151
|
Alvarez S, Roy Choudhury S, Hicks LM, Pandey S. Quantitative Proteomics-Based Analysis Supports a Significant Role of GTG Proteins in Regulation of ABA Response in Arabidopsis Roots. J Proteome Res 2013; 12:1487-501. [DOI: 10.1021/pr301159u] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Sophie Alvarez
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis,
Missouri 63132, United States
| | - Swarup Roy Choudhury
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis,
Missouri 63132, United States
| | - Leslie M. Hicks
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis,
Missouri 63132, United States
| | - Sona Pandey
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis,
Missouri 63132, United States
| |
Collapse
|
152
|
Wuest SE, Schmid MW, Grossniklaus U. Cell-specific expression profiling of rare cell types as exemplified by its impact on our understanding of female gametophyte development. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:41-9. [PMID: 23276786 DOI: 10.1016/j.pbi.2012.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/03/2012] [Indexed: 05/20/2023]
Abstract
Expression profiling of single cells can yield insights into cell specification, cellular differentiation processes, and cell type-specific responses to environmental stimuli. Recent work has established excellent tools to perform genome-wide expression studies of individual cell types, even if the cells of interest occur at low frequency within an organ. We review the advances and impact of gene expression studies of rare cell types, as exemplified by recently gained insights into the development and function of the angiosperm female gametophyte. The detailed transcriptional characterization of different stages during female gametophyte development has significantly helped to improve our understanding of cellular specification or cell-cell communication processes. Next-generation sequencing approaches--used increasingly for expression profiling--will now allow for comparative approaches that focus on agriculturally, ecologically or evolutionarily relevant aspects of plant reproduction.
Collapse
Affiliation(s)
- Samuel E Wuest
- Institute of Evolutionary Biology and Environmental Studies & Zürich-Basel Plant Science Center, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | |
Collapse
|
153
|
Louis J, Shah J. Arabidopsis thaliana-Myzus persicae interaction: shaping the understanding of plant defense against phloem-feeding aphids. FRONTIERS IN PLANT SCIENCE 2013; 4:213. [PMID: 23847627 PMCID: PMC3696735 DOI: 10.3389/fpls.2013.00213] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/04/2013] [Indexed: 05/19/2023]
Abstract
The phloem provides a unique niche for several organisms. Aphids are a large group of Hemipteran insects that utilize stylets present in their mouthparts to pierce sieve elements and drink large volumes of phloem sap. In addition, many aphids also vector viral diseases. Myzus persicae, commonly known as the green peach aphid (GPA), is an important pest of a large variety of plants that includes Arabidopsis thaliana. This review summarizes recent studies that have exploited the compatible interaction between Arabidopsis and GPA to understand the molecular and physiological mechanisms utilized by plants to control aphid infestation, as well as genes and mechanisms that contribute to susceptibility. In addition, recent efforts to identify aphid-delivered elicitors of plant defenses and novel aphid salivary components that facilitate infestation are also discussed.
Collapse
Affiliation(s)
- Joe Louis
- Department of Entomology and Center for Chemical Ecology, The Pennsylvania State UniversityUniversity Park, PA, USA
| | - Jyoti Shah
- Department of Biological Sciences, University of North TexasDenton, TX, USA
- *Correspondence: Jyoti Shah, Department of Biological Sciences, University of North Texas, Life Sciences Building B, West Sycamore Street, Denton, TX 76201, USA e-mail:
| |
Collapse
|
154
|
Montillet JL, Leonhardt N, Mondy S, Tranchimand S, Rumeau D, Boudsocq M, Garcia AV, Douki T, Bigeard J, Laurière C, Chevalier A, Castresana C, Hirt H. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol 2013; 11:e1001513. [PMID: 23526882 DOI: 10.3410/f.717991704.793474995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/07/2013] [Indexed: 05/22/2023] Open
Abstract
Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity.
Collapse
Affiliation(s)
- Jean-Luc Montillet
- CEA Cadarache, Direction des Sciences du Vivant, Institut de Biologie Environnementale et Biotechnologie, Service de Biologie Végétale et de Microbiologie Environnementale, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Unité Mixte de Recherche 7265, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique/Aix-Marseille Université, Saint-Paul-lez-Durance, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid KAS, Sonnewald S, Sonnewald U, Kneitz S, Lachmann N, Mendel RR, Bittner F, Hetherington AM, Hedrich R. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol 2012; 23:53-7. [PMID: 23219726 DOI: 10.1016/j.cub.2012.11.022] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/18/2012] [Accepted: 11/09/2012] [Indexed: 01/16/2023]
Abstract
Stomata are pores on the leaf surface, bounded by two guard cells, which control the uptake of CO(2) for photosynthesis and the concomitant loss of water vapor. In 1898, Francis Darwin showed that stomata close in response to reduced atmospheric relative humidity (rh); however, our understanding of the signaling pathway responsible for coupling changes in rh to alterations in stomatal aperture is fragmentary. The results presented here highlight the primacy of abscisic acid (ABA) in the stomatal response to drying air. We show that guard cells possess the entire ABA biosynthesis pathway and that it appears upregulated by positive feedback by ABA. When wild-type Arabidopsis and the ABA-deficient mutant aba3-1 were exposed to reductions in rh, the aba3-1 mutant wilted, whereas the wild-type did not. However, when aba3-1 plants, in which ABA synthesis had been specifically rescued in guard cells, were challenged with dry air, they did not wilt. These data indicate that guard cell-autonomous ABA synthesis is required for and is sufficient for stomatal closure in response to low rh. Guard cell-autonomous ABA synthesis allows the plant to tailor leaf gas exchange exquisitely to suit the prevailing environmental conditions.
Collapse
Affiliation(s)
- Hubert Bauer
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Wuerzburg, 97082 Wuerzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Liebminger E, Grass J, Jez J, Neumann L, Altmann F, Strasser R. Myrosinases TGG1 and TGG2 from Arabidopsis thaliana contain exclusively oligomannosidic N-glycans. PHYTOCHEMISTRY 2012; 84:24-30. [PMID: 23009876 PMCID: PMC3494833 DOI: 10.1016/j.phytochem.2012.08.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 05/08/2023]
Abstract
In all eukaryotes N-glycosylation is the most prevalent protein modification of secretory and membrane proteins. Although the N-glycosylation capacity and the individual steps of the N-glycan processing pathway have been well studied in the model plant Arabidopsis thaliana, little attention has been paid to the characterization of the glycosylation status of individual proteins. We report here the structural analysis of all N-glycans present on the endogenous thioglucoside glucohydrolases (myrosinases) TGG1 and TGG2 from A. thaliana. All nine glycosylation sites of TGG1 and all four glycosylation sites of TGG2 are occupied by oligomannosidic structures with Man₅GlcNAc₂ as the major glycoform. Analysis of the oligomannosidic isomers from wild-type plants and mannose trimming deficient mutants by liquid chromatography with porous graphitic carbon and mass spectrometry revealed that the N-glycans from both myrosinases are processed by Golgi-located α-mannosidases.
Collapse
Affiliation(s)
- Eva Liebminger
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Josephine Grass
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Jakub Jez
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Laura Neumann
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
- Corresponding author. Tel.: +43 1 47654 6705; fax: +43 1 47654 6392.
| |
Collapse
|
157
|
Cominelli E, Conti L, Tonelli C, Galbiati M. Challenges and perspectives to improve crop drought and salinity tolerance. N Biotechnol 2012; 30:355-61. [PMID: 23165101 DOI: 10.1016/j.nbt.2012.11.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 11/05/2012] [Indexed: 11/29/2022]
Abstract
Drought and high salinity are two major abiotic stresses affecting crop productivity. Therefore, the development of crops better adapted to cope with these stresses represents a key goal to ensure global food security to an increasing world population. Although many genes involved in the response to these abiotic stresses have been extensively characterised and some stress tolerant plants developed, the success rate in producing stress-tolerant crops for field conditions has been thus far limited. In this review we discuss different factors hampering the successful transfer of beneficial genes from model species to crops, emphasizing some limitations in the phenotypic characterisation and definition of the stress tolerant plants developed so far. We also highlight some technological advances and different approaches that may help in developing cultivated stress tolerant plants.
