangrui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| | - Jianming Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Ministry of Agriculture Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Nanning, China
| |
Collapse
|
187
|
Yang L, Jiang Z, Liu S, Lin R. Interplay between REVEILLE1 and RGA-LIKE2 regulates seed dormancy and germination in Arabidopsis. THE NEW PHYTOLOGIST 2020; 225:1593-1605. [PMID: 31580487 DOI: 10.1111/nph.16236] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/26/2019] [Indexed: 05/22/2023]
Abstract
Environmental light signal and GAs synergistically regulate seed dormancy and germination. The phytochrome B (phyB) photoreceptor regulates expression of the REVEILLE1 (RVE1) transcription factor, which directly inhibits GIBBERELLIN 3-OXIDASE2 transcription, suppressing GA biosynthesis. However, whether phyB-RVE1 coordinates with GA signaling in controlling seed dormancy and germination remains unknown. Here, we demonstrate that RVE1 regulation of seed dormancy and germination requires a DELLA repressor, REPRESSOR OF GA-LIKE2 (RGL2), in Arabidopsis thaliana. RVE1 interacts with both RGL2 and its E3 ubiquitin ligase SLEEPY1 (SLY1) and promotes RGL2 stability by restraining the RGL2-SLY1 interaction. Furthermore, RVE1 and RGL2 synergistically regulate global transcriptome changes; RGL2 enhances the DNA-binding capacity and transcriptional activity of RVE1 in regulating downstream gene expression. Moreover, RGL2 expression is repressed by phyB. Our study reveals a novel regulatory mechanism in which the RVE1-RGL2 module coordinately controls seed dormancy and germination by integrating light perception, GA metabolism and GA signaling pathways.
Collapse
Affiliation(s)
- Liwen Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Zhimin Jiang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shuangrong Liu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
188
|
Shan Z, Luo X, Wu M, Wei L, Fan Z, Zhu Y. Genome-wide identification and expression of GRAS gene family members in cassava. BMC PLANT BIOLOGY 2020; 20:46. [PMID: 31996133 PMCID: PMC6990482 DOI: 10.1186/s12870-020-2242-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/08/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Cassava is highly tolerant to stressful conditions, especially drought stress conditions; however, the mechanisms underlying this tolerance are poorly understood. The GRAS gene family is a large family of transcription factors that are involved in regulating the growth, development, and stress responses of plants. Currently, GRAS transcription factors have not been systematically studied in cassava, which is the sixth most important crop in the world. RESULTS Seventy-seven MeGRAS genes were identified from the cassava genome database. Phylogenetic analysis revealed that the MeGRAS proteins could be divided into 14 subfamilies. The gene structure and motif compositions of the proteins were considerably conserved within the same subfamily. Duplication events, particularly segmental duplication, were identified as the main driving force for GRAS gene expansion in cassava. Global expression analysis revealed that MeGRAS genes exhibited similar or distinct expression profiles within different tissues among different varieties. Moreover, qRT-PCR analysis revealed the expression patterns of MeGRAS genes in response to abiotic stress (drought, salt, cold, and H2O2), and the results suggest that these genes may have multiple functions. CONCLUSION This study is the first to provide comprehensive information on GRAS gene family members in cassava. The data will increase our understanding of both the molecular basis and the effects of GRAS genes. In addition, the results will contribute further to identifying the responses to various environmental conditions and provide insights into the potential functions of GRAS genes.
