151
|
Zhang Y, Jiao Y, Jiao H, Zhao H, Zhu YX. Two-Step Functional Innovation of the Stem-Cell Factors WUS/WOX5 during Plant Evolution. Mol Biol Evol 2017; 34:640-653. [PMID: 28053005 PMCID: PMC5400392 DOI: 10.1093/molbev/msw263] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
WUS and WOX5, which are expressed, respectively, in the organizing center (OC) and the quiescent center (QC), are essential for shoot/root apical stem-cell maintenance in flowering plants. However, little is known about how these stem-cell factors evolved their functions in flowering plants. Here, we show that the WUS/WOX5 proteins acquired two distinct capabilities by a two-step functional innovation process in the course of plant evolution. The first-step is the apical stem-cell maintenance activity of WUS/WOX5, which originated in the common ancestor of ferns and seed plants, as evidenced by the interspecies complementation experiments, showing that ectopic expression of fern Ceratopteris richardii WUS-like (CrWUL) surrounding OC/QC, or exclusive OC-/QC-expressed gymnosperms/angiosperms WUS/WOX5 in Arabidopsis wus-1 and wox5-1 mutants, could rescue their phenotypes. The second-step is the intercellular mobility that emerged in the common ancestor of seed plants after divergence from the ferns. Evidence for this includes confocal imaging of GFP fusion proteins, showing that WUS/WOX5 from seed plants, rather than from the fern CrWUL, can migrate into cells adjacent to the OC/QC. Evolutionary analysis showed that the WUS-like gene was duplicated into two copies prior to the divergence of gymnosperms/angiosperms. Then the two gene copies (WUS and WOX5) have undergone similar levels of purifying selection, which is consistent with their conserved functions in angiosperm shoot/root stem-cell maintenance and floral organ formation. Our results highlight the critical roles and the essential prerequisites that the two-step functional innovation of these genes performs and represents in the origin of flowering plants.
Collapse
Affiliation(s)
- Yuzhou Zhang
- Institute for Advanced Studies, Wuhan University, Wuhan, China
| | - Yue Jiao
- Development Center for Science and Technology, Ministry of Agriculture, Beijing, China
| | - Hengwu Jiao
- Department of Ecology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huabin Zhao
- Department of Ecology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu-Xian Zhu
- Institute for Advanced Studies, Wuhan University, Wuhan, China.,Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
152
|
Structure of the Arabidopsis TOPLESS corepressor provides insight into the evolution of transcriptional repression. Proc Natl Acad Sci U S A 2017; 114:8107-8112. [PMID: 28698367 DOI: 10.1073/pnas.1703054114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transcriptional repression involves a class of proteins called corepressors that link transcription factors to chromatin remodeling complexes. In plants such as Arabidopsis thaliana, the most prominent corepressor is TOPLESS (TPL), which plays a key role in hormone signaling and development. Here we present the crystallographic structure of the Arabidopsis TPL N-terminal region comprising the LisH and CTLH (C-terminal to LisH) domains and a newly identified third region, which corresponds to a CRA domain. Comparing the structure of TPL with the mammalian TBL1, which shares a similar domain structure and performs a parallel corepressor function, revealed that the plant TPLs have evolved a new tetramerization interface and unique and highly conserved surface for interaction with repressors. Using site-directed mutagenesis, we validated those surfaces in vitro and in vivo and showed that TPL tetramerization and repressor binding are interdependent. Our results illustrate how evolution used a common set of protein domains to create a diversity of corepressors, achieving similar properties with different molecular solutions.
Collapse
|
153
|
Xu Y, Li SF, Parish RW. Regulation of gene expression by manipulating transcriptional repressor activity using a novel CoSRI technology. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:879-893. [PMID: 27998034 PMCID: PMC5466438 DOI: 10.1111/pbi.12683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/29/2016] [Accepted: 12/10/2016] [Indexed: 06/06/2023]
Abstract
Targeted gene manipulation is a central strategy for studying gene function and identifying related biological processes. However, a methodology for manipulating the regulatory motifs of transcription factors is lacking as these factors commonly possess multiple motifs (e.g. repression and activation motifs) which collaborate with each other to regulate multiple biological processes. We describe a novel approach designated conserved sequence-guided repressor inhibition (CoSRI) that can specifically reduce or abolish the repressive activities of transcription factors in vivo. The technology was evaluated using the chimeric MYB80-EAR transcription factor and subsequently the endogenous WUS transcription factor. The technology was employed to develop a reversible male sterility system applicable to hybrid seed production. In order to determine the capacity of the technology to regulate the activity of endogenous transcription factors, the WUS repressor was chosen. The WUS repression motif could be inhibited in vivo and the transformed plants exhibited the wus-1 phenotype. Consequently, the technology can be used to manipulate the activities of transcriptional repressor motifs regulating beneficial traits in crop plants and other eukaryotic organisms.
Collapse
Affiliation(s)
- Yue Xu
- Department of Animal, Plant and Soil SciencesLa Trobe UniversityAgriBio – Centre for AgriBioscienceMelbourneVicAustralia
| | - Song Feng Li
- Department of Animal, Plant and Soil SciencesLa Trobe UniversityAgriBio – Centre for AgriBioscienceMelbourneVicAustralia
| | - Roger W. Parish
- Department of Animal, Plant and Soil SciencesLa Trobe UniversityAgriBio – Centre for AgriBioscienceMelbourneVicAustralia
| |
Collapse
|
154
|
Bossi F, Fan J, Xiao J, Chandra L, Shen M, Dorone Y, Wagner D, Rhee SY. Systematic discovery of novel eukaryotic transcriptional regulators using sequence homology independent prediction. BMC Genomics 2017; 18:480. [PMID: 28651538 PMCID: PMC5485742 DOI: 10.1186/s12864-017-3853-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/09/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The molecular function of a gene is most commonly inferred by sequence similarity. Therefore, genes that lack sufficient sequence similarity to characterized genes (such as certain classes of transcriptional regulators) are difficult to classify using most function prediction algorithms and have remained uncharacterized. RESULTS To identify novel transcriptional regulators systematically, we used a feature-based pipeline to screen protein families of unknown function. This method predicted 43 transcriptional regulator families in Arabidopsis thaliana, 7 families in Drosophila melanogaster, and 9 families in Homo sapiens. Literature curation validated 12 of the predicted families to be involved in transcriptional regulation. We tested 33 out of the 195 Arabidopsis putative transcriptional regulators for their ability to activate transcription of a reporter gene in planta and found twelve coactivators, five of which had no prior literature support. To investigate mechanisms of action in which the predicted regulators might work, we looked for interactors of an Arabidopsis candidate that did not show transactivation activity in planta and found that it might work with other members of its own family and a subunit of the Polycomb Repressive Complex 2 to regulate transcription. CONCLUSIONS Our results demonstrate the feasibility of assigning molecular function to proteins of unknown function without depending on sequence similarity. In particular, we identified novel transcriptional regulators using biological features enriched in transcription factors. The predictions reported here should accelerate the characterization of novel regulators.
Collapse
Affiliation(s)
- Flavia Bossi
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
| | - Jue Fan
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
| | - Jun Xiao
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| | - Lilyana Chandra
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
| | - Max Shen
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| | - Yanniv Dorone
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
- Department of Biology, Stanford University, Stanford, California, 94305 USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084 USA
| | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, 94305 USA
| |
Collapse
|
155
|
Zhang Z, Tucker E, Hermann M, Laux T. A Molecular Framework for the Embryonic Initiation of Shoot Meristem Stem Cells. Dev Cell 2017; 40:264-277.e4. [PMID: 28171749 DOI: 10.1016/j.devcel.2017.01.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/29/2016] [Accepted: 01/05/2017] [Indexed: 11/17/2022]
Abstract
The establishment of pluripotent stem cells is a key event during plant and animal embryogenesis, but the underlying mechanisms remain enigmatic. We show that in the flowering plant Arabidopsis thaliana, expression of the shoot meristem stem cell marker CLV3 becomes detectable in transition stage embryos. Surprisingly, the key regulator of stem cell homeostasis WUSCHEL (WUS) is expressed but dispensable for stem cell initiation. Rather, the WUS paralog WOX2, a regulator of embryo patterning initiated in the zygote, functions in this process by shielding stem cell progenitors from differentiation. WOX2 upregulates HD-ZIP III transcription factors required for shoot identity and balances cytokinin versus auxin hormone pathways, revealing that classical plantlet regeneration procedures recapitulate the natural induction mechanism. Our findings link transcriptional regulation of early embryo patterning to hormonal control of stem cell initiation and suggest that similar strategies have evolved in plant and animal stem cell formation.
Collapse
Affiliation(s)
- Zhongjuan Zhang
- BIOSS Centre for Biological Signalling Studies, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Elise Tucker
- BIOSS Centre for Biological Signalling Studies, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Marita Hermann
- BIOSS Centre for Biological Signalling Studies, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany
| | - Thomas Laux
- BIOSS Centre for Biological Signalling Studies, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany.
| |
Collapse
|
156
|
Cao Y, Han Y, Meng D, Li G, Li D, Abdullah M, Jin Q, Lin Y, Cai Y. Genome-Wide Analysis Suggests the Relaxed Purifying Selection Affect the Evolution of WOX Genes in Pyrus bretschneideri, Prunus persica, Prunus mume, and Fragaria vesca. Front Genet 2017; 8:78. [PMID: 28663757 PMCID: PMC5471313 DOI: 10.3389/fgene.2017.00078] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/29/2017] [Indexed: 12/22/2022] Open
Abstract
WUSCHEL-related homeobox (WOX) family is one of the largest group of transcription factors (TFs) specifically found in plant kingdom. WOX TFs play an important role in plant development processes and evolutionary novelties. Although the roles of WOXs in Arabidopsis and rice have been well-studied, however, little are known about the relationships among the main clades in the molecular evolution of these genes in Rosaceae. Here, we carried out a genome-wide analysis and identified 14, 10, 10, and 9 of WOX genes from four Rosaceae species (Fragaria vesca, Prunus persica, Prunus mume, and Pyrus bretschneideri, respectively). According to evolutionary analysis, as well as amino acid sequences of their homodomains, these genes were divided into three clades with nine subgroups. Furthermore, due to the conserved structural patterns among these WOX genes, it was proposed that there should exist some highly conserved regions of microsynteny in the four Rosaceae species. Moreover, most of WOX gene pairs were presented with the conserved orientation among syntenic genome regions. In addition, according to substitution models analysis using PMAL software, no significant positive selection was detected, but type I functional divergence was identified among certain amino acids in WOX protein. These results revealed that the relaxed purifying selection might be the main driving force during the evolution of WOX genes in the tested Rosaceae species. Our result will be useful for further precise research on evolution of the WOX genes in family Rosaceae.
