151
|
Lallemand B, Erhardt M, Heitz T, Legrand M. Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells. PLANT PHYSIOLOGY 2013; 162:616-25. [PMID: 23632852 PMCID: PMC3668057 DOI: 10.1104/pp.112.213124] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/19/2013] [Indexed: 05/17/2023]
Abstract
The sporopollenin polymer is the major constituent of exine, the outer pollen wall. Recently fatty acid derivatives have been shown to be the precursors of sporopollenin building units. ACYL-COA SYNTHETASE, POLYKETIDE SYNTHASE A (PKSA) and PKSB, TETRAKETIDE α-PYRONE REDUCTASE1 (TKPR1) and TKPR2 have been demonstrated to be involved in sporopollenin biosynthesis in Arabidopsis (Arabidopsis thaliana). Here all these sporopollenin biosynthetic enzymes but TKPR2 have been immunolocalized to endoplasmic reticulum of anther tapetal cells. Pull-down experiments demonstrated that tagged recombinant proteins interacted to form complexes whose constituents were characterized by immunoblotting. In vivo protein interactions were evidenced by yeast (Saccharomyces cerevisiae) two-hybrid analysis and by fluorescence lifetime imaging microscopy/Förster resonance energy transfer studies in transgenic Nicotiana benthamiana, which were used to test the possibility that the enzymes interact to form a biosynthetic metabolon. Various pairs of proteins fused to two distinct fluorochromes were coexpressed in N. benthamiana leaf tissues and fluorescence lifetime imaging microscopy/Förster resonance energy transfer measurements demonstrated that proteins interacted pairwise in planta. Taken together, these results suggest the existence of a sporopollenin metabolon.
Collapse
Affiliation(s)
- Benjamin Lallemand
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France
| | - Michel Legrand
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg cedex, France
| |
Collapse
|
152
|
Tran F, Penniket C, Patel RV, Provart NJ, Laroche A, Rowland O, Robert LS. Developmental transcriptional profiling reveals key insights into Triticeae reproductive development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:971-88. [PMID: 23581995 DOI: 10.1111/tpj.12206] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 05/25/2023]
Abstract
Despite their importance, there remains a paucity of large-scale gene expression-based studies of reproductive development in species belonging to the Triticeae. As a first step to address this deficiency, a gene expression atlas of triticale reproductive development was generated using the 55K Affymetrix GeneChip(®) wheat genome array. The global transcriptional profiles of the anther/pollen, ovary and stigma were analyzed at concurrent developmental stages, and co-expressed as well as preferentially expressed genes were identified. Data analysis revealed both novel and conserved regulatory factors underlying Triticeae floral development and function. This comprehensive resource rests upon detailed gene annotations, and the expression profiles are readily accessible via a web browser.
Collapse
Affiliation(s)
- Frances Tran
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | | | | | | | | | | | | |
Collapse
|
153
|
Jiang J, Zhang Z, Cao J. Pollen wall development: the associated enzymes and metabolic pathways. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15:249-63. [PMID: 23252839 DOI: 10.1111/j.1438-8677.2012.00706.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Accepted: 10/22/2012] [Indexed: 05/18/2023]
Abstract
Pollen grains are surrounded by a sculpted wall, which protects male gametophytes from various environmental stresses and microbial attacks, and also facilitates pollination. Pollen wall development requires lipid and polysaccharide metabolism, and some key genes and proteins that participate in these processes have recently been identified. Here, we summarise the genes and describe their functions during pollen wall development via several metabolic pathways. A working model involving substances and catalytic enzyme reactions that occur during pollen development is also presented. This model provides information on the complete process of pollen wall development with respect to metabolic pathways.
