151
|
Montavon T, Kwon Y, Zimmermann A, Hammann P, Vincent T, Cognat V, Bergdoll M, Michel F, Dunoyer P. Characterization of DCL4 missense alleles provides insights into its ability to process distinct classes of dsRNA substrates. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:204-218. [PMID: 29682831 DOI: 10.1111/tpj.13941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/10/2018] [Accepted: 04/05/2018] [Indexed: 05/10/2023]
Abstract
In the model plant Arabidopsis thaliana, four Dicer-like proteins (DCL1-4) mediate the production of various classes of small RNAs (sRNAs). Among these four proteins, DCL4 is by far the most versatile RNaseIII-like enzyme, and previously identified dcl4 missense alleles were shown to uncouple the production of the various classes of DCL4-dependent sRNAs. Yet little is known about the molecular mechanism behind this uncoupling. Here, by studying the subcellular localization, interactome and binding to the sRNA precursors of three distinct dcl4 missense alleles, we simultaneously highlight the absolute requirement of a specific residue in the helicase domain for the efficient production of all DCL4-dependent sRNAs, and identify, within the PAZ domain, an important determinant of DCL4 versatility that is mandatory for the efficient processing of intramolecular fold-back double-stranded RNA (dsRNA) precursors, but that is dispensable for the production of small interfering RNAs (siRNAs) from RDR-dependent dsRNA susbtrates. This study not only provides insights into the DCL4 mode of action, but also delineates interesting tools to further study the complexity of RNA silencing pathways in plants, and possibly other organisms.
Collapse
Affiliation(s)
- Thomas Montavon
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000, Strasbourg, France
| | - Yerim Kwon
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000, Strasbourg, France
| | - Aude Zimmermann
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000, Strasbourg, France
| | - Philippe Hammann
- Institut de Biologie Moléculaire et Cellulaire du CNRS, FRC1589, Plateforme Protéomique Strasbourg - Esplanade, Université de Strasbourg, F-67000, Strasbourg, France
| | - Timothée Vincent
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000, Strasbourg, France
| | - Valérie Cognat
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000, Strasbourg, France
| | - Marc Bergdoll
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000, Strasbourg, France
| | - Fabrice Michel
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000, Strasbourg, France
| | - Patrice Dunoyer
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000, Strasbourg, France
| |
Collapse
|
152
|
Gallo A, Valli A, Calvo M, García JA. A Functional Link between RNA Replication and Virion Assembly in the Potyvirus Plum Pox Virus. J Virol 2018; 92:e02179-17. [PMID: 29444942 PMCID: PMC5899180 DOI: 10.1128/jvi.02179-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/07/2018] [Indexed: 01/26/2023] Open
Abstract
Accurate assembly of viral particles in the potyvirus Plum pox virus (PPV) has been shown to depend on the contribution of the multifunctional viral protein HCPro. In this study, we show that other viral factors, in addition to the capsid protein (CP) and HCPro, are necessary for the formation of stable PPV virions. The CP produced in Nicotiana benthamiana leaves from a subviral RNA termed LONG, which expresses a truncated polyprotein that lacks P1 and HCPro, together with HCPro supplied in trans, was assembled into virus-like particles and remained stable after in vitro incubation. In contrast, deletions in multiple regions of the LONG coding sequence prevented the CP stabilization mediated by HCPro. In particular, we demonstrated that the first 178 amino acids of P3, but not a specific nucleotide sequence coding for them, are required for CP stability and proper assembly of PPV particles. Using a sequential coagroinfiltration assay, we observed that the subviral LONG RNA replicates and locally spreads in N. benthamiana leaves expressing an RNA silencing suppressor. The analysis of the effect of both point and deletion mutations affecting RNA replication in LONG and full-length PPV demonstrated that this process is essential for the assembly of stable viral particles. Interestingly, in spite of this requirement, the CP produced by a nonreplicating viral RNA can be stably assembled into virions as long as it is coexpressed with a replication-proficient RNA. Altogether, these results highlight the importance of coupling encapsidation to other viral processes to secure a successful infection.IMPORTANCE Viruses of the family Potyviridae are among the most dangerous threats for basically every important crop, and such socioeconomical relevance has made them a subject of many research studies. In spite of this, very little is currently known about proteins and processes controlling viral genome encapsidation by the coat protein. In the case of Plum pox virus (genus Potyvirus), for instance, we have previously shown that the multitasking viral factor HCPro plays a role in the production of stable virions. Here, by using this potyvirus as a model, we move further to show that additional factors are also necessary for the efficient production of potyviral particles. More importantly, a comprehensive screening for such factors led us to the identification of a functional link between virus replication and packaging, unraveling a previously unknown connection of these two key events of the potyviral infection cycle.
Collapse
Affiliation(s)
- Araiz Gallo
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Adrian Valli
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - María Calvo
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Antonio García
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
153
|
Pertermann R, Tamilarasan S, Gursinsky T, Gambino G, Schuck J, Weinholdt C, Lilie H, Grosse I, Golbik RP, Pantaleo V, Behrens SE. A Viral Suppressor Modulates the Plant Immune Response Early in Infection by Regulating MicroRNA Activity. mBio 2018; 9:e00419-18. [PMID: 29691336 PMCID: PMC5915741 DOI: 10.1128/mbio.00419-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 03/28/2018] [Indexed: 02/06/2023] Open
Abstract
Many viral suppressors (VSRs) counteract antiviral RNA silencing, a central component of the plant's immune response by sequestration of virus-derived antiviral small interfering RNAs (siRNAs). Here, we addressed how VSRs affect the activities of cellular microRNAs (miRNAs) during a viral infection by characterizing the interactions of two unrelated VSRs, the Tombusvirus p19 and the Cucumovirus 2b, with miRNA 162 (miR162), miR168, and miR403. These miRNAs regulate the expression of the important silencing factors Dicer-like protein 1 (DCL1) and Argonaute proteins 1 and 2 (AGO1 and AGO2), respectively. Interestingly, while the two VSRs showed similar binding profiles, the miRNAs were bound with significantly different affinities, for example, with the affinity of miR162 greatly exceeding that of miR168. In vitro silencing experiments revealed that p19 and 2b affect miRNA-mediated silencing of the DCL1, AGO1, and AGO2 mRNAs in strict accordance with the VSR's miRNA-binding profiles. In Tombusvirus-infected plants, the miRNA-binding behavior of p19 closely corresponded to that in vitro Most importantly, in contrast to controls with a Δp19 virus, infections with wild-type (wt) virus led to changes of the levels of the miRNA-targeted mRNAs, and these changes correlated with the miRNA-binding preferences of p19. This was observed exclusively in the early stage of infection when viral genomes are proposed to be susceptible to silencing and viral siRNA (vsiRNA) concentrations are low. Accordingly, our study suggests that differential binding of miRNAs by VSRs is a widespread viral mechanism to coordinately modulate cellular gene expression and the antiviral immune response during infection initiation.IMPORTANCE Plant viruses manipulate their hosts in various ways. Viral suppressor proteins (VSRs) interfere with the plant's immune response by sequestering small, antivirally acting vsiRNAs, which are processed from viral RNAs during the plant's RNA-silencing response. Here, we examined the effects of VSRs on cellular microRNAs (miRNAs), which show a high degree of similarity with vsiRNAs. Binding experiments with two unrelated VSRs and three important regulatory miRNAs revealed that the proteins exhibit similar miRNA-binding profiles but bind different miRNAs at considerably different affinities. Most interestingly, experiments in plants showed that in the early infection phase, the Tombusvirus VSR p19 modulates the activity of these miRNAs on their target mRNAs very differently and that this differential regulation strictly correlates with the binding affinities of p19 for the respective miRNAs. Our data suggest that VSRs may specifically control plant gene expression and the early immune response by differential sequestration of miRNAs.
Collapse
Affiliation(s)
- Robert Pertermann
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Selvaraj Tamilarasan
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Torsten Gursinsky
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Turin, Italy
| | - Jana Schuck
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Claus Weinholdt
- Institute of Informatics, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Hauke Lilie
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Ivo Grosse
- Institute of Informatics, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Ralph Peter Golbik
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Vitantonio Pantaleo
- Institute for Sustainable Plant Protection-Consiglio Nazionale delle Ricerche, Research Unit of Bari, Bari, Italy
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
154
|
Basu S, Kumar Kushwaha N, Kumar Singh A, Pankaj Sahu P, Vinoth Kumar R, Chakraborty S. Dynamics of a geminivirus-encoded pre-coat protein and host RNA-dependent RNA polymerase 1 in regulating symptom recovery in tobacco. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2085-2102. [PMID: 29432546 PMCID: PMC6019014 DOI: 10.1093/jxb/ery043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/24/2018] [Indexed: 05/21/2023]
Abstract
RNA silencing is an integral part of the cellular defense mechanisms in plants that act against virus infection. However, the specific role of RNA silencing and the interplay between host and virus components during recovery from geminivirus infection remains unknown. Hence, in this study we aimed to examine the mechanism behind the host-specific recovery of Nicotiana tabacum infected with Tomato leaf curl Gujarat virus (ToLCGV). Unlike Tomato leaf curl New Delhi virus (ToLCNDV), ToLCGV infection resulted in symptom remission in N. tabacum, and we found that this was mainly due to cross-talk between the pre-coat protein (encoded by the AV2 ORF) of the virus and the host RNA-silencing component RNA-dependent RNA polymerase 1 (encoded by NtRDR1) of N. tabacum. Moreover, apart from the AV2 mutant, other mutants of ToLCNDV developed severe symptoms on a transgenic NtRDR1-overexpression line of N. benthamiana. In contrast, inoculation with ToLCGV resulted in symptom remission, which was due to enhanced methylation of the ToLCGV promoter. Our study reveals a novel 'arms race' in which the pre-coat protein of ToLCNDV selectively blocks the recovery process through inhibiting host-specific RDR1-mediated antiviral silencing in tobacco.
Collapse
Affiliation(s)
- Saumik Basu
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nirbhay Kumar Kushwaha
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashish Kumar Singh
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Pranav Pankaj Sahu
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - R Vinoth Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
155
|
Kaldis A, Berbati M, Melita O, Reppa C, Holeva M, Otten P, Voloudakis A. Exogenously applied dsRNA molecules deriving from the Zucchini yellow mosaic virus (ZYMV) genome move systemically and protect cucurbits against ZYMV. MOLECULAR PLANT PATHOLOGY 2018; 19:883-895. [PMID: 28621835 PMCID: PMC6638139 DOI: 10.1111/mpp.12572] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 05/19/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) causes serious damage in a large number of cucurbits, and control measures are necessary. Transgenic cucurbits expressing parts of the ZYMV genome have been shown to be resistant to the cognate virus. A non-transgenic approach involving the exogenous application of double-stranded RNA (dsRNA) has also been shown to induce resistance in tobacco against Cucumber mosaic virus (CMV) and Tobacco mosaic virus (TMV). In the present study, dsRNA molecules derived from the helper component-proteinase (HC-Pro) and coat protein (CP) genes of the ZYMV_DE_2014 isolate were produced in vitro. On exogenous dsRNA application in cucumber, watermelon and squash plants, dsRNA HC-Pro conferred resistance of 82%, 50% and 18%, and dsRNA CP molecules of 70%, 43% and 16%, respectively. On deep sequencing analysis of ZYMV-infected watermelon, hot-spot regions for viral small interfering RNAs (vsiRNAs) in the genome of ZYMV were identified. Stem-loop reverse transcription-polymerase chain reaction (RT-PCR) detection of selected 21-nucleotide-long vsiRNAs in plants that received only dsRNA molecules suggested that the dsRNAs exogenously applied onto plants were successfully diced, thus initiating RNA silencing. dsRNA molecules were found to be progressively degraded in planta, and strongly detected by semi-quantitative RT-PCR for at least 9 days after exogenous application. Moreover, dsRNA molecules were detected in systemic tissue of watermelon and squash, showing that dsRNA is transported long distances in these plants.