Collapse
Affiliation(s)
- Eleonora Cominelli
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via E. Bassini 15, 20133 Milano, Italy
| | | | | | | |
Collapse
|
158
|
Champagne A, Rischer H, Oksman-Caldentey KM, Boutry M. In-depth proteome mining of culturedCatharanthus roseuscells identifies candidate proteins involved in the synthesis and transport of secondary metabolites. Proteomics 2012; 12:3536-47. [DOI: 10.1002/pmic.201200218] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 11/10/2022]
Affiliation(s)
- Antoine Champagne
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve; Belgium
| | | | | | - Marc Boutry
- Institut des Sciences de la Vie; Université catholique de Louvain; Louvain-la-Neuve; Belgium
| |
Collapse
|
159
|
Wang RS, Saadatpour A, Albert R. Boolean modeling in systems biology: an overview of methodology and applications. Phys Biol 2012; 9:055001. [DOI: 10.1088/1478-3975/9/5/055001] [Citation(s) in RCA: 293] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
160
|
Dai S, Chen S. Single-cell-type proteomics: toward a holistic understanding of plant function. Mol Cell Proteomics 2012; 11:1622-30. [PMID: 22982375 DOI: 10.1074/mcp.r112.021550] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multicellular organisms such as plants contain different types of cells with specialized functions. Analyzing the protein characteristics of each type of cell will not only reveal specific cell functions, but also enhance understanding of how an organism works. Most plant proteomics studies have focused on using tissues and organs containing a mixture of different cells. Recent single-cell-type proteomics efforts on pollen grains, guard cells, mesophyll cells, root hairs, and trichomes have shown utility. We expect that high resolution proteomic analyses will reveal novel functions in single cells. This review provides an overview of recent developments in plant single-cell-type proteomics. We discuss application of the approach for understanding important cell functions, and we consider the technical challenges of extending the approach to all plant cell types. Finally, we consider the integration of single-cell-type proteomics with transcriptomics and metabolomics with the goal of providing a holistic understanding of plant function.
Collapse
Affiliation(s)
- Shaojun Dai
- Department of Biology, Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | | |
Collapse
|
161
|
Engineering glucosinolates in plants: current knowledge and potential uses. Appl Biochem Biotechnol 2012; 168:1694-717. [PMID: 22983743 DOI: 10.1007/s12010-012-9890-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/31/2012] [Indexed: 01/19/2023]
Abstract
Glucosinolates (GSL) and their derivatives are well known for the characteristic roles they play in plant defense as signaling molecules and as bioactive compounds for human health. More than 130 GSLs have been reported so far, and most of them belong to the Brassicaceae family. Several enzymes and transcription factors involved in the GSL biosynthesis have been studied in the model plant, Arabidopsis, and in a few other Brassica crop species. Recent studies in GSL research have defined the regulation, distribution, and degradation of GSL biosynthetic pathways; however, the underlying mechanism behind transportation of GSLs in plants is still largely unknown. This review highlights the recent advances in the metabolic engineering of GSLs in plants and discusses their potential applications.
Collapse
|
162
|
Barkla BJ, Vera-Estrella R, Pantoja O. Protein profiling of epidermal bladder cells from the halophyte Mesembryanthemum crystallinum. Proteomics 2012; 12:2862-5. [PMID: 22848050 DOI: 10.1002/pmic.201200152] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 06/27/2012] [Accepted: 07/18/2012] [Indexed: 11/10/2022]
Abstract
Plant epidermal trichomes are as varied in morphology as they are in function. In the halophyte Mesembryanthemum crystallinum, specialized trichomes called epidermal bladder cells (EBC) line the surface of leaves and stems, and increase dramatically in size and volume upon plant salt-treatment. These cells have been proposed to have roles in plant defense and UV protection, but primarily in sodium sequestration and as water reservoirs. To gain further understanding into the roles of EBC, a cell-type-specific proteomics approach was taken in which precision single-cell sampling of cell sap from individual EBC was combined with shotgun peptide sequencing (LC-MS/MS). Identified proteins showed diverse biological functions and cellular locations, with a high representation of proteins involved in H(+)-transport, carbohydrate metabolism, and photosynthesis. The proteome of EBC provides insight into the roles of these cells in ion and water homeostasis and raises the possibility that they are photosynthetically active and functioning in Crassulacean acid metabolism.
Collapse
Affiliation(s)
- Bronwyn J Barkla
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | | | | |
Collapse
|
163
|
Robles P, Micol JL, Quesada V. Arabidopsis MDA1, a nuclear-encoded protein, functions in chloroplast development and abiotic stress responses. PLoS One 2012; 7:e42924. [PMID: 22905186 PMCID: PMC3414458 DOI: 10.1371/journal.pone.0042924] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/13/2012] [Indexed: 11/17/2022] Open
Abstract
Most chloroplast and mitochondrial proteins are encoded by nuclear genes, whose functions remain largely unknown because mutant alleles are lacking. A reverse genetics screen for mutations affecting the mitochondrial transcription termination factor (mTERF) family in Arabidopsis thaliana allowed us to identify 75 lines carrying T-DNA insertions. Two of them were homozygous for insertions in the At4g14605 gene, which we dubbed MDA1 (MTERF DEFECTIVE IN Arabidopsis1). The mda1 mutants exhibited altered chloroplast morphology and plant growth, and reduced pigmentation of cotyledons, leaves, stems and sepals. The mda1 mutations enhanced salt and osmotic stress tolerance and altered sugar responses during seedling establishment, possibly as a result of reduced ABA sensitivity. Loss of MDA1 function caused up-regulation of the RpoTp/SCA3 nuclear gene encoding a plastid RNA polymerase and modified the steady-state levels of chloroplast gene transcripts. Double mutant analyses indicated that MDA1 and the previously described mTERF genes SOLDAT10 and RUG2 act in different pathways. Our findings reveal a new role for mTERF proteins in the response to abiotic stress, probably through perturbed ABA retrograde signalling resulting from a disruption in chloroplast homeostasis.
Collapse
Affiliation(s)
- Pedro Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Spain
| |
Collapse
|
164
|
Bednarek P. Chemical warfare or modulators of defence responses - the function of secondary metabolites in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:407-14. [PMID: 22445190 DOI: 10.1016/j.pbi.2012.03.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 05/21/2023]
Abstract
In plants, a host's responses to an attempted infection include activation of various secondary metabolite pathways, some of which are specific for particular plant phylogenetic clades. Phytochemicals that represent respective end products in plant immunity have been stereotypically linked to antimicrobial properties. However, in many cases, owing to the lack of unequivocal evidence for direct antibiotic action in planta, alternative functions of secondary metabolites should be considered. Correspondingly, recent findings have identified novel, and rather unexpected, functions of phytochemicals in plant immunity that mediate regulatory pathways for conserved defence responses. It also seems likely that these conserved responses can be regulated by clade-specific phytochemicals.
Collapse
Affiliation(s)
- Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
165
|
Zhu M, Dai S, Zhu N, Booy A, Simons B, Yi S, Chen S. Methyl jasmonate responsive proteins in Brassica napus guard cells revealed by iTRAQ-based quantitative proteomics. J Proteome Res 2012; 11:3728-42. [PMID: 22639841 DOI: 10.1021/pr300213k] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stomata on leaf epidermis formed by pairs of guard cells control CO(2) intake and water transpiration, and respond to different environmental conditions. Stress-induced stomatal closure is mediated via an intricate hormone network in guard cells. Although methyl jasmonate (MeJA) has been intensively studied for its function in plant defense, the molecular mechanisms underlying its function in stomatal movement are not fully understood. Here we report the effects of MeJA on Brassica napus stomatal movement and H(2)O(2) production. Using the isobaric tags for relative and absolute quantitation (iTRAQ) approach, we have identified 84 MeJA-responsive proteins in B. napus guard cells. Most of the genes encoding these proteins contain jasmonate-responsive elements in the promoters, indicating that they are potentially regulated at the transcriptional level. Among the identified proteins, five protein changes after MeJA treatment were validated using Western blot analysis. The identification of the MeJA-responsive proteins has revealed interesting molecular mechanisms underlying MeJA function in guard cells, which include homeostasis of H(2)O(2) production and scavenging, signaling through calcium oscillation and protein (de)phosphorylation, gene transcription, protein modification, energy balance, osmoregulation, and cell shape modulation. The knowledge of the MeJA-responsive proteins has improved our understanding of MeJA signaling in stomatal movement, and it may be applied to crop engineering for enhanced yield and stress tolerance.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Department of Biology, Genetics Institute, and Plant Molecular & Cellular Biology Program, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Corrado G, Alagna F, Rocco M, Renzone G, Varricchio P, Coppola V, Coppola M, Garonna A, Baldoni L, Scaloni A, Rao R. Molecular interactions between the olive and the fruit fly Bactrocera oleae. BMC PLANT BIOLOGY 2012; 12:86. [PMID: 22694925 PMCID: PMC3733423 DOI: 10.1186/1471-2229-12-86] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/22/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND The fruit fly Bactrocera oleae is the primary biotic stressor of cultivated olives, causing direct and indirect damages that significantly reduce both the yield and the quality of olive oil. To study the olive-B. oleae interaction, we conducted transcriptomic and proteomic investigations of the molecular response of the drupe. The identifications of genes and proteins involved in the fruit response were performed using a Suppression Subtractive Hybridisation technique and a combined bi-dimensional electrophoresis/nanoLC-ESI-LIT-MS/MS approach, respectively. RESULTS We identified 196 ESTs and 26 protein spots as differentially expressed in olives with larval feeding tunnels. A bioinformatic analysis of the identified non-redundant EST and protein collection indicated that different molecular processes were affected, such as stress response, phytohormone signalling, transcriptional control and primary metabolism, and that a considerable proportion of the ESTs could not be classified. The altered expression of 20 transcripts was also analysed by real-time PCR, and the most striking differences were further confirmed in the fruit of a different olive variety. We also cloned the full-length coding sequences of two genes, Oe-chitinase I and Oe-PR27, and showed that these are wound-inducible genes and activated by B. oleae punctures. CONCLUSIONS This study represents the first report that reveals the molecular players and signalling pathways involved in the interaction between the olive fruit and its most damaging biotic stressor. Drupe response is complex, involving genes and proteins involved in photosynthesis as well as in the production of ROS, the activation of different stress response pathways and the production of compounds involved in direct defence against phytophagous larvae. Among the latter, trypsin inhibitors should play a major role in drupe resistance reaction.