Collapse
Affiliation(s)
- J Jiang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | | | | |
Collapse
|
154
|
Ríos G, Tadeo FR, Leida C, Badenes ML. Prediction of components of the sporopollenin synthesis pathway in peach by genomic and expression analyses. BMC Genomics 2013; 14:40. [PMID: 23331975 PMCID: PMC3556096 DOI: 10.1186/1471-2164-14-40] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/15/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The outer cell wall of the pollen grain (exine) is an extremely resistant structure containing sporopollenin, a mixed polymer made up of fatty acids and phenolic compounds. The synthesis of sporopollenin in the tapetal cells and its proper deposition on the pollen surface are essential for the development of viable pollen. The beginning of microsporogenesis and pollen maturation in perennial plants from temperate climates, such as peach, is conditioned by the duration of flower bud dormancy. In order to identify putative genes involved in these processes, we analyzed the results of previous genomic experiments studying the dormancy-dependent gene expression in different peach cultivars. RESULTS The expression of 50 genes induced in flower buds after the endodormancy period (flower-bud late genes) was compared in ten cultivars of peach with different dormancy behaviour. We found two co-expression clusters enriched in putative orthologs of sporopollenin synthesis and deposition factors in Arabidopsis. Flower-bud late genes were transiently expressed in anthers coincidently with microsporogenesis and pollen maturation processes. We postulated the participation of some flower-bud late genes in the sporopollenin synthesis pathway and the transcriptional regulation of late anther development in peach. CONCLUSIONS Peach and the model plant Arabidopsis thaliana show multiple elements in common within the essential sporopollenin synthesis pathway and gene expression regulatory mechanisms affecting anther development. The transcriptomic analysis of dormancy-released flower buds proved to be an efficient procedure for the identification of anther and pollen development genes in perennial plants showing seasonal dormancy.
Collapse
Affiliation(s)
- Gabino Ríos
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada-Náquera km 4,5, Moncada, Valencia, E-46113, Spain
| | | | | | | |
Collapse
|
155
|
Qin P, Tu B, Wang Y, Deng L, Quilichini TD, Li T, Wang H, Ma B, Li S. ABCG15 encodes an ABC transporter protein, and is essential for post-meiotic anther and pollen exine development in rice. PLANT & CELL PHYSIOLOGY 2013; 54:138-54. [PMID: 23220695 DOI: 10.1093/pcp/pcs162] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In flowering plants, anther and pollen development is critical for male reproductive success. The anther cuticle and pollen exine play an essential role, and in many cereals, such as rice, orbicules/ubisch bodies are also thought to be important for pollen development. The formation of the anther cuticle, exine and orbicules is associated with the biosynthesis and transport of wax, cutin and sporopollenin components. Recently, progress has been made in understanding the biosynthesis of sporopollenin and cutin components in Arabidopsis and rice, but less is known about the mechanisms by which they are transported to the sites of deposition. Here, we report that the rice ATP-binding cassette (ABC) transporter, ABCG15, is essential for post-meiotic anther and pollen development, and is proposed to play a role in the transport of rice anther cuticle and sporopollenin precursors. ABCG15 is highly expressed in the tapetum at the young microspore stage, and the abcg15 mutant exhibits small, white anthers lacking mature pollen, lipidic cuticle, orbicules and pollen exine. Gas chromatography-mass spectrometry (GC-MS) analysis of the abcg15 anther cuticle revealed significant reductions in a number of wax components and aliphatic cutin monomers. The expression level of genes involved in lipid metabolism in the abcg15 mutant was significantly different from their levels in the wild type, possibly due to perturbations in the homeostasis of anther lipid metabolism. Our study provides new insights for understanding the molecular mechanism of the formation of the anther cuticle, orbicules and pollen wall, as well as the machinery for lipid metabolism in rice anthers.
Collapse
Affiliation(s)
- Peng Qin
- Rice Research Institute of Sichuan Agricultural University, Chengdu Wenjiang, Sichuan, 611130, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Ma J, Wei H, Song M, Pang C, Liu J, Wang L, Zhang J, Fan S, Yu S. Transcriptome profiling analysis reveals that flavonoid and ascorbate-glutathione cycle are important during anther development in Upland cotton. PLoS One 2012; 7:e49244. [PMID: 23155472 PMCID: PMC3498337 DOI: 10.1371/journal.pone.0049244] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 10/04/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Previous transcriptome profiling studies have investigated the molecular mechanisms of pollen and anther development, and identified many genes involved in these processes. However, only 51 anther ESTs of Upland cotton (Gossypium hirsutum) were found in NCBI and there have been no reports of transcriptome profiling analyzing anther development in Upland cotton, a major fiber crop in the word. METHODOLOGY/PRINCIPAL FINDING Ninety-eight hundred and ninety-six high quality ESTs were sequenced from their 3'-ends and assembled into 6,643 unigenes from a normalized, full-length anther cDNA library of Upland cotton. Combined with previous sequenced anther-related ESTs, 12,244 unigenes were generated as the reference genes for digital gene expression (DGE) analysis. The DGE was conducted on anthers that were isolated at tetrad pollen (TTP), uninucleate pollen (UNP), binucleate pollen (BNP) and mature pollen (MTP) periods along with four other tissues, i.e., roots (RO), stems (ST), leaves (LV) and embryos (EB). Through transcriptome profiling analysis, we identified 1,165 genes that were enriched at certain anther development periods, and many of them were involved in starch and sucrose metabolism, pentose and glucuronate interconversion, flavonoid biosynthesis, and ascorbate and aldarate metabolism. CONCLUSIONS/SIGNIFICANCE We first generated a normalized, full-length cDNA library from anthers and performed transcriptome profiling analysis of anther development in Upland cotton. From these results, 10,178 anther expressed genes were identified, among which 1,165 genes were stage-enriched in anthers. And many of these stage-enriched genes were involved in some important processes regulating anther development.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Agronomy, Northwest A&F University, Yangling, Shanxi, People's Republic of China