Collapse
Affiliation(s)
- Athanasios Kaldis
- Laboratory of Plant Βreeding and BiometryAgricultural University of AthensAthens11855Greece
| | - Margarita Berbati
- Laboratory of Plant Βreeding and BiometryAgricultural University of AthensAthens11855Greece
| | - Ourania Melita
- Laboratory of Plant Βreeding and BiometryAgricultural University of AthensAthens11855Greece
| | - Chrysavgi Reppa
- Laboratory of BacteriologyBenaki Phytopathological InstituteKifissia14561Greece
| | - Maria Holeva
- Laboratory of BacteriologyBenaki Phytopathological InstituteKifissia14561Greece
| | | | - Andreas Voloudakis
- Laboratory of Plant Βreeding and BiometryAgricultural University of AthensAthens11855Greece
| |
Collapse
|
156
|
Chen W, Zhang X, Fan Y, Li B, Ryabov E, Shi N, Zhao M, Yu Z, Qin C, Zheng Q, Zhang P, Wang H, Jackson S, Cheng Q, Liu Y, Gallusci P, Hong Y. A Genetic Network for Systemic RNA Silencing in Plants. PLANT PHYSIOLOGY 2018; 176:2700-2719. [PMID: 29439213 PMCID: PMC5884585 DOI: 10.1104/pp.17.01828] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/25/2018] [Indexed: 05/20/2023]
Abstract
Non-cell autonomous RNA silencing can spread from cell to cell and over long distances in animals and plants. However, the genetic requirements and signals involved in plant mobile gene silencing are poorly understood. Here, we identified a DICER-LIKE2 (DCL2)-dependent mechanism for systemic spread of posttranscriptional RNA silencing, also known as posttranscriptional gene silencing (PTGS), in Nicotiana benthamiana Using a suite of transgenic DCL RNAi lines coupled with a GFP reporter, we demonstrated that N. benthamiana DCL1, DCL2, DCL3, and DCL4 are required to produce microRNAs and 22, 24, and 21nt small interfering RNAs (siRNAs), respectively. All investigated siRNAs produced in local incipient cells were present at low levels in distal tissues. Inhibition of DCL2 expression reduced the spread of gene silencing, while suppression of DCL3 or DCL4 expression enhanced systemic PTGS. In contrast to DCL4 RNAi lines, DCL2-DCL4 double-RNAi lines developed systemic PTGS similar to that observed in DCL2 RNAi. We further showed that the 21 or 24 nt local siRNAs produced by DCL4 or DCL3 were not involved in long-distance gene silencing. Grafting experiments demonstrated that DCL2 was required in the scion to respond to the signal, but not in the rootstock to produce/send the signal. These results suggest a coordinated DCL genetic pathway in which DCL2 plays an essential role in systemic PTGS in N. benthamiana, while both DCL4 and DCL3 attenuate systemic PTGS. We discuss the potential role of 21, 22, and 24 nt siRNAs in systemic PTGS.
Collapse
Affiliation(s)
- Weiwei Chen
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Xian Zhang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yaya Fan
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Bin Li
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Eugene Ryabov
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Warwick-Hangzhou RNA Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Nongnong Shi
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Mei Zhao
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Zhiming Yu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Cheng Qin
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Qianqian Zheng
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Pengcheng Zhang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Huizhong Wang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Stephen Jackson
- Warwick-Hangzhou RNA Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
| | - Qi Cheng
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yule Liu
- Centre for Plant Biology and MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Philippe Gallusci
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Warwick-Hangzhou RNA Signaling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom
- Worcester-Hangzhou Joint Molecular Plant Health Laboratory, Institute of Science and the Environment, University of Worcester, WR2 6AJ, United Kingdom
| |
Collapse
|
157
|
Machado AK, Brown NA, Urban M, Kanyuka K, Hammond‐Kosack KE. RNAi as an emerging approach to control Fusarium head blight disease and mycotoxin contamination in cereals. PEST MANAGEMENT SCIENCE 2018; 74:790-799. [PMID: 28967180 PMCID: PMC5873435 DOI: 10.1002/ps.4748] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 09/22/2017] [Indexed: 05/21/2023]
Abstract
Fusarium graminearum is a major fungal pathogen of cereals worldwide, causing seedling, stem base and floral diseases, including Fusarium head blight (FHB). In addition to yield and quality losses, FHB contaminates cereal grain with mycotoxins, including deoxynivalenol, which are harmful to human, animal and ecosystem health. Currently, FHB control is only partially effective due to several intractable problems. RNA interference (RNAi) is a natural mechanism that regulates gene expression. RNAi has been exploited in the development of new genomic tools that allow the targeted silencing of genes of interest in many eukaryotes. Host-induced gene silencing (HIGS) is a transgenic technology used to silence fungal genes in planta during attempted infection and thereby reduces disease levels. HIGS relies on the host plant's ability to produce mobile small interfering RNA molecules, generated from long double-stranded RNA, which are complementary to targeted fungal genes. These molecules are transferred from the plant to invading fungi via an uncharacterised mechanism, to cause gene silencing. Here, we describe recent advances in RNAi-mediated control of plant pathogenic fungi, highlighting the key advantages and disadvantages. We then discuss the developments and implications of combining HIGS with other methods of disease control. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ana Karla Machado
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| | - Neil A Brown
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
- Department of Biology & BiochemistryUniversity of Bath, Claverton DownBathUK
| | - Martin Urban
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| | - Kostya Kanyuka
- Department of Biointeractions and Crop ProtectionRothamsted ResearchHarpendenUK
| | | |
Collapse
|
158
|
Tomato Spotted Wilt Virus NSs Protein Supports Infection and Systemic Movement of a Potyvirus and Is a Symptom Determinant. Viruses 2018. [PMID: 29538326 PMCID: PMC5869522 DOI: 10.3390/v10030129] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plant viruses are inducers and targets of antiviral RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressor proteins that interfere with antiviral RNA silencing. The NSs protein is an RNA silencing suppressor in orthotospoviruses, such as the tomato spotted wilt virus (TSWV). The mechanism of RNA silencing suppression by NSs and its role in virus infection and movement are poorly understood. Here, we cloned and tagged TSWV NSs and expressed it from a GFP-tagged turnip mosaic virus (TuMV-GFP) carrying either a wild-type or suppressor-deficient (AS9) helper component proteinase (HC-Pro). When expressed in cis, NSs restored pathogenicity and promoted systemic infection of suppressor-deficient TuMV-AS9-GFP in Nicotiana benthamiana and Arabidopsis thaliana. Inactivating mutations were introduced in NSs RNA-binding domain one. A genetic analysis with active and suppressor-deficient NSs, in combination with wild-type and mutant plants lacking essential components of the RNA silencing machinery, showed that the NSs insert is stable when expressed from a potyvirus. NSs can functionally replace potyviral HC-Pro, condition virus susceptibility, and promote systemic infection and symptom development by suppressing antiviral RNA silencing through a mechanism that partially overlaps that of potyviral HC-Pro. The results presented provide new insight into the mechanism of silencing suppression by NSs and its effect on virus infection.
Collapse
|
159
|
Valli AA, Gallo A, Rodamilans B, López‐Moya JJ, García JA. The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. MOLECULAR PLANT PATHOLOGY 2018; 19:744-763. [PMID: 28371183 PMCID: PMC6638112 DOI: 10.1111/mpp.12553] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection-related pathways. The Helper Component Proteinase (HCPro) is an essential and well-characterized multitasking protein for which at least three independent functions have been described: (i) viral plant-to-plant transmission; (ii) polyprotein maturation; and (iii) RNA silencing suppression. Moreover, multitudes of host factors have been found to interact with HCPro. Intriguingly, most of these partners have not been ascribed to any of the HCPro roles during the infectious cycle, supporting the idea that this protein might play even more roles than those already established. In this comprehensive review, we attempt to summarize our current knowledge about HCPro and its already attributed and putative novel roles, and to discuss the similarities and differences regarding this factor in members of this important viral family.
Collapse
Affiliation(s)
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| | | | - Juan José López‐Moya
- Center for Research in Agricultural Genomics (CRAG‐CSIC‐IRTA‐UAB‐UB), Campus UABBellaterraBarcelona08193Spain
| | | |
Collapse
|
160
|
Incarbone M, Ritzenthaler C, Dunoyer P. Peroxisomal Targeting as a Sensitive Tool to Detect Protein-Small RNA Interactions through in Vivo Piggybacking. FRONTIERS IN PLANT SCIENCE 2018; 9:135. [PMID: 29479364 PMCID: PMC5812032 DOI: 10.3389/fpls.2018.00135, 10.3389/fphys.2018.00135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/24/2018] [Indexed: 06/26/2024]
Abstract
Peroxisomes are organelles that play key roles in eukaryotic metabolism. Their protein complement is entirely imported from the cytoplasm thanks to a unique pathway that is able to translocate folded proteins and protein complexes across the peroxisomal membrane. The import of molecules bound to a protein targeted to peroxisomes is an active process known as 'piggybacking' and we have recently shown that P15, a virus-encoded protein possessing a peroxisomal targeting sequence, is able to piggyback siRNAs into peroxisomes. Here, we extend this observation by analyzing the small RNA repertoire found in peroxisomes of P15-expressing plants. A direct comparison with the P15-associated small RNA retrieved during immunoprecipitation (IP) experiments, revealed that in vivo piggybacking coupled to peroxisome isolation could be a more sensitive means to determine the various small RNA species bound by a given protein. This increased sensitivity of peroxisome isolation as opposed to IP experiments was also striking when we analyzed the small RNA population bound by the Tomato bushy stunt virus-encoded P19, one of the best characterized viral suppressors of RNA silencing (VSR), artificially targeted to peroxisomes. These results support that peroxisomal targeting should be considered as a novel/alternative experimental approach to assess in vivo interactions that allows detection of labile binding events. The advantages and limitations of this approach are discussed.
Collapse
Affiliation(s)
| | | | - Patrice Dunoyer
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
161
|
Anjanappa RB, Mehta D, Okoniewski MJ, Szabelska‐Berȩsewicz A, Gruissem W, Vanderschuren H. Molecular insights into Cassava brown streak virus susceptibility and resistance by profiling of the early host response. MOLECULAR PLANT PATHOLOGY 2018; 19:476-489. [PMID: 28494519 PMCID: PMC6638049 DOI: 10.1111/mpp.12565] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 05/19/2023]
Abstract
Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV) are responsible for significant cassava yield losses in eastern sub-Saharan Africa. To study the possible mechanisms of plant resistance to CBSVs, we inoculated CBSV-susceptible and CBSV-resistant cassava varieties with a mixed infection of CBSVs using top-cleft grafting. Transcriptome profiling of the two cassava varieties was performed at the earliest time point of full infection (28 days after grafting) in the susceptible scions. The expression of genes encoding proteins in RNA silencing, salicylic acid pathways and callose deposition was altered in the susceptible cassava variety, but transcriptional changes were limited in the resistant variety. In total, the expression of 585 genes was altered in the resistant variety and 1292 in the susceptible variety. Transcriptional changes led to the activation of β-1,3-glucanase enzymatic activity and a reduction in callose deposition in the susceptible cassava variety. Time course analysis also showed that CBSV replication in susceptible cassava induced a strong up-regulation of RDR1, a gene previously reported to be a susceptibility factor in other potyvirus-host pathosystems. The differences in the transcriptional responses to CBSV infection indicated that susceptibility involves the restriction of callose deposition at plasmodesmata. Aniline blue staining of callose deposits also indicated that the resistant variety displays a moderate, but significant, increase in callose deposition at the plasmodesmata. Transcriptome data suggested that resistance does not involve typical antiviral defence responses (i.e. RNA silencing and salicylic acid). A meta-analysis of the current RNA-sequencing (RNA-seq) dataset and selected potyvirus-host and virus-cassava RNA-seq datasets revealed that the conservation of the host response across pathosystems is restricted to genes involved in developmental processes.
Collapse
Affiliation(s)
| | - Devang Mehta
- Department of BiologyETH Zurich8092 ZurichSwitzerland
| | - Michal J. Okoniewski
- ID Scientific IT ServicesETH Zurich8092 ZurichSwitzerland
- Functional Genomics Center Zurich8057 ZurichSwitzerland
| | - Alicja Szabelska‐Berȩsewicz
- Functional Genomics Center Zurich8057 ZurichSwitzerland
- Department of Mathematical and Statistical MethodsPoznan University of Life Sciences60‐637 PoznanPoland
| | | | - Hervé Vanderschuren
- Department of BiologyETH Zurich8092 ZurichSwitzerland
- AgroBioChem Department, Gembloux Agro‐Bio TechUniversity of Liège5030 GemblouxBelgium
| |
Collapse
|
162
|
Leibman D, Kravchik M, Wolf D, Haviv S, Weissberg M, Ophir R, Paris HS, Palukaitis P, Ding S, Gaba V, Gal‐On A. Differential expression of cucumber RNA-dependent RNA polymerase 1 genes during antiviral defence and resistance. MOLECULAR PLANT PATHOLOGY 2018; 19:300-312. [PMID: 27879040 PMCID: PMC6637986 DOI: 10.1111/mpp.12518] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/20/2016] [Accepted: 11/20/2016] [Indexed: 05/21/2023]
Abstract
RNA-dependent RNA polymerase 1 (RDR1) plays a crucial role in plant defence against viruses. In this study, it was observed that cucumber, Cucumis sativus, uniquely encodes a small gene family of four RDR1 genes. The cucumber RDR1 genes (CsRDR1a, CsRDR1b and duplicated CsRDR1c1/c2) shared 55%-60% homology in their encoded amino acid sequences. In healthy cucumber plants, RDR1a and RDR1b transcripts were expressed at higher levels than transcripts of RDR1c1/c2, which were barely detectable. The expression of all four CsRDR1 genes was induced by virus infection, after which the expression level of CsRDR1b increased 10-20-fold in several virus-resistant cucumber cultivars and in a broad virus-resistant transgenic cucumber line expressing a high level of transgene small RNAs, all without alteration in salicylic acid (SA) levels. By comparison, CsRDR1c1/c2 genes were highly induced (25-1300-fold) in susceptible cucumber cultivars infected with RNA or DNA viruses. Inhibition of RDR1c1/c2 expression led to increased virus accumulation. Ectopic application of SA induced the expression of cucumber RDR1a, RDR1b and RDRc1/c2 genes. A constitutive high level of RDR1b gene expression independent of SA was found to be associated with broad virus resistance. These findings show that multiple RDR1 genes are involved in virus resistance in cucumber and are regulated in a coordinated fashion with different expression profiles.