Collapse
Affiliation(s)
- Yunpeng Cao
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| | - Yahui Han
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefei, China
| | - Dandan Meng
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| | - Guohui Li
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| | - Dahui Li
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| | - Muhammad Abdullah
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefei, China
| | - Qing Jin
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| | - Yi Lin
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| | - Yongping Cai
- School of Life Sciences, Anhui Agricultural UniversityHefei, China
| |
Collapse
|
157
|
Meng WJ, Cheng ZJ, Sang YL, Zhang MM, Rong XF, Wang ZW, Tang YY, Zhang XS. Type-B ARABIDOPSIS RESPONSE REGULATORs Specify the Shoot Stem Cell Niche by Dual Regulation of WUSCHEL. THE PLANT CELL 2017; 29:1357-1372. [PMID: 28576846 PMCID: PMC5502443 DOI: 10.1105/tpc.16.00640] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 04/25/2017] [Accepted: 05/31/2017] [Indexed: 05/18/2023]
Abstract
Plants are known for their capacity to regenerate the whole body through de novo formation of apical meristems from a mass of proliferating cells named callus. Exogenous cytokinin and auxin determine cell fate for the establishment of the stem cell niche, which is the vital step of shoot regeneration, but the underlying mechanisms remain unclear. Here, we show that type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs), critical components of cytokinin signaling, activate the transcription of WUSCHEL (WUS), which encodes a key regulator for maintaining stem cells. In parallel, type-B ARRs inhibit auxin accumulation by repressing the expression of YUCCAs, which encode a key enzyme for auxin biosynthesis, indirectly promoting WUS induction. Both pathways are essential for de novo regeneration of the shoot stem cell niche. In addition, the dual regulation of type-B ARRs on WUS transcription is required for the maintenance of the shoot apical meristem in planta. Thus, our results reveal a long-standing missing link between cytokinin signaling and WUS regulator, and the findings provide critical information for understanding cell fate specification.
Collapse
Affiliation(s)
- Wen Jing Meng
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhi Juan Cheng
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ya Lin Sang
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Miao Miao Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiao Fei Rong
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhi Wei Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ying Ying Tang
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, College of Forestry, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
158
|
Gao R, Wang Y, Gruber MY, Hannoufa A. miR156/SPL10 Modulates Lateral Root Development, Branching and Leaf Morphology in Arabidopsis by Silencing AGAMOUS-LIKE 79. FRONTIERS IN PLANT SCIENCE 2017; 8:2226. [PMID: 29354153 PMCID: PMC5758603 DOI: 10.3389/fpls.2017.02226] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/18/2017] [Indexed: 05/22/2023]
Abstract
The developmental functions of miR156-SPL regulatory network have been extensively studied in Arabidopsis, but the downstream genes regulated by each SPL have not been well characterized. In this study, Next Generation Sequencing-based transcriptome analysis was performed on roots of wild type (WT) and miR156 overexpression (miR156OE) plants. One of the SPL genes, SPL10, which represses lateral root growth in Arabidopsis, was significantly downregulated in miR156OE plants. A transcription factor, AGAMOUS-like MADS box protein 79 (AGL79), was also significantly downregulated in the miR156OE plants, but was upregulated in the SPL10 overexpression (SPL10OE) Arabidopsis plants. In addition, SPL10 was found to bind to the core consensus SPL binding sequences in AGL79 gene. Moreover, analyses of complementation lines revealed a linear relationship between SPL10 and AGL79 in regulating Arabidopsis plant development. In addition, it was observed that plant phenotypes are AGL79 dose-dependent, with higher expression causing narrow leaf shape, less number of leaves and early flowering time, whereas relatively lower AGL79 overexpression produce plants with more rosette leaves and more lateral branches. Our findings revealed direct binding of SPL10 to AGL79 promoter, which further suggests a role for miR156/SPL10 module in plant lateral root growth by directly regulating AGL79.
Collapse
Affiliation(s)
- Ruimin Gao
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ying Wang
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Margaret Y. Gruber
- Saskatoon Research and Development Center, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Abdelali Hannoufa
- London Research and Development Center, Agriculture and Agri-Food Canada, London, ON, Canada
- *Correspondence: Abdelali Hannoufa
| |
Collapse
|
159
|
Huang Q, Wang Y. Overexpression of TaNAC2D Displays Opposite Responses to Abiotic Stresses between Seedling and Mature Stage of Transgenic Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:1754. [PMID: 27933076 PMCID: PMC5120104 DOI: 10.3389/fpls.2016.01754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 11/07/2016] [Indexed: 05/23/2023]
Abstract
Environmental stresses frequently affect plant growth and development, and many genes have been found to be induced by unfavorable environmental conditions. Here, we reported the biological functions of TaNAC2D, a stress-related NAC (NAM, ATAF, and CUC) gene from wheat. TaNAC2D showed transcriptional activator activity in yeast. TaNAC2D-GFP fusion protein was localized in the nucleus of wheat mesophyll protoplasts. TaNAC2D transcript abundance was significantly induced by NaCl, PEG6000, and abscisic acid (ABA) at seedling stage, and repressed by NaCl and PEG6000 at mature plant stage. When TaNAC2D was introduced into Arabidopsis, the 35-day-old soil-grown TaNAC2D-overexpression (TaNAC2D-OX) plants displayed slower stomatal closure, higher water loss rate, and more sensitivity to salt and drought stresses compared with WT plants. In contrast, TaNAC2D-OX seedlings, grown on 1/2 MS medium supplemented with different concentrations of NaCl, Mannitol, and MV, had enhanced tolerances to salt, osmotic and oxidative stresses during seed germination and post-germination periods. The opposite stress-responsive phenotypes of transgenic Arabidopsis were consistent with the expression patterns of TaNAC2D in wheat. Moreover, under high salinity and dehydration conditions, three marker genes, including NCED3, RD29A, and RD29B, were down-regulated in 35-day-old TaNAC2D-OX plants grown in soil and up-regulated in 14-day-old TaNAC2D-OX seedlings grown on 1/2 MS medium. Our results suggest that the change in growth stages and environmental conditions may regulate TaNAC2D's function.
Collapse
Affiliation(s)
- Quanjun Huang
- Key Laboratory of Genetic Development and Germplasm Enhancement of Rare Plants in Three Gorges Area, College of Biology and Pharmacy, China Three Gorges UniversityYichang, China
| | - Yan Wang
- The Genetic Engineering International Cooperation Base of Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
160
|
Threshold-dependent transcriptional discrimination underlies stem cell homeostasis. Proc Natl Acad Sci U S A 2016; 113:E6298-E6306. [PMID: 27671653 DOI: 10.1073/pnas.1607669113] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional mechanisms that underlie the dose-dependent regulation of gene expression in animal development have been studied extensively. However, the mechanisms of dose-dependent transcriptional regulation in plant development have not been understood. In Arabidopsis shoot apical meristems, WUSCHEL (WUS), a stem cell-promoting transcription factor, accumulates at a higher level in the rib meristem and at a lower level in the central zone where it activates its own negative regulator, CLAVATA3 (CLV3). How WUS regulates CLV3 levels has not been understood. Here we show that WUS binds a group of cis-elements, cis- regulatory module, in the CLV3-regulatory region, with different affinities and conformations, consisting of monomers at lower concentration and as dimers at a higher level. By deleting cis elements, manipulating the WUS-binding affinity and the homodimerization threshold of cis elements, and manipulating WUS levels, we show that the same cis elements mediate both the activation and repression of CLV3 at lower and higher WUS levels, respectively. The concentration-dependent transcriptional discrimination provides a mechanistic framework to explain the regulation of CLV3 levels that is critical for stem cell homeostasis.
Collapse
|
161
|
DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilization control WUSCHEL levels and spatial patterning. Proc Natl Acad Sci U S A 2016; 113:E6307-E6315. [PMID: 27671631 DOI: 10.1073/pnas.1607673113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The homeodomain transcription factor WUSCHEL (WUS) promotes stem cell maintenance in inflorescence meristems of Arabidopsis thaliana WUS, which is synthesized in the rib meristem, migrates and accumulates at lower levels in adjacent cells. Maintenance of WUS protein levels and spatial patterning distribution is not well-understood. Here, we show that the last 63-aa stretch of WUS is necessary for maintaining different levels of WUS protein in the rib meristem and adjacent cells. The 63-aa region contains the following transcriptional regulatory domains: the acidic region, the WUS-box, which is conserved in WUS-related HOMEOBOX family members, and the ethylene-responsive element binding factor-associated amphiphilic repression (EAR-like) domain. Our analysis reveals that the opposing functions of WUS-box, which is required for nuclear retention, and EAR-like domain, which participates in nuclear export, are necessary to maintain higher nuclear levels of WUS in cells of the rib meristem and lower nuclear levels in adjacent cells. We also show that the N-terminal DNA binding domain, which is required for both DNA binding and homodimerization, along with the homodimerization sequence located in the central part of the protein, restricts WUS from spreading excessively and show that the homodimerization is critical for WUS function. Our analysis also reveals that a higher level of WUS outside the rib meristem leads to protein destabilization, suggesting a new tier of regulation in WUS protein regulation. Taken together our data show that processes that influence WUS protein levels and spatial distribution are highly coupled to its transcriptional activity.