- State Key Laboratory of Cotton Biology, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
| | - Ji Liu
- College of Agronomy, Northwest A&F University, Yangling, Shanxi, People's Republic of China
- State Key Laboratory of Cotton Biology, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
| | - Long Wang
- State Key Laboratory of Cotton Biology, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
| | - Jinfa Zhang
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
- * E-mail: (SF); (SY)
| | - Shuxun Yu
- College of Agronomy, Northwest A&F University, Yangling, Shanxi, People's Republic of China
- State Key Laboratory of Cotton Biology, The Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang, Henan, People's Republic of China
- * E-mail: (SF); (SY)
| |
Collapse
|
157
|
Dobritsa AA, Coerper D. The novel plant protein INAPERTURATE POLLEN1 marks distinct cellular domains and controls formation of apertures in the Arabidopsis pollen exine. THE PLANT CELL 2012; 24:4452-64. [PMID: 23136373 PMCID: PMC3531845 DOI: 10.1105/tpc.112.101220] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 10/03/2012] [Accepted: 10/17/2012] [Indexed: 05/20/2023]
Abstract
Pollen grains protect the sperm cells inside them with the help of the unique cell wall, the exine, which exhibits enormous morphological variation across plant taxa, assembling into intricate and diverse species-specific patterns. How this complex extracellular structure is faithfully deposited at precise sites and acquires precise shape within a species is not understood. Here, we describe the isolation and characterization of the novel Arabidopsis thaliana gene INAPERTURATE POLLEN1 (INP1), which is specifically involved in formation of the pollen surface apertures, which arise by restriction of exine deposition at specific sites. Loss of INP1 leads to the loss of all three apertures in Arabidopsis pollen, and INP1 protein exhibits a unique tripartite localization in developing pollen, indicative of its direct involvement in specification of aperture positions. We also show that aperture length appears to be sensitive to INP1 dosage and INP1 misexpression can affect global exine patterning. Phenotypes of some inp1 mutants indicate that Arabidopsis apertures are initiated at three nonrandom positions around the pollen equator. The identification of INP1 opens up new avenues for studies of how formation of distinct cellular domains results in the production of different extracellular morphologies.
Collapse
Affiliation(s)
- Anna A Dobritsa
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
158
|
Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. FRONTIERS IN PLANT SCIENCE 2012; 3:222. [PMID: 23060891 DOI: 10.3389/fpls.2012.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/11/2012] [Indexed: 05/23/2023]
Abstract
Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, basic helix-loop-helix (bHLH), and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, and pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds.
Collapse
Affiliation(s)
- María L Falcone Ferreyra
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario Rosario, Santa Fe, Argentina
| | | | | |
Collapse
|
159
|
Bernal M, Casero D, Singh V, Wilson GT, Grande A, Yang H, Dodani SC, Pellegrini M, Huijser P, Connolly EL, Merchant SS, Krämer U. Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5 and the copper dependence of iron homeostasis in Arabidopsis. THE PLANT CELL 2012; 24:738-61. [PMID: 22374396 PMCID: PMC3315244 DOI: 10.1105/tpc.111.090431] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 01/20/2012] [Accepted: 02/10/2012] [Indexed: 05/18/2023]
Abstract
The transition metal copper (Cu) is essential for all living organisms but is toxic when present in excess. To identify Cu deficiency responses comprehensively, we conducted genome-wide sequencing-based transcript profiling of Arabidopsis thaliana wild-type plants and of a mutant defective in the gene encoding SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), which acts as a transcriptional regulator of Cu deficiency responses. In response to Cu deficiency, FERRIC REDUCTASE OXIDASE5 (FRO5) and FRO4 transcript levels increased strongly, in an SPL7-dependent manner. Biochemical assays and confocal imaging of a Cu-specific fluorophore showed that high-affinity root Cu uptake requires prior FRO5/FRO4-dependent Cu(II)-specific reduction to Cu(I) and SPL7 function. Plant iron (Fe) deficiency markers were activated in Cu-deficient media, in which reduced growth of the spl7 mutant was partially rescued by Fe supplementation. Cultivation in Cu-deficient media caused a defect in root-to-shoot Fe translocation, which was exacerbated in spl7 and associated with a lack of ferroxidase activity. This is consistent with a possible role for a multicopper oxidase in Arabidopsis Fe homeostasis, as previously described in yeast, humans, and green algae. These insights into root Cu uptake and the interaction between Cu and Fe homeostasis will advance plant nutrition, crop breeding, and biogeochemical research.