Collapse
Affiliation(s)
- Diana Leibman
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, Volcani CenterBet Dagan50250Israel
| | - Michael Kravchik
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, Volcani CenterBet Dagan50250Israel
| | - Dalia Wolf
- Department of Vegetable and Field CropsAgricultural Research Organization, Volcani CenterBet Dagan50250Israel
| | - Sabrina Haviv
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, Volcani CenterBet Dagan50250Israel
| | - Mira Weissberg
- Department of Fruit Tree SciencesAgricultural Research Organization, Volcani CenterBet Dagan50250Israel
| | - Ron Ophir
- Department of Fruit Tree SciencesAgricultural Research Organization, Volcani CenterBet Dagan50250Israel
| | - Harry S. Paris
- Department of Vegetable Crops and Plant GeneticsAgricultural Research Organization, Newe Ya'ar Research Center, PO Box 1021RamatYishay30‐095Israel
| | - Peter Palukaitis
- Department of Horticultural SciencesSeoul Women's UniversityNowon‐guSeoul01797South Korea
| | - Shou‐Wei Ding
- Department of Plant Pathology and Microbiology & Institute for Integrative Genome BiologyUniversity of CaliforniaRiverside, CA92521USA
| | - Victor Gaba
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, Volcani CenterBet Dagan50250Israel
| | - Amit Gal‐On
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, Volcani CenterBet Dagan50250Israel
| |
Collapse
|
163
|
Guo Z, Wang XB, Wang Y, Li WX, Gal-On A, Ding SW. Identification of a New Host Factor Required for Antiviral RNAi and Amplification of Viral siRNAs. PLANT PHYSIOLOGY 2018; 176:1587-1597. [PMID: 29184028 PMCID: PMC5813567 DOI: 10.1104/pp.17.01370] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/22/2017] [Indexed: 05/22/2023]
Abstract
Small interfering RNAs (siRNAs) are processed from virus-specific dsRNA to direct antiviral RNA interference (RNAi) in diverse eukaryotic hosts. We have recently performed a sensitized genetic screen in Arabidopsis (Arabidopsis thaliana) and identified two related phospholipid flippases required for antiviral RNAi and the amplification of virus-derived siRNAs by plant RNA-dependent RNA polymerase1 (RDR1) and RDR6. Here we report the identification and cloning of ANTIVIRAL RNAI-DEFECTIVE2 (AVI2) from the same genetic screen. AVI2 encodes a multispan transmembrane protein broadly conserved in plants and animals with two homologous human proteins known as magnesium transporters. We show that avi2 mutant plants display no developmental defects and develop severe disease symptoms after infection with a mutant Cucumber mosaic virus (CMV) defective in RNAi suppression. AVI2 is induced by CMV infection, particularly in veins, and is required for antiviral RNAi and RDR6-dependent biogenesis of viral siRNAs. AVI2 is also necessary for Dicer-like2-mediated amplification of 22-nucleotide viral siRNAs induced in dcl4 mutant plants by infection, but dispensable for RDR6-dependent biogenesis of endogenous transacting siRNAs. Further genetic studies illustrate that AVI2 plays a partially redundant role with AVI2H, the most closely related member in the AVI2 gene family, in RDR1-dependent biogenesis of viral siRNAs and the endogenous virus-activated siRNAs (vasi-RNAs). Interestingly, we discovered a specific genetic interaction of AVI2 with AVI1 flippase that is critical for plant development. We propose that AVI1 and AVI2 participate in the virus-induced formation of the RDR1/RDR6-specific, membrane-bound RNA synthesis compartment, essential for the biogenesis of highly abundant viral siRNAs and vasi-RNAs.
Collapse
Affiliation(s)
- Zhongxin Guo
- Department of Plant Pathology and Microbiology and Center for Plant Cell Biology, University of California, Riverside CA 92721
- Vector-borne Virus Research Center, Haixia Institute of Science and Technology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xian-Bing Wang
- Department of Plant Pathology and Microbiology and Center for Plant Cell Biology, University of California, Riverside CA 92721
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Ying Wang
- Department of Plant Pathology and Microbiology and Center for Plant Cell Biology, University of California, Riverside CA 92721
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China
| | - Wan-Xiang Li
- Department of Plant Pathology and Microbiology and Center for Plant Cell Biology, University of California, Riverside CA 92721
| | - Amit Gal-On
- Department of Plant Pathology and Weed Science, Volcani Center, Bet Dagan 50250, Israel
| | - Shou-Wei Ding
- Department of Plant Pathology and Microbiology and Center for Plant Cell Biology, University of California, Riverside CA 92721
| |
Collapse
|
164
|
Baeg K, Tomari Y, Iwakawa HO. In vitro RNA-dependent RNA Polymerase Assay Using Arabidopsis RDR6. Bio Protoc 2018; 8:e2673. [DOI: 10.21769/bioprotoc.2673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 11/02/2022] Open
|
165
|
Malpica-López N, Rajeswaran R, Beknazariants D, Seguin J, Golyaev V, Farinelli L, Pooggin MM. Revisiting the Roles of Tobamovirus Replicase Complex Proteins in Viral Replication and Silencing Suppression. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:125-144. [PMID: 29140168 DOI: 10.1094/mpmi-07-17-0164-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tobamoviral replicase possesses an RNA-dependent RNA polymerase (RDR) domain and is translated from genomic (g)RNA via a stop codon readthrough mechanism at a one-to-ten ratio relative to a shorter protein lacking the RDR domain. The two proteins share methyltransferase and helicase domains and form a heterodimer implicated in gRNA replication. The shorter protein is also implicated in suppressing RNA silencing-based antiviral defenses. Using a stop codon mutant of Oilseed rape mosaic tobamovirus (ORMV), we demonstrate that the readthrough replicase (p182) is sufficient for gRNA replication and for subgenomic RNA transcription during systemic infection in Nicotiana benthamiana and Arabidopsis thaliana. However, the mutant virus displays milder symptoms and does not interfere with HEN1-mediated methylation of viral short interfering (si)RNAs or plant small (s)RNAs. The mutant virus tends to revert the stop codon, thereby restoring expression of the shorter protein (p125), even in the absence of plant Dicer-like activities that generate viral siRNAs. Plant RDR activities that generate endogenous siRNA precursors do not prevent replication or movement of the mutant virus, and double-stranded precursors of viral siRNAs representing the entire virus genome are likely synthesized by p182. Transgenic expression of p125 partially recapitulates the ORMV disease symptoms associated with overaccumulation of plant sRNAs. Taken together, the readthrough replicase p182 is sufficient for viral replication and transcription but not for silencing suppression. By contrast, the shorter p125 protein suppresses silencing, provokes severe disease symptoms, causes overaccumulation of unmethylated viral and plant sRNAs but it is not an essential component of the viral replicase complex.
Collapse
Affiliation(s)
| | | | - Daria Beknazariants
- 1 University of Basel, Department of Environmental Sciences, Basel, Switzerland
| | - Jonathan Seguin
- 1 University of Basel, Department of Environmental Sciences, Basel, Switzerland
| | - Victor Golyaev
- 1 University of Basel, Department of Environmental Sciences, Basel, Switzerland
| | | | - Mikhail M Pooggin
- 1 University of Basel, Department of Environmental Sciences, Basel, Switzerland
- 3 INRA, UMR BGPI, Montpellier, France
| |
Collapse
|
166
|
Wang T, Deng Z, Zhang X, Wang H, Wang Y, Liu X, Liu S, Xu F, Li T, Fu D, Zhu B, Luo Y, Zhu H. Tomato DCL2b is required for the biosynthesis of 22-nt small RNAs, the resulting secondary siRNAs, and the host defense against ToMV. HORTICULTURE RESEARCH 2018; 5:62. [PMID: 30181890 PMCID: PMC6119189 DOI: 10.1038/s41438-018-0073-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/27/2018] [Indexed: 05/18/2023]
Abstract
The tomato encode four functional DCL families, of which DCL2 is poorly studied. Here, we generated loss-of-function mutants for a tomato DCL2 gene, dcl2b, and we identified its major role in defending against tomato mosaic virus in relation to both natural and manual infections. Genome-wide small RNA expression profiling revealed that DCL2b was required for the processing 22-nt small RNAs, including a few species of miRNAs. Interestingly, these DCL2b-dependent 22-nt miRNAs functioned similarly to the DCL1-produced 22-nt miRNAs in Arabidopsis and could serve as triggers to generate a class of secondary siRNAs. In particular, the majority of secondary siRNAs were derived from plant defense genes when the plants were challenged with viruses. We also examined differentially expressed genes in dcl2b through RNA-seq and observed that numerous genes were associated with mitochondrial metabolism and hormone signaling under virus-free conditions. Notably, when the loss-of-function dcl2b mutant was challenged with tomato mosaic virus, a group of defense response genes was activated, whereas the genes related to lipid metabolism were suppressed. Together, our findings provided new insights into the roles of tomato DCL2b in small RNA biogenesis and in antiviral defense.
Collapse
Affiliation(s)
- Tian Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Zhiqi Deng
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Xi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Hongzheng Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yu Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, 100871 Beijing, China
| | - Xiuying Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101 Beijing, China
| | - Songyu Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Feng Xu
- National Maize Improvement Center, China Agricultural University, 100193 Beijing, China
| | - Tao Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Daqi Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| |
Collapse
|
167
|
Incarbone M, Ritzenthaler C, Dunoyer P. Peroxisomal Targeting as a Sensitive Tool to Detect Protein-Small RNA Interactions through in Vivo Piggybacking. FRONTIERS IN PLANT SCIENCE 2018; 9:135. [PMID: 29479364 PMCID: PMC5812032 DOI: 10.3389/fpls.2018.00135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/24/2018] [Indexed: 05/09/2023]
Abstract
Peroxisomes are organelles that play key roles in eukaryotic metabolism. Their protein complement is entirely imported from the cytoplasm thanks to a unique pathway that is able to translocate folded proteins and protein complexes across the peroxisomal membrane. The import of molecules bound to a protein targeted to peroxisomes is an active process known as 'piggybacking' and we have recently shown that P15, a virus-encoded protein possessing a peroxisomal targeting sequence, is able to piggyback siRNAs into peroxisomes. Here, we extend this observation by analyzing the small RNA repertoire found in peroxisomes of P15-expressing plants. A direct comparison with the P15-associated small RNA retrieved during immunoprecipitation (IP) experiments, revealed that in vivo piggybacking coupled to peroxisome isolation could be a more sensitive means to determine the various small RNA species bound by a given protein. This increased sensitivity of peroxisome isolation as opposed to IP experiments was also striking when we analyzed the small RNA population bound by the Tomato bushy stunt virus-encoded P19, one of the best characterized viral suppressors of RNA silencing (VSR), artificially targeted to peroxisomes. These results support that peroxisomal targeting should be considered as a novel/alternative experimental approach to assess in vivo interactions that allows detection of labile binding events. The advantages and limitations of this approach are discussed.
Collapse
|
168
|
Arabidopsis ENOR3 regulates RNAi-mediated antiviral defense. J Genet Genomics 2018; 45:33-40. [DOI: 10.1016/j.jgg.2017.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/24/2022]
|
169
|
Hafrén A, Üstün S, Hochmuth A, Svenning S, Johansen T, Hofius D. Turnip Mosaic Virus Counteracts Selective Autophagy of the Viral Silencing Suppressor HCpro. PLANT PHYSIOLOGY 2018; 176:649-662. [PMID: 29133371 PMCID: PMC5761789 DOI: 10.1104/pp.17.01198] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/10/2017] [Indexed: 05/19/2023]
Abstract
Autophagy is a conserved intracellular degradation pathway and has emerged as a key mechanism of antiviral immunity in metazoans, including the selective elimination of viral components. In turn, some animal viruses are able to escape and modulate autophagy for enhanced pathogenicity. Whether host autophagic responses and viral countermeasures play similar roles in plant-virus interactions is not well understood. Here, we have identified selective autophagy as antiviral pathway during plant infection with turnip mosaic virus (TuMV), a positive-stranded RNA potyvirus. We show that the autophagy cargo receptor NBR1 suppresses viral accumulation by targeting the viral RNA silencing suppressor helper-component proteinase (HCpro), presumably in association with virus-induced RNA granules. Intriguingly, TuMV seems to antagonize NBR1-dependent autophagy during infection by the activity of distinct viral proteins, thereby limiting its antiviral capacity. We also found that NBR1-independent bulk autophagy prevents premature plant death, thus extending the lifespan of virus reservoirs and particle production. Together, our study highlights a conserved role of selective autophagy in antiviral immunity and suggests the evolvement of viral protein functions to inhibit autophagy processes, despite a potential trade-off in host survival.