Collapse
|
162
|
Homeobox Is Pivotal for OsWUS Controlling Tiller Development and Female Fertility in Rice. G3-GENES GENOMES GENETICS 2016; 6:2013-21. [PMID: 27194802 PMCID: PMC4938654 DOI: 10.1534/g3.116.028837] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OsWUS has recently been shown to be a transcription factor gene critical for tiller development and fertility in rice. The OsWUS protein consists of three conserved structural domains, but their biological functions are still unclear. We discovered a new rice mutant resulting from tissue culture, which hardly produced tillers and exhibited complete female sterility. The male and female floral organs of the mutant were morphologically indistinguishable from those of the wild type. We named the mutant srt1 for completely sterile and reduced tillering 1. Map-based cloning revealed that the mutant phenotypes were caused by a mutation in OsWUS. Compared with the two previously reported null allelic mutants of OsWUS (tab1-1 and moc3-1), which could produce partial N-terminal peptides of OsWUS, the srt1 protein contained a deletion of only seven amino acids within the conserved homeobox domain of OsWUS. However, the mutant phenotypes (monoculm and female sterility) displayed in srt1 were as typical and severe as those in tab1-1 and moc3-1. This indicates that the homeobox domain of SRT1 is essential for the regulation of tillering and sterility in rice. In addition, srt1 showed an opposite effect on panicle development to that of the two null allelic mutants, implying that the srt1 protein might still have partial or even new functions on panicle development. The results of this study suggest that the homeobox domain is pivotal for OsWUS function.
Collapse
|
163
|
Dolzblasz A, Nardmann J, Clerici E, Causier B, van der Graaff E, Chen J, Davies B, Werr W, Laux T. Stem Cell Regulation by Arabidopsis WOX Genes. MOLECULAR PLANT 2016; 9:1028-39. [PMID: 27109605 DOI: 10.1016/j.molp.2016.04.007] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/08/2016] [Accepted: 04/10/2016] [Indexed: 05/05/2023]
Abstract
Gene amplification followed by functional diversification is a major force in evolution. A typical example of this is seen in the WUSCHEL-RELATED HOMEOBOX (WOX) gene family, named after the Arabidopsis stem cell regulator WUSCHEL. Here we analyze functional divergence in the WOX gene family. Members of the WUS clade, except the cambium stem cell regulator WOX4, can substitute for WUS function in shoot and floral stem cell maintenance to different degrees. Stem cell function of WUS requires a canonical WUS-box, essential for interaction with TPL/TPR co-repressors, whereas the repressive EAR domain is dispensable and the acidic domain seems only to be required for female fertility. In contrast to the WUS clade, members of the ancient WOX13 and the WOX9 clades cannot support stem cell maintenance. Although the homeodomains are interchangeable between WUS and WOX9 clade members, a WUS-compatible homeodomain together with canonical WUS-box is not sufficient for stem cell maintenance. Our results suggest that WOX function in shoot and floral meristems of Arabidopsis is restricted to the modern WUS clade, suggesting that stem cell control is a derived function. Yet undiscovered functional domains in addition to the homeodomain and the WUS-box are necessary for this function.
Collapse
Affiliation(s)
- Alicja Dolzblasz
- BIOSS Centre for Biological Signalling Studies, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.
| | - Judith Nardmann
- Institute of Developmental Biology, Biocenter Cologne, Universität zu Köln, Zülpicher Street 47b, 50674 Köln, Germany
| | - Elena Clerici
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Barry Causier
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Eric van der Graaff
- BIOSS Centre for Biological Signalling Studies, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Jinhui Chen
- BIOSS Centre for Biological Signalling Studies, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany
| | - Brendan Davies
- Centre for Plant Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Wolfgang Werr
- Institute of Developmental Biology, Biocenter Cologne, Universität zu Köln, Zülpicher Street 47b, 50674 Köln, Germany
| | - Thomas Laux
- BIOSS Centre for Biological Signalling Studies, Faculty of Biology, Albert-Ludwigs-Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
164
|
Chung K, Sakamoto S, Mitsuda N, Suzuki K, Ohme-Takagi M, Fujiwara S. WUSCHEL-RELATED HOMEOBOX 2 is a transcriptional repressor involved in lateral organ formation and separation in Arabidopsis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2016; 33:245-253. [PMID: 31274988 PMCID: PMC6565944 DOI: 10.5511/plantbiotechnology.16.0202a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/02/2016] [Indexed: 05/25/2023]
Abstract
In this study, we characterized the function of WUSCHEL-RELATED HOMEOBOX 2 (WOX2) using overexpression, CRES-T, and VP16 fusion techniques. Although the function of WOX2 has been described mainly in embryogenesis, it was unclear whether it also plays a role in the post-embryogenic developmental stage. We found that WOX2 has transcriptional repression activity and that either overexpression of WOX2 or expression of its chimeric repressor causes severe growth defects and other morphological phenotypes by impairing plant organ formation and separation. By contrast, VP16-fused WOX2-expressing plants did not display such severe phenotypic defects. In addition, some of them displayed phenotypic defects such as fusion of organs and induction of undifferentiated cells in the boundary regions of organs where GUS staining was clearly observed in the proWOX2:GUS transgenic plants. We suggest that WOX2 is involved in regulation of lateral organ formation and separation during the post-embryogenic development processes.
Collapse
Affiliation(s)
- KwiMi Chung
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8566, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8566, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8566, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338–8570, Japan
| | - Kaoru Suzuki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8566, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8566, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338–8570, Japan
| | - Sumire Fujiwara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305–8566, Japan
| |
Collapse
|
165
|
Cho SH, Kang K, Lee SH, Lee IJ, Paek NC. OsWOX3A is involved in negative feedback regulation of the gibberellic acid biosynthetic pathway in rice (Oryza sativa). JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1677-87. [PMID: 26767749 PMCID: PMC4783357 DOI: 10.1093/jxb/erv559] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The plant-specific WUSCHEL-related homeobox (WOX) nuclear proteins have important roles in the transcriptional regulation of many developmental processes. Among the rice (Oryza sativa) WOX proteins, a loss of OsWOX3A function in narrow leaf2 (nal2) nal3 double mutants (termed nal2/3) causes pleiotropic effects, such as narrow and curly leaves, opened spikelets, narrow grains, more tillers, and fewer lateral roots, but almost normal plant height. To examine OsWOX3A function in more detail, transgenic rice overexpressing OsWOX3A (OsWOX3A-OX) were generated; unexpectedly, all of them consistently exhibited severe dwarfism with very short and wide leaves, a phenotype that resembles that of gibberellic acid (GA)-deficient or GA-insensitive mutants. Exogenous GA3 treatment fully rescued the developmental defects of OsWOX3A-OX plants, suggesting that constitutive overexpression of OsWOX3A downregulates GA biosynthesis. Quantitative analysis of GA intermediates revealed significantly reduced levels of GA20 and bioactive GA1 in OsWOX3A-OX, possibly due to downregulation of the expression of KAO, which encodes ent-kaurenoic acid oxidase, a GA biosynthetic enzyme. Yeast one-hybrid and electrophoretic mobility shift assays revealed that OsWOX3A directly interacts with the KAO promoter. OsWOX3A expression is drastically and temporarily upregulated by GA3 and downregulated by paclobutrazol, a blocker of GA biosynthesis. These data indicate that OsWOX3A is a GA-responsive gene and functions in the negative feedback regulation of the GA biosynthetic pathway for GA homeostasis to maintain the threshold levels of endogenous GA intermediates throughout development.
Collapse
Affiliation(s)
- Sung-Hwan Cho
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea Present address: Division of Plant Science and Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Kiyoon Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sang-Hwa Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| | - In-Jung Lee
- Division of Plant Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
166
|
Bustamante M, Matus JT, Riechmann JL. Genome-wide analyses for dissecting gene regulatory networks in the shoot apical meristem. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1639-1648. [PMID: 26956505 DOI: 10.1093/jxb/erw058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Shoot apical meristem activity is controlled by complex regulatory networks in which components such as transcription factors, miRNAs, small peptides, hormones, enzymes and epigenetic marks all participate. Many key genes that determine the inherent characteristics of the shoot apical meristem have been identified through genetic approaches. Recent advances in genome-wide studies generating extensive transcriptomic and DNA-binding datasets have increased our understanding of the interactions within the regulatory networks that control the activity of the meristem, identifying new regulators and uncovering connections between previously unlinked network components. In this review, we focus on recent studies that illustrate the contribution of whole genome analyses to understand meristem function.
Collapse
Affiliation(s)
- Mariana Bustamante
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - José Tomás Matus
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - José Luis Riechmann
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, 08193 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
167
|
Li-Mallet A, Rabot A, Geny L. Factors controlling inflorescence primordia formation of grapevine: their role in latent bud fruitfulness? A review. BOTANY 2016; 94:147-163. [PMID: 0 DOI: 10.1139/cjb-2015-0108] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The grapevine (Vitis vinifera L.) is a widely cultivated species of major economic importance for wine production. The quality and quantity of grapes are criteria of prime importance to the wine industry, but they are highly variable from year to year. Unlike many perennial plants, cluster formation unfolds in two seasons: season 1 takes place in the bud until dormancy, and season 2 starts after budbreak in the following year. Season 1 corresponds to the initiation and differentiation of inflorescence primordia, controlled by many exogenous and endogenous factors, which explains up to 60% seasonal variation in yield. Season 2 consists of flowering and fruit development, which explains, respectively, 30% and 10% of seasonal variation in yield. It is therefore essential to understand the impact of these factors to better control the yield. This review aims to summarize past and present knowledge concerning the physiology of latent buds relating to their fruitfulness, and to assess the impact of environmental, hormonal, and regulation factors on the final yield. Avenues of further research to understand physiological, biochemical and molecular regulatory mechanisms of initiation and differentiation of clusters will be then proposed.
