151
|
Yun JY, Tamada Y, Kang YE, Amasino RM. Arabidopsis trithorax-related3/SET domain GROUP2 is required for the winter-annual habit of Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2012; 53:834-46. [PMID: 22378382 PMCID: PMC3345368 DOI: 10.1093/pcp/pcs021] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/21/2012] [Indexed: 05/18/2023]
Abstract
The winter-annual habit of Arabidopsis thaliana requires active alleles of flowering locus C (FLC), which encodes a potent flowering repressor, and FRIGIDA (FRI), an activator of FLC. FLC activation by FRI is accompanied by an increase in specific histone modifications, such as tri-methylation of histone H3 at lysine 4 (H3K4me3), and requires three H3K4 methyltransferases, the Drosophila Trithorax-class Arabidopsis trithorax1 (ATX1) and ATX2, and yeast Set1-class ATX-related7/set domain group25 (ATXR7/SDG25). However, lesions in all of these genes failed to suppress the enhanced FLC expression caused by FRI completely, suggesting that another H3K4 methyltransferase may participate in the FLC activation. Here, we show that ATXR3/SDG2, which is a member of a novel class of H3K4 methyltransferases, also contributes to FLC activation. An ATXR3 lesion suppressed the enhanced FLC expression and delayed flowering caused by an active allele of FRI in non-vernalized plants. The decrease in FLC expression in atxr3 mutants was accompanied by reduced H3K4me3 levels at FLC chromatin. We also found that the rapid flowering of atxr3 was epistatic to that of atxr7, suggesting that ATXR3 functions in FLC activation in sequence with ATXR7. Our results indicate that the novel-class H3K4 methyltransferase, ATXR3, is a transcriptional activator that plays a role in the FLC activation and establishing the winter-annual habit. In addition, ATXR3 also contributes to the activation of other FLC clade members, such as flowering locus M/MADS affecting flowering1 (FLM/MAF1) and MAF5, at least partially explaining the ATXR3 function in delayed flowering caused by non-inductive photoperiods.
Collapse
Affiliation(s)
- Jae-Young Yun
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706-1544, USA
- These authors contributed equally to this work
| | - Yosuke Tamada
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706-1544, USA
- National Institute for Basic Biology, Okazaki, Aichi, 444-8585 Japan
- School of Life Science, Graduate University of Advanced Studies, Okazaki, Aichi, 444-8585 Japan
- These authors contributed equally to this work
| | - Ye Eun Kang
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706-1544, USA
| | - Richard M. Amasino
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706-1544, USA
- *Corresponding author: E-mail, ; Fax, +1-608-262-3453
| |
Collapse
|
152
|
Yang H, Han Z, Cao Y, Fan D, Li H, Mo H, Feng Y, Liu L, Wang Z, Yue Y, Cui S, Chen S, Chai J, Ma L. A companion cell-dominant and developmentally regulated H3K4 demethylase controls flowering time in Arabidopsis via the repression of FLC expression. PLoS Genet 2012; 8:e1002664. [PMID: 22536163 PMCID: PMC3334889 DOI: 10.1371/journal.pgen.1002664] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 03/07/2012] [Indexed: 01/02/2023] Open
Abstract
Flowering time relies on the integration of intrinsic developmental cues and environmental signals. FLC and its downstream target FT are key players in the floral transition in Arabidopsis. Here, we characterized the expression pattern and function of JMJ18, a novel JmjC domain-containing histone H3K4 demethylase gene in Arabidopsis. JMJ18 was dominantly expressed in companion cells; its temporal expression pattern was negatively and positively correlated with that of FLC and FT, respectively, during vegetative development. Mutations in JMJ18 resulted in a weak late-flowering phenotype, while JMJ18 overexpressors exhibited an obvious early-flowering phenotype. JMJ18 displayed demethylase activity toward H3K4me3 and H3K4me2, and bound FLC chromatin directly. The levels of H3K4me3 and H3K4me2 in chromatins of FLC clade genes and the expression of FLC clade genes were reduced, whereas FT expression was induced and the protein expression of FT increased in JMJ18 overexpressor lines. The early-flowering phenotype caused by the overexpression of JMJ18 was mainly dependent on the functional FT. Our findings suggest that the companion cell–dominant and developmentally regulated JMJ18 binds directly to the FLC locus, reducing the level of H3K4 methylation in FLC chromatin and repressing the expression of FLC, thereby promoting the expression of FT in companion cells to stimulate flowering. Flowering is an important developmental transition during plant life cycle and the key process for production of the next generation. Flowering time is controlled by both intrinsic developmental and environmental signals. FLC and its target FT work as repressor and activator, respectively, to regulate flowering time in Arabidopsis; thus the regulation of FLC and FT expression is the key for the control of floral transition. Epigenetic modifications are critical for transcription regulation. Here, we show that a novel JmjC domain-containing histone H3K4 demethylase, JMJ18, is a key regulator for the expression of FLC and FT in companion cells and flowering time. JMJ18 is dominantly expressed in vascular tissue; its temporal expression pattern was developmentally regulated, and negatively and positively correlated with FLC and FT, respectively. JMJ18 mutation leads to weak late-flowering, while JMJ18 overexpressor exhibited an obvious early-flowering phenotype. JMJ18 binds to chromatin of FLC, represses its expression, and releases expression of FT in companion cells. Our results suggest that JMJ18 is a developmentally regulated companion cell–dominantly expressed signal to control flowering time by binding to FLC—reducing level of H3K4 methylation in FLC and repressing expression of FLC—thereby promoting expression of FT in companion cells during vegetative development in Arabidopsis.
Collapse
Affiliation(s)
- Hongchun Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
- Hebei Key Laboratory of Molecular Cell Biology, College of Biological Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zhifu Han
- National Institute of Biological Sciences, Beijing, China
| | - Ying Cao
- National Institute of Biological Sciences, Beijing, China
- Hebei Key Laboratory of Molecular Cell Biology, College of Biological Sciences, Hebei Normal University, Shijiazhuang, China
| | - Di Fan
- National Institute of Biological Sciences, Beijing, China
| | - Hong Li
- National Institute of Biological Sciences, Beijing, China
| | - Huixian Mo
- National Institute of Biological Sciences, Beijing, China
- Hebei Key Laboratory of Molecular Cell Biology, College of Biological Sciences, Hebei Normal University, Shijiazhuang, China
| | - Yi Feng
- National Institute of Biological Sciences, Beijing, China
| | - Lei Liu
- Hebei Key Laboratory of Molecular Cell Biology, College of Biological Sciences, Hebei Normal University, Shijiazhuang, China
| | - Zheng Wang
- National Institute of Biological Sciences, Beijing, China
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yanling Yue
- National Institute of Biological Sciences, Beijing, China
| | - Sujuan Cui
- Hebei Key Laboratory of Molecular Cell Biology, College of Biological Sciences, Hebei Normal University, Shijiazhuang, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Jijie Chai
- National Institute of Biological Sciences, Beijing, China
| | - Ligeng Ma
- National Institute of Biological Sciences, Beijing, China
- Hebei Key Laboratory of Molecular Cell Biology, College of Biological Sciences, Hebei Normal University, Shijiazhuang, China
- College of Life Sciences, Capital Normal University, Beijing, China
- * E-mail:
| |
Collapse
|
153
|
Lazaro A, Valverde F, Piñeiro M, Jarillo JA. The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. THE PLANT CELL 2012; 24:982-99. [PMID: 22408073 PMCID: PMC3336113 DOI: 10.1105/tpc.110.081885] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 05/18/2023]
Abstract
The Arabidopsis thaliana early in short days6 (esd6) mutant was isolated in a screen for mutations that accelerate flowering time. Among other developmental alterations, esd6 displays early flowering in both long- and short-day conditions. Fine mapping of the mutation showed that the esd6 phenotype is caused by a lesion in the high expression of osmotically responsive genes1 (HOS1) locus, which encodes a RING finger-containing E3 ubiquitin ligase. The esd6/hos1 mutation causes decreased flowering locus C expression and requires CONSTANS (CO) protein for its early flowering phenotype under long days. Moreover, CO and HOS1 physically interact in vitro and in planta, and HOS1 regulates CO abundance, particularly during the daylight period. Accordingly, hos1 causes a shift in the regular long-day pattern of expression of flowering locus T (FT) transcript, starting to rise 4 h after dawn in the mutant. In addition, HOS1 interacts synergistically with constitutive photomorphogenic1, another regulator of CO protein stability, in the regulation of flowering time. Taken together, these results indicate that HOS1 is involved in the control of CO abundance, ensuring that CO activation of FT occurs only when the light period reaches a certain length and preventing precocious flowering in Arabidopsis.