Collapse
Affiliation(s)
- Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU) and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Suayib Üstün
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU) and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Anton Hochmuth
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU) and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Steingrim Svenning
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences (SLU) and Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| |
Collapse
|
170
|
Xia C, Li S, Hou W, Fan Z, Xiao H, Lu M, Sano T, Zhang Z. Global Transcriptomic Changes Induced by Infection of Cucumber ( Cucumis sativus L.) with Mild and Severe Variants of Hop Stunt Viroid. Front Microbiol 2017; 8:2427. [PMID: 29312160 PMCID: PMC5733102 DOI: 10.3389/fmicb.2017.02427] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/23/2017] [Indexed: 11/13/2022] Open
Abstract
Fifteen years after transfer to hops, hop stunt viroid-grapevine (HSVd-g) was replaced by HSVd-hop (HSVd-h), a sequence variant that contains changes at five different positions. HSVd-g54 is a laboratory mutant derived from HSVd-g that differs from its progenitor by a single G to A substitution at position 54. While infection by HSVd-h induces only mild stunting in cucumber (Cucumis sativus L.), HSVd-g54 induces much more severe symptoms in this indicator host. Comparison of transcriptome profiles of cucumber infected with HSVd-h or HSVd-g54 with those of mock-inoculated controls obtained by whole transcriptome shotgun sequencing revealed that many genes related to photosynthesis were down-regulated following infection. In contrast, genes encoding RNA-dependent RNA polymerase 1 (CsRDR1), especially CsRDR1c1 and CsRDR1c2, as well as those related to basal defense responses were up-regulated. Expression of genes associated with phytohormone signaling pathways were also altered, indicating that viroid infection initiates a complex array of changes in the host transcriptome. HSVd-g54 induced an earlier and stronger response than HSVd-h, and further examination of these differences will contribute to a better understanding of the mechanisms that determine viroid pathogenicity.
Collapse
Affiliation(s)
- Changjian Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory for Agro-Biotechnology, Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shifang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanying Hou
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, State Tobacco Monopoly Bureau, Institue of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zaifeng Fan
- State Key Laboratory for Agro-Biotechnology, Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hong Xiao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meiguang Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | - Zhixiang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
171
|
Lan Y, Li Y, E Z, Sun F, Du L, Xu Q, Zhou T, Zhou Y, Fan Y. Identification of virus-derived siRNAs and their targets in RBSDV-infected rice by deep sequencing. J Basic Microbiol 2017; 58:227-237. [PMID: 29215744 DOI: 10.1002/jobm.201700325] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/18/2017] [Accepted: 10/29/2017] [Indexed: 11/07/2022]
Abstract
RNA interference (RNAi) is a conserved mechanism against viruses in plants and animals. It is thought to inactivate the viral genome by producing virus-derived small interfering RNAs (vsiRNAs). Rice black-streaked dwarf virus (RBSDV) is transmitted to plants by the small brown planthopper (Laodelphax striatellus), and seriously threatens production of rice in East Asia, particularly Oryza sativa japonica subspecies. Through deep sequencing, genome-wide comparisons of RBSDV-derived vsiRNAs were made between the japonica variety Nipponbare, and the indica variety 9311. Four small RNA libraries were constructed from the leaves and shoots of each variety. We found 659,756 unique vsiRNAs in the four samples, and only 43,485 reads were commonly shared. The size distributions of vsiRNAs were mostly 21- and 22-nt long, and A/U bias (66-68%) existed at the first nucleotide of vsiRNAs. Additionally, vsiRNAs were continuously but heterogeneously distributed along S1-S10 segments of the RBSDV genome. Distribution profiles of vsiRNA hotspots were similar in different hosts and tissues, and the 5'- and 3'-terminal regions of S4, S5, and S8 had more hotspots. Distribution and abundance of RBSDV vsiRNAs could be useful in designing efficient targets for exploiting RNA interference for virus resistance. Degradome analysis found 25 and 11 host genes appeared to be targeted by vsiRNAs in 9311 and Nipponbare. We report for the first time vsiRNAs derived from RBSDV-infected rice.
Collapse
Affiliation(s)
- Ying Lan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China
| | - Yanwu Li
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China.,College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Zhiguo E
- China National Rice Research Institute, Hangzhou, China
| | - Feng Sun
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China
| | - Linlin Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China
| | - Qiufang Xu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China
| | - Tong Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China
| | - Yijun Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China
| | - Yongjian Fan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Technical Service Center of Diagnosis and Detection for Plant Virus Diseases, Nanjing, China
| |
Collapse
|
172
|
Gómez‐Muñoz N, Velázquez K, Vives MC, Ruiz‐Ruiz S, Pina JA, Flores R, Moreno P, Guerri J. The resistance of sour orange to Citrus tristeza virus is mediated by both the salicylic acid and RNA silencing defence pathways. MOLECULAR PLANT PATHOLOGY 2017; 18:1253-1266. [PMID: 27588892 PMCID: PMC6638288 DOI: 10.1111/mpp.12488] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/26/2016] [Accepted: 08/30/2016] [Indexed: 05/08/2023]
Abstract
Citrus tristeza virus (CTV) induces in the field the decline and death of citrus varieties grafted on sour orange (SO) rootstock, which has forced the use of alternative decline-tolerant rootstocks in affected countries, despite the highly desirable agronomic features of the SO rootstock. Declining citrus plants display phloem necrosis below the bud union. In addition, SO is minimally susceptible to CTV compared with other citrus varieties, suggesting partial resistance of SO to CTV. Here, by silencing different citrus genes with a Citrus leaf blotch virus-based vector, we have examined the implication of the RNA silencing and salicylic acid (SA) defence pathways in the resistance of SO to CTV. Silencing of the genes RDR1, NPR1 and DCL2/DCL4, associated with these defence pathways, enhanced virus spread and accumulation in SO plants in comparison with non-silenced controls, whereas silencing of the genes NPR3/NPR4, associated with the hypersensitive response, produced a slight decrease in CTV accumulation and reduced stunting of SO grafted on CTV-infected rough lemon plants. We also found that the CTV RNA silencing suppressors p20 and p23 also suppress the SA signalling defence, with the suppressor activity being higher in the most virulent isolates.
Collapse
Affiliation(s)
- Neus Gómez‐Muñoz
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - Karelia Velázquez
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - María Carmen Vives
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - Susana Ruiz‐Ruiz
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - José Antonio Pina
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (UPV‐CSIC), Universidad Politécnica de Valencia, Avenida de los NaranjosValencia46022Spain
| | - Pedro Moreno
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| | - José Guerri
- Instituto Valenciano de Investigaciones Agrarias (IVIA)Centro de Protección Vegetal y BiotecnologíaMoncada, Valencia46113Spain
| |
Collapse
|
173
|
Fusaro AF, Barton DA, Nakasugi K, Jackson C, Kalischuk ML, Kawchuk LM, Vaslin MFS, Correa RL, Waterhouse PM. The Luteovirus P4 Movement Protein Is a Suppressor of Systemic RNA Silencing. Viruses 2017; 9:v9100294. [PMID: 28994713 PMCID: PMC5691645 DOI: 10.3390/v9100294] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/04/2017] [Accepted: 10/06/2017] [Indexed: 11/16/2022] Open
Abstract
The plant viral family Luteoviridae is divided into three genera: Luteovirus, Polerovirus and Enamovirus. Without assistance from another virus, members of the family are confined to the cells of the host plant's vascular system. The first open reading frame (ORF) of poleroviruses and enamoviruses encodes P0 proteins which act as silencing suppressor proteins (VSRs) against the plant's viral defense-mediating RNA silencing machinery. Luteoviruses, such as barley yellow dwarf virus-PAV (BYDV-PAV), however, have no P0 to carry out the VSR role, so we investigated whether other proteins or RNAs encoded by BYDV-PAV confer protection against the plant's silencing machinery. Deep-sequencing of small RNAs from plants infected with BYDV-PAV revealed that the virus is subjected to RNA silencing in the phloem tissues and there was no evidence of protection afforded by a possible decoy effect of the highly abundant subgenomic RNA3. However, analysis of VSR activity among the BYDV-PAV ORFs revealed systemic silencing suppression by the P4 movement protein, and a similar, but weaker, activity by P6. The closely related BYDV-PAS P4, but not the polerovirus potato leafroll virus P4, also displayed systemic VSR activity. Both luteovirus and the polerovirus P4 proteins also showed transient, weak local silencing suppression. This suggests that systemic silencing suppression is the principal mechanism by which the luteoviruses BYDV-PAV and BYDV-PAS minimize the effects of the plant's anti-viral defense.
Collapse
Affiliation(s)
- Adriana F Fusaro
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- Plant Industry Division, CSIRO, P.O. Box 1600, Canberra, ACT 2601, Australia.
- Department of Virology (M.F.S.V.), Department of Genetics (R.L.C.) and Institute of Medical Biochemistry (A.F.F.), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil.
| | - Deborah A Barton
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Kenlee Nakasugi
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Craig Jackson
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | - Melanie L Kalischuk
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA.
| | - Lawrence M Kawchuk
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- Department of Agriculture and Agri-Food Canada, Lethbridge, AB T1J4B1, Canada.
| | - Maite F S Vaslin
- Department of Virology (M.F.S.V.), Department of Genetics (R.L.C.) and Institute of Medical Biochemistry (A.F.F.), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil.
| | - Regis L Correa
- Plant Industry Division, CSIRO, P.O. Box 1600, Canberra, ACT 2601, Australia.
- Department of Virology (M.F.S.V.), Department of Genetics (R.L.C.) and Institute of Medical Biochemistry (A.F.F.), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, Brazil.
| | - Peter M Waterhouse
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia.
- Plant Industry Division, CSIRO, P.O. Box 1600, Canberra, ACT 2601, Australia.
- School of Earth, Environmental and Biological sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| |
Collapse
|
174
|
Jeon EJ, Tadamura K, Murakami T, Inaba JI, Kim BM, Sato M, Atsumi G, Kuchitsu K, Masuta C, Nakahara KS. rgs-CaM Detects and Counteracts Viral RNA Silencing Suppressors in Plant Immune Priming. J Virol 2017; 91:e00761-17. [PMID: 28724770 PMCID: PMC5599751 DOI: 10.1128/jvi.00761-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/13/2017] [Indexed: 01/13/2023] Open
Abstract
Primary infection of a plant with a pathogen that causes high accumulation of salicylic acid in the plant typically via a hypersensitive response confers enhanced resistance against secondary infection with a broad spectrum of pathogens, including viruses. This phenomenon is called systemic acquired resistance (SAR), which is a plant priming for adaption to repeated biotic stress. However, the molecular mechanisms of SAR-mediated enhanced inhibition, especially of virus infection, remain unclear. Here, we show that SAR against cucumber mosaic virus (CMV) in tobacco plants (Nicotiana tabacum) involves a calmodulin-like protein, rgs-CaM. We previously reported the antiviral function of rgs-CaM, which binds to and directs degradation of viral RNA silencing suppressors (RSSs), including CMV 2b, via autophagy. We found that rgs-CaM-mediated immunity is ineffective against CMV infection in normally growing tobacco plants but is activated as a result of SAR induction via salicylic acid signaling. We then analyzed the effect of overexpression of rgs-CaM on salicylic acid signaling. Overexpressed and ectopically expressed rgs-CaM induced defense reactions, including cell death, generation of reactive oxygen species, and salicylic acid signaling. Further analysis using a combination of the salicylic acid analogue benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) and the Ca2+ ionophore A23187 revealed that rgs-CaM functions as an immune receptor that induces salicylic acid signaling by simultaneously perceiving both viral RSS and Ca2+ influx as infection cues, implying its autoactivation. Thus, secondary infection of SAR-induced tobacco plants with CMV seems to be effectively inhibited through 2b recognition and degradation by rgs-CaM, leading to reinforcement of antiviral RNA silencing and other salicylic acid-mediated antiviral responses.IMPORTANCE Even without an acquired immune system like that in vertebrates, plants show enhanced whole-plant resistance against secondary infection with pathogens; this so-called systemic acquired resistance (SAR) has been known for more than half a century and continues to be extensively studied. SAR-induced plants strongly and rapidly express a number of antibiotics and pathogenesis-related proteins targeted against secondary infection, which can account for enhanced resistance against bacterial and fungal pathogens but are not thought to control viral infection. This study showed that enhanced resistance against cucumber mosaic virus is caused by a tobacco calmodulin-like protein, rgs-CaM, which detects and counteracts the major viral virulence factor (RNA silencing suppressor) after SAR induction. rgs-CaM-mediated SAR illustrates the growth versus defense trade-off in plants, as it targets the major virulence factor only under specific biotic stress conditions, thus avoiding the cost of constitutive activation while reducing the damage from virus infection.