Collapse
Affiliation(s)
- Anna Li-Mallet
- Université de Bordeaux, ISVV – EA4577, Unité de Recherche Oenologie, F-33140 Villenave d’Ornon, France; INRA, ISVV, USC1366 Œnologie, F-33140 Villenave d’Ornon, France
- Université de Bordeaux, ISVV – EA4577, Unité de Recherche Oenologie, F-33140 Villenave d’Ornon, France; INRA, ISVV, USC1366 Œnologie, F-33140 Villenave d’Ornon, France
| | - Amélie Rabot
- Université de Bordeaux, ISVV – EA4577, Unité de Recherche Oenologie, F-33140 Villenave d’Ornon, France; INRA, ISVV, USC1366 Œnologie, F-33140 Villenave d’Ornon, France
- Université de Bordeaux, ISVV – EA4577, Unité de Recherche Oenologie, F-33140 Villenave d’Ornon, France; INRA, ISVV, USC1366 Œnologie, F-33140 Villenave d’Ornon, France
| | - Laurence Geny
- Université de Bordeaux, ISVV – EA4577, Unité de Recherche Oenologie, F-33140 Villenave d’Ornon, France; INRA, ISVV, USC1366 Œnologie, F-33140 Villenave d’Ornon, France
- Université de Bordeaux, ISVV – EA4577, Unité de Recherche Oenologie, F-33140 Villenave d’Ornon, France; INRA, ISVV, USC1366 Œnologie, F-33140 Villenave d’Ornon, France
| |
Collapse
|
168
|
Moreau F, Thévenon E, Blanvillain R, Lopez-Vidriero I, Franco-Zorrilla JM, Dumas R, Parcy F, Morel P, Trehin C, Carles CC. The Myb-domain protein ULTRAPETALA1 INTERACTING FACTOR 1 controls floral meristem activities in Arabidopsis. Development 2016; 143:1108-19. [PMID: 26903506 DOI: 10.1242/dev.127365] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 02/15/2016] [Indexed: 11/20/2022]
Abstract
Higher plants continuously and iteratively produce new above-ground organs in the form of leaves, stems and flowers. These organs arise from shoot apical meristems whose homeostasis depends on coordination between self-renewal of stem cells and their differentiation into organ founder cells. This coordination is stringently controlled by the central transcription factor WUSCHEL (WUS), which is both necessary and sufficient for stem cell specification in Arabidopsis thaliana ULTRAPETALA1 (ULT1) was previously identified as a plant-specific, negative regulator of WUS expression. However, molecular mechanisms underlying this regulation remain unknown. ULT1 protein contains a SAND putative DNA-binding domain and a B-box, previously proposed as a protein interaction domain in eukaryotes. Here, we characterise a novel partner of ULT1, named ULT1 INTERACTING FACTOR 1 (UIF1), which contains a Myb domain and an EAR motif. UIF1 and ULT1 function in the same pathway for regulation of organ number in the flower. Moreover, UIF1 displays DNA-binding activity and specifically binds to WUS regulatory elements. We thus provide genetic and molecular evidence that UIF1 and ULT1 work together in floral meristem homeostasis, probably by direct repression of WUS expression.
Collapse
Affiliation(s)
- Fanny Moreau
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| | - Emmanuel Thévenon
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| | - Robert Blanvillain
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| | - Irene Lopez-Vidriero
- Genomics Unit, Centro Nacional de Biotecnologia CNB- CSIC, Darwin 3, Madrid 28049, Spain
| | | | - Renaud Dumas
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| | - François Parcy
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| | - Patrice Morel
- Laboratoire de Reproduction et Développement des Plantes, Université Lyon1, CNRS, INRA, ENS, Lyon cedex 07 69347, France
| | - Christophe Trehin
- Laboratoire de Reproduction et Développement des Plantes, Université Lyon1, CNRS, INRA, ENS, Lyon cedex 07 69347, France
| | - Cristel C Carles
- Université Grenoble Alpes, Laboratoire de Physiologie Cellulaire et Végétale (LPCV), Grenoble 38054, France CNRS, LPCV, UMR 5168, Grenoble 38054, France CEA, Direction des Sciences du Vivant, BIG, LPCV, Grenoble 38054, France INRA, LPCV, Grenoble 38054, France
| |
Collapse
|
169
|
Soyars CL, James SR, Nimchuk ZL. Ready, aim, shoot: stem cell regulation of the shoot apical meristem. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:163-8. [PMID: 26803586 DOI: 10.1016/j.pbi.2015.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 05/13/2023]
Abstract
Plant shoot meristems contain stem cells that are continuously renewed to replenish cells that exit and differentiate during lateral organ formation. Complex cell-to-cell signaling systems balance division and differentiation. These center on ligand-receptor networks, hormone pathways, and transcriptional regulators that function in an integrated manner. In this review, we aim to highlight new findings in shoot stem cell regulation across species.
Collapse
Affiliation(s)
- Cara L Soyars
- Department of Biology, University of North Carolina at Chapel Hill, 4155 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC 27599, United States
| | - Sean R James
- Department of Biology, University of North Carolina at Chapel Hill, 4155 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC 27599, United States
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, 4155 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC 27599, United States.
| |
Collapse
|
170
|
Salvini M, Fambrini M, Giorgetti L, Pugliesi C. Molecular aspects of zygotic embryogenesis in sunflower (Helianthus annuus L.): correlation of positive histone marks with HaWUS expression and putative link HaWUS/HaL1L. PLANTA 2016; 243:199-215. [PMID: 26377219 DOI: 10.1007/s00425-015-2405-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 09/06/2015] [Indexed: 06/05/2023]
Abstract
The link HaWUS/ HaL1L , the opposite transcriptional behavior, and the decrease/increase in positive histone marks bond to both genes suggest an inhibitory effect of WUS on HaL1L in sunflower zygotic embryos. In Arabidopsis, a group of transcription factors implicated in the earliest events of embryogenesis is the WUSCHEL-RELATED HOMEOBOX (WOX) protein family including WUSCHEL (WUS) and other 14 WOX protein, some of which contain a conserved WUS-box domain in addition to the homeodomain. WUS transcripts appear very early in embryogenesis, at the 16-cell embryo stage, but gradually become restricted to the center of the developing shoot apical meristem (SAM) primordium and continues to be expressed in cells of the niche/organizing center of SAM and floral meristems to maintain stem cell population. Moreover, WUS has decisive roles in the embryonic program presumably promoting the vegetative-to-embryonic transition and/or maintaining the identity of the embryonic stem cells. However, data on the direct interaction between WUS and key genes for seed development (as LEC1 and L1L) are not collected. The novelty of this report consists in the characterization of Helianthus annuus WUS (HaWUS) gene and in its analysis regarding the pattern of the methylated lysine 4 (K4) of the Histone H3 and of the acetylated histone H3 during the zygotic embryo development. Also, a parallel investigation was performed for HaL1L gene since two copies of the WUS-binding site (WUSATA), previously identified on HaL1L nucleotide sequence, were able to be bound by the HaWUS recombinant protein suggesting a not described effect of HaWUS on HaL1L transcription.
Collapse
Affiliation(s)
- Mariangela Salvini
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy.
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Marco Fambrini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lucia Giorgetti
- Institute of Agricultural Biology and Biotechnology (IBBA), Italian National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
171
|
Ó’Maoiléidigh D, Graciet E, Wellmer F. Strategies for Performing Dynamic Gene Perturbation Experiments in Flowers. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
172
|
Mathew IE, Das S, Mahto A, Agarwal P. Three Rice NAC Transcription Factors Heteromerize and Are Associated with Seed Size. FRONTIERS IN PLANT SCIENCE 2016; 7:1638. [PMID: 27872632 PMCID: PMC5098391 DOI: 10.3389/fpls.2016.01638] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 05/18/2023]
Abstract
NACs are plant-specific transcription factors (TFs) involved in multiple aspects of development and stress. In rice, three NAC TF encoding genes, namely ONAC020, ONAC026, and ONAC023 express specifically during seed development, at extremely high levels. They exhibit significantly strong association with seed size/weight with the sequence variations located in the upstream regulatory region. Concomitantly, their expression pattern/levels during seed development vary amongst different accessions with variation in seed size. The alterations in the promoter sequences of the three genes, amongst the five rice accessions, correlate with the expression levels to a certain extent only. In terms of transcriptional properties, the three NAC TFs can activate and/or suppress downstream genes, though to different extents. Only ONAC026 is localized to the nucleus while ONAC020 and ONAC023 are targeted to the ER and cytoplasm, respectively. Interestingly, these two proteins interact with ONAC026 and the dimers localize in the nucleus. Trans-splicing between ONAC020 and ONAC026 results in three additional forms of ONAC020. The transcriptional properties including activation, repression, subcellular localization and heterodimerization of trans-spliced forms of ONAC020 and ONAC026 are different, indicating toward their role as competitors. The analysis presented in this paper helps to conclude that the three NAC genes, which are associated with seed size, have independent as well as overlapping roles during the process and can be exploited as potential targets for crop improvement.
Collapse
|
173
|
Xu M, Xie W, Huang M. Two WUSCHEL-related HOMEOBOX genes, PeWOX11a and PeWOX11b, are involved in adventitious root formation of poplar. PHYSIOLOGIA PLANTARUM 2015; 155:446-56. [PMID: 25998748 DOI: 10.1111/ppl.12349] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 05/24/2023]
Abstract
The plant-specific WUSCHEL-related HOMEOBOX (WOX) transcription factors play important roles in key developmental processes, but knowledge regarding functional characterization of WOX genes in poplar remains limited. To reveal genes and signaling pathways associated with adventitious rooting in poplar, here we isolated and characterized two WOX genes through the rapid amplification of cDNA ends (RACE), sequence aligning, expression profiling, protoplast transfection and poplar transformation. Detailed information about the sequence similarity, structural features, evolutionary relationships, expression patterns and subcellular localization of the two genes were revealed. Overexpression of either PeWOX11a or PeWOX11b not only increased the number of adventitious roots on the cuttings but also induced ectopic roots in the aerial parts of transgenic poplars. Meanwhile, their overexpression in transgenic poplars affected axillary bud and leaf development. These results suggest that PeWOX11a and PeWOX11b were involved in multiple developmental processes of poplar, especially in adventitious root formation. Our results provide new insights into the molecular mechanisms underlying adventitious root formation of poplar.
Collapse
Affiliation(s)
- Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Wenfan Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Minren Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forest Genetics & Biotechnology, Nanjing Forestry University, Ministry of Education, Nanjing, China
| |
Collapse
|
174
|
Kondo Y, Fukuda H. The TDIF signaling network. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:106-110. [PMID: 26550938 DOI: 10.1016/j.pbi.2015.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/25/2015] [Accepted: 10/02/2015] [Indexed: 06/05/2023]
Abstract
Plant growth and development are coordinately controlled by intercellular signaling molecules. CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION-related (CLE) peptides are crucial intercellular signaling molecules that control plant meristem maintenance. CLE peptides are perceived by plasma membrane-located receptor-like kinases, followed by the initiation of intracellular signaling cascades. Recent studies have uncovered these intracellular signaling networks involving signal divergence and integration. This review summarizes recent advances in the study of TDIF peptide signaling pathway, a representative model of CLE peptide signaling, focusing on newly uncovered biological functions and unique signal transduction mechanisms.