Collapse
Affiliation(s)
- Zhongying Shan
- Agricultural College, Guangxi University, Nanning, 530005 China
- College of Ecology and Garden Architecture, Dezhou University, Dezhou, 253023 China
| | - Xinglu Luo
- Agricultural College, Guangxi University, Nanning, 530005 China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning, 530004 China
| | - Meiyan Wu
- Agricultural College, Guangxi University, Nanning, 530005 China
| | - Limei Wei
- Agricultural College, Guangxi University, Nanning, 530005 China
| | - Zhupeng Fan
- Agricultural College, Guangxi University, Nanning, 530005 China
| | - Yanmei Zhu
- Agricultural College, Guangxi University, Nanning, 530005 China
| |
Collapse
|
189
|
Acclimation, priming and memory in the response of Arabidopsis thaliana seedlings to cold stress. Sci Rep 2020; 10:689. [PMID: 31959824 PMCID: PMC6971231 DOI: 10.1038/s41598-019-56797-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/28/2019] [Indexed: 11/16/2022] Open
Abstract
Because stress experiences are often recurrent plants have developed strategies to remember a first so-called priming stress to eventually respond more effectively to a second triggering stress. Here, we have studied the impact of discontinuous or sustained cold stress (4 °C) on in vitro grown Arabidopsis thaliana seedlings of different age and their ability to get primed and respond differently to a later triggering stress. Cold treatment of 7-d-old seedlings induced the expression of cold response genes but did not cause a significantly enhanced freezing resistance. The competence to increase the freezing resistance in response to cold was associated with the formation of true leaves. Discontinuous exposure to cold only during the night led to a stepwise modest increase in freezing tolerance provided that the intermittent phase at ambient temperature was less than 32 h. Seedlings exposed to sustained cold treatment developed a higher freezing tolerance which was further increased in response to a triggering stress during three days after the priming treatment had ended indicating cold memory. Interestingly, in all scenarios the primed state was lost as soon as the freezing tolerance had reached the level of naïve plants indicating that an effective memory was associated with an altered physiological state. Known mutants of the cold stress response (cbfs, erf105) and heat stress memory (fgt1) did not show an altered behaviour indicating that their roles do not extend to memory of cold stress in Arabidopsis seedlings.
Collapse
|
190
|
Samarina LS, Malyukova LS, Gvasaliya MV, Efremov AM, Malyarovskaya VI, Loshkareva SV, Tuov MT. Genes underlying cold acclimation in the tea plant (<i>Camellia sinensis</i> (L.) Kuntze). Vavilovskii Zhurnal Genet Selektsii 2020. [DOI: 10.18699/vj19.572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The article reviews the latest studies showing the diversity of genetic mechanisms and gene families underlying the increased cold and frost tolerance of tea and other plant species. It has been shown that cell responses to chilling (0…+15°C) and freezing (< 0°C) are not the same and gene expression under cold stress is genotype-specific. In recent decades, progress has been made in understanding the genetic mechanisms underlying the cold response of plants – ICE1 (inducer of CBF expression 1), CBF (C-repeat-binding factor), COR (cold-regulated genes) pathways and signaling have been discovered. The ICE, CBF and DHN gene groups play a key role in the cold acclimation of the tea plant. The accumulation of CBF transcripts occurs after 15 min of chilling induction, and longer cold stress leads to accumulation of CBF transcripts. It is shown that the transcripts of the CsDHN1, CsDHN2 and CsDHN3 genes accumulate at a higher level in resistant genotypes of tea in comparison with susceptible cultivars during freezing. CBF-independent pathways include genes involved in metabolism and transcription factors such as HSFC1, ZAT12, CZF1, PLD (phospholipase D), WRKY, HD-Zip, CsLEA, LOX, NAC, HSP, which are widely distributed in plants and are involved in the basic mechanisms of tea resistance to cold and frost. The most recent studies show an important role of miRNA in the mechanisms of response to chilling and freezing in tea. The data obtained on different plant species may correlate with the mechanisms of frost tolerance of tea and are the basis for future studies of the signaling pathways of response to cold in the tea plant. The results of the research emphasize the need to further explore the ways in which various genes regulate the tolerance of tea to cold stress to find the molecular markers of frost tolerance.