Collapse
Affiliation(s)
- Eun Jin Jeon
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuki Tadamura
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Taiki Murakami
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Jun-Ichi Inaba
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Bo Min Kim
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masako Sato
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Go Atsumi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kazuyuki Kuchitsu
- Department of Applied Biological Science and Research Institute for Science and Technology, Tokyo University of Science, Noda, Chiba, Japan
| | - Chikara Masuta
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji S Nakahara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
175
|
Geng C, Wang H, Liu J, Yan Z, Tian Y, Yuan X, Gao R, Li X. Transcriptomic changes in Nicotiana benthamiana plants inoculated with the wild-type or an attenuated mutant of Tobacco vein banding mosaic virus. MOLECULAR PLANT PATHOLOGY 2017; 18:1175-1188. [PMID: 27539720 PMCID: PMC6638280 DOI: 10.1111/mpp.12471] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 07/29/2016] [Accepted: 08/16/2016] [Indexed: 05/12/2023]
Abstract
Tobacco vein banding mosaic virus (TVBMV) is a potyvirus which mainly infects solanaceous crops. The helper component proteinase (HCpro) of a potyvirus is an RNA silencing suppressor protein and determines the severity of disease symptoms caused by different potyviruses, including TVBMV. It has been shown that substitution mutations introduced into the HCpro open reading frame (ORF) in a TVBMV infectious clone result in changes of Asp189 to Lys or Ile250 -Gln251 to Asp-Glu (Asp, aspartic acid; Gln, glutamine; Glu, glutamic acid; Ile, isoleucine). These amino acid changes eliminate the RNA silencing suppression activity of the mutant HCpro (HCm) and attenuate the disease symptoms caused by the mutant TVBMV (T-HCm) in Nicotiana benthamiana plants. Here, we used RNA-sequencing technology to compare gene expression in plants inoculated with the wild-type TVBMV (T-WT) with that in plants inoculated with T-HCm at 1, 2 and 10 days post-agroinfiltration (dpai). At 1 and 2 dpai, N. benthamiana genes related to the translation machinery were up-regulated, whereas genes related to lipid biosynthesis and metabolism or to responses to extracellular/external stimuli were down-regulated in leaves inoculated with T-WT or T-HCm. At 10 dpai, T-WT infection repressed photosynthesis-related genes. T-WT and T-HCm infections differentially perturbed the genes involved in the RNA silencing pathway. The salicylic acid and ethylene signalling pathways were induced, but the jasmonic acid signalling pathway was repressed after T-WT infection. Infections of T-WT and T-HCm also differentially regulated the genes involved in auxin signalling transduction, which is known to associate with the stunting phenotypes caused by TVBMV. These results illustrate the dynamic nature of TVBMV infection in N. benthamiana at the transcriptomic level.
Collapse
Affiliation(s)
- Chao Geng
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandong271018China
- Key Laboratory for Agricultural MicrobiologyShandong Agricultural UniversityTai'anShandong271018China
| | - Hong‐Yan Wang
- Key Laboratory for Agricultural MicrobiologyShandong Agricultural UniversityTai'anShandong271018China
| | - Jin Liu
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandong271018China
| | - Zhi‐Yong Yan
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandong271018China
- Key Laboratory for Agricultural MicrobiologyShandong Agricultural UniversityTai'anShandong271018China
| | - Yan‐Ping Tian
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandong271018China
- Key Laboratory for Agricultural MicrobiologyShandong Agricultural UniversityTai'anShandong271018China
| | - Xue‐Feng Yuan
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandong271018China
- Key Laboratory for Agricultural MicrobiologyShandong Agricultural UniversityTai'anShandong271018China
| | - Rui Gao
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandong271018China
| | - Xiang‐Dong Li
- Laboratory of Plant Virology, Department of Plant Pathology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandong271018China
- Key Laboratory for Agricultural MicrobiologyShandong Agricultural UniversityTai'anShandong271018China
| |
Collapse
|
176
|
Collum TD, Culver JN. Tobacco mosaic virus infection disproportionately impacts phloem associated translatomes in Arabidopsis thaliana and Nicotiana benthamiana. Virology 2017; 510:76-89. [PMID: 28710959 DOI: 10.1016/j.virol.2017.07.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/27/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023]
Abstract
In this study we use vascular specific promoters and a translating ribosome affinity purification strategy to identify phloem associated translatome responses to infection by tobacco mosaic virus (TMV) in systemic hosts Arabidopsis thaliana ecotype Shahdara and Nicotiana benthamiana. Results demonstrate that in both hosts the number of translatome gene alterations that occurred in response to infection is at least four fold higher in phloem specific translatomes than in non-phloem translatomes. This finding indicates that phloem functions as a key responsive tissue to TMV infection. In addition, host comparisons of translatome alterations reveal both similarities and differences in phloem responses to infection, representing both conserved virus induced phloem alterations involved in promoting infection and virus spread as well as host specific alterations that reflect differences in symptom responses. Combined these results suggest phloem tissues play a disproportion role in the mediation and control of host responses to virus infection.
Collapse
Affiliation(s)
- Tamara D Collum
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - James N Culver
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
177
|
Ramesh SV, Sahu PP, Prasad M, Praveen S, Pappu HR. Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race. Viruses 2017; 9:E256. [PMID: 28914771 PMCID: PMC5618022 DOI: 10.3390/v9090256] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/02/2017] [Accepted: 09/06/2017] [Indexed: 11/24/2022] Open
Abstract
Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant's defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions.
Collapse
Affiliation(s)
- Shunmugiah V Ramesh
- ICAR-Indian Institute of Soybean Research, Indian Council of Agricultural Research, Indore 452001, India.
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA.
| | - Pranav P Sahu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi110067, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi110067, India.
| | - Shelly Praveen
- Division of Plant Pathology, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India.
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
178
|
He Y, Cai L, Zhou L, Yang Z, Hong N, Wang G, Li S, Xu W. Deep sequencing reveals the first fabavirus infecting peach. Sci Rep 2017; 7:11329. [PMID: 28900201 PMCID: PMC5595849 DOI: 10.1038/s41598-017-11743-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/30/2017] [Indexed: 12/21/2022] Open
Abstract
A disease causing smaller and cracked fruit affects peach [Prunus persica (L.) Batsch], resulting in significant decreases in yield and quality. In this study, peach tree leaves showing typical symptoms were subjected to deep sequencing of small RNAs for a complete survey of presumed causal viral pathogens. The results revealed two known viroids (Hop stunt viroid and Peach latent mosaic viroid), two known viruses (Apple chlorotic leaf spot trichovirus and Plum bark necrosis stem pitting-associated virus) and a novel virus provisionally named Peach leaf pitting-associated virus (PLPaV). Phylogenetic analysis based on RNA-dependent RNA polymerase placed PLPaV into a separate cluster under the genus Fabavirus in the family Secoviridae. The genome consists of two positive-sense single-stranded RNAs, i.e., RNA1 [6,357 nt, with a 48-nt poly(A) tail] and RNA2 [3,862 nt, with a 25-nt poly(A) containing two cytosines]. Biological tests of GF305 peach indicator seedlings indicated a leaf-pitting symptom rather than the smaller and cracked fruit symptoms related to virus and viroid infection. To our knowledge, this is the first report of a fabavirus infecting peach. PLPaV presents several new molecular and biological features that are absent in other fabaviruses, contributing to an overall better understanding of fabaviruses.
Collapse
Affiliation(s)
- Yan He
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P.R. China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P.R. China
| | - Li Cai
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P.R. China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P.R. China
| | - Lingling Zhou
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P.R. China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P.R. China
| | - Zuokun Yang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P.R. China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P.R. China
| | - Ni Hong
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P.R. China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P.R. China
| | - Guoping Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P.R. China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P.R. China
| | - Shifang Li
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100094, P.R. China.
| | - Wenxing Xu
- State Key Laboratory of Agricultural Microbiology, Wuhan, Hubei, 430070, P.R. China.
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, P.R. China.
- Key Lab of Plant Pathology of Hubei Province, Wuhan, Hubei, 430070, P.R. China.
| |
Collapse
|
179
|
Matsui A, Iida K, Tanaka M, Yamaguchi K, Mizuhashi K, Kim JM, Takahashi S, Kobayashi N, Shigenobu S, Shinozaki K, Seki M. Novel Stress-Inducible Antisense RNAs of Protein-Coding Loci Are Synthesized by RNA-Dependent RNA Polymerase. PLANT PHYSIOLOGY 2017; 175:457-472. [PMID: 28710133 PMCID: PMC5580770 DOI: 10.1104/pp.17.00787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/12/2017] [Indexed: 05/03/2023]
Abstract
Our previous study identified approximately 6,000 abiotic stress-responsive noncoding transcripts existing on the antisense strand of protein-coding genes and implied that a type of antisense RNA was synthesized from a sense RNA template by RNA-dependent RNA polymerase (RDR). Expression analyses revealed that the expression of novel abiotic stress-induced antisense RNA on 1,136 gene loci was reduced in the rdr1/2/6 mutants. RNase protection indicated that the RD29A antisense RNA and other RDR1/2/6-dependent antisense RNAs are involved in the formation of dsRNA. The accumulation of stress-inducible antisense RNA was decreased and increased in dcp5 and xrn4, respectively, but not changed in dcl2/3/4, nrpd1a and nrpd1b RNA-seq analyses revealed that the majority of the RDR1/2/6-dependent antisense RNA loci did not overlap with RDR1/2/6-dependent 20-30 nt RNA loci. Additionally, rdr1/2/6 mutants decreased the degradation rate of the sense RNA and exhibited arrested root growth during the recovery stage following a drought stress, whereas dcl2/3/4 mutants did not. Collectively, these results indicate that RDRs have stress-inducible antisense RNA synthesis activity and a novel biological function that is different from the known endogenous small RNA pathways from protein-coding genes. These data reveal a novel mechanism of RNA regulation during abiotic stress response that involves complex RNA degradation pathways.
Collapse
Affiliation(s)
- Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kei Iida
- Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Kayoko Mizuhashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Satoshi Takahashi
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Norio Kobayashi
- Computational Engineering Applications Unit, Advanced Center for Computing and Communication, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa 244-0813, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
180
|
Tsutsui H, Notaguchi M. The Use of Grafting to Study Systemic Signaling in Plants. PLANT & CELL PHYSIOLOGY 2017; 58:1291-1301. [PMID: 28961994 DOI: 10.1093/pcp/pcx098] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/10/2017] [Indexed: 05/03/2023]
Abstract
Grafting has long been an important technique in agriculture. Nowadays, grafting is a widely used technique also to study systemic long-distance signaling in plants. Plants respond to their surrounding environment, and at that time many aspects of their physiology are regulated systemically; these start from local input signals and are followed by the transmission of information to the rest of the plant. For example, soil nutrient conditions, light/photoperiod, and biotic and abiotic stresses affect plants heterogeneously, and plants perceive such information in specific plant tissues or organs. Such environmental cues are crucial determinants of plant growth and development, and plants drastically change their morphology and physiology to adapt to various events in their life. Hitherto, intensive studies have been conducted to understand systemic signaling in plants, and grafting techniques have permitted advances in this field. The breakthrough technique of micrografting in Arabidopsis thaliana was established in 2002 and led to the development of molecular genetic tools in this field. Thereafter, various phenomena of systemic signaling have been identified at the molecular level, including nutrient fixation, flowering, circadian clock and defense against pathogens. The significance of grafting is that it can clarify the transmission of the stimulus and molecules. At present, many micro- and macromolecules have been identified as mobile signals, which are transported through plant vascular tissues to co-ordinate their physiology and development. In this review, we introduce the various grafting techniques that have been developed, we report on the recent advances in the field of plant systemic signaling where grafting techniques have been applied and provide insights for the future.
Collapse
Affiliation(s)
- Hiroki Tsutsui
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Michitaka Notaguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Japan Science and Technology Agency, PRESTO, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
181
|
Pooggin MM. RNAi-mediated resistance to viruses: a critical assessment of methodologies. Curr Opin Virol 2017; 26:28-35. [PMID: 28753441 DOI: 10.1016/j.coviro.2017.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 01/07/2023]
Abstract
In plants, RNA interference (RNAi)-based antiviral defense is mediated by multigenic families of Dicer-like enzymes generating small interfering (si)RNAs from double-stranded RNA (dsRNA) produced during replication and/or transcription of RNA and DNA viruses, and Argonaute enzymes binding viral siRNAs and targeting viral RNA and DNA for siRNA-directed posttranscriptional and transcriptional silencing. Successful viruses are able to suppress or evade the production or action of viral siRNAs. In antiviral biotech approaches based on RNAi, transgenic expression or non-transgenic delivery of dsRNA cognate to a target virus pre-activates or boosts the natural plant antiviral defenses. Design of more effective antiviral RNAi strategies requires better understanding of viral siRNA biogenesis and viral anti-silencing strategies in virus-infected plants.
Collapse
|
182
|
Guo S, Wong SM. Deep sequencing analysis reveals a TMV mutant with a poly(A) tract reduces host defense responses in Nicotiana benthamiana. Virus Res 2017; 239:126-135. [PMID: 28082213 DOI: 10.1016/j.virusres.2017.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/07/2017] [Accepted: 01/08/2017] [Indexed: 12/24/2022]
Abstract
Tobacco mosaic virus (TMV) possesses an upstream pseudoknotted domain (UPD), which is important for replication. After substituting the UPD with an internal poly(A) tract (43 nt), a mutant TMV-43A was constructed. TMV-43A replicated slower than TMV and induced a non-lethal mosaic symptom in Nicotiana benthamiana. In this study, deep sequencing was performed to detect the differences of small RNA profiles between TMV- and TMV-43A-infected N. benthamiana. The results showed that TMV-43A produced lesser amount of virus-derived interfering RNAs (vsiRNAs) than that of TMV. However, the distributions of vsiRNAs generation hotspots between TMV and TMV-43A were similar. Expression of genes related to small RNA biogenesis in TMV-43A-infected N. benthamiana was significantly lower than that of TMV, which leads to generation of lesser vsiRNAs. The expressions of host defense response genes were up-regulated after TMV infection, as compared to TMV-43A-infected plants. Host defense response to TMV-43A infection was lower than that to TMV. The absence of UPD might contribute to the reduced host response to TMV-43A. Our study provides valuable information in the role of the UPD in eliciting host response genes after TMV infection in N. benthamiana. (187 words).