Collapse
Affiliation(s)
- Ana Lazaro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Federico Valverde
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas y Universidad de Sevilla, 41092 Sevilla, Spain
| | - Manuel Piñeiro
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Jose A. Jarillo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria-Universidad Politécnica de Madrid, 28223 Madrid, Spain
| |
Collapse
|
154
|
Zhao H, Wang X, Zhu D, Cui S, Li X, Cao Y, Ma L. A single amino acid substitution in IIIf subfamily of basic helix-loop-helix transcription factor AtMYC1 leads to trichome and root hair patterning defects by abolishing its interaction with partner proteins in Arabidopsis. J Biol Chem 2012; 287:14109-21. [PMID: 22334670 DOI: 10.1074/jbc.m111.280735] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Plant trichomes and root hairs are powerful models for the study of cell fate determination. In Arabidopsis thaliana, trichome and root hair initiation requires a combination of three groups of proteins, including the WD40 repeat protein transparent TESTA GLABRA1 (TTG1), R2R3 repeat MYB protein GLABRA1 (GL1), or werewolf (WER) and the IIIf subfamily of basic helix-loop-helix (bHLH) protein GLABRA3 (GL3) or enhancer of GLABRA3 (EGL3). The bHLH component acts as a docking site for TTG1 and MYB proteins. Here, we isolated a mutant showing defects in trichome and root hair patterning that carried a point mutation (R173H) in AtMYC1 that encodes the fourth member of IIIf bHLH family protein. Genetic analysis revealed partial redundant yet distinct function between AtMYC1 and GL3/EGL3. GLABRA2 (GL2), an important transcription factor involved in trichome and root hair control, was down-regulated in Atmyc1 plants, suggesting the requirement of AtMYC1 for appropriate GL2 transcription. Like its homologs, AtMYC1 formed a complex with TTG1 and MYB proteins but did not dimerized. In addition, the interaction of AtMYC1 with MYB proteins and TTG1 was abrogated by the R173H substitution in Atmyc1-1. We found that this amino acid (Arg) is conserved in the AtMYC1 homologs GL3/EGL3 and that it is essential for their interaction with MYB proteins and for their proper functions. Our findings indicate that AtMYC1 is an important regulator of trichome and root hair initiation, and they reveal a novel amino acid necessary for protein-protein interactions and gene function in IIIf subfamily bHLH transcription factors.
Collapse
Affiliation(s)
- Hongtao Zhao
- Hebei Key Laboratory of Molecular Cell Biology, College of Biological Sciences, Hebei Normal University, Shijiazhuang 050016 Hebei, China
| | | | | | | | | | | | | |
Collapse
|
155
|
Toorop PE, Cuerva RC, Begg GS, Locardi B, Squire GR, Iannetta PPM. Co-adaptation of seed dormancy and flowering time in the arable weed Capsella bursa-pastoris (shepherd's purse). ANNALS OF BOTANY 2012; 109:481-9. [PMID: 22147546 PMCID: PMC3268546 DOI: 10.1093/aob/mcr301] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/03/2011] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS The duration of the plant life cycle is an important attribute that determines fitness and coexistence of weeds in arable fields. It depends on the timing of two key life-history traits: time from seed dispersal to germination and time from germination to flowering. These traits are components of the time to reproduction. Dormancy results in reduced and delayed germination, thus increasing time to reproduction. Genotypes in the arable seedbank predominantly have short time to flowering. Synergy between reduced seed dormancy and reduced flowering time would create stronger contrasts between genotypes, offering greater adaptation in-field. Therefore, we studied differences in seed dormancy between in-field flowering time genotypes of shepherd's purse. METHODS Genotypes with early, intermediate or late flowering time were grown in a glasshouse to provide seed stock for germination tests. Secondary dormancy was assessed by comparing germination before and after dark-incubation. Dormancy was characterized separately for seed myxospermy heteromorphs, observed in each genotype. Seed carbon and nitrogen content and seed mass were determined as indicators of seed filling and resource partitioning associated with dormancy. KEY RESULTS Although no differences were observed in primary dormancy, secondary dormancy was weaker among the seeds of early-flowering genotypes. On average, myxospermous seeds showed stronger secondary dormancy than non-myxospermous seeds in all genotypes. Seed filling was similar between the genotypes, but nitrogen partitioning was higher in early-flowering genotypes and in non-myxospermous seeds. CONCLUSIONS In shepherd's purse, early flowering and reduced seed dormancy coincide and appear to be linked. The seed heteromorphism contributes to variation in dormancy. Three functional groups of seed dormancy were identified, varying in dormancy depth and nitrate response. One of these groups (FG-III) was distinct for early-flowering genotypes. The weaker secondary dormancy of early-flowering genotypes confers a selective advantage in arable fields.
Collapse
Affiliation(s)
- Peter E Toorop
- Seed Conservation Department, Royal Botanic Gardens, Kew, Ardingly, West Sussex, UK.
| | | | | | | | | | | |
Collapse
|
156
|
Abstract
In a previous study, we identified a candidate fragment length polymorphism associated with flowering time variation after seven generations of selection for flowering time, starting from the maize inbred line F252. Here, we characterized the candidate region and identified underlying polymorphisms. Then, we combined QTL mapping, association mapping, and developmental characterization to dissect the genetic mechanisms responsible for the phenotypic variation. The candidate region contained the Eukaryotic Initiation Factor (eIF-4A) and revealed a high level of sequence and structural variation beyond the 3'-UTR of eIF-4A, including several insertions of truncated transposable elements. Using a biallelic single-nucleotide polymorphism (SNP) (C/T) in the candidate region, we confirmed its association with flowering time variation in a panel of 317 maize inbred lines. However, while the T allele was correlated with late flowering time within the F252 genetic background, it was correlated with early flowering time in the association panel with pervasive interactions between allelic variation and the genetic background, pointing to underlying epistasis. We also detected pleiotropic effects of the candidate polymorphism on various traits including flowering time, plant height, and leaf number. Finally, we were able to break down the correlation between flowering time and leaf number in the progeny of a heterozygote (C/T) within the F252 background consistent with causal loci in linkage disequilibrium. We therefore propose that both a cluster of tightly linked genes and epistasis contribute to the phenotypic variation for flowering time.
Collapse
|
157
|
Cui F, Liu L, Zhao Q, Zhang Z, Li Q, Lin B, Wu Y, Tang S, Xie Q. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. THE PLANT CELL 2012; 24:233-44. [PMID: 22214659 PMCID: PMC3289556 DOI: 10.1105/tpc.111.093062] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Revised: 11/30/2011] [Accepted: 12/18/2011] [Indexed: 05/18/2023]
Abstract
Plants modify their growth and development to protect themselves from detrimental conditions by triggering a variety of signaling pathways, including the activation of the ubiquitin-mediated protein degradation pathway. Endoplasmic reticulum (ER)-associated protein degradation (ERAD) is an important aspect of the ubiquitin-proteasome system, but only a few of the active ERAD components have been reported in plants. Here, we report that the Arabidopsis thaliana ubiquitin-conjugating enzyme, UBC32, a stress-induced functional ubiquitin conjugation enzyme (E2) localized to the ER membrane, connects the ERAD process and brassinosteroid (BR)-mediated growth promotion and salt stress tolerance. In vivo data showed that UBC32 was a functional ERAD component that affected the stability of a known ERAD substrate, the barley (Hordeum vulgare) powdery mildew O (MLO) mutant MLO-12. UBC32 mutation caused the accumulation of bri1-5 and bri1-9, the mutant forms of the BR receptor, BRI1, and these mutant forms subsequently activated BR signal transduction. Further genetic and physiological data supported the contention that UBC32 plays a role in the BR-mediated salt stress response and that BR signaling is necessary for the plant to tolerate salt. Our data indicates a possible mechanism by which an ERAD component regulates the growth and stress response of plants.
Collapse
Affiliation(s)
- Feng Cui
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijing Liu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingzhen Zhao
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Science, Liaocheng University, Liaocheng 252059, China
| | - Zhonghui Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingliang Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baoying Lin
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Address correspondence to
| |
Collapse
|
158
|
Lee KH, Minami A, Marshall RS, Book AJ, Farmer LM, Walker JM, Vierstra RD. The RPT2 subunit of the 26S proteasome directs complex assembly, histone dynamics, and gametophyte and sporophyte development in Arabidopsis. THE PLANT CELL 2011; 23:4298-317. [PMID: 22158466 PMCID: PMC3269867 DOI: 10.1105/tpc.111.089482] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The regulatory particle (RP) of the 26S proteasome contains a heterohexameric ring of AAA-ATPases (RPT1-6) that unfolds and inserts substrates into the core protease (CP) for degradation. Through genetic analysis of the Arabidopsis thaliana gene pair encoding RPT2, we show that this subunit plays a critical role in 26S proteasome assembly, histone dynamics, and plant development. rpt2a rpt2b double null mutants are blocked in both male and female gamete transmission, demonstrating that the subunit is essential. Whereas rpt2b mutants are phenotypically normal, rpt2a mutants display a range of defects, including impaired leaf, root, trichome, and pollen development, delayed flowering, stem fasciation, hypersensitivity to mitomycin C and amino acid analogs, hyposensitivity to the proteasome inhibitor MG132, and decreased 26S complex stability. The rpt2a phenotype can be rescued by both RPT2a and RPT2b, indicative of functional redundancy, but not by RPT2a mutants altered in ATP binding/hydrolysis or missing the C-terminal hydrophobic sequence that docks the RPT ring onto the CP. Many rpt2a phenotypes are shared with mutants lacking the chromatin assembly factor complex CAF1. Like caf1 mutants, plants missing RPT2a or reduced in other RP subunits contain less histones, thus implicating RPT2 specifically, and the 26S proteasome generally, in plant nucleosome assembly.