Collapse
Affiliation(s)
- María Bernal
- Department of Plant Physiology, Ruhr University Bochum, D-44801 Bochum, Germany
| | - David Casero
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095-1606
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Vasantika Singh
- Department of Plant Physiology, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Grandon T. Wilson
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Arne Grande
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Huijun Yang
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Sheel C. Dodani
- Department of Chemistry and the Howard Hughes Medical Institute, University of California, Berkeley, California 94720-1460
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095-1606
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
| | - Peter Huijser
- Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany
| | - Erin L. Connolly
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina 29208
| | - Sabeeha S. Merchant
- Institute of Genomics and Proteomics, University of California, Los Angeles, California 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569
| | - Ute Krämer
- Department of Plant Physiology, Ruhr University Bochum, D-44801 Bochum, Germany
- Address correspondence to
| |
Collapse
|
160
|
Abstract
Plant type III polyketide synthases (PKSs) form a superfamily of biosynthetic enzymes involved in the production of a plethora of polyketide-derived natural products important for ecological adaptations and the fitness of land plants. Moreover, tremendous interest in bioengineering of type III PKSs to produce high-value compounds is increasing. Compared to type I and type II PKSs, which form either large modular protein complexes or dissociable molecular assemblies, type III PKSs exist as smaller homodimeric proteins, technically more amenable for detailed quantitative biochemical and phylogenetic analyses. In this chapter, we summarize a collection of approaches, including bioinformatics, genetics, protein crystallography, in vitro biochemistry, and mutagenesis, together affording a comprehensive interrogation of the structure-function-evolutionary relationships in the plant type III PKS family.
Collapse
|
161
|
Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. FRONTIERS IN PLANT SCIENCE 2012; 3:222. [PMID: 23060891 PMCID: PMC3460232 DOI: 10.3389/fpls.2012.00222] [Citation(s) in RCA: 814] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/11/2012] [Indexed: 05/18/2023]
Abstract
Flavonoids are widely distributed secondary metabolites with different metabolic functions in plants. The elucidation of the biosynthetic pathways, as well as their regulation by MYB, basic helix-loop-helix (bHLH), and WD40-type transcription factors, has allowed metabolic engineering of plants through the manipulation of the different final products with valuable applications. The present review describes the regulation of flavonoid biosynthesis, as well as the biological functions of flavonoids in plants, such as in defense against UV-B radiation and pathogen infection, nodulation, and pollen fertility. In addition, we discuss different strategies and achievements through the genetic engineering of flavonoid biosynthesis with implication in the industry and the combinatorial biosynthesis in microorganisms by the reconstruction of the pathway to obtain high amounts of specific compounds.
Collapse
Affiliation(s)
| | | | - Paula Casati
- *Correspondence: Paula Casati, Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina. e-mail:
| |
Collapse
|
162
|
Colpitts CC, Kim SS, Posehn SE, Jepson C, Kim SY, Wiedemann G, Reski R, Wee AGH, Douglas CJ, Suh DY. PpASCL, a moss ortholog of anther-specific chalcone synthase-like enzymes, is a hydroxyalkylpyrone synthase involved in an evolutionarily conserved sporopollenin biosynthesis pathway. THE NEW PHYTOLOGIST 2011; 192:855-868. [PMID: 21883237 DOI: 10.1111/j.1469-8137.2011.03858.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Sporopollenin is the main constituent of the exine layer of spore and pollen walls. Recently, several Arabidopsis genes, including polyketide synthase A (PKSA), which encodes an anther-specific chalcone synthase-like enzyme (ASCL), have been shown to be involved in sporopollenin biosynthesis. The genome of the moss Physcomitrella patens contains putative orthologs of the Arabidopsis sporopollenin biosynthesis genes. We analyzed available P.patens expressed sequence tag (EST) data for putative moss orthologs of the Arabidopsis genes of sporopollenin biosynthesis and studied the enzymatic properties and reaction mechanism of recombinant PpASCL, the P.patens ortholog of Arabidopsis PKSA. We also generated structure models of PpASCL and Arabidopsis PKSA to study their substrate specificity. Physcomitrella patens orthologs of Arabidopsis genes for sporopollenin biosynthesis were found to be expressed in the sporophyte generation. Similarly to Arabidopsis PKSA, PpASCL condenses hydroxy fatty acyl-CoA esters with malonyl-CoA and produces hydroxyalkyl α-pyrones that probably serve as building blocks of sporopollenin. The ASCL-specific set of Gly-Gly-Ala residues predicted by the models to be located at the floor of the putative active site is proposed to serve as the opening of an acyl-binding tunnel in ASCL. These results suggest that ASCL functions together with other sporophyte-specific enzymes to provide polyhydroxylated precursors of sporopollenin in a pathway common to land plants.