Collapse
Affiliation(s)
- Song Guo
- Department of Biological Sciences, National University of Singapore, Republic of Singapore
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, Republic of Singapore; Temasek Life Sciences Laboratory, Singapore, Republic of Singapore; National University of Singapore Research Institute in Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
183
|
Guo Y, Jia MA, Yang Y, Zhan L, Cheng X, Cai J, Zhang J, Yang J, Liu T, Fu Q, Zhao J, Shamsi IH. Integrated analysis of tobacco miRNA and mRNA expression profiles under PVY infection provids insight into tobacco-PVY interactions. Sci Rep 2017; 7:4895. [PMID: 28687775 PMCID: PMC5501784 DOI: 10.1038/s41598-017-05155-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 05/24/2017] [Indexed: 02/02/2023] Open
Abstract
Potato virus Y (PVY) is a globally and economically important pathogen of potato, tobacco, tomato and other staple crops and caused significant yield losses and reductions in quality.To explore the molecular PVY-host interactions, we analysed changes in the miRNA and mRNA profiles of tobacco in response to PVY infection. A total of 81 differentially expressed miRNAs belonging to 29 families and 8133 mRNAs were identified. The Gene Ontology (GO) enrichment analyses showed that genes encoding the DNA/RNA binding, catalytic activity and signalling molecules were all significantly enriched. Moreover, 88 miRNA-mRNA interaction pairs were identified through a combined analysis of the two datasets. We also found evidence showing that the virus-derived siRNAs (vsiRNAs) from the PVY genome target tobacco translationally controlled tumor protein (NtTCTP) mRNA and mediate plant resistance to PVY. Together, our findings revealed that both miRNA and mRNA expression patterns can be changed in response to PVY infection and novel vsiRNA-plant interactions that may regulate plant resistance to PVY. Both provide fresh insights into the virus-plant interactions.
Collapse
MESH Headings
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Disease Resistance/genetics
- Gene Ontology
- Gene Regulatory Networks
- Host-Pathogen Interactions
- MicroRNAs/genetics
- MicroRNAs/immunology
- MicroRNAs/metabolism
- Molecular Sequence Annotation
- Plant Diseases/genetics
- Plant Diseases/immunology
- Plant Diseases/virology
- Plant Proteins/genetics
- Plant Proteins/immunology
- Plant Proteins/metabolism
- Potyvirus/genetics
- Potyvirus/metabolism
- Potyvirus/pathogenicity
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/immunology
- RNA, Plant/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Nicotiana/genetics
- Nicotiana/immunology
- Nicotiana/virology
- Tumor Protein, Translationally-Controlled 1
Collapse
Affiliation(s)
- Yushuang Guo
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, Guizhou, 550083, P. R. China
| | - Meng-Ao Jia
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, Guizhou, 550083, P. R. China.
| | - Yumei Yang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing, 101100, P. R. China
| | - Linlin Zhan
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 311300, P. R. China
| | - Xiaofei Cheng
- School of Life and Environmental science, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, P. R. China
| | - Jianyu Cai
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, Zhejiang, 311300, P. R. China
| | - Jie Zhang
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, Guizhou, 550083, P. R. China
| | - Jie Yang
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing, 101100, P. R. China
| | - Tao Liu
- Annoroad Gene Technology (Beijing) Co., Ltd, Beijing, 101100, P. R. China
| | - Qiang Fu
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, Guizhou, 550083, P. R. China
| | - Jiehong Zhao
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Institute of Tobacco Science, Guiyang, Guizhou, 550083, P. R. China
| | - Imran Haider Shamsi
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, P. R. China.
| |
Collapse
|
184
|
Cheng X, Wang A. Multifaceted defense and counter-defense in co-evolutionary arms race between plants and viruses. Commun Integr Biol 2017. [PMCID: PMC5595414 DOI: 10.1080/19420889.2017.1341025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Xiaofei Cheng
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
- School of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| |
Collapse
|
185
|
Zhang XP, Liu DS, Yan T, Fang XD, Dong K, Xu J, Wang Y, Yu JL, Wang XB. Cucumber mosaic virus coat protein modulates the accumulation of 2b protein and antiviral silencing that causes symptom recovery in planta. PLoS Pathog 2017; 13:e1006522. [PMID: 28727810 PMCID: PMC5538744 DOI: 10.1371/journal.ppat.1006522] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/01/2017] [Accepted: 07/11/2017] [Indexed: 11/30/2022] Open
Abstract
Shoot apical meristems (SAM) are resistant to most plant viruses due to RNA silencing, which is restrained by viral suppressors of RNA silencing (VSRs) to facilitate transient viral invasion of the SAM. In many cases chronic symptoms and long-term virus recovery occur, but the underlying mechanisms are poorly understood. Here, we found that wild-type Cucumber mosaic virus (CMVWT) invaded the SAM transiently, but was subsequently eliminated from the meristems. Unexpectedly, a CMV mutant, designated CMVRA that harbors an alanine substitution in the N-terminal arginine-rich region of the coat protein (CP) persistently invaded the SAM and resulted in visible reductions in apical dominance. Notably, the CMVWT virus elicited more potent antiviral silencing than CMVRA in newly emerging leaves of infected plants. However, both viruses caused severe symptoms with minimal antiviral silencing effects in the Arabidopsis mutants lacking host RNA-DEPENDENT RNA POLYMERASE 6 (RDR6) or SUPPRESSOR OF GENE SILENCING 3 (SGS3), indicating that CMVWT induced host RDR6/SGS3-dependent antiviral silencing. We also showed that reduced accumulation of the 2b protein is elicited in the CMVWT infection and consequently rescues potent antiviral RNA silencing. Indeed, co-infiltration assays showed that the suppression of posttranscriptional gene silencing mediated by 2b is more severely compromised by co-expression of CPWT than by CPRA. We further demonstrated that CPWT had high RNA binding activity leading to translation inhibition in wheat germ systems, and CPWT was associated with SGS3 into punctate granules in vivo. Thus, we propose that the RNAs bound and protected by CPWT possibly serve as templates of RDR6/SGS3 complexes for siRNA amplification. Together, these findings suggest that the CMV CP acts as a central hub that modulates antiviral silencing and VSRs activity, and mediates viral self-attenuation and long-term symptom recovery.
Collapse
Affiliation(s)
- Xiao-Peng Zhang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - De-Shui Liu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Teng Yan
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiao-Dong Fang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Kai Dong
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jin Xu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Jia-Lin Yu
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xian-Bing Wang
- State Key Laboratory of Agro-Biotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
186
|
Incarbone M, Zimmermann A, Hammann P, Erhardt M, Michel F, Dunoyer P. Neutralization of mobile antiviral small RNA through peroxisomal import. NATURE PLANTS 2017; 3:17094. [PMID: 28628079 DOI: 10.1038/nplants.2017.94] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/18/2017] [Indexed: 05/10/2023]
Abstract
In animals, certain viral proteins are targeted to peroxisomes to dampen the antiviral immune response mediated by these organelles1-3. In plants, RNA interference (RNAi) mediated by small interfering (si)RNA is the main antiviral defence mechanism. To protect themselves against the cell- and non-cell autonomous effects of RNAi, viruses produce viral suppressors of RNA silencing (VSR)4, whose study is crucial to properly understand the biological cycle of plant viruses and potentially find new solutions to control these pathogens. By combining biochemical approaches, cell-specific inhibition of RNAi movement and peroxisome isolation, we show here that one such VSR, the peanut clump virus (PCV)-encoded P15, isolates siRNA from the symplasm by delivering them into the peroxisomal matrix. Infection with PCV lacking this ability reveals that piggybacking of these VSR-bound nucleic acids into peroxisomes potentiates viral systemic movement by preventing the spread of antiviral siRNA. Collectively, these results highlight organellar confinement of antiviral molecules as a novel pathogenic strategy that may have its direct counterpart in other plant and animal viruses.
Collapse
Affiliation(s)
- M Incarbone
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000 Strasbourg, France
| | - A Zimmermann
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000 Strasbourg, France
| | - P Hammann
- Institut de Biologie Moléculaire et Cellulaire du CNRS, Plateforme Protéomique Strasbourg - Esplanade, FRC1589, F-67000 Strasbourg, France
| | - M Erhardt
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000 Strasbourg, France
| | - F Michel
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000 Strasbourg, France
| | - P Dunoyer
- Institut de Biologie Moléculaire des Plantes du CNRS, UPR2357, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
187
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
188
|
Xu C, Sun X, Taylor A, Jiao C, Xu Y, Cai X, Wang X, Ge C, Pan G, Wang Q, Fei Z, Wang Q. Diversity, Distribution, and Evolution of Tomato Viruses in China Uncovered by Small RNA Sequencing. J Virol 2017; 91:e00173-17. [PMID: 28331089 PMCID: PMC5432854 DOI: 10.1128/jvi.00173-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/09/2017] [Indexed: 12/16/2022] Open
Abstract
Tomato is a major vegetable crop that has tremendous popularity. However, viral disease is still a major factor limiting tomato production. Here, we report the tomato virome identified through sequencing small RNAs of 170 field-grown samples collected in China. A total of 22 viruses were identified, including both well-documented and newly detected viruses. The tomato viral community is dominated by a few species, and they exhibit polymorphisms and recombination in the genomes with cold spots and hot spots. Most samples were coinfected by multiple viruses, and the majority of identified viruses are positive-sense single-stranded RNA viruses. Evolutionary analysis of one of the most dominant tomato viruses, Tomato yellow leaf curl virus (TYLCV), predicts its origin and the time back to its most recent common ancestor. The broadly sampled data have enabled us to identify several unreported viruses in tomato, including a completely new virus, which has a genome of ∼13.4 kb and groups with aphid-transmitted viruses in the genus Cytorhabdovirus Although both DNA and RNA viruses can trigger the biogenesis of virus-derived small interfering RNAs (vsiRNAs), we show that features such as length distribution, paired distance, and base selection bias of vsiRNA sequences reflect different plant Dicer-like proteins and Argonautes involved in vsiRNA biogenesis. Collectively, this study offers insights into host-virus interaction in tomato and provides valuable information to facilitate the management of viral diseases.IMPORTANCE Tomato is an important source of micronutrients in the human diet and is extensively consumed around the world. Virus is among the major constraints on tomato production. Categorizing virus species that are capable of infecting tomato and understanding their diversity and evolution are challenging due to difficulties in detecting such fast-evolving biological entities. Here, we report the landscape of the tomato virome in China, the leading country in tomato production. We identified dozens of viruses present in tomato, including both well-documented and completely new viruses. Some newly emerged viruses in tomato were found to spread fast, and therefore, prompt attention is needed to control them. Moreover, we show that the virus genomes exhibit considerable degree of polymorphisms and recombination, and the virus-derived small interfering RNA (vsiRNA) sequences indicate distinct vsiRNA biogenesis mechanisms for different viruses. The Chinese tomato virome that we developed provides valuable information to facilitate the management of tomato viral diseases.
Collapse
Affiliation(s)
- Chenxi Xu
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xuepeng Sun
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Angela Taylor
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Chen Jiao
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
| | - Xiaofeng Cai
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Chenhui Ge
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Guanghui Pan
- Chongqing Academy of Agricultural Science, Chongqing, China
| | - Quanxi Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Zhangjun Fei
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, USA
- USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Quanhua Wang
- Development and Collaborative Innovation Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
189
|
Qin C, Li B, Fan Y, Zhang X, Yu Z, Ryabov E, Zhao M, Wang H, Shi N, Zhang P, Jackson S, Tör M, Cheng Q, Liu Y, Gallusci P, Hong Y. Roles of Dicer-Like Proteins 2 and 4 in Intra- and Intercellular Antiviral Silencing. PLANT PHYSIOLOGY 2017; 174:1067-1081. [PMID: 28455401 PMCID: PMC5462052 DOI: 10.1104/pp.17.00475] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/26/2017] [Indexed: 05/23/2023]
Abstract
RNA silencing is an innate antiviral mechanism conserved in organisms across kingdoms. Such a cellular defense involves DICER or DICER-LIKEs (DCLs) that process plant virus RNAs into viral small interfering RNAs (vsiRNAs). Plants encode four DCLs that play diverse roles in cell-autonomous intracellular virus-induced RNA silencing (known as VIGS) against viral invasion. VIGS can spread between cells. However, the genetic basis and involvement of vsiRNAs in non-cell-autonomous intercellular VIGS remains poorly understood. Using GFP as a reporter gene together with a suite of DCL RNAi transgenic lines, here we show that despite the well-established activities of DCLs in intracellular VIGS and vsiRNA biogenesis, DCL4 acts to inhibit intercellular VIGS whereas DCL2 is required (likely along with DCL2-processed/dependent vsiRNAs and their precursor RNAs) for efficient intercellular VIGS trafficking from epidermal to adjacent cells. DCL4 imposed an epistatic effect on DCL2 to impede cell-to-cell spread of VIGS. Our results reveal previously unknown functions for DCL2 and DCL4 that may form a dual defensive frontline for intra- and intercellular silencing to double-protect cells from virus infection in Nicotiana benthamiana.
