151
|
Wang H, Ouyang Q, Yang C, Zhang Z, Hou D, Liu H, Xu H. Mutation of OsPIN1b by CRISPR/Cas9 Reveals a Role for Auxin Transport in Modulating Rice Architecture and Root Gravitropism. Int J Mol Sci 2022; 23:ijms23168965. [PMID: 36012245 PMCID: PMC9409181 DOI: 10.3390/ijms23168965] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
The distribution and content of auxin within plant tissues affect a variety of important growth and developmental processes. Polar auxin transport (PAT), mainly mediated by auxin influx and efflux transporters, plays a vital role in determining auxin maxima and gradients in plants. The auxin efflux carrier PIN-FORMED (PIN) family is one of the major protein families involved in PAT. Rice (Oryza sativa L.) genome possesses 12 OsPIN genes. However, the detailed functions of OsPIN genes involved in regulating the rice architecture and gravity response are less well understood. In the present study, OsPIN1b was disrupted by CRISPR/Cas9 technology, and its roles in modulating rice architecture and root gravitropism were investigated. Tissue-specific analysis showed that OsPIN1b was mainly expressed in roots, stems and sheaths at the seedling stage, and the transcript abundance was progressively decreased during the seedling stages. Expression of OsPIN1b could be quickly and greatly induced by NAA, indicating that OsPIN1b played a vital role in PAT. IAA homeostasis was disturbed in ospin1b mutants, as evidenced by the changed sensitivity of shoot and root to NAA and NPA treatment, respectively. Mutation of OsPIN1b resulted in pleiotropic phenotypes, including decreased growth of shoots and primary roots, reduced adventitious root number in rice seedlings, as well as shorter and narrower leaves, increased leaf angle, more tiller number and decreased plant height and panicle length at the late developmental stage. Moreover, ospin1b mutants displayed a curly root phenotype cultured with tap water regardless of lighting conditions, while nutrient solution culture could partially rescue the curly root phenotype in light and almost completely abolish this phenotype in darkness, indicating the involvement of the integration of light and nutrient signals in root gravitropism regulation. Additionally, amyloplast sedimentation was impaired in the peripheral tiers of the ospin1b root cap columella cell, while it was not the main contributor to the abnormal root gravitropism. These data suggest that OsPIN1b not only plays a vital role in regulating rice architecture but also functions in regulating root gravitropism by the integration of light and nutrient signals.
Collapse
Affiliation(s)
- Huihui Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Qiqi Ouyang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Chong Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Zhuoyan Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Dianyun Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Hao Liu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Huawei Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| |
Collapse
|
152
|
Chemical inhibition of the auxin inactivation pathway uncovers the roles of metabolic turnover in auxin homeostasis. Proc Natl Acad Sci U S A 2022; 119:e2206869119. [PMID: 35914172 PMCID: PMC9371723 DOI: 10.1073/pnas.2206869119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The phytohormone auxin, indole-3-acetic acid (IAA), plays a prominent role in plant development. Auxin homeostasis is coordinately regulated by auxin synthesis, transport, and inactivation; however, the physiological contribution of auxin inactivation to auxin homeostasis has not been determined. The GH3 IAA-amino acid conjugating enzymes play a central role in auxin inactivation. Chemical inhibition of GH3 proteins in planta is challenging because the inhibition of these enzymes leads to IAA overaccumulation that rapidly induces GH3 expression. Here, we report the characterization of a potent GH3 inhibitor, kakeimide, that selectively targets IAA-conjugating GH3 proteins. Chemical knockdown of the auxin inactivation pathway demonstrates that auxin turnover is very rapid (about 10 min) and indicates that both auxin biosynthesis and inactivation dynamically regulate auxin homeostasis.