Collapse
Affiliation(s)
- Che C Colpitts
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sung Soo Kim
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sarah E Posehn
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Christina Jepson
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sun Young Kim
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Andrew G H Wee
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Carl J Douglas
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Dae-Yeon Suh
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
163
|
Comprehensive network analysis of anther-expressed genes in rice by the combination of 33 laser microdissection and 143 spatiotemporal microarrays. PLoS One 2011; 6:e26162. [PMID: 22046259 PMCID: PMC3202526 DOI: 10.1371/journal.pone.0026162] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 09/21/2011] [Indexed: 11/23/2022] Open
Abstract
Co-expression networks systematically constructed from large-scale transcriptome data reflect the interactions and functions of genes with similar expression patterns and are a powerful tool for the comprehensive understanding of biological events and mining of novel genes. In Arabidopsis (a model dicot plant), high-resolution co-expression networks have been constructed from very large microarray datasets and these are publicly available as online information resources. However, the available transcriptome data of rice (a model monocot plant) have been limited so far, making it difficult for rice researchers to achieve reliable co-expression analysis. In this study, we performed co-expression network analysis by using combined 44 K agilent microarray datasets of rice, which consisted of 33 laser microdissection (LM)-microarray datasets of anthers, and 143 spatiotemporal transcriptome datasets deposited in RicexPro. The entire data of the rice co-expression network, which was generated from the 176 microarray datasets by the Pearson correlation coefficient (PCC) method with the mutual rank (MR)-based cut-off, contained 24,258 genes and 60,441 genes pairs. Using these datasets, we constructed high-resolution co-expression subnetworks of two specific biological events in the anther, “meiosis” and “pollen wall synthesis”. The meiosis network contained many known or putative meiotic genes, including genes related to meiosis initiation and recombination. In the pollen wall synthesis network, several candidate genes involved in the sporopollenin biosynthesis pathway were efficiently identified. Hence, these two subnetworks are important demonstrations of the efficiency of co-expression network analysis in rice. Our co-expression analysis included the separated transcriptomes of pollen and tapetum cells in the anther, which are able to provide precise information on transcriptional regulation during male gametophyte development in rice. The co-expression network data presented here is a useful resource for rice researchers to elucidate important and complex biological events.
Collapse
|
164
|
Wallace S, Fleming A, Wellman CH, Beerling DJ. Evolutionary development of the plant and spore wall. AOB PLANTS 2011; 2011:plr027. [PMID: 22476497 PMCID: PMC3220415 DOI: 10.1093/aobpla/plr027] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 09/26/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND AND AIMS Many key innovations were required to enable plants to colonize terrestrial habitats successfully. One of these was the acquisition of a durable spore/pollen wall capable of withstanding the harsh desiccating and UV-B-rich environment encountered on land. The spores of 'lower' spore-bearing plants and the pollen of 'higher' seed plants are homologous. In recent years, researchers have begun to investigate the molecular genetics of pollen wall development in angiosperms (including the model organism Arabidopsis thaliana). However, research into the molecular genetics of spore wall development in more basal plants has thus far been extremely limited. This review summarizes the literature on spore/pollen wall development, including the molecular genetics associated with pollen wall development in angiosperms, in a preliminary attempt to identify possible candidate genes involved in spore wall development in more basal plants. PRESENCE IN MOSS OF GENES INVOLVED IN POLLEN WALL DEVELOPMENT Bioinformatic studies have suggested that genes implicated in pollen wall development in angiosperms are also present in moss and lycopsids, and may therefore be involved in spore wall development in basal plants. This suggests that the molecular genetics of spore/pollen development are highly conserved, despite the large morphological and functional differences between spores and pollen. FUTURE WORK The use of high-throughput sequencing strategies and/or microarray experiments at an appropriate stage of 'lower' land plant sporogenesis will allow the identification of candidate genes likely to be involved in the development of the spore wall by way of comparison with those genes known to be involved in pollen wall development. Additionally, by conducting gene knock-out and gene swap experiments between 'lower' land plant species, such as the moss model species Physcomitrella patens, and the angiosperm model species arabidopsis it will be possible to test the role of these candidate genes.