Collapse
Affiliation(s)
- Cheng Qin
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Bin Li
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Yaya Fan
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Xian Zhang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Zhiming Yu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Eugene Ryabov
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Mei Zhao
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Hui Wang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Nongnong Shi
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Pengcheng Zhang
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Stephen Jackson
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Mahmut Tör
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Qi Cheng
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Yule Liu
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Philippe Gallusci
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.)
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.)
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.)
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.)
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China (C.Q., B.L., Y.F., X.Z., Z.Y., E.R., M.Z., H.W., N.S., P.C., Y.H.);
- Warwick-Hangzhou RNA Signalling Joint Laboratory, School of Life Sciences, University of Warwick, Warwick CV4 7AL, United Kingdom (E.R., S.J., Y.H.);
- Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom (M.T.);
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China (Q.C.);
- MOE Key Laboratory of Bioinformatics, Centre for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China (Y.L.); and
- UMR EGFV, Bordeaux Sciences Agro, INRA, Université de Bordeaux, 210 Chemin de Leysotte, CS 50008, 33882 Villenave d'Ornon, France (P.G.)
| |
Collapse
|
190
|
Iki T, Tschopp MA, Voinnet O. Biochemical and genetic functional dissection of the P38 viral suppressor of RNA silencing. RNA (NEW YORK, N.Y.) 2017; 23:639-654. [PMID: 28148824 PMCID: PMC5393175 DOI: 10.1261/rna.060434.116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 01/25/2017] [Indexed: 05/08/2023]
Abstract
Phytoviruses encode viral suppressors of RNA silencing (VSRs) to counteract the plant antiviral silencing response, which relies on virus-derived small interfering (si)RNAs processed by Dicer RNaseIII enzymes and subsequently loaded into ARGONAUTE (AGO) effector proteins. Here, a tobacco cell-free system was engineered to recapitulate the key steps of antiviral RNA silencing and, in particular, the most upstream double-stranded (ds)RNA processing reaction, not kinetically investigated thus far in the context of plant VSR studies. Comparative biochemical analyses of distinct VSRs in the reconstituted assay showed that in all cases tested, VSR interactions with siRNA duplexes inhibited the loading, but not the activity, of antiviral AGO1 and AGO2. Turnip crinkle virus P38 displayed the additional and unique property to bind both synthetic and RNA-dependent-RNA-polymerase-generated long dsRNAs, and inhibited the processing into siRNAs. Single amino acid substitutions in P38 could dissociate dsRNA-processing from AGO-loading inhibition in vitro and in vivo, illustrating dual-inhibitory strategies discriminatively deployed within a single viral protein, which, we further show, are bona fide suppressor functions that evolved independently of the conserved coat protein function of P38.
Collapse
Affiliation(s)
- Taichiro Iki
- Department of Biology, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | - Marie-Aude Tschopp
- Department of Biology, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| | - Olivier Voinnet
- Department of Biology, Swiss Federal Institute of Technology (ETH), 8092 Zürich, Switzerland
| |
Collapse
|
191
|
Alazem M, He MH, Moffett P, Lin NS. Abscisic Acid Induces Resistance against Bamboo Mosaic Virus through Argonaute2 and 3. PLANT PHYSIOLOGY 2017; 174:339-355. [PMID: 28270624 PMCID: PMC5411131 DOI: 10.1104/pp.16.00015] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/03/2017] [Indexed: 05/21/2023]
Abstract
Plant resistance to pathogens is tuned by defense-related hormones. Of these, abscisic acid (ABA) is well documented to moderate resistance against fungi and bacteria. However, ABA's contribution to resistance against viruses is pleiotropic. ABA affects callose deposition at plasmodesmata (therefore hindering the viral cell-to-cell movement), but here, we show that when callose synthase is down-regulated, ABA still induces resistance against infection with Bamboo mosaic virus (BaMV). By examining the potential connections between the ABA and RNA-silencing pathways in Arabidopsis (Arabidopsis thaliana), we showed that ABA regulates the expression of almost the whole ARGONAUTE (AGO) gene family, of which some are required for plant resistance against BaMV Our data show that BaMV infection and ABA treatment regulate the same set of AGOs, with positive effects on AGO1, AGO2, and AGO3, no effect on AGO7, and negative effects on AGO4 and AGO10 The BaMV-mediated regulation of AGO1, AGO2, and AGO3 is ABA dependent, because the accumulation of these AGOs in BaMV-infected ABA mutants did not reach the levels observed in infected wild-type plants. In addition, the AGO1-miR168a complex is dispensable for BaMV resistance, while AGO2 and AGO3 were important for ABA-mediated resistance. While most ago mutants showed increased susceptibility to BaMV infection (except ago10), ago1-27 showed reduced BaMV titers, which was attributed to the up-regulated levels of AGO2, AGO3, and AGO4 We have established that ABA regulates the expression of several members of the AGO family, and this regulation partially contributes to ABA-mediated resistance against BaMV These findings reveal another role for ABA in plants.
Collapse
Affiliation(s)
- Mazen Alazem
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China (M.A., M.-H.H., N.-S.L.); and
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 (P.M.)
| | - Meng-Hsun He
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China (M.A., M.-H.H., N.-S.L.); and
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 (P.M.)
| | - Peter Moffett
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China (M.A., M.-H.H., N.-S.L.); and
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 (P.M.)
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan, Republic of China (M.A., M.-H.H., N.-S.L.); and
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1K 2R1 (P.M.)
| |
Collapse
|
192
|
Ludman M, Burgyán J, Fátyol K. Crispr/Cas9 Mediated Inactivation of Argonaute 2 Reveals its Differential Involvement in Antiviral Responses. Sci Rep 2017; 7:1010. [PMID: 28432338 PMCID: PMC5430636 DOI: 10.1038/s41598-017-01050-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/17/2017] [Indexed: 12/21/2022] Open
Abstract
RNA silencing constitutes an important antiviral mechanism in plants. Small RNA guided Argonaute proteins fulfill essential role in this process by acting as executors of viral restriction. Plants encode multiple Argonaute proteins of which several exhibit antiviral activities. A recent addition to this group is AGO2. Its involvement in antiviral responses is established predominantly by studies employing mutants of Arabidopsis thaliana. In the virological model plant, Nicotiana benthamiana, the contribution of AGO2 to antiviral immunity is much less certain due to the lack of appropriate genetic mutants. Previous studies employed various RNAi based tools to down-regulate AGO2 expression. However, these techniques have several disadvantages, especially in the context of antiviral RNA silencing. Here, we have utilized the CRISPR/Cas9 technology to inactivate the AGO2 gene of N. benthamiana. The ago2 plants exhibit differential sensitivities towards various viruses. AGO2 is a critical component of the plants' immune responses against PVX, TuMV and TCV. In contrast, AGO2 deficiency does not significantly influence the progression of tombusvirus and CMV infections. In summary, our work provides unequivocal proof for the virus-specific antiviral role of AGO2 in a plant species other than A. thaliana for the first time.
Collapse
Affiliation(s)
- Márta Ludman
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Szent-Györgyi Albert u. 4, Gödöllő, 2100, Hungary
| | - József Burgyán
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Szent-Györgyi Albert u. 4, Gödöllő, 2100, Hungary.
| | - Károly Fátyol
- Agricultural Biotechnology Institute, National Agricultural Research and Innovation Centre, Szent-Györgyi Albert u. 4, Gödöllő, 2100, Hungary.
| |
Collapse
|
193
|
Walsh E, Elmore JM, Taylor CG. Root-Knot Nematode Parasitism Suppresses Host RNA Silencing. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:295-300. [PMID: 28402184 DOI: 10.1094/mpmi-08-16-0160-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Root-knot nematodes damage crops around the world by developing complex feeding sites from normal root cells of their hosts. The ability to initiate and maintain this feeding site (composed of individual "giant cells") is essential to their parasitism process. RNA silencing pathways in plants serve a diverse set of functions, from directing growth and development to defending against invading pathogens. Influencing a host's RNA silencing pathways as a pathogenicity strategy has been well-documented for viral plant pathogens, but recently, it has become clear that silencing pathways also play an important role in other plant pathosystems. To determine if RNA silencing pathways play a role in nematode parasitism, we tested the susceptibility of plants that express a viral suppressor of RNA silencing. We observed an increase in susceptibility to nematode parasitism in plants expressing viral suppressors of RNA silencing. Results from studies utilizing a silenced reporter gene suggest that active suppression of RNA silencing pathways may be occurring during nematode parasitism. With these studies, we provide further evidence to the growing body of plant-biotic interaction research that suppression of RNA silencing is important in the successful interaction between a plant-parasitic animal and its host.
Collapse
Affiliation(s)
- E Walsh
- 1 Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH 44691, U.S.A.; and
| | - J M Elmore
- 2 Department of Plant Pathology & Microbiology, Iowa State University, Ames, IA 50011, U.S.A
| | - C G Taylor
- 1 Department of Plant Pathology, The Ohio State University, OARDC, Wooster, OH 44691, U.S.A.; and
| |
Collapse
|
194
|
Zhou CJ, Zhang XY, Liu SY, Wang Y, Li DW, Yu JL, Han CG. Synergistic infection of BrYV and PEMV 2 increases the accumulations of both BrYV and BrYV-derived siRNAs in Nicotiana benthamiana. Sci Rep 2017; 7:45132. [PMID: 28345652 PMCID: PMC5366869 DOI: 10.1038/srep45132] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Viral synergism is caused by co-infection of two unrelated viruses, leading to more severe symptoms or increased titres of one or both viruses. Synergistic infection of phloem-restricted poleroviruses and umbraviruses has destructive effects on crop plants. The mechanism underlying this synergy remains elusive. In our study, synergism was observed in co-infections of a polerovirus Brassica yellows virus (BrYV) and an umbravirus Pea enation mosaic virus 2 (PEMV 2) on Nicotiana benthamiana, which led to (1) increased titres of BrYV, (2) appearance of severe symptoms, (3) gain of mechanical transmission capacity of BrYV, (4) broader distribution of BrYV to non-vascular tissues. Besides, profiles of virus-derived small interfering RNAs (vsiRNAs) from BrYV and PEMV 2 in singly and doubly infected plants were obtained by small RNA deep sequencing. Our results showed that accumulation of BrYV vsiRNAs increased tremendously and ratio of positive to negative strand BrYV vsiRNAs differed between singly infected and co-infected plants. Positions to which the BrYV vsiRNAs mapped to the viral genome varied considerably during synergistic infection. Moreover, target genes of vsiRNAs were predicted and annotated. Our results revealed the synergistic characteristics during co-infection of BrYV and PEMV 2, and implied possible effects of synergism have on vsiRNAs.
Collapse
Affiliation(s)
- Cui-Ji Zhou
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Xiao-Yan Zhang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Song-Yu Liu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Ying Wang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Da-Wei Li
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Jia-Lin Yu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| | - Cheng-Gui Han
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, 100193, P. R. China
| |
Collapse
|
195
|
Caenorhabditis elegans RIG-I Homolog Mediates Antiviral RNA Interference Downstream of Dicer-Dependent Biogenesis of Viral Small Interfering RNAs. mBio 2017; 8:mBio.00264-17. [PMID: 28325765 PMCID: PMC5362034 DOI: 10.1128/mbio.00264-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Dicer enzymes process virus-specific double-stranded RNA (dsRNA) into small interfering RNAs (siRNAs) to initiate specific antiviral defense by related RNA interference (RNAi) pathways in plants, insects, nematodes, and mammals. Antiviral RNAi in Caenorhabditis elegans requires Dicer-related helicase 1 (DRH-1), not found in plants and insects but highly homologous to mammalian retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs), intracellular viral RNA sensors that trigger innate immunity against RNA virus infection. However, it remains unclear if DRH-1 acts analogously to initiate antiviral RNAi in C. elegans. Here, we performed a forward genetic screen to characterize antiviral RNAi in C. elegans. Using a mapping-by-sequencing strategy, we uncovered four loss-of-function alleles of drh-1, three of which caused mutations in the helicase and C-terminal domains conserved in RLRs. Deep sequencing of small RNAs revealed an abundant population of Dicer-dependent virus-derived small interfering RNAs (vsiRNAs) in drh-1 single and double mutant animals after infection with Orsay virus, a positive-strand RNA virus. These findings provide further genetic evidence for the antiviral function of DRH-1 and illustrate that DRH-1 is not essential for the sensing and Dicer-mediated processing of the viral dsRNA replicative intermediates. Interestingly, vsiRNAs produced by drh-1 mutants were mapped overwhelmingly to the terminal regions of the viral genomic RNAs, in contrast to random distribution of vsiRNA hot spots when DRH-1 is functional. As RIG-I translocates on long dsRNA and DRH-1 exists in a complex with Dicer, we propose that DRH-1 facilitates the biogenesis of vsiRNAs in nematodes by catalyzing translocation of the Dicer complex on the viral long dsRNA precursors. The helicase and C-terminal domains of mammalian RLRs sense intracellular viral RNAs to initiate the interferon-regulated innate immunity against RNA virus infection. Both of the domains from human RIG-I can substitute for the corresponding domains of DRH-1 to mediate antiviral RNAi in C. elegans, suggesting an analogous role for DRH-1 as an intracellular dsRNA sensor to initiate antiviral RNAi. Here, we developed a forward genetic screen for the identification of host factors required for antiviral RNAi in C. elegans. Characterization of four distinct drh-1 mutants obtained from the screen revealed that DRH-1 did not function to initiate antiviral RNAi. We show that DRH-1 acted in a downstream step to enhance Dicer-dependent biogenesis of viral siRNAs in C. elegans. As mammals produce Dicer-dependent viral siRNAs to target RNA viruses, our findings suggest a possible role for mammalian RLRs and interferon signaling in the biogenesis of viral siRNAs.