Collapse
Affiliation(s)
- Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
175
|
Bürglin TR, Affolter M. Homeodomain proteins: an update. Chromosoma 2015; 125:497-521. [PMID: 26464018 PMCID: PMC4901127 DOI: 10.1007/s00412-015-0543-8] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 09/20/2015] [Accepted: 09/21/2015] [Indexed: 12/17/2022]
Abstract
Here, we provide an update of our review on homeobox genes that we wrote together with Walter Gehring in 1994. Since then, comprehensive surveys of homeobox genes have become possible due to genome sequencing projects. Using the 103 Drosophila homeobox genes as example, we present an updated classification. In animals, there are 16 major classes, ANTP, PRD, PRD-LIKE, POU, HNF, CUT (with four subclasses: ONECUT, CUX, SATB, and CMP), LIM, ZF, CERS, PROS, SIX/SO, plus the TALE superclass with the classes IRO, MKX, TGIF, PBC, and MEIS. In plants, there are 11 major classes, i.e., HD-ZIP (with four subclasses: I to IV), WOX, NDX, PHD, PLINC, LD, DDT, SAWADEE, PINTOX, and the two TALE classes KNOX and BEL. Most of these classes encode additional domains apart from the homeodomain. Numerous insights have been obtained in the last two decades into how homeodomain proteins bind to DNA and increase their specificity by interacting with other proteins to regulate cell- and tissue-specific gene expression. Not only protein-DNA base pair contacts are important for proper target selection; recent experiments also reveal that the shape of the DNA plays a role in specificity. Using selected examples, we highlight different mechanisms of homeodomain protein-DNA interaction. The PRD class of homeobox genes was of special interest to Walter Gehring in the last two decades. The PRD class comprises six families in Bilateria, and tinkers with four different motifs, i.e., the PAIRED domain, the Groucho-interacting motif EH1 (aka Octapeptide or TN), the homeodomain, and the OAR motif. Homologs of the co-repressor protein Groucho are also present in plants (TOPLESS), where they have been shown to interact with small amphipathic motives (EAR), and in yeast (TUP1), where we find an EH1-like motif in MATα2.
Collapse
Affiliation(s)
- Thomas R. Bürglin
- />Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
- />Department of Biomedicine, University of Basel, Mattenstrasse 28, 4058 Basel, Switzerland
| | - Markus Affolter
- />Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
176
|
Gaillochet C, Lohmann JU. The never-ending story: from pluripotency to plant developmental plasticity. Development 2015; 142:2237-49. [PMID: 26130755 PMCID: PMC4510588 DOI: 10.1242/dev.117614] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Plants are sessile organisms, some of which can live for over a thousand years. Unlike most animals, plants employ a post-embryonic mode of development driven by the continuous activity of pluripotent stem cells. Consequently, plants are able to initiate new organs over extended periods of time, and many species can readily replace lost body structures by de novo organogenesis. Classical studies have also shown that plant tissues have a remarkable capacity to undergo de-differentiation and proliferation in vitro, highlighting the fact that plant cell fate is highly plastic. This suggests that the mechanisms regulating fate transitions must be continuously active in most plant cells and that the control of cellular pluripotency lies at the core of diverse developmental programs. Here, we review how pluripotency is established in plant stem cell systems, how it is maintained during development and growth and re-initiated during regeneration, and how these mechanisms eventually contribute to the amazing developmental plasticity of plants.
Collapse
Affiliation(s)
- Christophe Gaillochet
- Department of Stem Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, 69120, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, 69120, Germany
| |
Collapse
|
177
|
Li Q, Yin M, Li Y, Fan C, Yang Q, Wu J, Zhang C, Wang H, Zhou Y. Expression of Brassica napus TTG2, a regulator of trichome development, increases plant sensitivity to salt stress by suppressing the expression of auxin biosynthesis genes. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5821-36. [PMID: 26071533 PMCID: PMC4566978 DOI: 10.1093/jxb/erv287] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
WRKY transcription factors (TFs) are plant specific and play important roles in regulating diverse biological processes. To identify TFs with broad-spectrum effects on various stress responses in Brassica napus, an important oil crop grown across diverse ecological regions worldwide, we functionally characterized Bna.TTG2 genes, which are homologous to the Arabidopsis AtTTG2 (WRKY44) gene. Four Bna.TTG2 genes were capable of rescuing the trichome phenotypes of Arabidopsis ttg2 mutants. Overexpressing one Bna.TTG2 family member, BnaA.TTG2.a.1, remarkably increased trichome numbers in Arabidopsis and B. napus plants. Interestingly, the BnaA.TTG2.a.1-overexpressing plants of both species exhibited increased sensitivity to salt stress. In BnaA.TTG2.a.1-overexpressing Arabidopsis under salt stress, the endogenous indole-3-acetic acid (IAA) content was reduced, and the expression of two auxin biosynthesis genes, TRYPTOPHAN BIOSYNTHESIS 5 (TRP5) and YUCCA2 (YUC2), was downregulated. The results from yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase reporter assays revealed that BnaA.TTG2.a.1 is able to bind to the promoters of TRP5 and YUC2. These data indicated that BnaA.TTG2.a.1 confers salt sensitivity to overexpressing plants by suppressing the expression of IAA synthesis genes and thus lowering IAA levels. Transgenic Arabidopsis plants with an N-terminus-deleted BnaA.TTG2.a.1 no longer showed hypersensitivity to salt stress, suggesting that the N terminus of BnaA.TTG2.a.1 plays a critical role in salt stress responses. Therefore, in addition to its classical function in trichome development, our study reveals a novel role for Bna.TTG2 genes in salt stress responses.
Collapse
Affiliation(s)
- Qingyuan Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Mei Yin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongpeng Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hong Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon SK S7N 5A2, Canada
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
178
|
Wang P, Li C, Li C, Zhao C, Xia H, Zhao S, Hou L, Gao C, Wan S, Wang X. Identification and expression dynamics of three WUSCHEL related homeobox 13 (WOX13) genes in peanut. Dev Genes Evol 2015; 225:221-33. [PMID: 26115849 DOI: 10.1007/s00427-015-0506-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
WUSCHEL-related homeobox (WOX) genes play key roles in plant stem cell maintenance and development. WOX genes showed specific expression patterns which are important for their functions. WOX13 subfamily genes as the ancestor genes of this family were less studied in the past. In this study, we cloned three Arachis hypogaea (peanut) WOX13 (AhWOX13) subfamily genes from peanut: WOX13A and WOX13B1, 2. WOX13B1 encoded a same protein as WOX13B2, and there were only two-base difference between these two genes. Differential expression patterns were observed for these three AhWOX13 subfamily genes in different tissues and developmental stages. Phylogenic trees analysis showed that these AhWOX13 subfamily genes were the most conserved WOX genes and belonged to the ancient clade of WOX family. This was also supported by the conserved motif analysis. Selective pressure analysis showed that the WOX family genes mainly underwent weak purifying selection (ω = 0.58097), while many positive mutations accumulated during the evolution history. Under the purifying selection, gene duplication event and loss of duplicated gene play important roles in the expansion and evolution of WOX family.
Collapse
Affiliation(s)
- Pengfei Wang
- Bio-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife 2015. [PMID: 26076231 DOI: 10.7554/elife.07295.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity.
Collapse
Affiliation(s)
- Shouan Liu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Barbara Kracher
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Rainer P Birkenbihl
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
180
|
Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife 2015. [PMID: 26076231 DOI: 10.7554/elife.07295.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity.
Collapse
Affiliation(s)
- Shouan Liu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Barbara Kracher
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Rainer P Birkenbihl
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
181
|
Yruela I. Plant development regulation: Overview and perspectives. JOURNAL OF PLANT PHYSIOLOGY 2015; 182:62-78. [PMID: 26056993 DOI: 10.1016/j.jplph.2015.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/28/2015] [Accepted: 05/04/2015] [Indexed: 05/07/2023]
Abstract
Plant development, as occur in other eukaryotes, is conducted through a complex network of hormones, transcription factors, enzymes and micro RNAs, among other cellular components. They control developmental processes such as embryo, apical root and shoot meristem, leaf, flower, or seed formation, among others. The research in these topics has been very active in last decades. Recently, an explosion of new data concerning regulation mechanisms as well as the response of these processes to environmental changes has emerged. Initially, most of investigations were carried out in the model eudicot Arabidopsis but currently data from other plant species are available in the literature, although they are still limited. The aim of this review is focused on summarize the main molecular actors involved in plant development regulation in diverse plant species. A special attention will be given to the major families of genes and proteins participating in these regulatory mechanisms. The information on the regulatory pathways where they participate will be briefly cited. Additionally, the importance of certain structural features of such proteins that confer ductility and flexibility to these mechanisms will also be reported and discussed.
Collapse
Affiliation(s)
- Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain; Instituto de Biocomputacióon y Física de Sistemas Complejos, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain.
| |
Collapse
|
182
|
Liu S, Kracher B, Ziegler J, Birkenbihl RP, Somssich IE. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100. eLife 2015; 4:e07295. [PMID: 26076231 PMCID: PMC4487144 DOI: 10.7554/elife.07295] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/13/2015] [Indexed: 02/07/2023] Open
Abstract
The Arabidopsis mutant wrky33 is highly susceptible to Botrytis cinerea. We identified >1680 Botrytis-induced WRKY33 binding sites associated with 1576 Arabidopsis genes. Transcriptional profiling defined 318 functional direct target genes at 14 hr post inoculation. Comparative analyses revealed that WRKY33 possesses dual functionality acting either as a repressor or as an activator in a promoter-context dependent manner. We confirmed known WRKY33 targets involved in hormone signaling and phytoalexin biosynthesis, but also uncovered a novel negative role of abscisic acid (ABA) in resistance towards B. cinerea 2100. The ABA biosynthesis genes NCED3 and NCED5 were identified as direct targets required for WRKY33-mediated resistance. Loss-of-WRKY33 function resulted in elevated ABA levels and genetic studies confirmed that WRKY33 acts upstream of NCED3/NCED5 to negatively regulate ABA biosynthesis. This study provides the first detailed view of the genome-wide contribution of a specific plant transcription factor in modulating the transcriptional network associated with plant immunity.