Collapse
Affiliation(s)
- Simon Wallace
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|
165
|
Chen W, Yu XH, Zhang K, Shi J, De Oliveira S, Schreiber L, Shanklin J, Zhang D. Male Sterile2 encodes a plastid-localized fatty acyl carrier protein reductase required for pollen exine development in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:842-53. [PMID: 21813653 PMCID: PMC3192575 DOI: 10.1104/pp.111.181693] [Citation(s) in RCA: 176] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 07/29/2011] [Indexed: 05/18/2023]
Abstract
Male Sterile2 (MS2) is predicted to encode a fatty acid reductase required for pollen wall development in Arabidopsis (Arabidopsis thaliana). Transient expression of MS2 in tobacco (Nicotiana benthamiana) leaves resulted in the accumulation of significant levels of C16 and C18 fatty alcohols. Expression of MS2 fused with green fluorescent protein revealed that an amino-terminal transit peptide targets the MS2 to plastids. The plastidial localization of MS2 is biologically important because genetic complementation of MS2 in ms2 homozygous plants was dependent on the presence of its amino-terminal transit peptide or that of the Rubisco small subunit protein amino-terminal transit peptide. In addition, two domains, NAD(P)H-binding domain and sterile domain, conserved in MS2 and its homologs were also shown to be essential for MS2 function in pollen exine development by genetic complementation testing. Direct biochemical analysis revealed that purified recombinant MS2 enzyme is able to convert palmitoyl-Acyl Carrier Protein to the corresponding C16:0 alcohol with NAD(P)H as the preferred electron donor. Using optimized reaction conditions (i.e. at pH 6.0 and 30°C), MS2 exhibits a K(m) for 16:0-Acyl Carrier Protein of 23.3 ± 4.0 μm, a V(max) of 38.3 ± 4.5 nmol mg⁻¹ min⁻¹, and a catalytic efficiency/K(m) of 1,873 M⁻¹ s⁻¹. Based on the high homology of MS2 to other characterized fatty acid reductases, it was surprising that MS2 showed no activity against palmitoyl- or other acyl-coenzyme A; however, this is consistent with its plastidial localization. In summary, genetic and biochemical evidence demonstrate an MS2-mediated conserved plastidial pathway for the production of fatty alcohols that are essential for pollen wall biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dabing Zhang
- Institute of Plant Science, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (W.C., K.Z., J. Shi, D.Z.); Department of Biology, Brookhaven National Laboratory, Upton, New York 11973 (X.-H.Y., J. Shanklin); Institute of Cellular and Molecular Botany, University of Bonn, D–53115 Bonn, Germany (S.D.O., L.S.)
| |
Collapse
|
166
|
Dobritsa AA, Geanconteri A, Shrestha J, Carlson A, Kooyers N, Coerper D, Urbanczyk-Wochniak E, Bench BJ, Sumner LW, Swanson R, Preuss D. A large-scale genetic screen in Arabidopsis to identify genes involved in pollen exine production. PLANT PHYSIOLOGY 2011; 157:947-70. [PMID: 21849515 PMCID: PMC3192556 DOI: 10.1104/pp.111.179523] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 08/15/2011] [Indexed: 05/17/2023]
Abstract
Exine, the outer plant pollen wall, has elaborate species-specific patterns, provides a protective barrier for male gametophytes, and serves as a mediator of strong and species-specific pollen-stigma adhesion. Exine is made of sporopollenin, a material remarkable for its strength, elasticity, and chemical durability. The chemical nature of sporopollenin, as well as the developmental mechanisms that govern its assembly into diverse patterns in different species, are poorly understood. Here, we describe a simple yet effective genetic screen in Arabidopsis (Arabidopsis thaliana) that was undertaken to advance our understanding of sporopollenin synthesis and exine assembly. This screen led to the recovery of mutants with a variety of defects in exine structure, including multiple mutants with novel phenotypes. Fifty-six mutants were selected for further characterization and are reported here. In 14 cases, we have mapped defects to specific genes, including four with previously demonstrated or suggested roles in exine development (MALE STERILITY2, CYP703A2, ANTHER-SPECIFIC PROTEIN6, TETRAKETIDE α-PYRONE REDUCTASE/DIHYDROFLAVONOL-4-REDUCTASE-LIKE1), and a number of genes that have not been implicated in exine production prior to this screen (among them, fatty acid ω-hydroxylase CYP704B1, putative glycosyl transferases At1g27600 and At1g33430, 4-coumarate-coenzyme A ligase 4CL3, polygalacturonase QUARTET3, novel gene At5g58100, and nucleotide-sugar transporter At5g65000). Our study illustrates that morphological screens of pollen can be extremely fruitful in identifying previously unknown exine genes and lays the foundation for biochemical, developmental, and evolutionary studies of exine production.