Collapse
Affiliation(s)
- Giandomenico Corrado
- Dipartimento di Scienze del Suolo, Pianta, Ambiente e Produzioni Animali, Universita’ degli Studi di Napoli Federico II, Via Università 100, Portici, Napoli, 80055, Italy
| | - Fiammetta Alagna
- Istituto di Genetica Vegetale, Consiglio Nazionale delle Ricerche, Via della Madonna Alta 130, Perugia, 06128, Italy
| | - Mariapina Rocco
- Dipartimento di Scienze per la Biologia, la Geologia e l’Ambiente, Universita’ del Sannio, Via dei Mulini 59/A, Benevento, 82100, Italy
| | - Giovanni Renzone
- Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo, Consiglio Nazionale delle Ricerche, Via Argine 1085, Napoli, 80147, Italy
| | - Paola Varricchio
- Dipartimento di Scienze del Suolo, Pianta, Ambiente e Produzioni Animali, Universita’ degli Studi di Napoli Federico II, Via Università 100, Portici, Napoli, 80055, Italy
| | - Valentina Coppola
- Dipartimento di Scienze del Suolo, Pianta, Ambiente e Produzioni Animali, Universita’ degli Studi di Napoli Federico II, Via Università 100, Portici, Napoli, 80055, Italy
| | - Mariangela Coppola
- Dipartimento di Scienze del Suolo, Pianta, Ambiente e Produzioni Animali, Universita’ degli Studi di Napoli Federico II, Via Università 100, Portici, Napoli, 80055, Italy
| | - Antonio Garonna
- Dipartimento di Entomologia e Zoologia Agraria “F. Silvestri”, Universita’ degli Studi di Napoli Federico II, Via Università 100, Portici, 80055, Italy
| | - Luciana Baldoni
- Istituto di Genetica Vegetale, Consiglio Nazionale delle Ricerche, Via della Madonna Alta 130, Perugia, 06128, Italy
| | - Andrea Scaloni
- Istituto per il Sistema Produzione Animale in Ambiente Mediterraneo, Consiglio Nazionale delle Ricerche, Via Argine 1085, Napoli, 80147, Italy
| | - Rosa Rao
- Dipartimento di Scienze del Suolo, Pianta, Ambiente e Produzioni Animali, Universita’ degli Studi di Napoli Federico II, Via Università 100, Portici, Napoli, 80055, Italy
| |
Collapse
|
167
|
Petricka JJ, Schauer MA, Megraw M, Breakfield NW, Thompson JW, Georgiev S, Soderblom EJ, Ohler U, Moseley MA, Grossniklaus U, Benfey PN. The protein expression landscape of the Arabidopsis root. Proc Natl Acad Sci U S A 2012. [PMID: 22447775 DOI: 10.1073/pnas,0.1202546109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Abstract
Because proteins are the major functional components of cells, knowledge of their cellular localization is crucial to gaining an understanding of the biology of multicellular organisms. We have generated a protein expression map of the Arabidopsis root providing the identity and cell type-specific localization of nearly 2,000 proteins. Grouping proteins into functional categories revealed unique cellular functions and identified cell type-specific biomarkers. Cellular colocalization provided support for numerous protein-protein interactions. With a binary comparison, we found that RNA and protein expression profiles are weakly correlated. We then performed peak integration at cell type-specific resolution and found an improved correlation with transcriptome data using continuous values. We performed GeLC-MS/MS (in-gel tryptic digestion followed by liquid chromatography-tandem mass spectrometry) proteomic experiments on mutants with ectopic and no root hairs, providing complementary proteomic data. Finally, among our root hair-specific proteins we identified two unique regulators of root hair development.
Collapse
Affiliation(s)
- Jalean J Petricka
- Department of Biology, Duke Center for Systems Biology, and Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Okumoto S. Quantitative imaging using genetically encoded sensors for small molecules in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:108-17. [PMID: 22449046 DOI: 10.1111/j.1365-313x.2012.04910.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Quantitative imaging in live cells is a powerful method for monitoring the dynamics of biomolecules at an excellent spatio-temporal resolution. Such an approach, initially limited to a small number of substrates for which specific dyes were available, has become possible for a large number of biomolecules due to the development of genetically encoded, protein-based sensors. These sensors, which can be introduced into live cells through a transgenic approach, offer the benefits of quantitative imaging, with an extra advantage of non-invasiveness. In the past decade there has been a drastic expansion in the number of biomolecules for which genetically encoded sensors are available, and the functional properties of existing sensors are being improved at a dramatic pace. A number of technical improvements have now made the application of genetically encoded sensors in plants rather straightforward, and some of the sensors such as calcium indicator proteins have become standard analytical tools in many plant laboratories. The use of a handful of probes has already revealed an amazing specificity of cellular biomolecule dynamics in plants, which leads us to believe that there are many more discoveries to be made using genetically encoded sensors. In this short review, we will summarize the progress made in the past 15 years in the development in genetically encoded sensors, and highlight significant discoveries made in plant biology.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
169
|
Li S, Pandey S, Gookin TE, Zhao Z, Wilson L, Assmann SM. Gene-sharing networks reveal organizing principles of transcriptomes in Arabidopsis and other multicellular organisms. THE PLANT CELL 2012; 24:1362-78. [PMID: 22517316 PMCID: PMC3398552 DOI: 10.1105/tpc.111.094748] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 02/29/2012] [Accepted: 03/16/2012] [Indexed: 05/18/2023]
Abstract
Understanding tissue-related gene expression patterns can provide important insights into gene, tissue, and organ function. Transcriptome analyses often have focused on housekeeping or tissue-specific genes or on gene coexpression. However, by analyzing thousands of single-gene expression distributions in multiple tissues of Arabidopsis thaliana, rice (Oryza sativa), human (Homo sapiens), and mouse (Mus musculus), we found that these organisms primarily operate by gene sharing, a phenomenon where, in each organism, most genes exhibit a high expression level in a few key tissues. We designed an analytical pipeline to characterize this phenomenon and then derived Arabidopsis and human gene-sharing networks, in which tissues are connected solely based on the extent of shared preferentially expressed genes. The results show that tissues or cell types from the same organ system tend to group together to form network modules. Tissues that are in consecutive developmental stages or have common physiological functions are connected in these networks, revealing the importance of shared preferentially expressed genes in conferring specialized functions of each tissue type. The networks provide predictive power for each tissue type regarding gene functions of both known and heretofore unknown genes, as shown by the identification of four new genes with functions in guard cell and abscisic acid response. We provide a Web interface that enables, based on the extent of gene sharing, both prediction of tissue-related functions for any Arabidopsis gene of interest and predictions concerning the relatedness of tissues. Common gene-sharing patterns observed in the four model organisms suggest that gene sharing evolved as a fundamental organizing principle of gene expression in diverse multicellular eukaryotes.
Collapse
Affiliation(s)
- Song Li
- Biology Department, Pensylvania State University, University Park, Pensylvania 16802, USA.
| | | | | | | | | | | |
Collapse
|
170
|
Liberman LM, Sozzani R, Benfey PN. Integrative systems biology: an attempt to describe a simple weed. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:162-7. [PMID: 22277598 PMCID: PMC3435099 DOI: 10.1016/j.pbi.2012.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/22/2011] [Accepted: 01/03/2012] [Indexed: 05/19/2023]
Abstract
Genome-scale studies hold great promise for revealing novel plant biology. Because of the complexity of these techniques, numerous considerations need to be made before embarking on a study. Here we focus on the Arabidopsis model system because of the wealth of available genome-scale data. Many approaches are available that provide genome-scale information regarding the state of a given organism (e.g. genomics, epigenomics, transcriptomics, proteomics, metabolomics interactomics, ionomics, phenomics, etc.). Integration of all of these types of data will be necessary for a comprehensive description of Arabidopsis. In this review we propose that 'triangulation' among transcriptomics, proteomics and metabolomics is a meaningful approach for beginning this integrative analysis and uncovering a systems level perspective of Arabidopsis biology.
Collapse
Affiliation(s)
- Louisa M Liberman
- Department of Biology and Duke Center for Systems Biology, Duke University, Durham, NC, USA
| | | | | |
Collapse
|
171
|
Abstract
Because proteins are the major functional components of cells, knowledge of their cellular localization is crucial to gaining an understanding of the biology of multicellular organisms. We have generated a protein expression map of the Arabidopsis root providing the identity and cell type-specific localization of nearly 2,000 proteins. Grouping proteins into functional categories revealed unique cellular functions and identified cell type-specific biomarkers. Cellular colocalization provided support for numerous protein-protein interactions. With a binary comparison, we found that RNA and protein expression profiles are weakly correlated. We then performed peak integration at cell type-specific resolution and found an improved correlation with transcriptome data using continuous values. We performed GeLC-MS/MS (in-gel tryptic digestion followed by liquid chromatography-tandem mass spectrometry) proteomic experiments on mutants with ectopic and no root hairs, providing complementary proteomic data. Finally, among our root hair-specific proteins we identified two unique regulators of root hair development.