Collapse
Affiliation(s)
- Shouan Liu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Barbara Kracher
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Rainer P Birkenbihl
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
183
|
Organizer-Derived WOX5 Signal Maintains Root Columella Stem Cells through Chromatin-Mediated Repression of CDF4 Expression. Dev Cell 2015; 33:576-88. [DOI: 10.1016/j.devcel.2015.04.024] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 01/18/2015] [Accepted: 04/27/2015] [Indexed: 11/21/2022]
|
184
|
Lutova LA, Dodueva IE, Lebedeva MA, Tvorogova VE. Transcription factors in developmental genetics and the evolution of higher plants. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415030084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
185
|
Wang Z, Zhang N, Zhou X, Fan Q, Si H, Wang D. Isolation and characterization of StERF transcription factor genes from potato (Solanum tuberosum L.). C R Biol 2015; 338:219-26. [PMID: 25814424 DOI: 10.1016/j.crvi.2015.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/24/2015] [Accepted: 01/24/2015] [Indexed: 12/11/2022]
Abstract
Ethylene response factor (ERF) is a major subfamily of the AP2/ERF family and plays significant roles in the regulation of abiotic- and biotic-stress responses. ERF proteins can interact with the GCC-box cis-element and then initiate a transcriptional cascade activating downstream ethylene response and enhancing plant stress tolerance. In this research, we cloned five StERF genes from potato (Solanum tuberosum L.). The expressional analysis of StERF genes revealed that they showed tissue- or organ-specific expression patterns and the expression levels in leaf, stem, root, flower, and tuber were different. The assays of quantitative real-time polymerase chain reaction (qRT-PCR) and the reverse transcription-PCR (RT-PCR) showed that the expression of five StERF genes was regulated by ethephon, methyl jasmonate (MeJA), salt and drought stress. The result from the yeast one-hybrid experiment showed that five StERFs had trans-activation activity and could specifically bind to the GCC-box cis-elements. The StERFs responded to abiotic factors and hormones suggested that they possibly had diverse roles in stress and hormone regulation of potato.
Collapse
Affiliation(s)
- Zemin Wang
- Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China.
| | - Xiangyan Zhou
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Qiang Fan
- Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Huaijun Si
- Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, People's Republic of China
| | - Di Wang
- Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, People's Republic of China.
| |
Collapse
|
186
|
Niu L, Lin H, Zhang F, Watira TW, Li G, Tang Y, Wen J, Ratet P, Mysore KS, Tadege M. LOOSE FLOWER, a WUSCHEL-like Homeobox gene, is required for lateral fusion of floral organs in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:480-92. [PMID: 25492397 DOI: 10.1111/tpj.12743] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/03/2014] [Indexed: 05/09/2023]
Abstract
The Medicago truncatula WOX gene, STENOFOLIA (STF), and its orthologs in Petunia, pea, and Nicotiana sylvestris are required for leaf blade outgrowth and floral organ development as demonstrated by severe phenotypes in single mutants. But the Arabidopsis wox1 mutant displays a narrow leaf phenotype only when combined with the prs/wox3 mutant. In maize and rice, WOX3 homologs are major regulators of leaf blade development. Here we investigated the role of WOX3 in M. truncatula development by isolating the lfl/wox3 loss-of-function mutant and performing genetic crosses with the stf mutant. Lack of WOX3 function in M. truncatula leads to a loose-flower (lfl) phenotype, where defects are observed in sepal and petal development, but leaf blades are apparently normal. The stf lfl double mutant analysis revealed that STF and LFL act mainly independently with minor redundant functions in flower development, but LFL has no obvious role in leaf blade outgrowth in M. truncatula on its own or in combination with STF. Interestingly, LFL acts as a transcriptional repressor by recruiting TOPLESS in the same manner as STF does, and can substitute for STF function in leaf blade and flower development if expressed under the STF promoter. STF also complements the lfl mutant phenotype in the flower if expressed under the LFL promoter. Our data suggest that the STF/WOX1 and LFL/WOX3 genes of M. truncatula employ a similar mechanism of action in organizing cell proliferation for lateral outgrowth but may have evolved different cis elements to acquire distinct functions.
Collapse
Affiliation(s)
- Lifang Niu
- Department of Plant and Soil Sciences, Institute for Agricultural Biosciences, Oklahoma State University, 3210 Sam Noble Parkway, Ardmore, OK, 73401, USA; Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Miyamoto K, Nishizawa Y, Minami E, Nojiri H, Yamane H, Okada K. Overexpression of the bZIP transcription factor OsbZIP79 suppresses the production of diterpenoid phytoalexin in rice cells. JOURNAL OF PLANT PHYSIOLOGY 2015; 173:19-27. [PMID: 25462074 DOI: 10.1016/j.jplph.2014.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/31/2014] [Accepted: 09/05/2014] [Indexed: 06/04/2023]
Abstract
Phytoalexins are antimicrobial specialised metabolites that are produced by plants in response to pathogen attack. Momilactones and phytocassanes are major diterpenoid phytoalexins in rice that are synthesised from geranylgeranyl diphosphate that is derived from the methylerythritol phosphate (MEP) pathway. We have previously reported that rice cells overexpressing the basic leucine zipper (bZIP) transcription factor OsTGAP1 exhibit a hyperaccumulation of momilactones and phytocassanes, with hyperinductive expression of momilactone and phytocassane biosynthetic genes and MEP pathway genes, upon response to a chitin oligosaccharide elicitor. For a better understanding of OsTGAP1-mediated regulation of diterpenoid phytoalexin production, we identified OsTGAP1-interacting proteins using yeast two-hybrid screening. Among the OsTGAP1-interacting protein candidates, a TGA factor OsbZIP79 was investigated to verify its physical interaction with OsTGAP1 and involvement in the regulation of phytoalexin production. An in vitro pull-down assay demonstrated that OsTGAP1 and OsbZIP79 exhibited a heterodimeric as well as a homodimeric interaction. A bimolecular fluorescence complementation analysis also showed the interaction between OsTGAP1 and OsbZIP79 in vivo. Intriguingly, whereas OsbZIP79 transactivation activity was observed in a transient reporter assay, the overexpression of OsbZIP79 resulted in suppression of the elicitor-inducible expression of diterpenoid phytoalexin biosynthetic genes, and thus caused a decrease in the accumulation of phytoalexin in rice cells. These results suggest that OsbZIP79 functions as a negative regulator of phytoalexin production triggered by a chitin oligosaccharide elicitor in rice cells, although it remains open under which conditions OsbZIP79 can work with OsTGAP1.
Collapse
Affiliation(s)
- Koji Miyamoto
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan; Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yoko Nishizawa
- Disease Resistant Crops Research Unit, GMO Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| | - Eiichi Minami
- Disease Resistant Crops Research Unit, GMO Research Center, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Hisakazu Yamane
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi 320-8551, Japan.
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
188
|
Zhang F, Tadege M. Repression of AS2 by WOX family transcription factors is required for leaf development in Medicago and Arabidopsis. PLANT SIGNALING & BEHAVIOR 2015; 10:e993291. [PMID: 25807065 PMCID: PMC4623463 DOI: 10.4161/15592324.2014.993291] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
WOX transcription factors are key regulators of meristematic activity in plants. The Medicago WOX gene, STF, functions in maintenance of leaf marginal meristem, analogous to the function of WUS in the shoot apical meristem. Both STF and WUS directly repress AS2 expression in their respective domains. Ectopic expression of AS2 with WUS promoter leads to a narrow leaf phenotype and other phenotypes similar to the wus mutant. We also found that a wox1 prs wus triple mutant produces much narrower leaf blades than the wox1 prs double mutant, indicating that WUS genetically interacts with WOX1 and PRS in Arabidopsis leaf blade development. Our data points to a general requirement for AS2 repression in meristematic regions to allow cell proliferation.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Plant and Soil Sciences; Institute for Agricultural Biosciences; Oklahoma State University; Ardmore, OK USA
| | - Million Tadege
- Department of Plant and Soil Sciences; Institute for Agricultural Biosciences; Oklahoma State University; Ardmore, OK USA
- Correspondence to: Million Tadege;
| |
Collapse
|
189
|
The molecular mechanism of sporocyteless/nozzle in controlling Arabidopsis ovule development. Cell Res 2014; 25:121-34. [PMID: 25378179 PMCID: PMC4650584 DOI: 10.1038/cr.2014.145] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/07/2014] [Accepted: 10/09/2014] [Indexed: 11/09/2022] Open
Abstract
Ovules are essential for plant reproduction and develop into seeds after fertilization. Sporocyteless/nozzle (SPL/NZZ) has been known for more than 15 years as an essential factor for ovule development in Arabidopsis, but the biochemical nature of SPL function has remained unsolved. Here, we demonstrate that SPL functions as an adaptor-like transcriptional repressor. We show that SPL recruits topless/topless-related (TPL/TPR) co-repressors to inhibit the Cincinnata (CIN)-like Teosinte branched1/cycloidea/PCF (TCP) transcription factors. We reveal that SPL uses its EAR motif at the C-terminal end to recruit TPL/TPRs and its N-terminal part to bind and inhibit the TCPs. We demonstrate that either disruption of TPL/TPRs or overexpression of TCPs partially phenocopies the defects of megasporogenesis in spl. Moreover, disruption of TCPs causes phenotypes that resemble spl-D gain-of-function mutants. These results define the action mechanism for SPL, which along with TPL/TPRs controls ovule development by repressing the activities of key transcription factors. Our findings suggest that a similar gene repression strategy is employed by both plants and fungi to control sporogenesis.