Collapse
|
159
|
Wright DE, Wang CY, Kao CF. Flickin' the ubiquitin switch: the role of H2B ubiquitylation in development. Epigenetics 2011; 6:1165-75. [PMID: 21937884 DOI: 10.4161/epi.6.10.17745] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The reversible ubiquitylation of histone H2B has long been implicated in transcriptional activation and gene silencing. However, many questions regarding its regulation and effects on chromatin structure remain unanswered. In addition, while several studies have uncovered an involvement of this modification in the control of certain developmental processes, a more general understanding of its requirement is lacking. Herein, we present a broad overview of the pathways known to be regulated by H2B ubiquitylation, while drawing parallels between findings in disparate organisms, in order to facilitate continued delineation of its spatiotemporal role in development. Finally, we integrate the findings of recent studies into how H2B ubiquitylation affects chromatin, and cast an eye over emerging areas for future research.
Collapse
|
160
|
Jarillo JA, Piñeiro M. Timing is everything in plant development. The central role of floral repressors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:364-78. [PMID: 21889042 DOI: 10.1016/j.plantsci.2011.06.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/20/2011] [Accepted: 06/21/2011] [Indexed: 05/07/2023]
Abstract
Progress in understanding the molecular basis of flowering time control has revealed that floral repressors play a central role in modulating the floral transition and are essential to prevent the precocious onset of flowering. A number of cellular processes including chromatin remodeling, selective protein degradation, and transcriptional regulation mediated by transcription factors are involved in repressing the initiation of flowering. Floral repressors interact at different levels with floral inductive pathways and prevent the premature onset of flowering that could impact negatively on the reproductive success of plants. Despite recent advances, further studies will be needed to understand how the interactions between floral repressors and the regulatory networks involved in the control of flowering time have evolved in different species. Recent data suggest that a diversity of regulatory proteins act as central floral repressors in different plants, and even in those species where regulatory modules are conserved new elements that modulate the function of these pathways have been recruited to mediate specific adaptive responses. The development of genomic tools and predictive models that can integrate large datasets related to the flowering behavior of plant species will facilitate the characterization of the repressor mechanisms underlying flowering responses, a trait with implications in the yield of crop species. In a scenario of global climate change, an in depth understanding of these gene circuits will be essential for the development of crop varieties with improved yield.
Collapse
Affiliation(s)
- Jose A Jarillo
- Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Campus de Montegancedo, Madrid, Spain
| | | |
Collapse
|
161
|
Santamaría ME, Rodríguez R, Cañal MJ, Toorop PE. Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. ANNALS OF BOTANY 2011; 108:485-98. [PMID: 21803738 PMCID: PMC3158698 DOI: 10.1093/aob/mcr185] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/24/2011] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Recent papers indicated that epigenetic control is involved in transitions in bud dormancy, purportedly controlling gene expression. The present study aimed to identify genes that are differentially expressed in dormant and non-dormant Castanea sativa buds. METHODS Two suppression subtractive hybridization cDNA libraries were constructed to characterize the transcriptomes of dormant apical buds of C. sativa, and buds in which dormancy was released. KEY RESULTS A total of 512 expressed sequence tags (ESTs) were generated in a forward and reverse subtractive hybridization experiment. Classification of these ESTs into functional groups demonstrated that dormant buds were predominantly characterized by genes associated with stress response, while non-dormant buds were characterized by genes associated with energy, protein synthesis and cellular components for development and growth. ESTs for a few genes involved in different forms of epigenetic modification were found in both libraries, suggesting a role for epigenetic control in bud dormancy different from that in growth. Genes encoding histone mono-ubiquitinase HUB2 and histone acetyltransferase GCN5L were associated with dormancy, while a gene encoding histone H3 kinase AUR3 was associated with growth. Real-time RT-PCR with a selection of genes involved in epigenetic modification and stress tolerance confirmed the expression of the majority of investigated genes in various stages of bud development, revealing a cyclical expression pattern concurring with the growth seasons for most genes. However, senescing leaves also showed an increased expression of several of the genes associated with dormancy, implying pleiotropy. Furthermore, a comparison between these subtraction cDNA libraries and the poplar bud dormancy transcriptome and arabidopsis transcriptomes for seed dormancy and non-dormancy indicated a common basis for dormancy in all three systems. CONCLUSIONS Bud dormancy and non-dormancy in C. sativa were characterized by distinct sets of genes and are likely to be under different epigenetic control.
Collapse
Affiliation(s)
- María Estrella Santamaría
- Dpto. Biología de Organismos y Sistemas, Área de Fisiología Vegetal, Universidad de Oviedo 33071, Oviedo, Asturias, Spain
- Instituto de Biotecnologia de Asturias (IUBA), Ed. Santiago Gascón, Universidad de Oviedo, C/ Fernando Bongera s/n, E-33006 Oviedo, Asturias, Spain
| | - Roberto Rodríguez
- Dpto. Biología de Organismos y Sistemas, Área de Fisiología Vegetal, Universidad de Oviedo 33071, Oviedo, Asturias, Spain
- Instituto de Biotecnologia de Asturias (IUBA), Ed. Santiago Gascón, Universidad de Oviedo, C/ Fernando Bongera s/n, E-33006 Oviedo, Asturias, Spain
| | - María Jesús Cañal
- Dpto. Biología de Organismos y Sistemas, Área de Fisiología Vegetal, Universidad de Oviedo 33071, Oviedo, Asturias, Spain
- Instituto de Biotecnologia de Asturias (IUBA), Ed. Santiago Gascón, Universidad de Oviedo, C/ Fernando Bongera s/n, E-33006 Oviedo, Asturias, Spain
| | - Peter E. Toorop
- Seed Conservation Department, Royal Botanic Gardens, Kew, Wakehurst Place, Selsfield Road, Ardingly, West Sussex RH17 6TN, UK
| |
Collapse
|
162
|
Santamaría ME, Rodríguez R, Cañal MJ, Toorop PE. Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. ANNALS OF BOTANY 2011. [PMID: 21803738 DOI: 10.1093/aob/mbr185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
BACKGROUND AND AIMS Recent papers indicated that epigenetic control is involved in transitions in bud dormancy, purportedly controlling gene expression. The present study aimed to identify genes that are differentially expressed in dormant and non-dormant Castanea sativa buds. METHODS Two suppression subtractive hybridization cDNA libraries were constructed to characterize the transcriptomes of dormant apical buds of C. sativa, and buds in which dormancy was released. KEY RESULTS A total of 512 expressed sequence tags (ESTs) were generated in a forward and reverse subtractive hybridization experiment. Classification of these ESTs into functional groups demonstrated that dormant buds were predominantly characterized by genes associated with stress response, while non-dormant buds were characterized by genes associated with energy, protein synthesis and cellular components for development and growth. ESTs for a few genes involved in different forms of epigenetic modification were found in both libraries, suggesting a role for epigenetic control in bud dormancy different from that in growth. Genes encoding histone mono-ubiquitinase HUB2 and histone acetyltransferase GCN5L were associated with dormancy, while a gene encoding histone H3 kinase AUR3 was associated with growth. Real-time RT-PCR with a selection of genes involved in epigenetic modification and stress tolerance confirmed the expression of the majority of investigated genes in various stages of bud development, revealing a cyclical expression pattern concurring with the growth seasons for most genes. However, senescing leaves also showed an increased expression of several of the genes associated with dormancy, implying pleiotropy. Furthermore, a comparison between these subtraction cDNA libraries and the poplar bud dormancy transcriptome and arabidopsis transcriptomes for seed dormancy and non-dormancy indicated a common basis for dormancy in all three systems. CONCLUSIONS Bud dormancy and non-dormancy in C. sativa were characterized by distinct sets of genes and are likely to be under different epigenetic control.