Collapse
|
172
|
The stomata frontline of plant interaction with the environment-perspectives from hormone regulation. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1193-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
173
|
Li W, Cui X, Meng Z, Huang X, Xie Q, Wu H, Jin H, Zhang D, Liang W. Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses. PLANT PHYSIOLOGY 2012; 158:1279-92. [PMID: 22247272 PMCID: PMC3291255 DOI: 10.1104/pp.111.188789] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/12/2012] [Indexed: 05/18/2023]
Abstract
The accumulation of a number of small RNAs in plants is affected by abscisic acid (ABA) and abiotic stresses, but the underlying mechanisms are poorly understood. The miR168-mediated feedback regulatory loop regulates ARGONAUTE1 (AGO1) homeostasis, which is crucial for gene expression modulation and plant development. Here, we reveal a transcriptional regulatory mechanism by which MIR168 controls AGO1 homeostasis during ABA treatment and abiotic stress responses in Arabidopsis (Arabidopsis thaliana). Plants overexpressing MIR168a and the AGO1 loss-of-function mutant ago1-27 display ABA hypersensitivity and drought tolerance, while the mir168a-2 mutant shows ABA hyposensitivity and drought hypersensitivity. Both the precursor and mature miR168 were induced under ABA and several abiotic stress treatments, but no obvious decrease for the target of miR168, AGO1, was shown under the same conditions. However, promoter activity analysis indicated that AGO1 transcription activity was increased under ABA and drought treatments, suggesting that transcriptional elevation of MIR168a is required for maintaining a stable AGO1 transcript level during the stress response. Furthermore, we showed both in vitro and in vivo that the transcription of MIR168a is directly regulated by four abscisic acid-responsive element (ABRE) binding factors, which bind to the ABRE cis-element within the MIR168a promoter. This ABRE motif is also found in the promoter of MIR168a homologs in diverse plant species. Our findings suggest that transcriptional regulation of miR168 and posttranscriptional control of AGO1 homeostasis may play an important and conserved role in stress response and signal transduction in plants.
Collapse
|
174
|
Penfield S, Clements S, Bailey KJ, Gilday AD, Leegood RC, Gray JE, Graham IA. Expression and manipulation of phosphoenolpyruvate carboxykinase 1 identifies a role for malate metabolism in stomatal closure. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:679-88. [PMID: 22007864 DOI: 10.1111/j.1365-313x.2011.04822.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Malate, along with potassium and chloride ions, is an important solute for maintaining turgor pressure during stomatal opening. Although malate is exported from guard cells during stomatal closure, there is controversy as to whether malate is also metabolised. We provide evidence that phosphoenolpyruvate carboxykinase (PEPCK), an enzyme involved in malate metabolism and gluconeogenesis, is necessary for full stomatal closure in the dark. Analysis of the Arabidopsis PCK1 gene promoter indicated that this PEPCK isoform is specifically expressed in guard cells and trichomes of the leaf. Spatially distinct promoter elements were found to be required for post-germinative, vascular expression and guard cell/trichome expression of PCK1. We show that pck1 mutant plants have reduced drought tolerance, and show increased stomatal conductance and wider stomatal apertures compared with the wild type. During light-dark transients the PEPCK mutant plants show both increased overall stomatal conductance and less responsiveness of the stomata to darkness than the wild type, indicating that stomata get 'jammed' in the open position. These results show that malate metabolism is important during dark-induced stomatal closure and that PEPCK is involved in this process.
Collapse
Affiliation(s)
- Steven Penfield
- Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York YO10 5DD, UK
| | | | | | | | | | | | | |
Collapse
|
175
|
Kliebenstein DJ. Plant defense compounds: systems approaches to metabolic analysis. ANNUAL REVIEW OF PHYTOPATHOLOGY 2012; 50:155-73. [PMID: 22726120 DOI: 10.1146/annurev-phyto-081211-172950] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Systems biology attempts to answer biological questions by integrating across diverse genomic data sets. With the increasing ability to conduct genomics experiments, this integrative approach is being rapidly applied across numerous biological research communities. One of these research communities investigates how plants utilize secondary metabolites or defense metabolites to defend against attack by pathogens and other biotic organisms. This use of systems biology to integrate across transcriptomics, metabolomics, and genomics is significantly enhancing the rate of discovery of genes, metabolites, and bioactivities for plant defense compounds as well as extending our knowledge of how these compounds are regulated. Plant defense compounds are also providing a unique proving platform to develop new approaches that enhance the ability to conduct systems biology with existing and previously unforseen genomics data sets. This review attempts to illustrate both how systems biology is helping the study of plant defense compounds and vice versa.
Collapse
Affiliation(s)
- Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616, USA.
| |
Collapse
|
176
|
Kim TH. Plant stress surveillance monitored by ABA and disease signaling interactions. Mol Cells 2012; 33:1-7. [PMID: 22314325 PMCID: PMC3887741 DOI: 10.1007/s10059-012-2299-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 01/19/2012] [Indexed: 01/13/2023] Open
Abstract
Abiotic and biotic stresses are the major factors that negatively impact plant growth. In response to abiotic environmental stresses such as drought, plants generate resistance responses through abscisic acid (ABA) signal transduction. In addition to the major role of ABA in abiotic stress signaling, ABA signaling was reported to downregulate biotic stress signaling. Conversely recent findings provide evidence that initial activation of plant immune signaling inhibits subsequent ABA signal transduction. Stimulation of effector-triggered disease response can interfere with ABA signal transduction via modulation of internal calcium-dependent signaling pathways. This review overviews the interactions of abiotic and biotic stress signal transduction and the mechanism through which stress surveillance system operates to generate the most efficient resistant traits against various stress condition.
Collapse
Affiliation(s)
- Tae-Houn Kim
- PrePharmMed/Health Functional Biomaterials, Duksung Women's University, Seoul 132-714, Korea.
| |
Collapse
|
177
|
Liu Y. Roles of mitogen-activated protein kinase cascades in ABA signaling. PLANT CELL REPORTS 2012; 31:1-12. [PMID: 21870109 DOI: 10.1007/s00299-011-1130-y] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 07/23/2011] [Accepted: 07/23/2011] [Indexed: 05/06/2023]
Abstract
Abscisic acid (ABA) is a universal hormone in higher plants and plays a major role in various aspects of plant stress, growth, and development. Mitogen-activated protein kinase (MAPK) cascades are key signaling modules for responding to various extracellular stimuli in plants. The available data suggest that MAPK cascades are involved in some ABA responses, including antioxidant defense, guard cell signaling, and seed germination. Some MAPK phosphatases have also been demonstrated to be implicated in ABA responses. The goal of this review is to piece together the findings concerning MAPK cascades in ABA signaling. Questions and further perspectives of the roles played by MAPK cascades in ABA signaling are also furnished.
Collapse
Affiliation(s)
- Yukun Liu
- Key Laboratory for Forest Resources Conservation and Use in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, Yunnan, China.
| |
Collapse
|
178
|
Aryal UK, Krochko JE, Ross ARS. Identification of phosphoproteins in Arabidopsis thaliana leaves using polyethylene glycol fractionation, immobilized metal-ion affinity chromatography, two-dimensional gel electrophoresis and mass spectrometry. J Proteome Res 2011; 11:425-37. [PMID: 22092075 DOI: 10.1021/pr200917t] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reversible protein phosphorylation is a key regulatory mechanism in cells. Identification and characterization of phosphoproteins requires specialized enrichment methods, due to the relatively low abundance of these proteins, and is further complicated in plants by the high abundance of Rubisco in green tissues. We present a novel method for plant phosphoproteome analysis that depletes Rubisco using polyethylene glycol fractionation and utilizes immobilized metal-ion affinity chromatography to enrich phosphoproteins. Subsequent protein separation by one- and two-dimensional gel electrophoresis is further improved by extracting the PEG-fractionated protein samples with SDS/phenol and methanol/chloroform to remove interfering compounds. Using this approach, we identified 132 phosphorylated proteins in a partial Arabidopsis leaf extract. These proteins are involved in a range of biological processes, including CO(2) fixation, protein assembly and folding, stress response, redox regulation, and cellular metabolism. Both large and small subunits of Rubisco were phosphorylated at multiple sites, and depletion of Rubisco enhanced detection of less abundant phosphoproteins, including those associated with state transitions between photosystems I and II. The discovery of a phosphorylated form of AtGRP7, a self-regulating RNA-binding protein that affects floral transition, as well as several previously uncharacterized ribosomal proteins confirm the utility of this approach for phosphoproteome analysis and its potential to increase our understanding of growth and development in plants.