Collapse
|
190
|
Costanzo E, Trehin C, Vandenbussche M. The role of WOX genes in flower development. ANNALS OF BOTANY 2014; 114:1545-53. [PMID: 24973416 PMCID: PMC4204783 DOI: 10.1093/aob/mcu123] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/29/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND WOX (Wuschel-like homeobOX) genes form a family of plant-specific HOMEODOMAIN transcription factors, the members of which play important developmental roles in a diverse range of processes. WOX genes were first identified as determining cell fate during embryo development, as well as playing important roles in maintaining stem cell niches in the plant. In recent years, new roles have been identified in plant architecture and organ development, particularly at the flower level. SCOPE In this review, the role of WOX genes in flower development and flower architecture is highlighted, as evidenced from data obtained in the last few years. The roles played by WOX genes in different species and different flower organs are compared, and differential functional recruitment of WOX genes during flower evolution is considered. CONCLUSIONS This review compares available data concerning the role of WOX genes in flower and organ architecture among different species of angiosperms, including representatives of monocots and eudicots (rosids and asterids). These comparative data highlight the usefulness of the WOX gene family for evo-devo studies of floral development.
Collapse
Affiliation(s)
- Enrico Costanzo
- Laboratory of Reproduction and Development of Plants, UMR5667 (ENS de Lyon, CNRS, INRA, UCBL), Ecole Normale Supérieure de Lyon, Lyon, France Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Christophe Trehin
- Laboratory of Reproduction and Development of Plants, UMR5667 (ENS de Lyon, CNRS, INRA, UCBL), Ecole Normale Supérieure de Lyon, Lyon, France
| | - Michiel Vandenbussche
- Laboratory of Reproduction and Development of Plants, UMR5667 (ENS de Lyon, CNRS, INRA, UCBL), Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
191
|
Pires HR, Monfared MM, Shemyakina EA, Fletcher JC. ULTRAPETALA trxG genes interact with KANADI transcription factor genes to regulate Arabidopsis gynoecium patterning. THE PLANT CELL 2014; 26:4345-61. [PMID: 25381352 PMCID: PMC4277222 DOI: 10.1105/tpc.114.131250] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 09/30/2014] [Accepted: 10/16/2014] [Indexed: 05/13/2023]
Abstract
Organ formation relies upon precise patterns of gene expression that are under tight spatial and temporal regulation. Transcription patterns are specified by several cellular processes during development, including chromatin remodeling, but little is known about how chromatin-remodeling factors contribute to plant organogenesis. We demonstrate that the trithorax group (trxG) gene ULTRAPETALA1 (ULT1) and the GARP transcription factor gene KANADI1 (KAN1) organize the Arabidopsis thaliana gynoecium along two distinct polarity axes. We show that ULT1 activity is required for the kan1 adaxialized polarity defect, indicating that ULT1 and KAN1 act oppositely to regulate the adaxial-abaxial axis. Conversely, ULT1 and KAN1 together establish apical-basal polarity by promoting basal cell fate in the gynoecium, restricting the expression domain of the basic helix-loop-helix transcription factor gene SPATULA. Finally, we show that ult alleles display dose-dependent genetic interactions with kan alleles and that ULT and KAN proteins can associate physically. Our findings identify a dual role for plant trxG factors in organ patterning, with ULT1 and KAN1 acting antagonistically to pattern the adaxial-abaxial polarity axis but jointly to pattern the apical-basal axis. Our data indicate that the ULT proteins function to link chromatin-remodeling factors with DNA binding transcription factors to regulate target gene expression.
Collapse
Affiliation(s)
- Helena R Pires
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service/UC Berkeley, Albany, California 94710Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Mona M Monfared
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service/UC Berkeley, Albany, California 94710Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Elena A Shemyakina
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service/UC Berkeley, Albany, California 94710Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Jennifer C Fletcher
- Plant Gene Expression Center, U.S. Department of Agriculture-Agricultural Research Service/UC Berkeley, Albany, California 94710Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| |
Collapse
|
192
|
Sohn KH, Segonzac C, Rallapalli G, Sarris PF, Woo JY, Williams SJ, Newman TE, Paek KH, Kobe B, Jones JDG. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana. PLoS Genet 2014; 10:e1004655. [PMID: 25340333 PMCID: PMC4207616 DOI: 10.1371/journal.pgen.1004655] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 08/06/2014] [Indexed: 01/13/2023] Open
Abstract
Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific “avirulent” pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1), function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele (RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor ofslh1 immunity (sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed new light on mechanisms by which NB-LRR protein pairs activate defense signaling, or are held inactive in the absence of a pathogen effector. How plant NB-LRR resistance proteins and the related mammalian Nod-like receptors (NLRs) activate defense is poorly understood. Plant and animal immune receptors can function in pairs. Two Arabidopsis nuclear immune receptors, RPS4 and RRS1, confer recognition of the unrelated bacterial effectors, AvrRps4 and PopP2, and activate defense. Using delivery of PopP2 into Arabidopsis leaf cells via Pseudomonas type III secretion, we define early transcriptional changes upon RPS4/RRS1-dependent PopP2 recognition. We show an auto-active allele of RRS1, RRS1SLH1, triggers transcriptional reprogramming of defense genes that are also reprogrammed by AvrRps4 or PopP2 in an RPS4/RRS1-dependent manner. To discover genetic requirements for RRS1SLH1 auto-activation, we conducted a suppressor screen. Many suppressor of slh1 immunity (sushi) mutants that are impaired in RRS1SLH1-mediated auto-activation carry loss-of-function mutations in RPS4. This suggests that RPS4 functions as a signaling component together with or downstream of RRS1-activated immunity, in contrast to earlier hypotheses, significantly advancing our understanding of how immune receptors activate defense in plants.
Collapse
Affiliation(s)
- Kee Hoon Sohn
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- * E-mail: (KHS); (JDGJ)
| | - Cécile Segonzac
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | | | | | - Joo Yong Woo
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Simon J. Williams
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Toby E. Newman
- Bioprotection Research Centre, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Kyung Hee Paek
- School of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Australia
| | - Jonathan D. G. Jones
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- * E-mail: (KHS); (JDGJ)
| |
Collapse
|
193
|
FBH1 affects warm temperature responses in the Arabidopsis circadian clock. Proc Natl Acad Sci U S A 2014; 111:14595-600. [PMID: 25246594 DOI: 10.1073/pnas.1416666111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In Arabidopsis, the circadian clock allows the plant to coordinate daily external signals with internal processes, conferring enhanced fitness and growth vigor. Although external cues such as temperature can entrain the clock, an important feature of the clock is the ability to maintain a relatively constant period over a range of physiological temperatures; this ability is referred to as "temperature compensation." However, how temperature actually is perceived and integrated into the clock molecular circuitry remains largely unknown. In an effort to identify additional regulators of the circadian clock, including putative components that could modulate the clock response to changes in environmental signals, we identified in a previous large-scale screen a transcription factor that interacts with and regulates the promoter activity of a core clock gene. In this report, we characterized this transcription factor, flowering basic helix-loop-helix 1 (FBH1) that binds in vivo to the promoter of the key clock gene circadian clock-associated 1 (CCA1) and regulates its expression. We found that upon temperature changes, overexpression of FBH1 alters the pace of CCA1 expression by causing a period shortening and thus preventing the clock from buffering against this change in temperature. Furthermore, as is consistent with the current mechanistic model of feedback loops observed in the clock regulatory network, we also determined that CCA1 binds in vivo to the FBH1 promoter and regulates its expression. Together these results establish a role for FBH1 as a transcriptional modulator of warm temperature signals and clock responses in Arabidopsis.
Collapse
|
194
|
A mechanistic framework for noncell autonomous stem cell induction in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:14619-24. [PMID: 25246576 DOI: 10.1073/pnas.1406446111] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell-cell communication is essential for multicellular development and, consequently, evolution has brought about an array of distinct mechanisms serving this purpose. Consistently, induction and maintenance of stem cell fate by noncell autonomous signals is a feature shared by many organisms and may depend on secreted factors, direct cell-cell contact, matrix interactions, or a combination of these mechanisms. Although many basic cellular processes are well conserved between animals and plants, cell-to-cell signaling is one function where substantial diversity has arisen between the two kingdoms of life. One of the most striking differences is the presence of cytoplasmic bridges, called plasmodesmata, which facilitate the exchange of molecules between neighboring plant cells and provide a unique route for cell-cell communication in the plant lineage. Here, we provide evidence that the stem cell inducing transcription factor WUSCHEL (WUS), expressed in the niche, moves to the stem cells via plasmodesmata in a highly regulated fashion and that this movement is required for WUS function and, thus, stem cell activity in Arabidopsis thaliana. We show that cell context-independent mobility is encoded in the WUS protein sequence and mediated by multiple domains. Finally, we demonstrate that parts of the protein that restrict movement are required for WUS homodimerization, suggesting that formation of WUS dimers might contribute to the regulation of apical stem cell activity.
Collapse
|
195
|
Ikeda M, Ohme-Takagi M. TCPs, WUSs, and WINDs: families of transcription factors that regulate shoot meristem formation, stem cell maintenance, and somatic cell differentiation. FRONTIERS IN PLANT SCIENCE 2014; 5:427. [PMID: 25232356 PMCID: PMC4153042 DOI: 10.3389/fpls.2014.00427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/12/2014] [Indexed: 05/09/2023]
Abstract
In contrast to somatic mammalian cells, which cannot alter their fate, plant cells can dedifferentiate to form totipotent callus cells and regenerate a whole plant, following treatment with specific phytohormones. However, the regulatory mechanisms and key factors that control differentiation-dedifferentiation and cell totipotency have not been completely clarified in plants. Recently, several plant transcription factors that regulate meristem formation and dedifferentiation have been identified and include members of the TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP), WUSCHEL (WUS), and WOUND INDUCED DEDIFFERENTIATION (WIND1) families. WUS and WIND positively control plant cell totipotency, while TCP negatively controls it. Interestingly, TCP is a transcriptional activator that acts as a negative regulator of shoot meristem formation, and WUS is a transcriptional repressor that positively maintains totipotency of the stem cells of the shoot meristem. We describe here the functions of TCP, WUS, and WIND transcription factors in the regulation of differentiation-dedifferentiation by positive and negative transcriptional regulators.