Collapse
Affiliation(s)
- María Estrella Santamaría
- Dpto. Biología de Organismos y Sistemas, Área de Fisiología Vegetal, Universidad de Oviedo 33071, Oviedo, Asturias, Spain
| | | | | | | |
Collapse
|
163
|
Identification of the Arabidopsis REDUCED DORMANCY 2 gene uncovers a role for the polymerase associated factor 1 complex in seed dormancy. PLoS One 2011; 6:e22241. [PMID: 21799800 PMCID: PMC3143138 DOI: 10.1371/journal.pone.0022241] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/17/2011] [Indexed: 12/20/2022] Open
Abstract
The life of a plant is characterized by major phase transitions. This includes the agriculturally important transitions from seed to seedling (germination) and from vegetative to generative growth (flowering induction). In many plant species, including Arabidopsis thaliana, freshly harvested seeds are dormant and incapable of germinating. Germination can occur after the release of dormancy and the occurrence of favourable environmental conditions. Although the hormonal control of seed dormancy is well studied, the molecular mechanisms underlying the induction and release of dormancy are not yet understood. In this study, we report the cloning and characterization of the mutant reduced dormancy 2-1 (rdo2-1). We found that RDO2 is allelic to the recently identified dormancy gene TFIIS, which is a transcription elongation factor. HUB1, which was previously called RDO4, was identified in the same mutagenesis screen for reduced dormancy as rdo2-1 and was also shown to be involved in transcription elongation. The human homologues of RDO2 and HUB1 interact with the RNA Polymerase II Associated Factor 1 Complex (PAF1C). Therefore, we investigated the effect of other Arabidopsis PAF1C related factors; VIP4, VIP5, ELF7, ELF8 and ATXR7 on seed dormancy. Mutations in these genes resulted in reduced dormancy, similar to hub1-2 and rdo2-1. Consistent with a role at the end of seed maturation, we found that HUB1, RDO2 and VIP5 are upregulated during this developmental phase. Since mutants in PAF1C related factors are also described to be early flowering, we conclude that these components are involved in the regulation of both major developmental transitions in the plant.
Collapse
|
164
|
Berr A, Shafiq S, Shen WH. Histone modifications in transcriptional activation during plant development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:567-76. [PMID: 21777708 DOI: 10.1016/j.bbagrm.2011.07.001] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 06/30/2011] [Accepted: 07/06/2011] [Indexed: 12/24/2022]
Abstract
In eukaryotic cell nuclei, chromatin states dictated by different combinations of post-translational modifications of histones, such as acetylation, methylation and monoubiquitination of lysine residues, are part of the multitude of epigenomes involved in the fine-tuning of all genetic functions and in particular transcription. During the past decade, an increasing number of 'writers', 'readers' and 'erasers' of histone modifications have been identified. Characterization of these factors in Arabidopsis has unraveled their pivotal roles in the regulation of essential processes, such as floral transition, cell differentiation, gametogenesis, and plant response/adaptation to environmental stresses. In this review we focus on histone modification marks associated with transcriptional activation to highlight current knowledge on Arabidopsis 'writers', 'readers' and 'erasers' of histone modifications and to discuss recent findings on molecular mechanisms of integration of histone modifications with the RNA polymerase II transcriptional machinery during transcription of the flowering repressor gene FLC.
Collapse
Affiliation(s)
- Alexandre Berr
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg CEDEX, France
| | | | | |
Collapse
|
165
|
Involvement of KDM1C histone demethylase-OTLD1 otubain-like histone deubiquitinase complexes in plant gene repression. Proc Natl Acad Sci U S A 2011; 108:11157-62. [PMID: 21690391 DOI: 10.1073/pnas.1014030108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Covalent modifications of histones, such as acetylation, methylation and ubiquitination, are central for regulation of gene expression. Heterochromatic gene silencing, for example, is associated with hypoacetylation, methylation and demethylation, and deubiquitination of specific amino acid residues in histone molecules. Many of these changes can be effected by histone-modifying repressor complexes that include histone lysine demethylases, such as KDM1 in animals and KDM1C in plants. However, whereas KDM1-containing repressor complexes have been implicated in histone demethylation, methylation and deacetylation, whether or not they can also mediate histone deubiquitination remains unknown. We identify an Arabidopsis otubain-like deubiquitinase OTLD1 which directly interacts with the Arabidopsis KDM1C in planta, and use one target gene to exemplify that both OTLD1 and KDM1C are involved in transcriptional gene repression via histone deubiquitination and demethylation. We also show that OTLD1 binds plant chromatin and has enzymatic histone deubiquitinase activity, specific for the H2B histone. Thus, we suggest that, during gene repression, lysine demethylases can directly interact and function in a protein complex with histone deubiquitinases.
Collapse
|
166
|
Overexpression of AtBMI1C, a polycomb group protein gene, accelerates flowering in Arabidopsis. PLoS One 2011; 6:e21364. [PMID: 21701597 PMCID: PMC3119047 DOI: 10.1371/journal.pone.0021364] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/31/2011] [Indexed: 11/20/2022] Open
Abstract
Polycomb group protein (PcG)-mediated gene silencing is emerging as an essential developmental regulatory mechanism in eukaryotic organisms. PcGs inactivate or maintain the silenced state of their target chromatin by forming complexes, including Polycomb Repressive Complex 1 (PRC1) and 2 (PRC2). Three PRC2 complexes have been identified and characterized in Arabidopsis; of these, the EMF and VRN complexes suppress flowering by catalyzing the trimethylation of lysine 27 on histone H3 of FLOWER LOCUS T (FT) and FLOWER LOCUS C (FLC). However, little is known about the role of PRC1 in regulating the floral transition, although AtRING1A, AtRING1B, AtBMI1A, and AtBMI1B are believed to regulate shoot apical meristem and embryonic development as components of PRC1. Moreover, among the five RING finger PcGs in the Arabidopsis genome, four have been characterized. Here, we report that the fifth, AtBMI1C, is a novel, ubiquitously expressed nuclear PcG protein and part of PRC1, which is evolutionarily conserved with Psc and BMI1. Overexpression of AtBMI1C caused increased H2A monoubiquitination and flowering defects in Arabidopsis. Both the suppression of FLC and activation of FT were observed in AtBMI1C-overexpressing lines, resulting in early flowering. No change in the H3K27me3 level in FLC chromatin was detected in an AtBMI1C-overexpressing line. Our results suggest that AtBMI1C participates in flowering time control by regulating the expression of FLC; moreover, the repression of FLC by AtBMI1C is not due to the activity of PRC2. Instead, it is likely the result of PRC1 activity, into which AtBMI1C is integrated.
Collapse
|
167
|
Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 2011; 30:1928-38. [PMID: 21487388 PMCID: PMC3098477 DOI: 10.1038/emboj.2011.103] [Citation(s) in RCA: 491] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/10/2011] [Indexed: 12/28/2022] Open
Abstract
This first comprehensive view of the Arabidopsis epigenome reveals that it is organized into four main chromatin types based on the integrative mapping of a broad set of 11 histone marks and DNA methylation in seedlings. Post-translational modification of histones and DNA methylation are important components of chromatin-level control of genome activity in eukaryotes. However, principles governing the combinatorial association of chromatin marks along the genome remain poorly understood. Here, we have generated epigenomic maps for eight histone modifications (H3K4me2 and 3, H3K27me1 and 2, H3K36me3, H3K56ac, H4K20me1 and H2Bub) in the model plant Arabidopsis and we have combined these maps with others, produced under identical conditions, for H3K9me2, H3K9me3, H3K27me3 and DNA methylation. Integrative analysis indicates that these 12 chromatin marks, which collectively cover ∼90% of the genome, are present at any given position in a very limited number of combinations. Moreover, we show that the distribution of the 12 marks along the genomic sequence defines four main chromatin states, which preferentially index active genes, repressed genes, silent repeat elements and intergenic regions. Given the compact nature of the Arabidopsis genome, these four indexing states typically translate into short chromatin domains interspersed with each other. This first combinatorial view of the Arabidopsis epigenome points to simple principles of organization as in metazoans and provides a framework for further studies of chromatin-based regulatory mechanisms in plants.
Collapse
|
168
|
Conservation and divergence of the histone H2B monoubiquitination pathway from yeast to humans and plants. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/s11515-011-1000-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
169
|
Lauria M, Rossi V. Epigenetic control of gene regulation in plants. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:369-78. [PMID: 21414429 DOI: 10.1016/j.bbagrm.2011.03.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/03/2011] [Accepted: 03/05/2011] [Indexed: 11/30/2022]
Abstract
In eukaryotes, including plants, the genome is compacted into chromatin, which forms a physical barrier for gene transcription. Therefore, mechanisms that alter chromatin structure play an essential role in gene regulation. When changes in the chromatin states are inherited trough mitotic or meiotic cell division, the mechanisms responsible for these changes are defined as epigenetic. In this paper, we review data arising from genome-wide analysis of the epigenetic landscapes in different plant species to establish the correlation between specific epigenetic marks and transcription. In the subsequent sections, mechanisms of epigenetic control of gene regulation mediated by DNA-binding transcription factors and by transposons located in proximity to genes are illustrated. Finally, plant peculiarities for epigenetic control of gene regulation and future perspectives in this research area are discussed. This article is part of a Special Issue entitled: Epigenetic Control of cellular and developmental processes in plants.