Collapse
Affiliation(s)
- Anna A Dobritsa
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Huang MD, Hsing YIC, Huang AHC. Transcriptomes of the anther sporophyte: availability and uses. PLANT & CELL PHYSIOLOGY 2011; 52:1459-66. [PMID: 21743085 PMCID: PMC3172567 DOI: 10.1093/pcp/pcr088] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/30/2011] [Indexed: 05/22/2023]
Abstract
An anther includes sporophytic tissues of three outer cell layers and an innermost layer, the tapetum, which encloses a locule where the gametophytic microspores mature to become pollen. The sporophytic tissues also comprise some vascular cells and specialized cells of the stomium aligning the long anther axis for anther dehiscence. Studies of the anther sporophytic cells, especially the tapetum, have recently expanded from the use of microscopy to molecular biology and transcriptomes. The available sequencing technologies, plus the use of laser microdissection and in silico subtraction, have produced high-quality anther sporophyte transcriptomes of rice, Arabidopsis and maize. These transcriptomes have been used for research discoveries and have potential for future discoveries in diverse areas, including developmental gene activity networking and changes in enzyme and metabolic domains, prediction of protein functions by quantity, secretion, antisense transcript regulation, small RNAs and promoters for generating male sterility. We anticipate that these studies with rice and other transcriptomes will expand to encompass other plants, whose genomes will be sequenced soon, with ever-advancing sequencing technologies. In comprehensive gene activity profiling of the anther sporophyte, studies involving transcriptomes will spearhead investigation of the downstream gene activity with proteomics and metabolomics.
Collapse
Affiliation(s)
- Ming-Der Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- *Corresponding authors: Ming-Der Huang; E-mail, ; Fax, +886-2-27827954. Anthony H. C. Huang; E-mail, ; Fax, +886-2-27827954
| | | | - Anthony H. C. Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- *Corresponding authors: Ming-Der Huang; E-mail, ; Fax, +886-2-27827954. Anthony H. C. Huang; E-mail, ; Fax, +886-2-27827954
| |
Collapse
|
168
|
Zhang D, Luo X, Zhu L. Cytological analysis and genetic control of rice anther development. J Genet Genomics 2011; 38:379-90. [PMID: 21930097 DOI: 10.1016/j.jgg.2011.08.001] [Citation(s) in RCA: 253] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 11/27/2022]
Abstract
Microsporogenesis and male gametogenesis are essential for the alternating life cycle of flowering plants between diploid sporophyte and haploid gametophyte generations. Rice (Oryza sativa) is the world's major staple food, and manipulation of pollen fertility is particularly important for the demands to increase rice grain yield. Towards a better understanding of the mechanisms controlling rice male reproductive development, we describe here the cytological changes of anther development through 14 stages, including cell division, differentiation and degeneration of somatic tissues consisting of four concentric cell layers surrounding and supporting reproductive cells as they form mature pollen grains through meiosis and mitosis. Furthermore, we compare the morphological difference of anthers and pollen grains in both monocot rice and eudicot Arabidopsis thaliana. Additionally, we describe the key genes identified to date critical for rice anther development and pollen formation.