Collapse
Affiliation(s)
- L. S. Samarina
- Russian Research Institute of Floriculture and Subtropical Crops
| | - L. S. Malyukova
- Russian Research Institute of Floriculture and Subtropical Crops
| | - M. V. Gvasaliya
- Russian Research Institute of Floriculture and Subtropical Crops
| | - A. M. Efremov
- Russian Research Institute of Floriculture and Subtropical Crops
| | | | - S. V. Loshkareva
- Russian Research Institute of Floriculture and Subtropical Crops
| | - M. T. Tuov
- Russian Research Institute of Floriculture and Subtropical Crops
| |
Collapse
|
191
|
Zhang Y, Wang Y, Xing J, Wan J, Wang X, Zhang J, Wang X, Li Z, Zhang M. Copalyl Diphosphate Synthase Mutation Improved Salt Tolerance in Maize ( Zea mays. L) via Enhancing Vacuolar Na + Sequestration and Maintaining ROS Homeostasis. FRONTIERS IN PLANT SCIENCE 2020; 11:457. [PMID: 32477376 PMCID: PMC7237720 DOI: 10.3389/fpls.2020.00457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/27/2020] [Indexed: 05/13/2023]
Abstract
Salinity stress impairs plant growth and causes crops to yield losses worldwide. Reduction of in vivo gibberellin acid (GA) level is known to repress plant size but is beneficial to plant salt tolerance. However, the mechanisms of in vivo GA deficiency-enhanced salt tolerance in maize are still ambiguous. In this study, we generated two independent maize knockout mutant lines of ent-copalyl diphosphate synthase (one of the key enzymes for early steps of GA biosynthesis), zmcps-1 and zmcps-7, to explore the role of GA in maize salt tolerance. The typical dwarf phenotype with lower GA content and delayed leaf senescence under salinity was observed in the mutant plants. The leaf water potential and cell turgor potential were significantly higher in zmcps-1 and zmcps-7 than in the wild type (WT) under salt stress. The mutant plants exhibited a lower superoxide anion production rate in leaves and also a downregulated relative expression level of NAPDH oxidase ZmRbohA-C than the WT maize under salt stress. Also, the mutant plants had higher enzymatic activities of superoxide dismutase (SOD) and catalase (CAT) and higher content of soluble sugars and proline under salt stress. The Na+/K+ ratio was not significantly different between the mutant maize plants and WT plants under salt stress conditions, but the Na+ and K+ content was increased in zmcps-1 and zmcps-7 leaves and shoots. Na+ fluorescent dye staining showed that the mutant leaves have significantly higher vacuolar Na+ intensity than the WT maize. The expression level of vacuolar Na+/H+ exchanger gene ZmNHX1 and vacuolar proton pump genes ZmVP1-1 and ZmVP2 were upregulated in the zmcps-1 and zmcps-7 plants under salinity, further proving that in vivo GA deficiency enhanced vacuolar Na+ sequestration in zmcps-1 and zmcps-7 leaves cells to avoid Na+ cytotoxicity. Together, our results suggested that maintaining ROS homeostasis and enhancing vacuolar Na+ sequestration could be involved in GA deficiency-improved maize salt tolerance.
Collapse
Affiliation(s)
- Yushi Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yubin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiapeng Xing
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiachi Wan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xilei Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Juan Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaodong Wang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mingcai Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
192
|
Ambroise V, Legay S, Guerriero G, Hausman JF, Cuypers A, Sergeant K. The Roots of Plant Frost Hardiness and Tolerance. PLANT & CELL PHYSIOLOGY 2020; 61:3-20. [PMID: 31626277 PMCID: PMC6977023 DOI: 10.1093/pcp/pcz196] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/06/2019] [Indexed: 05/02/2023]
Abstract
Frost stress severely affects agriculture and agroforestry worldwide. Although many studies about frost hardening and resistance have been published, most of them focused on the aboveground organs and only a minority specifically targets the roots. However, roots and aboveground tissues have different physiologies and stress response mechanisms. Climate models predict an increase in the magnitude and frequency of late-frost events, which, together with an observed loss of soil insulation, will greatly decrease plant primary production due to damage at the root level. Molecular and metabolic responses inducing root cold hardiness are complex. They involve a variety of processes related to modifications in cell wall composition, maintenance of the cellular homeostasis and the synthesis of primary and secondary metabolites. After a summary of the current climatic models, this review details the specificity of freezing stress at the root level and explores the strategies roots developed to cope with freezing stress. We then describe the level to which roots can be frost hardy, depending on their age, size category and species. After that, we compare the environmental signals inducing cold acclimation and frost hardening in the roots and aboveground organs. Subsequently, we discuss how roots sense cold at a cellular level and briefly describe the following signal transduction pathway, which leads to molecular and metabolic responses associated with frost hardening. Finally, the current options available to increase root frost tolerance are explored and promising lines of future research are discussed.