Collapse
Affiliation(s)
- Massimiliano Lauria
- Consiglio Nazionale delle Ricerche, Istituto di Biologia e Biotecnologia Agraria, Milano, Italy
| | | |
Collapse
|
170
|
Veiseth SV, Rahman MA, Yap KL, Fischer A, Egge-Jacobsen W, Reuter G, Zhou MM, Aalen RB, Thorstensen T. The SUVR4 histone lysine methyltransferase binds ubiquitin and converts H3K9me1 to H3K9me3 on transposon chromatin in Arabidopsis. PLoS Genet 2011; 7:e1001325. [PMID: 21423664 PMCID: PMC3053343 DOI: 10.1371/journal.pgen.1001325] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 02/03/2011] [Indexed: 12/11/2022] Open
Abstract
Chromatin structure and gene expression are regulated by posttranslational modifications (PTMs) on the N-terminal tails of histones. Mono-, di-, or trimethylation of lysine residues by histone lysine methyltransferases (HKMTases) can have activating or repressive functions depending on the position and context of the modified lysine. In Arabidopsis, trimethylation of lysine 9 on histone H3 (H3K9me3) is mainly associated with euchromatin and transcribed genes, although low levels of this mark are also detected at transposons and repeat sequences. Besides the evolutionarily conserved SET domain which is responsible for enzyme activity, most HKMTases also contain additional domains which enable them to respond to other PTMs or cellular signals. Here we show that the N-terminal WIYLD domain of the Arabidopsis SUVR4 HKMTase binds ubiquitin and that the SUVR4 product specificity shifts from di- to trimethylation in the presence of free ubiquitin, enabling conversion of H3K9me1 to H3K9me3 in vitro. Chromatin immunoprecipitation and immunocytological analysis showed that SUVR4 in vivo specifically converts H3K9me1 to H3K9me3 at transposons and pseudogenes and has a locus-specific repressive effect on the expression of such elements. Bisulfite sequencing indicates that this repression involves both DNA methylation-dependent and -independent mechanisms. Transcribed genes with high endogenous levels of H3K4me3, H3K9me3, and H2Bub1, but low H3K9me1, are generally unaffected by SUVR4 activity. Our results imply that SUVR4 is involved in the epigenetic defense mechanism by trimethylating H3K9 to suppress potentially harmful transposon activity.
Collapse
Affiliation(s)
- Silje V. Veiseth
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | | | - Kyoko L. Yap
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Andreas Fischer
- Institute of Biology, Developmental Genetics, Martin Luther University Halle, Halle, Germany
| | - Wolfgang Egge-Jacobsen
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
- Glyconor Mass Spectrometry, Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Gunter Reuter
- Institute of Biology, Developmental Genetics, Martin Luther University Halle, Halle, Germany
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Reidunn B. Aalen
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| | - Tage Thorstensen
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
171
|
Crevillén P, Dean C. Regulation of the floral repressor gene FLC: the complexity of transcription in a chromatin context. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:38-44. [PMID: 20884277 DOI: 10.1016/j.pbi.2010.08.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/30/2010] [Indexed: 05/20/2023]
Abstract
The genetic pathways regulating the floral transition in Arabidopsis are becoming increasingly well understood. The ease with which mutant phenotypes can be quantified has led to many suppressor screens and the molecular identification of the underlying genes. One focus has been on the pathways that regulate the gene encoding the floral repressor FLC. This has revealed a set of antagonistic pathways comprising evolutionary conserved activities that link chromatin regulation, transcription level and co-transcriptional RNA metabolism. Here we discuss our current understanding of the transcriptional activation of FLC, how different activities are integrated at this one locus and why FLC regulation seems so sensitive to mutation in these conserved gene regulatory pathways.
Collapse
Affiliation(s)
- Pedro Crevillén
- Department of Cell & Developmental Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | |
Collapse
|
172
|
Jang IC, Chung PJ, Hemmes H, Jung C, Chua NH. Rapid and reversible light-mediated chromatin modifications of Arabidopsis phytochrome A locus. THE PLANT CELL 2011; 23:459-70. [PMID: 21317377 PMCID: PMC3077797 DOI: 10.1105/tpc.110.080481] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/14/2010] [Accepted: 01/28/2011] [Indexed: 05/19/2023]
Abstract
Recent genome-wide surveys showed that acetylation of H3K9 and H3K27 is correlated with gene activation during deetiolation of Arabidopsis thaliana seedlings, but less is known regarding changes in the histone status of repressed genes. Phytochrome A (phyA) is the major photoreceptor of deetiolation, and phyA expression is reversibly repressed by light. We found that in adult Arabidopsis plants, phyA activation in darkness was accompanied by a significant enrichment in the phyA transcription and translation start sites of not only H3K9/14ac and H3K27ac but also H3K4me3, and there was also moderate enrichment of H4K5ac, H4K8ac, H4K12ac, and H4K16ac. Conversely, when phyA expression was repressed by light, H3K27me3 was enriched with a corresponding decline in H3K27ac; moreover, demethylation of H3K4me3 and deacetylation of H3K9/14 were also seen. These histone modifications, which were focused around the phyA transcription/translation start sites, were detected within 1 h of deetiolation. Mutant analysis showed that HDA19/HD1 mediated deacetylation of H3K9/14 and uncovered possible histone crosstalk between H3K9/14ac and H3K4me3. Neither small RNA pathways nor the circadian clock affected H3 modification status of the phyA locus, and DNA methylation was unchanged by light. The presence of activating and repressive histone marks suggests a mechanism for the rapid and reversible regulation of phyA by dark and light.
Collapse
|
173
|
Li J, Zhang J, Wang X, Chen J. A membrane-tethered transcription factor ANAC089 negatively regulates floral initiation in Arabidopsis thaliana. SCIENCE CHINA-LIFE SCIENCES 2010; 53:1299-306. [PMID: 21046321 DOI: 10.1007/s11427-010-4085-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2009] [Accepted: 01/27/2010] [Indexed: 10/18/2022]
Abstract
The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors have a regulatory function in developmental processes and stress responses. Notably a group of NAC members named NTLs (NTM1-Like) are membrane-tethered, ensuring plants rapidly respond to developmental changes and environmental stimuli. Our results indicated that ANAC089 was a membrane-tethered transcription factor and its truncated form was responsible for the physiological function in flowering time control.
Collapse
Affiliation(s)
- JianQin Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | |
Collapse
|
174
|
Zhang J, Nallamilli BR, Mujahid H, Peng Z. OsMADS6 plays an essential role in endosperm nutrient accumulation and is subject to epigenetic regulation in rice (Oryza sativa). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 64:604-17. [PMID: 20822505 DOI: 10.1111/j.1365-313x.2010.04354.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
MADS-box transcription factors are known for their roles in plant growth and development. The regulatory mechanisms of spatial and temporal specific expression of MADS-box genes and the function of MADS-box genes in other biological processes are still to be explored. Here, we report that OsMADS6 is highly expressed in flower and endosperm in Oryza sativa (rice). In addition to displaying a homeotic organ identity phenotype in all the four whorls of the flowers, the endosperm development is severely affected in its mutant. At least 32% of the seeds lacked starch filling and aborted. For seeds that have starch filling and develop to maturity, the starch content is reduced by at least 13%. In addition, the seed shape changes from elliptical to roundish, and the protein content increases from 12.1 to 15.0% (P < 0.05). Further investigation shows that ADP-glucose pyrophosphorylase genes, encoding the rate-limiting step enzyme in the starch synthesis pathway, are subject to the regulation of OsMADS6. Chromatin immunoprecipitation (ChIP)-PCR analyses on the chromatin of the OsMADS6 gene find that H3K27 is trimethylated in tissues where OsMADS6 is silenced, and that H3K36 is trimethylated in tissues where OsMADS6 is highly activated. Point mutation analysis reveals that leucine at position 83 is critical to OsMADS6 function.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Biochemistry and Molecular Biology, Mississippi State University, MS 39762, USA
| | | | | | | |
Collapse
|
175
|
Abstract
Epigenetic research is at the forefront of plant biology and molecular genetics. Studies on higher plants underscore the significant role played by epigenetics in both plant development and stress response. Relatively recent advances in analytical methodology have allowed for a significant expansion of what is known about genome-wide mapping of DNA methylation and histone modifications. In this review, we explore the different modification patterns in plant epigenetics, and the key factors involved in the epigenetic process, in order to illustrate various putative mechanisms. Experimental technology to exploit these modifications, and proposed focus areas for future plant epigenetic research, are also presented.