Collapse
Affiliation(s)
- Dabing Zhang
- Institute of Plant Science, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | |
Collapse
|
169
|
Shi J, Tan H, Yu XH, Liu Y, Liang W, Ranathunge K, Franke RB, Schreiber L, Wang Y, Kai G, Shanklin J, Ma H, Zhang D. Defective pollen wall is required for anther and microspore development in rice and encodes a fatty acyl carrier protein reductase. THE PLANT CELL 2011; 23:2225-46. [PMID: 21705642 PMCID: PMC3160036 DOI: 10.1105/tpc.111.087528] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 05/19/2011] [Accepted: 06/06/2011] [Indexed: 05/18/2023]
Abstract
Aliphatic alcohols naturally exist in many organisms as important cellular components; however, their roles in extracellular polymer biosynthesis are poorly defined. We report here the isolation and characterization of a rice (Oryza sativa) male-sterile mutant, defective pollen wall (dpw), which displays defective anther development and degenerated pollen grains with an irregular exine. Chemical analysis revealed that dpw anthers had a dramatic reduction in cutin monomers and an altered composition of cuticular wax, as well as soluble fatty acids and alcohols. Using map-based cloning, we identified the DPW gene, which is expressed in both tapetal cells and microspores during anther development. Biochemical analysis of the recombinant DPW enzyme shows that it is a novel fatty acid reductase that produces 1-hexadecanol and exhibits >270-fold higher specificity for palmiltoyl-acyl carrier protein than for C16:0 CoA substrates. DPW was predominantly targeted to plastids mediated by its N-terminal transit peptide. Moreover, we demonstrate that the monocot DPW from rice complements the dicot Arabidopsis thaliana male sterile2 (ms2) mutant and is the probable ortholog of MS2. These data suggest that DPWs participate in a conserved step in primary fatty alcohol synthesis for anther cuticle and pollen sporopollenin biosynthesis in monocots and dicots.
Collapse
Affiliation(s)
- Jing Shi
- Institute of Plant Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life Science, Ning Xia University, Ning Xia 750021, China
| | - Hexin Tan
- Institute of Plant Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiao-Hong Yu
- Department of Biology, Brookhaven National Laboratory, Upton, New York 11973
| | - Yuanyun Liu
- Institute of Plant Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 201418, China
| | - Wanqi Liang
- Institute of Plant Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kosala Ranathunge
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Rochus Benni Franke
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Lukas Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany
| | - Yujiong Wang
- College of Life Science, Ning Xia University, Ning Xia 750021, China
| | - Guoying Kai
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 201418, China
| | - John Shanklin
- Department of Biology, Brookhaven National Laboratory, Upton, New York 11973
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16082
| | - Dabing Zhang
- Institute of Plant Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
170
|
Grienenberger E, Kim SS, Lallemand B, Geoffroy P, Heintz D, Souza CDA, Heitz T, Douglas CJ, Legrand M. Analysis of TETRAKETIDE α-PYRONE REDUCTASE function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. THE PLANT CELL 2010; 22:4067-83. [PMID: 21193572 PMCID: PMC3027178 DOI: 10.1105/tpc.110.080036] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The precise structure of the sporopollenin polymer that is the major constituent of exine, the outer pollen wall, remains poorly understood. Recently, characterization of Arabidopsis thaliana genes and corresponding enzymes involved in exine formation has demonstrated the role of fatty acid derivatives as precursors of sporopollenin building units. Fatty acyl-CoA esters synthesized by ACYL-COA SYNTHETASE5 (ACOS5) are condensed with malonyl-CoA by POLYKETIDE SYNTHASE A (PKSA) and PKSB to yield α-pyrone polyketides required for exine formation. Here, we show that two closely related genes encoding oxidoreductases are specifically and transiently expressed in tapetal cells during microspore development in Arabidopsis anthers. Mutants compromised in expression of the reductases displayed a range of pollen exine layer defects, depending on the mutant allele. Phylogenetic studies indicated that the two reductases belong to a large reductase/dehydrogenase gene family and cluster in two distinct clades with putative orthologs from several angiosperm lineages and the moss Physcomitrella patens. Recombinant proteins produced in bacteria reduced the carbonyl function of tetraketide α-pyrone compounds synthesized by PKSA/B, and the proteins were therefore named TETRAKETIDE α-PYRONE REDUCTASE1 (TKPR1) and TKPR2 (previously called DRL1 and CCRL6, respectively). TKPR activities, together with those of ACOS5 and PKSA/B, identify a conserved biosynthetic pathway leading to hydroxylated α-pyrone compounds that were previously unknown to be sporopollenin precursors.
Collapse
Affiliation(s)
- Etienne Grienenberger
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Sung Soo Kim
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Benjamin Lallemand
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Pierrette Geoffroy
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Dimitri Heintz
- Plate-Forme d’Analyses Métaboliques de l’Institut de Biologie Moléculaire des Plantes, Institut de Botanique, 67083 Strasbourg Cedex, France
| | - Clarice de Azevedo Souza
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
| | - Carl J. Douglas
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Michel Legrand
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France
- Address correspondence to
| |
Collapse
|