Collapse
Affiliation(s)
- Uma K Aryal
- Plant Biotechnology Institute, National Research Council, 110 Gymnasium Place, Saskatoon, Saskatchewan, Canada S7N 0W9.
| | | | | |
Collapse
|
179
|
Shi S, Chen W, Sun W. Comparative proteomic analysis of the Arabidopsis cbl1 mutant in response to salt stress. Proteomics 2011; 11:4712-25. [DOI: 10.1002/pmic.201100042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 09/30/2011] [Accepted: 10/03/2011] [Indexed: 01/20/2023]
|
180
|
Cominelli E, Galbiati M, Albertini A, Fornara F, Conti L, Coupland G, Tonelli C. DOF-binding sites additively contribute to guard cell-specificity of AtMYB60 promoter. BMC PLANT BIOLOGY 2011; 11:162. [PMID: 22088138 PMCID: PMC3248575 DOI: 10.1186/1471-2229-11-162] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/16/2011] [Indexed: 05/18/2023]
Abstract
BACKGROUND We previously demonstrated that the Arabidopsis thaliana AtMYB60 protein is an R2R3MYB transcription factor required for stomatal opening. AtMYB60 is specifically expressed in guard cells and down-regulated at the transcriptional levels by the phytohormone ABA. RESULTS To investigate the molecular mechanisms governing AtMYB60 expression, its promoter was dissected through deletion and mutagenesis analyses. By studying different versions of AtMYB60 promoter::GUS reporter fusions in transgenic plants we were able to demonstrate a modular organization for the AtMYB60 promoter. Particularly we defined: a minimal promoter sufficient to confer guard cell-specific activity to the reporter gene; the distinct roles of different DOF-binding sites organised in a cluster in the minimal promoter in determining guard cell-specific expression; the promoter regions responsible for the enhancement of activity in guard cells; a promoter region responsible for the negative transcriptional regulation by ABA. Moreover from the analysis of single and multiple mutants we could rule out the involvement of a group of DOF proteins, known as CDFs, already characterised for their involvement in flowering time, in the regulation of AtMYB60 expression. CONCLUSIONS These findings shed light on the regulation of gene expression in guard cells and provide new promoter modules as useful tools for manipulating gene expression in guard cells, both for physiological studies and future biotechnological applications.
Collapse
Affiliation(s)
- Eleonora Cominelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
- Istituto di Biologia e Biotecnologia Agraria, CNR, Milano, Italy
| | - Massimo Galbiati
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
- Fondazione Filarete, Milano, Italy
| | - Alessandra Albertini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Fabio Fornara
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Dipartimento di Biologia, Università degli Studi di Milano, Milano, Italy
| | - Lucio Conti
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
- Fondazione Filarete, Milano, Italy
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Chiara Tonelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
181
|
Khokon MAR, Jahan MS, Rahman T, Hossain MA, Muroyama D, Minami I, Munemasa S, Mori IC, Nakamura Y, Murata Y. Allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis. PLANT, CELL & ENVIRONMENT 2011; 34:1900-6. [PMID: 21711355 DOI: 10.1111/j.1365-3040.2011.02385.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Isothiocyanates (ITCs) are degradation products of glucosinolates in crucifer plants and have repellent effect on insects, pathogens and herbivores. In this study, we report that exogenously applied allyl isothiocyanate (AITC) induced stomatal closure in Arabidopsis via production of reactive oxygen species (ROS) and nitric oxide (NO), and elevation of cytosolic Ca(2+) . AITC-induced stomatal closures were partially inhibited by an inhibitor of NADPH oxidase and completely inhibited by glutathione monoethyl ester (GSHmee). AITC-induced stomatal closure and ROS production were examined in abscisic acid (ABA) deficient mutant aba2-2 and methyl jasmonate (MeJA)-deficient mutant aos to elucidate involvement of endogenous ABA and MeJA. Genetic evidences have demonstrated that AITC-induced stomatal closure required MeJA priming but not ABA priming. These results raise the possibility that crucifer plants produce ITCs to induce stomatal closure, leading to suppression of water loss and invasion of fungi through stomata.
Collapse
Affiliation(s)
- Md Atiqur Rahman Khokon
- Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Ahuja I, Borgen BH, Hansen M, Honne BI, Müller C, Rohloff J, Rossiter JT, Bones AM. Oilseed rape seeds with ablated defence cells of the glucosinolate-myrosinase system. Production and characteristics of double haploid MINELESS plants of Brassica napus L. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4975-93. [PMID: 21778185 PMCID: PMC3193006 DOI: 10.1093/jxb/err195] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 05/25/2023]
Abstract
Oilseed rape and other crop plants of the family Brassicaceae contain a unique defence system known as the glucosinolate-myrosinase system or the 'mustard oil bomb'. The 'mustard oil bomb' which includes myrosinase and glucosinolates is triggered by abiotic and biotic stress, resulting in the formation of toxic products such as nitriles and isothiocyanates. Myrosinase is present in specialist cells known as 'myrosin cells' and can also be known as toxic mines. The myrosin cell idioblasts of Brassica napus were genetically reprogrammed to undergo controlled cell death (ablation) during seed development. These myrosin cell-free plants have been named MINELESS as they lack toxic mines. This has led to the production of oilseed rape with a significant reduction both in myrosinase levels and in the hydrolysis of glucosinolates. Even though the myrosinase activity in MINELESS was very low compared with the wild type, variation was observed. This variability was overcome by producing homozygous seeds. A microspore culture technique involving non-fertile haploid MINELESS plants was developed and these plants were treated with colchicine to produce double haploid MINELESS plants with full fertility. Double haploid MINELESS plants had significantly reduced myrosinase levels and glucosinolate hydrolysis products. Wild-type and MINELESS plants exhibited significant differences in growth parameters such as plant height, leaf traits, matter accumulation, and yield parameters. The growth and developmental pattern of MINELESS plants was relatively slow compared with the wild type. The characteristics of the pure double haploid MINELESS plant are described and its importance for future biochemical, agricultural, dietary, functional genomics, and plant defence studies is discussed.
Collapse
Affiliation(s)
- Ishita Ahuja
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, N-7491 Trondheim, Norway
| | - Birgit Hafeld Borgen
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, N-7491 Trondheim, Norway
| | - Magnor Hansen
- Department of Plant and Environmental Sciences, Norwegian University of Life Sciences, Ås Norway
| | - Bjørn Ivar Honne
- Bioforsk Div. Grassland and Landscape, Kvithamar, N-7500 Stjørdal, Norway
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | - Jens Rohloff
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, N-7491 Trondheim, Norway
| | - John Trevor Rossiter
- Division of Biology, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology, Realfagbygget, N-7491 Trondheim, Norway
| |
Collapse
|
183
|
Zhao Z, Assmann SM. The glycolytic enzyme, phosphoglycerate mutase, has critical roles in stomatal movement, vegetative growth, and pollen production in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5179-89. [PMID: 21813794 PMCID: PMC3193020 DOI: 10.1093/jxb/err223] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/08/2011] [Accepted: 06/21/2011] [Indexed: 05/18/2023]
Abstract
Stomatal movements require massive changes in guard cell osmotic content, and both stomatal opening and stomatal closure have been shown to be energy-requiring processes. A possible role for glycolysis in contributing to the energetic, reducing requirements, or signalling processes regulating stomatal movements has not been investigated previously. Glycolysis, oxidization of glucose to pyruvate, is a central metabolic pathway and yields a net gain of 2 ATP and 2 NADH. 2,3-biphosphoglycerate-independent phosphoglycerate mutase (iPGAM) is a key enzymatic activity in glycolysis and catalyses the reversible interconversion of 3-phosphoglycerate to 2-phosphoglycerate. To investigate functions of iPGAMs and glycolysis in stomatal function and plant growth, Arabidopsis insertional mutants in At1g09780 and At3g08590, both of which have been annotated as iPGAMs on the basis of sequence homology, were identified and characterized. While single mutants were indistinguishable from the wild type in all plant phenotypes assayed, double mutants had no detectable iPGAM activity and showed defects in blue light-, abscisic acid-, and low CO(2)-regulated stomatal movements. Vegetative plant growth was severely impaired in the double mutants and pollen was not produced. The data demonstrate that iPGAMs and glycolytic activity are critical for guard cell function and fertility in Arabidopsis.