Collapse
Affiliation(s)
- Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China.
| | | | | |
Collapse
|
176
|
Sun F, Zhang W, Xiong G, Yan M, Qian Q, Li J, Wang Y. Identification and functional analysis of the MOC1 interacting protein 1. J Genet Genomics 2010; 37:69-77. [PMID: 20171579 DOI: 10.1016/s1673-8527(09)60026-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Revised: 12/02/2009] [Accepted: 12/06/2009] [Indexed: 01/09/2023]
Abstract
Rice tillering is one of the most important agronomic traits that determine grain yields. Our previous study has demonstrated that the MONOCULM1 (MOC1) gene is a key component that controls the formation of rice tiller buds. To further elucidate the molecular mechanism of MOC1 involved in the regulation of rice tillering, we performed a yeast-two-hybrid screening to identify MOC1 interacting proteins (MIPs). Here we reported that MIP1 interacted with MOC1 both in vitro and in vivo. The overexpression of MIP1 resulted in enhanced tillering and reduced plant height. In-depth characterization of the context of MIP1 and MOC1 would further our understanding of molecular regulatory mechanisms of rice tillering.
Collapse
Affiliation(s)
- Fengli Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | |
Collapse
|
177
|
He F, Zhou Y, Zhang Z. Deciphering the Arabidopsis floral transition process by integrating a protein-protein interaction network and gene expression data. PLANT PHYSIOLOGY 2010; 153:1492-505. [PMID: 20530214 PMCID: PMC2923896 DOI: 10.1104/pp.110.153650] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 06/03/2010] [Indexed: 05/18/2023]
Abstract
In a plant, the progression from vegetative growth to reproductive growth is called the floral transition. Over the past several decades, the floral transition has been shown to be determined not by a single gene but by a complicated gene network. This important biological process, however, has not been investigated at a genome-wide network level. We collected Arabidopsis (Arabidopsis thaliana) protein-protein interaction data from several public databases and compiled them into a genome-wide Arabidopsis interactome. Then, we integrated gene expression profiles during the Arabidopsis floral transition process into the established protein-protein interaction network to identify two types of anticorrelated modules associated with vegetative and reproductive growth. Generally, the vegetative modules are conserved in plants, while the reproductive modules are more specific to advanced plants. The existence of floral transition switches demonstrates that vegetative and reproductive processes might be coordinated by the interacting interface of these modules. Our work also provides many candidates for mediating the interactions between these modules, which may play important roles during the Arabidopsis vegetative/reproductive switch.
Collapse
|
178
|
Ahmad A, Zhang Y, Cao XF. Decoding the epigenetic language of plant development. MOLECULAR PLANT 2010; 3:719-28. [PMID: 20663898 PMCID: PMC2910553 DOI: 10.1093/mp/ssq026] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 04/29/2010] [Indexed: 05/21/2023]
Abstract
Epigenetics refers to the study of heritable changes in gene expression or cellular phenotype without changes in DNA sequence. Epigenetic regulation of gene expression is accomplished by DNA methylation, histone modifications, histone variants, chromatin remodeling, and may involve small RNAs. DNA methylation at cytosine is carried out by enzymes called DNA Methyltransferases and is involved in many cellular processes, such as silencing of transposable elements and pericentromeric repeats, X-chromosome inactivation and genomic imprinting, etc. Histone modifications refer to posttranslational covalent attachment of chemical groups onto histones such as phosphorylation, acetylation, and methylation, etc. Histone variants, the non-canonical histones with amino acid sequences divergent from canonical histones, can have different epigenetic impacts on the genome from canonical histones. Higher-order chromatin structures maintained or modified by chromatin remodeling proteins also play important roles in regulating gene expression. Small non-coding RNAs play various roles in the regulation of gene expression at pre- as well as posttranscriptional levels. A special issue of Molecular Plant on 'Epigenetics and Plant Development' (Volume 4, Number 2, 2009) published a variety of articles covering many aspects of epigenetic regulation of plant development. We have tried here to present a bird's-eye view of these credible efforts towards understanding the mysterious world of epigenetics. The majority of the articles are about the chromatin modifying proteins, including histone modifiers, histone variants, and chromatin remodeling proteins that regulate various developmental processes, such as flowering time, vernalization, stem cell maintenance, and response to hormonal and environmental stresses, etc. Regulation of expression of seed transcriptome, involvement of direct tandem repeat elements in the PHE1 imprinting in addition to PcG proteins activity, paramutation, and epigenetic barriers in species hybridization are described well. The last two papers are about the Pol V-mediated heterochromatin formation independent of the 24nt-siRNA and the effect of genome position and tissue type on epigenetic regulation of gene expression. These findings not only further our current understanding of epigenetic mechanisms involved in many biological phenomena, but also pave the path for the future work, by raising many new questions that are discussed in the following lines.
Collapse
Affiliation(s)
- Ayaz Ahmad
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Yong Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- Graduate University of the Chinese Academy of Sciences, Yuquan Road, Beijing 100039, China
| | - Xiao-Feng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- To whom correspondence should be addressed. E-mail , fax 86-10-64873428, tel. 86-10-64869203
| |
Collapse
|
179
|
Van Lijsebettens M, Grasser KD. The role of the transcript elongation factors FACT and HUB1 in leaf growth and the induction of flowering. PLANT SIGNALING & BEHAVIOR 2010; 5:715-7. [PMID: 20404555 PMCID: PMC3001568 DOI: 10.4161/psb.5.6.11646] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 02/22/2010] [Indexed: 05/23/2023]
Abstract
In the cell nucleus, the packaging of the DNA into chromatin represses transcription by restricting the access of transcriptional regulators to their binding sites and inhibiting the progression of RNA polymerases during transcript elongation. To efficiently transcribe genes in the context of chromatin, eukaryotes have a variety of transcript elongation factors promoting transcription in vivo. The facilitates chromatin transcription (FACT) complex consisting of the SSRP1 and SPT16 proteins, is a histone chaperone that assists transcription by destabilising nucleosomes in the path of RNA polymerases. In a recent study, we report that Arabidopsis FACT is critically involved in different aspects of development including leaf growth and the transition to flowering. Moreover, FACT was found to interact genetically with HUB1 that mono-ubiquitinates histone H2B. Depending on the underlying process that is regulated by the two complexes, there appear to be different levels of interaction.
Collapse
Affiliation(s)
- Mieke Van Lijsebettens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, VIB, Ghent, Belgium
| | | |
Collapse
|
180
|
Lolas IB, Himanen K, Grønlund JT, Lynggaard C, Houben A, Melzer M, Van Lijsebettens M, Grasser KD. The transcript elongation factor FACT affects Arabidopsis vegetative and reproductive development and genetically interacts with HUB1/2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:686-97. [PMID: 19947984 DOI: 10.1111/j.1365-313x.2009.04096.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The facilitates chromatin transcription (FACT) complex, consisting of the SSRP1 and SPT16 proteins, is a histone chaperone that assists the progression of transcribing RNA polymerase on chromatin templates by destabilizing nucleosomes. Here, we examined plants that harbour mutations in the genes encoding the subunits of Arabidopsis FACT. These experiments revealed that (i) SSRP1 is critical for plant viability, and (ii) plants with reduced amounts of SSRP1 and SPT16 display various defects in vegetative and reproductive development. Thus, mutant plants display an increased number of leaves and inflorescences, show early bolting, have abnormal flower and leaf architecture, and their seed production is severely affected. The early flowering of the mutant plants is associated with reduced expression of the floral repressor FLC in ssrp1 and spt16 plants. Compared to control plants, reduced amounts of FACT in mutant plants are detected at the FLC locus as well as at the locations of housekeeping genes (whose expression is not affected in the mutants), suggesting that expression of FLC is particularly sensitive to reduced FACT activity. Analysis of double mutants that are affected in the expression of both FACT subunits and factors catalysing the mono-ubiquitination of histone H2B (HUB1/2) demonstrates that they genetically interact to regulate various developmental processes (i.e. branching, leaf venation pattern, silique development) but independently regulate the growth of leaves and the induction of flowering.