Collapse
Affiliation(s)
- Valentin Ambroise
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Sylvain Legay
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| |
Collapse
|
193
|
Tiwari P, Bajpai M, Singh LK, Mishra S, Yadav AN. Phytohormones Producing Fungal Communities: Metabolic Engineering for Abiotic Stress Tolerance in Crops. Fungal Biol 2020. [DOI: 10.1007/978-3-030-45971-0_8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
194
|
Luo C, Liu H, Ren J, Chen D, Cheng X, Sun W, Hong B, Huang C. Cold-inducible expression of an Arabidopsis thaliana AP2 transcription factor gene, AtCRAP2, promotes flowering under unsuitable low-temperatures in chrysanthemum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:220-230. [PMID: 31760343 DOI: 10.1016/j.plaphy.2019.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/22/2019] [Accepted: 11/14/2019] [Indexed: 05/23/2023]
Abstract
Flowering time is regulated by biotic and abiotic stresses and affected by the ambient temperature. For chrysanthemum, a low ambient growth temperature can cause a flowering delay, which limits the annual commercial production. Therefore, it is important to improve the low-temperature flowering capability of chrysanthemum through genetic modifications. Here, we isolated a natural variation of a CRT/DRE-binding factor (CBF/DREB) 3 gene, CRAP2, from the Arabidopsis thaliana accession Condara (190AV) that encodes a stop codon at position 151 of the CBF3 protein. Unlike AtCBF3, the overexpression AtCRAP2 in Arabidopsis did not cause detectable growth retardation nor delayed flowering and it conferred cold tolerance. The cold-inducible expression of AtCRAP2 in chrysanthemum promoted flowering under short-day conditions with a low 15 °C nighttime temperature. RNA-sequencing of rd29A:AtCRAP2 and qRT-PCR assays of flowering time-related genes and AtCRAP2 expressed at an ambient temperature revealed that AtCRAP2 positively affected SOC1 and FTL3, thereby promoting flowering under low temperature stress and short-day conditions. These results indicate that DREB genes can be used in the genetic engineering of crop plants without accompanying negative effects by modifying the encoded proteins' C termini.
Collapse
Affiliation(s)
- Chang Luo
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Hua Liu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Junan Ren
- Beijing Industrial Technology Research Institute, Beijing, 101111, China
| | - Dongliang Chen
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Xi Cheng
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China
| | - Wei Sun
- Yuquan School of the Capital Normal University, Beijing, 100195, China
| | - Bo Hong
- Department of Ornamental Horticulture, China Agricultural University, Beijing, 100193, China
| | - Conglin Huang
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing Engineering Research Center of Functional Floriculture, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing, 100097, China.