Collapse
|
184
|
Winde I, Wittstock U. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. PHYTOCHEMISTRY 2011; 72:1566-75. [PMID: 21316065 DOI: 10.1016/j.phytochem.2011.01.016] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/03/2011] [Accepted: 01/12/2011] [Indexed: 05/18/2023]
Abstract
The glucosinolate-myrosinase system found in plants of the Brassicales order is one of the best studied plant chemical defenses. Glucosinolates and their hydrolytic enzymes, myrosinases, are stored in separate compartments in the intact plant tissue. Upon tissue disruption, bioactivation of glucosinolates is initiated, i.e. myrosinases get access to their glucosinolate substrates, and glucosinolate hydrolysis results in the formation of toxic isothiocyanates and other biologically active products. The defensive function of the glucosinolate-myrosinase system has been demonstrated in a variety of studies with different insect herbivores. However, a number of generalist as well as specialist herbivores uses glucosinolate-containing plants as hosts causing large agronomical losses in oil seed rape and other crops of the Brassicaceae. While our knowledge of counteradaptations in generalist insect herbivores is still very limited, considerable progress has been made in understanding how specialist insect herbivores overcome the glucosinolate-myrosinase system and even exploit it for their own defense. All mechanisms of counteradaptation identified to date in insect herbivores specialized on glucosinolate-containing plants ensure that glucosinolate breakdown to toxic isothiocyanates is avoided. This is accomplished in many different ways including avoidance of cell disruption, rapid absorption of intact glucosinolates, rapid metabolic conversion of glucosinolates to harmless compounds that are not substrates for myrosinases, and diversion of plant myrosinase-catalyzed glucosinolate hydrolysis. One of these counteradaptations, the nitrile-specifier protein identified in Pierid species, has been used to demonstrate mechanisms of coevolution of plants and their insect herbivores.
Collapse
Affiliation(s)
- Inis Winde
- Institut für Pharmazeutische Biologie, Technische Universität Braunschweig, Mendelssohnstr. 1, D-38106 Braunschweig, Germany
| | | |
Collapse
|
185
|
Hermosa R, Botella L, Montero-Barrientos M, Alonso-Ramírez A, Arbona V, Gómez-Cadenas A, Monte E, Nicolás C. Biotechnological applications of the gene transfer from the beneficial fungus Trichoderma harzianum spp. to plants. PLANT SIGNALING & BEHAVIOR 2011; 6:1235-1236. [PMID: 21772122 PMCID: PMC3260732 DOI: 10.4161/psb.6.8.16362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/06/2011] [Indexed: 05/31/2023]
Abstract
Alternative and ecological strategies are necessary and demanded for disease management in order to reduce the use of pesticides in agriculture. Thus, the use of biological control agents such as plant growth-promoting rhizobacteria (PGPR) or several strains of the beneficial fungus Trichoderma spp. to combat plant diseases is the basis of biocontrol of plant pathogens and is a good approach to reach this healthy and environmentally adequate objective.
Collapse
Affiliation(s)
- Rosa Hermosa
- Departamento de Microbiología y Genética; Facultad de Farmacia; Campus de Villamayor; Salamanca, Spain
| | - Leticia Botella
- Departamento de Fisiología Vegetal; Centro Hispano-Luso de Investigaciones Agrarias (CIALE); Facultad de Biología; Campus de Villamayor; Salamanca, Spain
| | - Marta Montero-Barrientos
- Departamento de Microbiología y Genética; Facultad de Farmacia; Campus de Villamayor; Salamanca, Spain
| | - Ana Alonso-Ramírez
- Departamento de Fisiología Vegetal; Centro Hispano-Luso de Investigaciones Agrarias (CIALE); Facultad de Biología; Campus de Villamayor; Salamanca, Spain
| | - Vicent Arbona
- Departamento de Ciencias Agrarias y del Medio Natural; Universidad Jaume I; Castellón, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Ciencias Agrarias y del Medio Natural; Universidad Jaume I; Castellón, Spain
| | - Enrique Monte
- Departamento de Microbiología y Genética; Facultad de Farmacia; Campus de Villamayor; Salamanca, Spain
| | - Carlos Nicolás
- Departamento de Fisiología Vegetal; Centro Hispano-Luso de Investigaciones Agrarias (CIALE); Facultad de Biología; Campus de Villamayor; Salamanca, Spain
| |
Collapse
|
186
|
Hermosa R, Botella L, Keck E, Jiménez JÁ, Montero-Barrientos M, Arbona V, Gómez-Cadenas A, Monte E, Nicolás C. The overexpression in Arabidopsis thaliana of a Trichoderma harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1295-1302. [PMID: 21466906 DOI: 10.1016/j.jplph.2011.01.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 12/21/2010] [Accepted: 01/10/2011] [Indexed: 05/30/2023]
Abstract
Using the TrichoEST database, generated in a previous functional genomics project from the beneficial filamentous fungus Trichoderma harzianum, a gene named Thkel1, which codes for a putative kelch-repeat protein, was isolated and characterized. Silencing of this gene in T. harzianum leads to a reduction of glucosidase activity and mycelial growth under abiotic stress conditions. Expression of this gene in Arabidopsis enhances plant tolerance to salt and osmotic stresses, accompanied by an increase in glucosidase activity and a reduction of abscisic acid levels compared to those observed in wild-type plants. Data presented throughout this article suggest the high value of T. harzianum as a source of genes able to facilitate the achievement of producing plants resistant to abiotic stresses without alteration of their phenotype.
Collapse
Affiliation(s)
- Rosa Hermosa
- Departamento de Microbiología y Genética, Centro Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Farmacia, Universidad de Salamanca, C/Río Duero 12, Campus de Villamayor, 37185 Salamanca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Böhmer M, Schroeder JI. Quantitative transcriptomic analysis of abscisic acid-induced and reactive oxygen species-dependent expression changes and proteomic profiling in Arabidopsis suspension cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:105-18. [PMID: 21426425 PMCID: PMC3125488 DOI: 10.1111/j.1365-313x.2011.04579.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Early rapid changes in response to the phytohormone abscisic acid (ABA) have been observed at the transcript level, but little is known how these transcript changes translate to changes in protein abundance under the same conditions. Here we have performed a global quantitative analysis of transcript and protein changes in Arabidopsis suspension cells in response to ABA using microarrays and quantitative proteomics. In summary, 3494 transcripts and 50 proteins were significantly regulated by ABA over a treatment period of 20-24 h. Abscisic acid also caused a rapid and strong increase in production of extracellular reactive oxygen species (ROS) with an average half-rise time of 33 sec. A subset of ABA-regulated transcripts were differentially regulated in the presence of the ROS scavenger dimethylthiourea (DMTU) as compared with ABA alone, suggesting a role for ROS in the regulation of these ABA-induced genes. Transcript changes showed an overall poor correlation to protein changes (r = 0.66). Only a subset of genes was regulated at the transcript and protein level, including known ABA marker genes. We furthermore identified ABA regulation of proteins that function in a branch of glucosinolate catabolism previously not associated with ABA signaling. The discovery of genes that were differentially regulated at the transcript and at the protein level emphasizes the strength of our combined approach. In summary, our dataset not only expands previous studies on gene and protein regulation in response to ABA, but rather uncovers unique aspects of the ABA regulon and gives rise to additional mechanisms regulated by ABA.
Collapse
Affiliation(s)
- Maik Böhmer
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0116, USA.
| | | |
Collapse
|
188
|
Chen Y, Pang Q, Dai S, Wang Y, Chen S, Yan X. Proteomic identification of differentially expressed proteins in Arabidopsis in response to methyl jasmonate. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:995-1008. [PMID: 21377756 DOI: 10.1016/j.jplph.2011.01.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 05/25/2023]
Abstract
Jasmonates (JAs) are the well characterized fatty acid-derived cyclopentanone signals involved in the plant response to biotic and abiotic stresses. JAs have been shown to regulate many aspects of plant metabolism, including glucosinolate biosynthesis. Glucosinolates are natural plant products that function in defense against herbivores and pathogens. In this study, we applied a proteomic approach to gain insight into the physiological processes, including glucosinolate metabolism, in response to methyl jasmonate (MeJA). We identified 194 differentially expressed protein spots that contained proteins that participated in a wide range of physiological processes. Functional classification analysis showed that photosynthesis and carbohydrate anabolism were repressed after MeJA treatment, while carbohydrate catabolism was up-regulated. Additionally, proteins related to the JA biosynthesis pathway, stress and defense, and secondary metabolism were up-regulated. Among the differentially expressed proteins, many were involved in oxidative tolerance. The results indicate that MeJA elicited a defense response at the proteome level through a mechanism of redirecting growth-related metabolism to defense-related metabolism.
Collapse
Affiliation(s)
- Yazhou Chen
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | | | | | | | | | | |
Collapse
|
189
|
Munemasa S, Mori IC, Murata Y. Methyl jasmonate signaling and signal crosstalk between methyl jasmonate and abscisic acid in guard cells. PLANT SIGNALING & BEHAVIOR 2011; 6:939-41. [PMID: 21681023 PMCID: PMC3257766 DOI: 10.4161/psb.6.7.15439] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 03/11/2011] [Indexed: 05/18/2023]
Abstract
Plants tightly control stomatal aperture in response to various environmental changes. A drought-inducible phytohormone, abscisic acid (ABA), triggers stomatal closure and ABA signaling pathway in guard cells has been well studied. Similar to ABA, methyl jasmonate (MeJA) induces stomatal closure in various plant species but MeJA signaling pathway is still far from clear. Recently we found that Arabidopsis calcium dependent protein kinase CPK6 functions as a positive regulator in guard cell MeJA signaling and provided new insights into cytosolic Ca2+-dependent MeJA signaling. Here we discuss the MeJA signaling and also signal crosstalk between MeJA and ABA pathways in guard cells.