Collapse
Affiliation(s)
- Ihab B Lolas
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Du QL, Cui WZ, Zhang CH, Yu DY. GmRFP1 encodes a previously unknown RING-type E3 ubiquitin ligase in Soybean (Glycine max). Mol Biol Rep 2010; 37:685-93. [PMID: 19373563 DOI: 10.1007/s11033-009-9535-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 04/02/2009] [Indexed: 01/22/2023]
Abstract
RING-finger proteins with E3 ubiquitin ligase activity play important roles in the regulation of plant growth and development. In this study, a cDNA clone encoding a novel RING-finger protein, designated as GmRFP1, was isolated and characterized from soybean. GmRFP1 was an intronless gene encoding a predicted protein product of 392 amino acid residues with a molecular mass of ~43 kDa. The protein contained a RING-H2 motif and an N-terminal transmembrane domain. The transcript was observed in all detected organs and was up-regulated by abscisic acid (ABA) and salt stress, but down-regulated by cold and drought treatments. We further expressed and purified both wild type and mutant version of GmRFP1 in E. coli. In vitro assays showed that the purified GmRFP1 induced the formation of polyubiquitin chains while mutation within the RING-finger region abolished the ubiquitination activity. These findings suggest that GmRFP1 is a previously unknown E3 ubiquitin ligase in soybean and that the RING domain is required for its activity. It may play unappreciated roles in ABA signaling and stress responses via mediating the ubiquitination and degradation of target proteins through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Qiu-Li Du
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | | | | | | |
Collapse
|
182
|
Kim DH, Doyle MR, Sung S, Amasino RM. Vernalization: winter and the timing of flowering in plants. Annu Rev Cell Dev Biol 2010; 25:277-99. [PMID: 19575660 DOI: 10.1146/annurev.cellbio.042308.113411] [Citation(s) in RCA: 349] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plants have evolved many systems to sense their environment and to modify their growth and development accordingly. One example is vernalization, the process by which flowering is promoted as plants sense exposure to the cold temperatures of winter. A requirement for vernalization is an adaptive trait that helps prevent flowering before winter and permits flowering in the favorable conditions of spring. In Arabidopsis and cereals, vernalization results in the suppression of genes that repress flowering. We describe recent progress in understanding the molecular basis of this suppression. In Arabidopsis, vernalization involves the recruitment of chromatin-modifying complexes to a clade of flowering repressors that are silenced epigenetically via histone modifications. We also discuss the similarities and differences in vernalization between Arabidopsis and cereals.
Collapse
Affiliation(s)
- Dong-Hwan Kim
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA.
| | | | | | | |
Collapse
|
183
|
Anderson JV, Horvath DP, Chao WS, Foley ME. Bud Dormancy in Perennial Plants: A Mechanism for Survival. DORMANCY AND RESISTANCE IN HARSH ENVIRONMENTS 2010. [DOI: 10.1007/978-3-642-12422-8_5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
184
|
Mukoko Bopopi J, Vandeputte OM, Himanen K, Mol A, Vaessen Q, El Jaziri M, Baucher M. Ectopic expression of PtaRHE1, encoding a poplar RING-H2 protein with E3 ligase activity, alters plant development and induces defence-related responses. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:297-310. [PMID: 19892745 PMCID: PMC2791127 DOI: 10.1093/jxb/erp305] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/21/2009] [Accepted: 09/23/2009] [Indexed: 05/06/2023]
Abstract
RING (really interesting new gene)-H2 domain-containing proteins are widely represented in plants and play important roles in the regulation of many developmental processes as well as in plant-environment interactions. In the present report, experiments were performed to unravel the role of the poplar gene PtaRHE1, coding for a RING-H2 protein. In vitro ubiquitination assays indicate a functional E3 ligase activity for PtaRHE1 with the specific E2 ubiquitin-conjugating enzyme UbcH5a. The overexpression of PtaRHE1 in tobacco resulted in a pleiotropic phenotype characterized by a curling of the leaves, the formation of necrotic lesions on leaf blades, growth retardation, and a delay in floral transition. The plant gene expression response to PtaRHE1 overexpression provided evidence for the up-regulation of defence- and/or programmed cell death-related genes. Moreover, genes coding for WRKY transcription factors as well as for mitogen-activated protein kinases, such as wound-induced protein kinase (WIPK), were also found to be induced in the transgenic lines as compared with the wild type. In addition, histochemical beta-glucuronidase staining showed that the PtaRHE1 promoter is induced by plant pathogens and by elicitors such as salicylic acid and cellulase. Taken together, these results suggest that the E3 ligase PtaRHE1 plays a role in the ubiquitination-mediated regulation of defence response, possibly by acting upstream of WIPK and/or in the activation of WRKY factors.
Collapse
Affiliation(s)
- Johnny Mukoko Bopopi
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - Olivier M. Vandeputte
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - Kristiina Himanen
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Technologiepark 927, 9052 Gent, Belgium
| | - Adeline Mol
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - Quentin Vaessen
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - Mondher El Jaziri
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| | - Marie Baucher
- Laboratoire de Biotechnologie Végétale, Université Libre de Bruxelles, rue Adrienne Bolland 8, 6041 Gosselies, Belgium
| |
Collapse
|
185
|
Tamada Y, Yun JY, Woo SC, Amasino RM. ARABIDOPSIS TRITHORAX-RELATED7 is required for methylation of lysine 4 of histone H3 and for transcriptional activation of FLOWERING LOCUS C. THE PLANT CELL 2009; 21:3257-69. [PMID: 19855050 PMCID: PMC2782277 DOI: 10.1105/tpc.109.070060] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 09/04/2009] [Accepted: 09/16/2009] [Indexed: 05/18/2023]
Abstract
In the winter-annual accessions of Arabidopsis thaliana, presence of an active allele of FRIGIDA (FRI) elevates expression of FLOWERING LOCUS C (FLC), a repressor of flowering, and thus confers a vernalization requirement. FLC activation by FRI involves methylation of Lys 4 of histone H3 (H3K4) at FLC chromatin. Many multicellular organisms that have been examined contain two classes of H3K4 methylases, a yeast (Saccharomyces cerevisiae) Set1 class and a class related to Drosophila melanogaster Trithorax. In this work, we demonstrate that ARABIDOPSIS TRITHORAX-RELATED7 (ATXR7), a putative Set1 class H3K4 methylase, is required for proper FLC expression. The atxr7 mutation partially suppresses the delayed flowering of a FRI-containing line. The rapid flowering of atxr7 is associated with reduced FLC expression and is accompanied by decreased H3K4 methylation and increased H3K27 methylation at FLC. Thus, ATXR7 is required for the proper levels of these histone modifications that set the level of FLC expression to create a vernalization requirement in winter-annual accessions. Previously, it has been reported that lesions in ATX1, which encodes a Trithorax class H3K4 methylase, partially suppress the delayed flowering of winter-annual Arabidopsis. We show that the flowering phenotype of atx1 atxr7 double mutants is additive relative to those of single mutants. Therefore, both classes of H3K4 methylases appear to be required for proper regulation of FLC expression.
Collapse
|
186
|
Hossain MA, Claggett JM, Nguyen T, Johnson TL. The cap binding complex influences H2B ubiquitination by facilitating splicing of the SUS1 pre-mRNA. RNA (NEW YORK, N.Y.) 2009; 15:1515-27. [PMID: 19561118 PMCID: PMC2714748 DOI: 10.1261/rna.1540409] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pre-messenger RNA splicing is carried out by a large ribonucleoprotein complex called the spliceosome. Despite the striking evolutionary conservation of the spliceosomal components and their functions, controversy persists about the relative importance of splicing in Saccharomyces cerevisiae-particularly given the paucity of intron-containing genes in yeast. Here we show that splicing of one pre-messenger RNA, SUS1, a component of the histone H2B ubiquitin protease machinery, is essential for establishing the proper modification state of chromatin. One protein complex that is intimately involved in pre-mRNA splicing, the yeast cap-binding complex, appears to be particularly important, as evidenced by its extensive and unique genetic interactions with enzymes that catalyze histone H2B ubiquitination. Microarray studies show that cap binding complex (CBC) deletion has a global effect on gene expression, and for approximately 20% of these genes, this effect is suppressed when ubiquitination of histone H2B is eliminated. Consistent with this finding of histone H2B dependent effects on gene expression, deletion of the yeast cap binding complex leads to overubiquitination of histone H2B. A key component of the ubiquitin-protease module of the SAGA complex, Sus1, is encoded by a gene that contains two introns and is misspliced when the CBC is deleted, leading to destabilization of the ubiquitin protease complex and defective modulation of cellular H2B levels. These data demonstrate that pre-mRNA splicing plays a critical role in histone H2B ubiquitination and that the CBC in particular helps to establish the proper state of chromatin and proper expression of genes that are regulated at the level of histone H2B ubiquitination.