| |
Collapse
|
195
|
NAC-Like Gene GIBBERELLIN SUPPRESSING FACTOR Regulates the Gibberellin Metabolic Pathway in Response to Cold and Drought Stresses in Arabidopsis. Sci Rep 2019; 9:19226. [PMID: 31848381 PMCID: PMC6917810 DOI: 10.1038/s41598-019-55429-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/27/2019] [Indexed: 11/24/2022] Open
Abstract
To investigate the functions of NAC-like genes, we reported the characterization and functional analysis of one Arabidopsis NAC-like gene which showed a novel function in the regulation of gibberellin biosynthesis and named as GIBBERELLIN SUPPRESSING FACTOR (GSF). GSF acts as a transcriptional activator and has transactivation capacity based on yeast transcription activity assays. YFP + GSF-TM (lacking a transmembrane domain) fusion proteins accumulated in the nuclei, while the YFP + GSF fusion proteins only accumulated in the ER membrane and were absent from the nuclei. These results revealed that GSF requires processing and release from the ER and transportation into the nucleus to perform its function. The ectopic expression of GSF-TM caused a dwarfism phenotype, which was correlated with the upregulation of the gibberellin (GA) deactivation genes GA2-oxidases 2/6 (GA2ox2/6) and the downregulation of the GA biosynthetic genes GA20-oxidases 1–4 (GA20ox1-4). The external application of GA rescued the dwarfism in the 35 S::GSF-TM plants, indicating that GSF affects GA biosynthesis, rather than the GA signaling pathway. Further analysis indicated that the upregulation of GA2ox2/6 is a key factor for the GSF function to regulate the GA level, since 35 S::GA20ox1 could not rescue the dwarfism in the 35 S::GSF-TM plants. Cold treatment induced the processing of the YFP + GSF fusion proteins from the ER membrane and their entry into the nuclei, which is correlated with the cold-induced upregulation of GA2oxs. In addition, the expression of GA2oxs was induced by drought, and the 35 S::GSF-TM plants showed drought tolerance compared to the wild-type plants. Our data suggest a role for GSF in response to abiotic stresses, such as cold and drought, by suppressing the biosynthesis of GA in Arabidopsis.
Collapse
|
196
|
Panter PE, Kent O, Dale M, Smith SJ, Skipsey M, Thorlby G, Cummins I, Ramsay N, Begum RA, Sanhueza D, Fry SC, Knight MR, Knight H. MUR1-mediated cell-wall fucosylation is required for freezing tolerance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 224:1518-1531. [PMID: 31549420 PMCID: PMC6899859 DOI: 10.1111/nph.16209] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/28/2019] [Indexed: 05/20/2023]
Abstract
Forward genetic screens play a key role in the identification of genes contributing to plant stress tolerance. Using a screen for freezing sensitivity, we have identified a novel freezing tolerance gene, SENSITIVE-TO-FREEZING8, in Arabidopsis thaliana. We identified SFR8 using recombination-based mapping and whole-genome sequencing. As SFR8 was predicted to have an effect on cell wall composition, we used GC-MS and polyacrylamide gel electrophoresis to measure cell-wall fucose and boron (B)-dependent dimerization of the cell-wall pectic domain rhamnogalacturonan II (RGII) in planta. After treatments to promote borate-bridging of RGII, we assessed freeze-induced damage in wild-type and sfr8 plants by measuring electrolyte leakage from freeze-thawed leaf discs. We mapped the sfr8 mutation to MUR1, a gene encoding the fucose biosynthetic enzyme GDP-d-mannose-4,6-dehydratase. sfr8 cell walls exhibited low cell-wall fucose levels and reduced RGII bridging. Freezing sensitivity of sfr8 mutants was ameliorated by B supplementation, which can restore RGII dimerization. B transport mutants with reduced RGII dimerization were also freezing-sensitive. Our research identifies a role for the structure and composition of the plant primary cell wall in determining basal plant freezing tolerance and highlights the specific importance of fucosylation, most likely through its effect on the ability of RGII pectin to dimerize.