Collapse
Affiliation(s)
- Miho Ikeda
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Satitama UniversitySaitama, Japan
| | - Masaru Ohme-Takagi
- Division of Strategic Research and Development, Graduate School of Science and Engineering, Satitama UniversitySaitama, Japan
- Research Institute of Bioproduction, National Institute of Advanced Industrial Science and TechnologyTsukuba, Japan
| |
Collapse
|
196
|
Miyamoto K, Matsumoto T, Okada A, Komiyama K, Chujo T, Yoshikawa H, Nojiri H, Yamane H, Okada K. Identification of target genes of the bZIP transcription factor OsTGAP1, whose overexpression causes elicitor-induced hyperaccumulation of diterpenoid phytoalexins in rice cells. PLoS One 2014; 9:e105823. [PMID: 25157897 PMCID: PMC4144896 DOI: 10.1371/journal.pone.0105823] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/24/2014] [Indexed: 01/15/2023] Open
Abstract
Phytoalexins are specialised antimicrobial metabolites that are produced by plants in response to pathogen attack. Momilactones and phytocassanes are the major diterpenoid phytoalexins in rice and are synthesised from geranylgeranyl diphosphate, which is derived from the methylerythritol phosphate (MEP) pathway. The hyperaccumulation of momilactones and phytocassanes due to the hyperinductive expression of the relevant biosynthetic genes and the MEP pathway gene OsDXS3 in OsTGAP1-overexpressing (OsTGAP1ox) rice cells has previously been shown to be stimulated by the chitin oligosaccharide elicitor. In this study, to clarify the mechanisms of the elicitor-stimulated coordinated hyperinduction of these phytoalexin biosynthetic genes in OsTGAP1ox cells, transcriptome analysis and chromatin immunoprecipitation with next-generation sequencing were performed, resulting in the identification of 122 OsTGAP1 target genes. Transcriptome analysis revealed that nearly all of the momilactone and phytocassane biosynthetic genes, which are clustered on chromosomes 4 and 2, respectively, and the MEP pathway genes were hyperinductively expressed in the elicitor-stimulated OsTGAP1ox cells. Unexpectedly, none of the clustered genes was included among the OsTGAP1 target genes, suggesting that OsTGAP1 did not directly regulate the expression of these biosynthetic genes through binding to each promoter region. Interestingly, however, several OsTGAP1-binding regions were found in the intergenic regions among and near the cluster regions. Concerning the MEP pathway genes, only OsDXS3, which encodes a key enzyme of the MEP pathway, possessed an OsTGAP1-binding region in its upstream region. A subsequent transactivation assay further confirmed the direct regulation of OsDXS3 expression by OsTGAP1, but other MEP pathway genes were not included among the OsTGAP1 target genes. Collectively, these results suggest that OsTGAP1 participates in the enhanced accumulation of diterpenoid phytoalexins, primarily through mechanisms other than the direct transcriptional regulation of the genes involved in the biosynthetic pathway of these phytoalexins.
Collapse
Affiliation(s)
- Koji Miyamoto
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, Japan
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Matsumoto
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Atsushi Okada
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kohei Komiyama
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tetsuya Chujo
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hirofumi Yoshikawa
- Genome Research Center, NODAI Research Institute, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Hideaki Nojiri
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hisakazu Yamane
- Department of Biosciences, Teikyo University, Utsunomiya, Tochigi, Japan
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
197
|
Cheng S, Huang Y, Zhu N, Zhao Y. The rice WUSCHEL-related homeobox genes are involved in reproductive organ development, hormone signaling and abiotic stress response. Gene 2014; 549:266-74. [PMID: 25106855 DOI: 10.1016/j.gene.2014.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 07/21/2014] [Accepted: 08/01/2014] [Indexed: 12/21/2022]
Abstract
The WUSCHEL-related homeobox (WOX) genes are important transcription regulators participated in plant development processes. Rice (Oryza sativa L.) genome encodes at least 13 WOX members. In this study, a systematic microarray-based gene expression profiling of eleven WOX genes was performed for the whole life cycle of rice at 16 different tissues/organs of MH63 (rice indica cultivar), which included eight reproductive organs and eight vegetative tissues. The results demonstrated that four genes (OsWUS, OsNS1/OsNS2, OsWOX3 and OsWOX9A) were specifically expressed in panicle and endosperm development, and six genes (OsWOX5, OsWOX9B, OsWOX9D, OsWOX11, OsWOX12A and OsWOX12B) were preferentially expressed in seeds (72h after imbibitions) during root emergence or growth. In situ hybridization analysis revealed differential transcript levels of OsWOX4, OsWOX5, OsWOX9A and OsWOX12B during panicle development and embryogenesis. Results of qRT-PCR showed that expression of four rice WOX genes (OsWOX5, OsWOX11, OsWOX12B and OsWOX12A) was up- or down-regulated by plant hormones (auxin, cytokinin and gibberellin). More interestingly, most WOX genes were responsive to abiotic stress stimuli of drought, salt and cold. The molecular studies presented here will further provide insight in understanding the functions of rice WOX gene family in rice development, hormone signaling, and abiotic stress response.
Collapse
Affiliation(s)
- Saifeng Cheng
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Yulan Huang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Ning Zhu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
198
|
Du M, Zhai Q, Deng L, Li S, Li H, Yan L, Huang Z, Wang B, Jiang H, Huang T, Li CB, Wei J, Kang L, Li J, Li C. Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack. THE PLANT CELL 2014; 26:3167-84. [PMID: 25005917 PMCID: PMC4145139 DOI: 10.1105/tpc.114.128272] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 06/18/2014] [Accepted: 06/26/2014] [Indexed: 05/18/2023]
Abstract
To restrict pathogen entry, plants close stomata as an integral part of innate immunity. To counteract this defense, Pseudomonas syringae pv tomato produces coronatine (COR), which mimics jasmonic acid (JA), to reopen stomata for bacterial entry. It is believed that abscisic acid (ABA) plays a central role in regulating bacteria-triggered stomatal closure and that stomatal reopening requires the JA/COR pathway, but the downstream signaling events remain unclear. We studied the stomatal immunity of tomato (Solanum lycopersicum) and report here the distinct roles of two homologous NAC (for NAM, ATAF1,2, and CUC2) transcription factors, JA2 (for jasmonic acid2) and JA2L (for JA2-like), in regulating pathogen-triggered stomatal movement. ABA activates JA2 expression, and genetic manipulation of JA2 revealed its positive role in ABA-mediated stomatal closure. We show that JA2 exerts this effect by regulating the expression of an ABA biosynthetic gene. By contrast, JA and COR activate JA2L expression, and genetic manipulation of JA2L revealed its positive role in JA/COR-mediated stomatal reopening. We show that JA2L executes this effect by regulating the expression of genes involved in the metabolism of salicylic acid. Thus, these closely related NAC proteins differentially regulate pathogen-induced stomatal closure and reopening through distinct mechanisms.
Collapse
Affiliation(s)
- Minmin Du
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China College of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Qingzhe Zhai
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuyu Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongshuang Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liuhua Yan
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhuo Huang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bao Wang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Chang-Bao Li
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jianing Wei
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Harbin 150030, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
199
|
TOPLESS mediates brassinosteroid-induced transcriptional repression through interaction with BZR1. Nat Commun 2014; 5:4140. [PMID: 24938363 PMCID: PMC4232713 DOI: 10.1038/ncomms5140] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/16/2014] [Indexed: 11/26/2022] Open
Abstract
Brassinosteroid (BR) regulates plant development by activating the transcription factor BRASSINAZOLE RESISTANT1 (BZR1), which activates and represses different target genes to switch cellular programs. The mechanisms that determine BZR1’s transcriptional activities remain largely unknown. Here we show that BZR1 represses target genes by recruiting the Groucho/TUP1-like transcriptional corepressor TOPLESS (TPL). Specific deletion or mutation of an evolutionarily conserved ERF-ASSOCIATED AMPHIPHILIC REPRESSION (EAR) motif at the C-terminus abolishes BZR1’s abilities to regulate gene expression and cell elongation, but these defects are rescued by TPL fusion to the EAR motif-mutated BZR1. The EAR motif in BZR1 mediates recruitment of TPL to BZR1-repressed promoters. A triple tpl mutant (tpl;tpr1;tpr4) shows reduced BR sensitivity and suppresses the gain-of-function bzr1-1D mutant phenotype. BR repression of gene expression also requires histone deacetylases that interact with TPL. Our study demonstrates key roles of the EAR motif and TPL in BR regulation of gene expression and plant growth.
Collapse
|
200
|
Nolan KE, Song Y, Liao S, Saeed NA, Zhang X, Rose RJ. An unusual abscisic acid and gibberellic acid synergism increases somatic embryogenesis, facilitates its genetic analysis and improves transformation in Medicago truncatula. PLoS One 2014; 9:e99908. [PMID: 24937316 PMCID: PMC4061021 DOI: 10.1371/journal.pone.0099908] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/20/2014] [Indexed: 12/14/2022] Open
Abstract
Somatic embryogenesis (SE) can be readily induced in leaf explants of the Jemalong 2HA genotype of the model legume Medicago truncatula by auxin and cytokinin, but rarely in wild-type Jemalong. Gibberellic acid (GA), a hormone not included in the medium, appears to act in Arabidopsis as a repressor of the embryonic state such that low ABA (abscisic acid): GA ratios will inhibit SE. It was important to evaluate the GA effect in M. truncatula in order to formulate generic SE mechanisms, given the Arabidopsis information. It was surprising to find that low ABA:GA ratios in M. truncatula acted synergistically to stimulate SE. The unusual synergism between GA and ABA in inducing SE has utility in improving SE for regeneration and transformation in M. truncatula. Expression of genes previously shown to be important in M. truncatula SE was not increased. In investigating genes previously studied in GA investigations of Arabidopsis SE, there was increased expression of GA2ox and decreased expression of PICKLE, a negative regulator of SE in Arabidopsis. We suggest that in M. truncatula there are different ABA:GA ratios required for down-regulating the PICKLE gene, a repressor of the embryonic state. In M. truncatula it is a low ABA:GA ratio while in Arabidopsis it is a high ABA:GA ratio. In different species the expression of key genes is probably related to differences in how the hormone networks optimise their expression.
Collapse
Affiliation(s)
- Kim E. Nolan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Youhong Song
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Siyang Liao
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Nasir A. Saeed
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Xiyi Zhang
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Ray J. Rose
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
- * E-mail:
| |
Collapse
|