Collapse
Affiliation(s)
- Munshi Azad Hossain
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | |
Collapse
|
187
|
He Y. Control of the transition to flowering by chromatin modifications. MOLECULAR PLANT 2009; 2:554-564. [PMID: 19825638 DOI: 10.1093/mp/ssp005] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The timing of floral transition is critical to reproductive success in angiosperms and is genetically controlled by a network of flowering genes. In Arabidopsis, expression of certain flowering genes is regulated by various chromatin modifications, among which are two central regulators of flowering, namely FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT). Recent studies have revealed that a number of chromatin-modifying components are involved in activation or repression of FLC expression. Activation of FLC expression is associated with various 'active' chromatin modifications including acetylation of core histone tails, histone H3 lysine-4 (H3K4) methylation, H2B monoubiquitination, H3 lysine-36 (H3K36) di- and tri-methylation and deposition of the histone variant H2A.Z, whereas various 'repressive' histone modifications are associated with FLC repression, including histone deacetylation, H3K4 demethylation, histone H3 lysine-9 (H3K9) and H3 lysine-27 (H3K27) methylation, and histone arginine methylation. In addition, recent studies have revealed that Polycomb group gene-mediated transcriptional-silencing mechanism not only represses FLC expression, but also directly represses FT expression. Regulation of FLC expression provides a paradigm for control of the expression of other developmental genes in plants through chromatin mechanisms.
Collapse
Affiliation(s)
- Yuehui He
- Department of Biological Sciences, National University of Singapore, Singapore 117543; Temasek Life Sciences Laboratory, Singapore 117604, Republic of Singapore.
| |
Collapse
|
188
|
Kim J, Roeder RG. Direct Bre1-Paf1 complex interactions and RING finger-independent Bre1-Rad6 interactions mediate histone H2B ubiquitylation in yeast. J Biol Chem 2009; 284:20582-92. [PMID: 19531475 DOI: 10.1074/jbc.m109.017442] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent yeast genetic studies have implicated the ubiquitin-conjugating enzyme and ubiquitin ligase functions of yRad6 and yBre1, respectively, in H2B ubiquitylation. However, there have been no corresponding biochemical analyses demonstrating intrinsic enzyme activities of yRad6 and yBre1 or related mechanistic details. Here, we describe a robust in vitro chromatin ubiquitylation assay that involves purified H2B ubiquitylation factors and natural nucleosomes. Our results indicate that yRad6 has an in vitro ability to nonspecifically ubiquitylate all core histones in the absence of an ubiquitin ligase but that yBre1 functions, through direct interactions with yRad6, to direct the ubiquitin conjugating activity of yRad6 toward the physiological H2B ubiquitylation site. Moreover, a yRad6 domain mapping analysis shows that an intact UBC domain is required for binding to yBre1, whereas the C-terminal acidic tail domain that is not required for a stable yBre1-yRad6 interaction is necessary for full enzyme activity of yRad6. We also find that, analogous to heteromeric complex formation by BRE1 paralogues in other organisms, yBre1 forms a homo-multimeric complex. Of special significance, our detailed biochemical analyses further show that the yBre1 RING finger domain is essential for H2B ubiquitylation but, surprisingly, dispensable for interaction of yBre1 with yRad6. In further support of the genetically identified requirement of the RNA polymerase II-associated yPaf1 complex for H2B ubiquitylation, protein interaction studies reveal that a purified yPaf1 complex directly and selectively interacts with yBre1 and thus serves to link the H2B ubiquitylation and general transcription machineries. These studies provide a more detailed mechanistic basis for H2B ubiquitylation in yeast.
Collapse
Affiliation(s)
- Jaehoon Kim
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | | |
Collapse
|
189
|
Yin H, Zhang X, Liu J, Wang Y, He J, Yang T, Hong X, Yang Q, Gong Z. Epigenetic regulation, somatic homologous recombination, and abscisic acid signaling are influenced by DNA polymerase epsilon mutation in Arabidopsis. THE PLANT CELL 2009; 21:386-402. [PMID: 19244142 PMCID: PMC2660612 DOI: 10.1105/tpc.108.061549] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 01/31/2009] [Accepted: 02/09/2009] [Indexed: 05/17/2023]
Abstract
Based on abscisic acid (ABA) inhibition of seed germination and seedling growth assays, we isolated an ABA overly sensitive mutant (abo4-1) caused by a mutation in the Arabidopsis thaliana POL2a/TILTED1(TIL1) gene encoding a catalytic subunit of DNA polymerase epsilon. The dominant, ABA-insensitive abi1-1 or abi2-1 mutations suppressed the ABA hypersensitivity of the abo4-1 mutant. The abo4/til1 mutation reactivated the expression of the silenced Athila retrotransposon transcriptional silent information (TSI) and the silenced 35S-NPTII in the ros1 mutant and increased the frequency of somatic homologous recombination (HR) approximately 60-fold. ABA upregulated the expression of TSI and increased HR in both the wild type and abo4-1. MEIOTIC RECOMBINATION11 and GAMMA RESPONSE1, both of which are required for HR and double-strand DNA break repair, are expressed at higher levels in abo4-1 and are enhanced by ABA, while KU70 was suppressed by ABA. abo4-1 mutant plants are sensitive to UV-B and methyl methanesulfonate and show constitutive expression of the G2/M-specific cyclin CycB1;1 in meristems. The abo4-1 plants were early flowering with lower expression of FLOWER LOCUS C and higher expression of FLOWER LOCUS T and changed histone modifications in the two loci. Our results suggest that ABO4/POL2a/TIL1 is involved in maintaining epigenetic states, HR, and ABA signaling in Arabidopsis.
Collapse
Affiliation(s)
- Haibo Yin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Schmitz RJ, Tamada Y, Doyle MR, Zhang X, Amasino RM. Histone H2B deubiquitination is required for transcriptional activation of FLOWERING LOCUS C and for proper control of flowering in Arabidopsis. PLANT PHYSIOLOGY 2009; 149:1196-204. [PMID: 19091875 PMCID: PMC2633843 DOI: 10.1104/pp.108.131508] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 12/07/2008] [Indexed: 05/18/2023]
Abstract
The spectrum of histone modifications at a given locus is a critical determinant for the correct output of gene expression. In Arabidopsis (Arabidopsis thaliana), many studies have examined the relationship between histone methylation and gene expression, but few studies exist on the relationship between other covalent histone modifications and gene expression. In this work, we describe the role of histone H2B deubiquitination in the activation of gene expression and the consequence of a perturbation of histone H2B deubiquitination in the timing of the floral transition in Arabidopsis. A mutation in a H2B deubiquitinase, UBIQUITIN-SPECIFIC PROTEASE26 (UBP26), results in an early-flowering phenotype. In the ubp26 mutant, mRNA levels of the floral repressor FLOWERING LOCUS C (FLC) and other related family members is decreased. Furthermore, this mutant accumulates H2B monoubiquitination, and has decreased levels of H3K36 trimethylation and increased levels of H3K27 trimethylation at the FLC locus. Thus, UBP26 is required for transcriptional activation of FLC through H2B deubiquitination and is consistent with a model in which deubiquitination is necessary for the accumulation of H3K36 trimethylation and the proper level of transcriptional activation.
Collapse
|
191
|
Grasser M, Kane CM, Merkle T, Melzer M, Emmersen J, Grasser KD. Transcript elongation factor TFIIS is involved in arabidopsis seed dormancy. J Mol Biol 2009; 386:598-611. [PMID: 19150360 DOI: 10.1016/j.jmb.2008.12.066] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 12/13/2008] [Accepted: 12/22/2008] [Indexed: 01/12/2023]
Abstract
Transcript elongation factor TFIIS promotes efficient transcription by RNA polymerase II, since it assists in bypassing blocks during mRNA synthesis. While yeast cells lacking TFIIS are viable, inactivation of mouse TFIIS causes embryonic lethality. Here, we have identified a protein encoded in the Arabidopsis genome that displays a marked sequence similarity to TFIIS of other organisms, primarily within domains II and III in the C-terminal part of the protein. TFIIS is widely expressed in Arabidopsis, and a green fluorescent protein-TFIIS fusion protein localises specifically to the cell nucleus. When expressed in yeast cells lacking the endogenous TFIIS, Arabidopsis TFIIS partially complements the sensitivity of mutant cells to the nucleotide analog 6-azauridine, which is a typical characteristic of transcript elongation factors. We have characterised Arabidopsis lines harbouring T-DNA insertions in the coding sequence of TFIIS. Plants homozygous for T-DNA insertions are viable, and genomewide transcript profiling revealed that compared to control plants, a relatively small number of genes are differentially expressed in mutant plants. TFIIS(-/-) plants display essentially normal development, but they flower slightly earlier than control plants and show clearly reduced seed dormancy. Plants with RNAi-mediated knockdown of TFIIS expression also are affected in seed dormancy. Therefore, TFIIS plays a critical role in Arabidopsis seed development.
Collapse
Affiliation(s)
- Marion Grasser
- Department of Life Sciences, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, Denmark
| | | | | | | | | | | |
Collapse
|