Collapse
Affiliation(s)
- Paige E. Panter
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Olivia Kent
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Maeve Dale
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Sarah J. Smith
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Mark Skipsey
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Glenn Thorlby
- Scion49 Sala Street, Private Bag 3020Rotorua3046New Zealand
| | - Ian Cummins
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Nathan Ramsay
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Rifat A. Begum
- Institute of Molecular Plant SciencesThe University of EdinburghDaniel Rutherford Building, The King’s Buildings, Max Born CrescentEdinburghEH9 3BFUK
| | - Dayan Sanhueza
- Institute of Molecular Plant SciencesThe University of EdinburghDaniel Rutherford Building, The King’s Buildings, Max Born CrescentEdinburghEH9 3BFUK
| | - Stephen C. Fry
- Institute of Molecular Plant SciencesThe University of EdinburghDaniel Rutherford Building, The King’s Buildings, Max Born CrescentEdinburghEH9 3BFUK
| | - Marc R. Knight
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| | - Heather Knight
- Department of Biosciences & Durham Centre for Crop Improvement TechnologyDurham UniversitySouth RoadDurhamDH1 3LEUK
| |
Collapse
|
197
|
Chen Y, Zhu P, Wu S, Lu Y, Sun J, Cao Q, Li Z, Xu T. Identification and expression analysis of GRAS transcription factors in the wild relative of sweet potato Ipomoea trifida. BMC Genomics 2019; 20:911. [PMID: 31783728 PMCID: PMC6884806 DOI: 10.1186/s12864-019-6316-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 11/21/2019] [Indexed: 11/22/2022] Open
Abstract
Background GRAS gene is an important transcription factor gene family that plays a crucial role in plant growth, development, adaptation to adverse environmental condition. Sweet potato is an important food, vegetable, industrial raw material, and biofuel crop in the world, which plays an essential role in food security in China. However, the function of sweet potato GRAS genes remains unknown. Results In this study, we identified and characterised 70 GRAS members from Ipomoea trifida, which is the progenitor of sweet potato. The chromosome distribution, phylogenetic tree, exon-intron structure and expression profiles were analysed. The distribution map showed that GRAS genes were randomly located in 15 chromosomes. In combination with phylogenetic analysis and previous reports in Arabidopsis and rice, the GRAS proteins from I. trifida were divided into 11 subfamilies. Gene structure showed that most of the GRAS genes in I. trifida lacked introns. The tissue-specific expression patterns and the patterns under abiotic stresses of ItfGRAS genes were investigated via RNA-seq and further tested by RT-qPCR. Results indicated the potential functions of ItfGRAS during plant development and stress responses. Conclusions Our findings will further facilitate the functional study of GRAS gene and molecular breeding of sweet potato.
Collapse
Affiliation(s)
- Yao Chen
- Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Panpan Zhu
- Department of Plant Biotechnology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, South Korea
| | - Shaoyuan Wu
- Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yan Lu
- Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Jian Sun
- Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Qinghe Cao
- Xuzhou Academy of Agricultural Sciences/Sweet Potato Research Institute, Xuzhou, 221121, Jiangsu, China
| | - Zongyun Li
- Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China.
| | - Tao Xu
- Key lab of phylogeny and comparative genomics of the Jiangsu province, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China. .,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
198
|
Zhang Y, Su P, Wu X, Zhou J, Zhao Y, Hu T, Tong Y, Huang L, Gao W. The gibberellin 13-oxidase that specifically converts gibberellin A 9 to A 20 in Tripterygium wilfordii is a 2-oxoglutarate-dependent dioxygenase. PLANTA 2019; 250:1613-1620. [PMID: 31388830 DOI: 10.1007/s00425-019-03240-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/15/2019] [Indexed: 05/06/2023]
Abstract
A novel GA13-oxidase ofTripterygium wilfordii, TwGA13ox, is a 2-oxoglutarate-dependent dioxygenase. It specifically catalyzes the conversion of GA9to GA20, but not GA4to GA1. Gibberellins (GAs) play essential roles in plant growth and development. Previous characterization of GA20- and GA3-oxidases yielded a large number of genetic elements that can interconvert different GAs. However, enzymes that catalyze the 13-hydroxylation step are rarely identified. Here, we report that the GA13-oxidase of Tripterygium wilfordii, TwGA13ox, is a 2-oxoglutarate-dependent dioxygenase instead of reported cytochrome P450 oxygenases, among 376 differential proteins in comparative proteomics. Phylogenetic analysis showed that the enzyme resides in its own independent branch in the DOXC class. Unexpectedly, it specifically catalyzes the conversion of GA9 to GA20, but not GA4 to GA1. Contrary to the previous research, TwGA13ox transcriptional expression was upregulated ~ 146 times by exogenous application of methyl jasmonate (MeJA). RNAi targeting of TwGA13ox in T. wilfordii led to an 89.9% decrease of triptolide, a diterpenoid epoxide with extensive anti-inflammatory and anti-tumor properties. In subsequent MeJA supplementation experiments, triptolide production increased 13.4-times. TwGA13ox displayed root-specific expression. Our results provide a new GA13-oxidase from plants and elucidate the metabolic associations within the diterpenoid biosynthetic pathway (GAs, triptolide) at the genetic level.