Collapse
|
196
|
Calil IP, Fontes EPB. Plant immunity against viruses: antiviral immune receptors in focus. ANNALS OF BOTANY 2017; 119:711-723. [PMID: 27780814 PMCID: PMC5604577 DOI: 10.1093/aob/mcw200] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/05/2016] [Indexed: 05/07/2023]
Abstract
BACKGROUND Among the environmental limitations that affect plant growth, viruses cause major crop losses worldwide and represent serious threats to food security. Significant advances in the field of plant-virus interactions have led to an expansion of potential strategies for genetically engineered resistance in crops during recent years. Nevertheless, the evolution of viral virulence represents a constant challenge in agriculture that has led to a continuing interest in the molecular mechanisms of plant-virus interactions that affect disease or resistance. SCOPE AND CONCLUSION This review summarizes the molecular mechanisms of the antiviral immune system in plants and the latest breakthroughs reported in plant defence against viruses. Particular attention is given to the immune receptors and transduction pathways in antiviral innate immunity. Plants counteract viral infection with a sophisticated innate immune system that resembles the non-viral pathogenic system, which is broadly divided into pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity. An additional recently uncovered virus-specific defence mechanism relies on host translation suppression mediated by a transmembrane immune receptor. In all cases, the recognition of the virus by the plant during infection is central for the activation of these innate defences, and, conversely, the detection of host plants enables the virus to activate virulence strategies. Plants also circumvent viral infection through RNA interference mechanisms by utilizing small RNAs, which are often suppressed by co-evolving virus suppressors. Additionally, plants defend themselves against viruses through hormone-mediated defences and activation of the ubiquitin-26S proteasome system (UPS), which alternatively impairs and facilitates viral infection. Therefore, plant defence and virulence strategies co-evolve and co-exist; hence, disease development is largely dependent on the extent and rate at which these opposing signals emerge in host and non-host interactions. A deeper understanding of plant antiviral immunity may facilitate innovative biotechnological, genetic and breeding approaches for crop protection and improvement.
Collapse
Affiliation(s)
- Iara P. Calil
- Departamento de Bioquímica e Biologia Molecular/National Institute of Science and Technology in Plant–Pest Interactions/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil
| | - Elizabeth P. B. Fontes
- Departamento de Bioquímica e Biologia Molecular/National Institute of Science and Technology in Plant–Pest Interactions/Bioagro, Universidade Federal de Viçosa, 36570.000, Viçosa, MG, Brazil
- For correspondence. E-mail
| |
Collapse
|
197
|
Conti G, Rodriguez MC, Venturuzzi AL, Asurmendi S. Modulation of host plant immunity by Tobamovirus proteins. ANNALS OF BOTANY 2017; 119:737-747. [PMID: 27941090 PMCID: PMC5378186 DOI: 10.1093/aob/mcw216] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/10/2016] [Accepted: 09/19/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND To establish successful infection, plant viruses produce profound alterations of host physiology, disturbing unrelated endogenous processes and contributing to the development of disease. In tobamoviruses, emerging evidence suggests that viral-encoded proteins display a great variety of functions beyond the canonical roles required for virus structure and replication. Among these, their modulation of host immunity appears to be relevant in infection progression. SCOPE In this review, some recently described effects on host plant physiology of Tobacco mosaic virus (TMV)-encoded proteins, namely replicase, movement protein (MP) and coat protein (CP), are summarized. The discussion is focused on the effects of each viral component on the modulation of host defense responses, through mechanisms involving hormonal imbalance, innate immunity modulation and antiviral RNA silencing. These effects are described taking into consideration the differential spatial distribution and temporality of viral proteins during the dynamic process of replication and spread of the virus. CONCLUSION In discussion of these mechanisms, it is shown that both individual and combined effects of viral-encoded proteins contribute to the development of the pathogenesis process, with the host plant's ability to control infection to some extent potentially advantageous to the invading virus.
Collapse
Affiliation(s)
- G. Conti
- Instituto de Biotecnologia, CICVyA, INTA, Argentina
- CONICET, Argentina
| | | | - A. L. Venturuzzi
- Instituto de Biotecnologia, CICVyA, INTA, Argentina
- CONICET, Argentina
| | - S. Asurmendi
- Instituto de Biotecnologia, CICVyA, INTA, Argentina
- CONICET, Argentina
- For correspondence. E-mail
| |
Collapse
|
198
|
Seta A, Tabara M, Nishibori Y, Hiraguri A, Ohkama-Ohtsu N, Yokoyama T, Hara S, Yoshida K, Hisabori T, Fukudome A, Koiwa H, Moriyama H, Takahashi N, Fukuhara T. Post-Translational Regulation of the Dicing Activities of Arabidopsis DICER-LIKE 3 and 4 by Inorganic Phosphate and the Redox State. PLANT & CELL PHYSIOLOGY 2017; 58:485-495. [PMID: 28069892 DOI: 10.1093/pcp/pcw226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
In Arabidopsis thaliana, small interfering RNAs (siRNAs) generated by two Dicer isoforms, DCL3 and DCL4, function in distinct epigenetic processes, i.e. RNA-directed DNA methylation and post-transcriptional gene silencing, respectively. Plants often respond to their environment by producing a distinct set of small RNAs; however, the mechanism for controlling the production of different siRNAs from the same dsRNA substrate remains unclear. We established a simple biochemical method to visualize the dsRNA-cleaving activities of DCL3 and DCL4 in cell-free extracts prepared from Arabidopsis seedlings. Here, we demonstrate that different nutrient statuses of a host plant affect the post-translational regulation of the dicing activity of DCL3 and DCL4. Phosphate deficiency inhibited DCL3, and the activity of DCL3 was directly activated by inorganic phosphate. Sulfur deficiency inhibited DCL4 but not DCL3, and the activity of DCL4 was recovered by supplementation of the cell-free extracts with reductants containing a thiol group. Immunopurified DCL4 was activated by recombinant Arabidopsis thioredoxin-h1 with dithiothreitol. Therefore, DCL4 is subject to redox regulation. These results demonstrate that post-translational regulation of DCL activities fine-tunes the balance between branches of the gene silencing pathway according to the growth environment.
Collapse
Affiliation(s)
- Atsushi Seta
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| | - Midori Tabara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| | - Yuki Nishibori
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| | - Akihiro Hiraguri
- Department of Clinical Plant Science, Hosei University, Kajino-cho, Koganei, Tokyo, Japan
| | - Naoko Ohkama-Ohtsu
- Biological Production Science, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| | - Tadashi Yokoyama
- Biological Production Science, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| | - Satoshi Hara
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Keisuke Yoshida
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Akihito Fukudome
- Department of Horticultural Sciences, Vegetable and Fruit Improvement Center, Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, TX, USA
| | - Hisashi Koiwa
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
- Department of Horticultural Sciences, Vegetable and Fruit Improvement Center, Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, TX, USA
| | - Hiromitsu Moriyama
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| | - Nobuhiro Takahashi
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| | - Toshiyuki Fukuhara
- Department of Applied Biological Sciences, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Saiwaicho, Fuchu, Tokyo, Japan
| |
Collapse
|
199
|
Xu D, Zhou G. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation. Virol J 2017. [PMID: 28183327 DOI: 10.1186/s12985-017-0699-314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Virus-derived siRNAs (vsiRNAs)-mediated RNA silencing plays important roles in interaction between plant viruses and their hosts. Southern rice black-streaked dwarf virus (SRBSDV) is a newly emerged devastating rice reovirus with ten dsRNA genomic segments. The characteristics of SRBSDV-derived siRNAs and their biological implications in SRBSDV-rice interaction remain unexplored. METHODS VsiRNAs profiling from SRBSDV-infected rice samples was done via small RNA deep sequencing. The putative rice targets of abundantly expressed vsiRNAs were bioinformatically predicted and subjected to functional annotation. Differential expression analysis of rice targets and RNA silencing components between infected and healthy samples was done using RT-qPCR. RESULTS The vsiRNA was barely detectable at 14 days post infection (dpi) but abundantly present along with elevated expression level of the viral genome at 28 dpi. From the 28-dpi sample, 70,878 reads of 18 ~ 30-nt vsiRNAs were recognized (which mostly were 21-nt and 22-nt), covering 75 ~ 91% of the length of the ten genomic segments respectively. 86% of the vsiRNAs had a <50% GC content and 79% of them were 5'-uridylated or adenylated. The production of vsiRNAs had no strand polarity but varied among segment origins. Each segment had a few hotspot regions where vsiRNAs of high abundance were produced. 151 most abundant vsiRNAs were predicted to target 844 rice genes, including several types of host resistance or pathogenesis related genes encoding F-box/LRR proteins, receptor-like protein kinases, universal stress proteins, tobamovirus multiplication proteins, and RNA silencing components OsDCL2a and OsAGO17 respectively, some of which showed down regulation in infected plants in RT-qPCR. GO and KEGG classification showed that a majority of the predicted targets were related to cell parts and cellular processes and involved in carbohydrate metabolism, translation, and signal transduction. The silencing component genes OsDCL2a, OsDCL2b, OsDCL4, and OsAGO18 were down regulated, while OsAGO1d, OsAGO2, OsRDR1 and OsRDR6 were up regulated, significantly, upon SRBSDV infection. CONCLUSIONS SRBSDV can regulate the expression of rice RNA silencing pathway components and the virus might compromise host defense and influence host pathogenesis via siRNA pathways.
Collapse
Affiliation(s)
- Donglin Xu
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Guohui Zhou
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China.
| |
Collapse
|
200
|
Xu D, Zhou G. Characteristics of siRNAs derived from Southern rice black-streaked dwarf virus in infected rice and their potential role in host gene regulation. Virol J 2017; 14:27. [PMID: 28183327 PMCID: PMC5301327 DOI: 10.1186/s12985-017-0699-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Virus-derived siRNAs (vsiRNAs)-mediated RNA silencing plays important roles in interaction between plant viruses and their hosts. Southern rice black-streaked dwarf virus (SRBSDV) is a newly emerged devastating rice reovirus with ten dsRNA genomic segments. The characteristics of SRBSDV-derived siRNAs and their biological implications in SRBSDV-rice interaction remain unexplored. Methods VsiRNAs profiling from SRBSDV-infected rice samples was done via small RNA deep sequencing. The putative rice targets of abundantly expressed vsiRNAs were bioinformatically predicted and subjected to functional annotation. Differential expression analysis of rice targets and RNA silencing components between infected and healthy samples was done using RT-qPCR. Results The vsiRNA was barely detectable at 14 days post infection (dpi) but abundantly present along with elevated expression level of the viral genome at 28 dpi. From the 28-dpi sample, 70,878 reads of 18 ~ 30-nt vsiRNAs were recognized (which mostly were 21-nt and 22-nt), covering 75 ~ 91% of the length of the ten genomic segments respectively. 86% of the vsiRNAs had a <50% GC content and 79% of them were 5’-uridylated or adenylated. The production of vsiRNAs had no strand polarity but varied among segment origins. Each segment had a few hotspot regions where vsiRNAs of high abundance were produced. 151 most abundant vsiRNAs were predicted to target 844 rice genes, including several types of host resistance or pathogenesis related genes encoding F-box/LRR proteins, receptor-like protein kinases, universal stress proteins, tobamovirus multiplication proteins, and RNA silencing components OsDCL2a and OsAGO17 respectively, some of which showed down regulation in infected plants in RT-qPCR. GO and KEGG classification showed that a majority of the predicted targets were related to cell parts and cellular processes and involved in carbohydrate metabolism, translation, and signal transduction. The silencing component genes OsDCL2a, OsDCL2b, OsDCL4, and OsAGO18 were down regulated, while OsAGO1d, OsAGO2, OsRDR1 and OsRDR6 were up regulated, significantly, upon SRBSDV infection. Conclusions SRBSDV can regulate the expression of rice RNA silencing pathway components and the virus might compromise host defense and influence host pathogenesis via siRNA pathways. Electronic supplementary material The online version of this article (doi:10.1186/s12985-017-0699-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Donglin Xu
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China
| | - Guohui Zhou
- Key Laboratory of Microbial Signals and Disease Control of Guangdong Province, College of Agriculture, South China Agricultural University, 510642, Guangzhou, Guangdong, China.
| |
Collapse
|