Collapse
Affiliation(s)
- Shintaro Munemasa
- The Graduate School of Natural Science and Technology; Okayama University; Tsushima-Naka, Okayama Japan
| | - Izumi C Mori
- Institute for Plant Science and Resources; Okayama University; Kurashiki, Okayama Japan
| | - Yoshiyuki Murata
- The Graduate School of Natural Science and Technology; Okayama University; Tsushima-Naka, Okayama Japan
| |
Collapse
|
190
|
Mori IC, Murata Y. ABA signaling in stomatal guard cells: lessons from Commelina and Vicia. JOURNAL OF PLANT RESEARCH 2011; 124:477-87. [PMID: 21706139 DOI: 10.1007/s10265-011-0435-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 05/10/2011] [Indexed: 05/08/2023]
Abstract
Abscisic acid (ABA) signaling mechanisms have been studied in a broad variety of plant species using complementary analyses, taking advantage of different methodologies suitable for each plant species. Early studies on ABA biosynthesis using Solanum lycopersicum mutants suggested an importance of ABA synthesis in stomatal closure. To understand ABA signaling in guard cells, cellular, biochemical and electrophysiological studies in Vicia faba and Commelina communis have been conducted, providing fundamental knowledge that was further reconfirmed by molecular genetic studies of Arabidopsis. In this article, examples of stomatal studies in several plants and prospects in ABA research are discussed.
Collapse
Affiliation(s)
- Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama 710-0046, Japan.
| | | |
Collapse
|
191
|
Koroleva OA, Cramer R. Single-cell proteomic analysis of glucosinolate-rich S-cells in Arabidopsis thaliana. Methods 2011; 54:413-23. [PMID: 21708264 DOI: 10.1016/j.ymeth.2011.06.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 01/29/2023] Open
Abstract
Single-cell analysis is essential for understanding the processes of cell differentiation and metabolic specialisation in rare cell types. The amount of single proteins in single cells can be as low as one copy per cell and is for most proteins in the attomole range or below; usually considered as insufficient for proteomic analysis. The development of modern mass spectrometers possessing increased sensitivity and mass accuracy in combination with nano-LC-MS/MS now enables the analysis of single-cell contents. In Arabidopsis thaliana, we have successfully identified nine unique proteins in a single-cell sample and 56 proteins from a pool of 15 single-cell samples from glucosinolate-rich S-cells by nanoLC-MS/MS proteomic analysis, thus establishing the proof-of-concept for true single-cell proteomic analysis. Dehydrin (ERD14_ARATH), two myrosinases (BGL37_ARATH and BGL38_ARATH), annexin (ANXD1_ARATH), vegetative storage proteins (VSP1_ARATH and VSP2_ARATH) and four proteins belonging to the S-adenosyl-l-methionine cycle (METE_ARATH, SAHH1_ARATH, METK4_ARATH and METK1/3_ARATH) with associated adenosine kinase (ADK1_ARATH), were amongst the proteins identified in these single-S-cell samples. Comparison of the functional groups of proteins identified in S-cells with epidermal/cortical cells and whole tissue provided a unique insight into the metabolism of S-cells. We conclude that S-cells are metabolically active and contain the machinery for de novo biosynthesis of methionine, a precursor for the most abundant glucosinolate glucoraphanine in these cells. Moreover, since abundant TGG2 and TGG1 peptides were consistently found in single-S-cell samples, previously shown to have high amounts of glucosinolates, we suggest that both myrosinases and glucosinolates can be localised in the same cells, but in separate subcellular compartments. The complex membrane structure of S-cells was reflected by the presence of a number of proteins involved in membrane maintenance and cellular organisation.
Collapse
Affiliation(s)
- Olga A Koroleva
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6AS, UK.
| | | |
Collapse
|
192
|
Wang RS, Pandey S, Li S, Gookin TE, Zhao Z, Albert R, Assmann SM. Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics 2011; 12:216. [PMID: 21554708 PMCID: PMC3115880 DOI: 10.1186/1471-2164-12-216] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/09/2011] [Indexed: 12/15/2022] Open
Abstract
Background In the presence of drought and other desiccating stresses, plants synthesize and redistribute the phytohormone abscisic acid (ABA). ABA promotes plant water conservation by acting on specialized cells in the leaf epidermis, guard cells, which border and regulate the apertures of stomatal pores through which transpirational water loss occurs. Following ABA exposure, solute uptake into guard cells is rapidly inhibited and solute loss is promoted, resulting in inhibition of stomatal opening and promotion of stomatal closure, with consequent plant water conservation. There is a wealth of information on the guard cell signaling mechanisms underlying these rapid ABA responses. To investigate ABA regulation of gene expression in guard cells in a systematic genome-wide manner, we analyzed data from global transcriptomes of guard cells generated with Affymetrix ATH1 microarrays, and compared these results to ABA regulation of gene expression in leaves and other tissues. Results The 1173 ABA-regulated genes of guard cells identified by our study share significant overlap with ABA-regulated genes of other tissues, and are associated with well-defined ABA-related promoter motifs such as ABREs and DREs. However, we also computationally identified a unique cis-acting motif, GTCGG, associated with ABA-induction of gene expression specifically in guard cells. In addition, approximately 300 genes showing ABA-regulation unique to this cell type were newly uncovered by our study. Within the ABA-regulated gene set of guard cells, we found that many of the genes known to encode ion transporters associated with stomatal opening are down-regulated by ABA, providing one mechanism for long-term maintenance of stomatal closure during drought. We also found examples of both negative and positive feedback in the transcriptional regulation by ABA of known ABA-signaling genes, particularly with regard to the PYR/PYL/RCAR class of soluble ABA receptors and their downstream targets, the type 2C protein phosphatases. Our data also provide evidence for cross-talk at the transcriptional level between ABA and another hormonal inhibitor of stomatal opening, methyl jasmonate. Conclusions Our results engender new insights into the basic cell biology of guard cells, reveal common and unique elements of ABA-regulation of gene expression in guard cells, and set the stage for targeted biotechnological manipulations to improve plant water use efficiency.
Collapse
Affiliation(s)
- Rui-Sheng Wang
- Department of Physics, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
193
|
Babiychuk E, Vandepoele K, Wissing J, Garcia-Diaz M, De Rycke R, Akbari H, Joubès J, Beeckman T, Jänsch L, Frentzen M, Van Montagu MCE, Kushnir S. Plastid gene expression and plant development require a plastidic protein of the mitochondrial transcription termination factor family. Proc Natl Acad Sci U S A 2011; 108:6674-9. [PMID: 21464319 PMCID: PMC3081001 DOI: 10.1073/pnas.1103442108] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plastids are DNA-containing organelles unique to plant cells. In Arabidopsis, one-third of the genes required for embryo development encode plastid-localized proteins. To help understand the role of plastids in embryogenesis and postembryonic development, we characterized proteins of the mitochondrial transcription termination factor (mTERF) family, which in animal models, comprises DNA-binding regulators of mitochondrial transcription. Of 35 Arabidopsis mTERF proteins, 11 are plastid-localized. Genetic complementation shows that at least one plastidic mTERF, BELAYA SMERT' (BSM), is required for embryogenesis. The main postembryonic phenotypes of genetic mosaics with the bsm mutation are severe abnormalities in leaf development. Mutant bsm cells are albino, are compromised in growth, and suffer defects in global plastidic gene expression. The bsm phenotype could be phenocopied by inhibition of plastid translation with spectinomycin. Plastid translation is essential for cell viability in dicotyledonous species such as tobacco but not in monocotyledonous maize. Here, genetic interactions between BSM and the gene encoding plastid homomeric acetyl-CoA carboxylase ACC2 suggest that there is a functional redundancy in malonyl-CoA biosynthesis that permits bsm cell survival in Arabidopsis. Overall, our results indicate that biosynthesis of malonyl-CoA and plastid-derived systemic growth-promoting compounds are the processes that link plant development and plastid gene expression.