Collapse
Affiliation(s)
- Yifeng Zhang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Ping Su
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiaoyi Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yujun Zhao
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Tianyuan Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yuru Tong
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China.
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
199
|
Ye K, Li H, Ding Y, Shi Y, Song C, Gong Z, Yang S. BRASSINOSTEROID-INSENSITIVE2 Negatively Regulates the Stability of Transcription Factor ICE1 in Response to Cold Stress in Arabidopsis. THE PLANT CELL 2019; 31:2682-2696. [PMID: 31409630 PMCID: PMC6881119 DOI: 10.1105/tpc.19.00058] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/15/2019] [Accepted: 08/10/2019] [Indexed: 05/18/2023]
Abstract
Cold acclimation is a crucial strategy for plant survival at freezing temperatures. C-REPEAT BINDING FACTOR (CBF) genes are rapidly and transiently induced by low temperature and play important roles in cold acclimation. However, the mechanism underlying the attenuation of CBF expression during the later stages of the cold stress response is obscure. Here, we show that the protein kinase BRASSINOSTEROID-INSENSITIVE2 (BIN2) interacts with and phosphorylates INDUCER OF CBF EXPRESSION1 (ICE1) in Arabidopsis (Arabidopsis thaliana) under prolonged cold stress, facilitating the interaction between ICE1 and the E3 ubiquitin ligase HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 and thereby promoting ICE1 degradation. The kinase activity of BIN2 is inhibited during the early stages of the cold stress response and is subsequently restored, suggesting that BIN2 mainly downregulates ICE1 abundance when CBF expression is attenuated. A loss-of-function mutation of ICE1 partially suppresses the cold-induced expression of CBFs and compromises the enhanced freezing tolerance of bin2-3 bil1 bil2 These findings reveal an important role for BIN2 in fine-tuning CBF expression, and thus in balancing plant growth and the cold stress response.
Collapse
Affiliation(s)
- Keyi Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hui Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | - Chunpeng Song
- Institute of Plant Stress Biology, Collaborative Innovation Center of Crop Stress Biology, Henan University, Kaifeng 475001, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
200
|
Fürtauer L, Weiszmann J, Weckwerth W, Nägele T. Dynamics of Plant Metabolism during Cold Acclimation. Int J Mol Sci 2019; 20:E5411. [PMID: 31671650 PMCID: PMC6862541 DOI: 10.3390/ijms20215411] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
Plants have evolved strategies to tightly regulate metabolism during acclimation to a changing environment. Low temperature significantly constrains distribution, growth and yield of many temperate plant species. Exposing plants to low but non-freezing temperature induces a multigenic processes termed cold acclimation, which eventually results in an increased freezing tolerance. Cold acclimation comprises reprogramming of the transcriptome, proteome and metabolome and affects communication and signaling between subcellular organelles. Carbohydrates play a central role in this metabolic reprogramming. This review summarizes current knowledge about the role of carbohydrate metabolism in plant cold acclimation with a focus on subcellular metabolic reprogramming, its thermodynamic constraints under low temperature and mathematical modelling of metabolism.
Collapse
Affiliation(s)
- Lisa Fürtauer
- Plant Evolutionary Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Bavaria, Germany.
| | - Jakob Weiszmann
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria.
- Vienna Metabolomics Center, University of Vienna, Vienna 1090, Austria.
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna 1090, Austria.
- Vienna Metabolomics Center, University of Vienna, Vienna 1090, Austria.
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Bavaria, Germany.
| |
Collapse
|