Collapse
Affiliation(s)
- Elena Babiychuk
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Josef Wissing
- Abteilung Zellbiologie, Helmholtz-Zentrum für Infektionsforschung GmbH, 38124 Braunschweig, Germany
| | - Miguel Garcia-Diaz
- Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651
| | - Riet De Rycke
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Hana Akbari
- Institut für Biologie I, Spezielle Botanik, Rheinisch-Westfälische Technische Hochschule Aachen, 52056 Aachen, Germany; and
| | - Jérôme Joubès
- Université Victor Ségalen Bordeaux 2, Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique, 33076 Bordeaux Cedex, France
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Lothar Jänsch
- Abteilung Zellbiologie, Helmholtz-Zentrum für Infektionsforschung GmbH, 38124 Braunschweig, Germany
| | - Margrit Frentzen
- Institut für Biologie I, Spezielle Botanik, Rheinisch-Westfälische Technische Hochschule Aachen, 52056 Aachen, Germany; and
| | | | - Sergei Kushnir
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
194
|
Araújo WL, Nunes-Nesi A, Osorio S, Usadel B, Fuentes D, Nagy R, Balbo I, Lehmann M, Studart-Witkowski C, Tohge T, Martinoia E, Jordana X, DaMatta FM, Fernie AR. Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase enhances photosynthesis and growth in tomato via an organic acid-mediated effect on stomatal aperture. THE PLANT CELL 2011; 23:600-27. [PMID: 21307286 PMCID: PMC3077794 DOI: 10.1105/tpc.110.081224] [Citation(s) in RCA: 186] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 12/07/2010] [Accepted: 01/13/2011] [Indexed: 05/19/2023]
Abstract
Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the Sl SDH2-2 gene encoding the iron sulfur subunit of the succinate dehydrogenase protein complex in the antisense orientation under the control of the 35S promoter exhibit an enhanced rate of photosynthesis. The rate of the tricarboxylic acid (TCA) cycle was reduced in these transformants, and there were changes in the levels of metabolites associated with the TCA cycle. Furthermore, in comparison to wild-type plants, carbon dioxide assimilation was enhanced by up to 25% in the transgenic plants under ambient conditions, and mature plants were characterized by an increased biomass. Analysis of additional photosynthetic parameters revealed that the rate of transpiration and stomatal conductance were markedly elevated in the transgenic plants. The transformants displayed a strongly enhanced assimilation rate under both ambient and suboptimal environmental conditions, as well as an elevated maximal stomatal aperture. By contrast, when the Sl SDH2-2 gene was repressed by antisense RNA in a guard cell-specific manner, changes in neither stomatal aperture nor photosynthesis were observed. The data obtained are discussed in the context of the role of TCA cycle intermediates both generally with respect to photosynthetic metabolism and specifically with respect to their role in the regulation of stomatal aperture.
Collapse
Affiliation(s)
- Wagner L. Araújo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Adriano Nunes-Nesi
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Sonia Osorio
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Björn Usadel
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Daniela Fuentes
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Réka Nagy
- University of Zurich, Institute of Plant Biology, CH-8008 Zurich, Switzerland
| | - Ilse Balbo
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Martin Lehmann
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | | | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| | - Enrico Martinoia
- University of Zurich, Institute of Plant Biology, CH-8008 Zurich, Switzerland
| | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | - Fábio M. DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-000 Viçosa, MG, Brazil
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Golm, Germany
| |
Collapse
|
195
|
Liu YK, Liu YB, Zhang MY, Li DQ. Stomatal development and movement: the roles of MAPK signaling. PLANT SIGNALING & BEHAVIOR 2010; 5:1176-80. [PMID: 20855958 PMCID: PMC3115344 DOI: 10.4161/psb.5.10.12757] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Stomata are epidermal pores on plant surface used for gas exchange with the atmosphere. Stomatal development and movement are regulated by environmental and internal signals. Mitogen-activated protein kinase (MAPK) cascades are universal transducers of extracellular signals among all eukaryotes. In plant, MAPK cascades regulate diverse cellular processes occurring during the whole ontogenetic plant life and ranging from normal cell proliferation to stress-inducing plant-to-environment interactions. Recent reports reveal that MAPK signaling is involved in both stomatal development and movement. This mini-review summarizes the roles of MAPK signaling in stomatal development and movement. How MAPK specificity is maintained in stomatal development and movement is also discussed.
Collapse
Affiliation(s)
- Yu-Kun Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | | | | | | |
Collapse
|
196
|
Hashiguchi A, Ahsan N, Komatsu S. Proteomics application of crops in the context of climatic changes. Food Res Int 2010. [DOI: 10.1016/j.foodres.2009.07.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
197
|
Zhao Z, Stanley BA, Zhang W, Assmann SM. ABA-regulated G protein signaling in Arabidopsis guard cells: a proteomic perspective. J Proteome Res 2010; 9:1637-47. [PMID: 20166762 DOI: 10.1021/pr901011h] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Signaling cascades mediated by heterotrimeric G proteins are ubiquitous and important signal transduction mechanisms in both metazoans and plants. In the model plant Arabidopsis thaliana, the sole canonical G protein alpha subunit, GPA1, has been implicated in multiple signaling events, including guard cell movement regulated by the plant stress hormone abscisic acid (ABA). However, only a handful of proteins have been demonstrated to be involved in GPA1 signaling to date. Here, we compared the proteome composition of guard cells from wild type Col vs gpa1-4 null mutants with and without ABA treatment using iTRAQ technology to identify guard cell proteins whose abundance was affected by ABA and/or GPA1. After imposition of strict selection criteria, the abundance of two proteins in Col and six proteins in gpa1-4 was found to be affected by ABA in guard cells, and 18 guard cell proteins were quantitatively affected by the mutation of GPA1. On the basis of known functions of the differentially expressed proteins, our data suggest that GPA1 inhibits guard cell photosynthesis and promotes the availability of reactive oxygen species (ROS) in guard cells. These results exemplify how iTRAQ can be used to quantitatively study single cell signaling pathways in Arabidopsis.
Collapse
Affiliation(s)
- Zhixin Zhao
- Biology Department, 208 Mueller Laboratory, Penn State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
198
|
Raghavendra AS, Gonugunta VK, Christmann A, Grill E. ABA perception and signalling. TRENDS IN PLANT SCIENCE 2010; 15:395-401. [PMID: 20493758 DOI: 10.1016/j.tplants.2010.04.006] [Citation(s) in RCA: 774] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 05/17/2023]
|
199
|
Schilmiller AL, Miner DP, Larson M, McDowell E, Gang DR, Wilkerson C, Last RL. Studies of a biochemical factory: tomato trichome deep expressed sequence tag sequencing and proteomics. PLANT PHYSIOLOGY 2010; 153:1212-23. [PMID: 20431087 PMCID: PMC2899918 DOI: 10.1104/pp.110.157214] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 04/27/2010] [Indexed: 05/18/2023]
Abstract
Shotgun proteomics analysis allows hundreds of proteins to be identified and quantified from a single sample at relatively low cost. Extensive DNA sequence information is a prerequisite for shotgun proteomics, and it is ideal to have sequence for the organism being studied rather than from related species or accessions. While this requirement has limited the set of organisms that are candidates for this approach, next generation sequencing technologies make it feasible to obtain deep DNA sequence coverage from any organism. As part of our studies of specialized (secondary) metabolism in tomato (Solanum lycopersicum) trichomes, 454 sequencing of cDNA was combined with shotgun proteomics analyses to obtain in-depth profiles of genes and proteins expressed in leaf and stem glandular trichomes of 3-week-old plants. The expressed sequence tag and proteomics data sets combined with metabolite analysis led to the discovery and characterization of a sesquiterpene synthase that produces beta-caryophyllene and alpha-humulene from E,E-farnesyl diphosphate in trichomes of leaf but not of stem. This analysis demonstrates the utility of combining high-throughput cDNA sequencing with proteomics experiments in a target tissue. These data can be used for dissection of other biochemical processes in these specialized epidermal cells.
Collapse
Affiliation(s)
- Anthony L Schilmiller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| | | | | | | | | | | | | |
Collapse
|
200
|
Khanna MR, Stanley BA, Thomas GH. Towards a membrane proteome in Drosophila: a method for the isolation of plasma membrane. BMC Genomics 2010; 11:302. [PMID: 20462449 PMCID: PMC2876126 DOI: 10.1186/1471-2164-11-302] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 05/12/2010] [Indexed: 12/27/2022] Open
Abstract
Background The plasma membrane (PM) is a compartment of significant interest because cell surface proteins influence the way in which a cell interacts with its neighbours and its extracellular environment. However, PM is hard to isolate because of its low abundance. Aqueous two-phase affinity purification (2PAP), based on PEG/Dextran two-phase fractionation and lectin affinity for PM-derived microsomes, is an emerging method for the isolation of high purity plasma membranes from several vertebrate sources. In contrast, PM isolation techniques in important invertebrate genetic model systems, such as Drosophila melanogaster, have relied upon enrichment by density gradient centrifugation. To facilitate genetic investigation of activities contributing to the content of the PM sub-proteome, we sought to adapt 2PAP to this invertebrate model to provide a robust PM isolation technique for Drosophila. Results We show that 2PAP alone does not completely remove contaminating endoplasmic reticulum and mitochondrial membrane. However, a novel combination of density gradient centrifugation plus 2PAP results in a robust PM preparation. To demonstrate the utility of this technique we isolated PM from fly heads and successfully identified 432 proteins using MudPIT, of which 37% are integral membrane proteins from all compartments. Of the 432 proteins, 22% have been previously assigned to the PM compartment, and a further 34% are currently unassigned to any compartment and represent candidates for assignment to the PM. The remainder have previous assignments to other compartments. Conclusion A combination of density gradient centrifugation and 2PAP results in a robust, high purity PM preparation from Drosophila, something neither technique can achieve on its own. This novel preparation should lay the groundwork for the proteomic investigation of the PM in different genetic backgrounds in Drosophila. Our results also identify two key steps in this procedure: The optimization of membrane partitioning in the PEG/Dextran mixture, and careful choice of the correct lectin for the affinity purification step in light of variations in bulk membrane lipid composition and glycosylation patterns respectively. This points the way for further adaptations into other systems.
Collapse
Affiliation(s)
- Mansi R Khanna
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | |
Collapse
|