Collapse
|
153
|
Yang Z, Xia J, Hong J, Zhang C, Wei H, Ying W, Sun C, Sun L, Mao Y, Gao Y, Tan S, Friml J, Li D, Liu X, Sun L. Structural insights into auxin recognition and efflux by Arabidopsis PIN1. Nature 2022; 609:611-615. [PMID: 35917925 PMCID: PMC9477737 DOI: 10.1038/s41586-022-05143-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
Polar auxin transport is unique to plants and coordinates their growth and development1,2. The PIN-FORMED (PIN) auxin transporters exhibit highly asymmetrical localizations at the plasma membrane and drive polar auxin transport3,4; however, their structures and transport mechanisms remain largely unknown. Here, we report three inward-facing conformation structures of Arabidopsis thaliana PIN1: the apo state, bound to the natural auxin indole-3-acetic acid (IAA), and in complex with the polar auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). The transmembrane domain of PIN1 shares a conserved NhaA fold5. In the substrate-bound structure, IAA is coordinated by both hydrophobic stacking and hydrogen bonding. NPA competes with IAA for the same site at the intracellular pocket, but with a much higher affinity. These findings inform our understanding of the substrate recognition and transport mechanisms of PINs and set up a framework for future research on directional auxin transport, one of the most crucial processes underlying plant development. Structures of the Arabidopsis thaliana auxin exporter PIN1 in the apo state, bound to the natural auxin or bound to an inhibitor provide insights into the polar auxin transport mechanisms mediated by PIN family transporters.
Collapse
Affiliation(s)
- Zhisen Yang
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Xia
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jingjing Hong
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of CAS, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Chenxi Zhang
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hong Wei
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Ying
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chunqiao Sun
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lianghanxiao Sun
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanbo Mao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yongxiang Gao
- Cryo-EM Center, Core Facility Center for Life Sciences, University of Science and Technology of China, Hefei, China
| | - Shutang Tan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, Klosterneuburg, Austria
| | - Dianfan Li
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of CAS, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xin Liu
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| | - Linfeng Sun
- The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
154
|
Su N, Zhu A, Tao X, Ding ZJ, Chang S, Ye F, Zhang Y, Zhao C, Chen Q, Wang J, Zhou CY, Guo Y, Jiao S, Zhang S, Wen H, Ma L, Ye S, Zheng SJ, Yang F, Wu S, Guo J. Structures and mechanisms of the Arabidopsis auxin transporter PIN3. Nature 2022; 609:616-621. [PMID: 35917926 DOI: 10.1038/s41586-022-05142-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
The PIN-FORMED (PIN) protein family of auxin transporters mediates the polar auxin transport and plays crucial roles in plant growth and development1,2. Here we present cryo-EM structures of PIN3 from Arabidopsis thaliana (AtPIN3) in the apo state and in complex with its substrate indole-3-acetic acid (IAA) and the inhibitor N-1-naphthylphthalamic acid (NPA) at 2.6-3.0 Å resolution. AtPIN3 exists as a homodimer, with the transmembrane helices (TMs) 1, 2, and 7 in the scaffold domain involved in dimerization. The dimeric AtPIN3 forms a large, joint extracellular-facing cavity at the dimer interface while each subunit adopts an inward-facing conformation. The structural and functional analyses, along with computational studies, reveal the structural basis for the recognition of IAA and NPA and elucidate the molecular mechanism of NPA inhibition on the PIN-mediated auxin transport. The AtPIN3 structures support an elevator-like model for the transport of auxin, whereby the transport domains undergo up-down rigid-body motions and the dimerized scaffold domains remain static.
Collapse
Affiliation(s)
- Nannan Su
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Aiqin Zhu
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Tao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shenghai Chang
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Ye
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Zhang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhao
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qian Chen
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiangqin Wang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chen Yu Zhou
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Yirong Guo
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Shasha Jiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Sufen Zhang
- College of agriculture and biotechnology, Zhejiang University, Hangzhou, China
| | - Han Wen
- DP Technology, Beijing, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, China
| | - Shao Jian Zheng
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shan Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, China.
| | - Jiangtao Guo
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China. .,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China. .,Department of Cardiology, Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
155
|
Li Y, He Y, Liu Z, Qin T, Wang L, Chen Z, Zhang B, Zhang H, Li H, Liu L, Zhang J, Yuan W. OsSPL14 acts upstream of OsPIN1b and PILS6b to modulate axillary bud outgrowth by fine-tuning auxin transport in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1167-1182. [PMID: 35765202 DOI: 10.1111/tpj.15884] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
As a multigenic trait, rice tillering can optimize plant architecture for the maximum agronomic yield. SQUAMOSA PROMOTER BINDING PROTEIN-LIKE14 (OsSPL14) has been demonstrated to be necessary and sufficient to inhibit rice branching, but the underlying mechanism remains largely unclear. Here, we demonstrated that OsSPL14, which is cleaved by miR529 and miR156, inhibits tillering by fine-tuning auxin transport in rice. RNA interference of OsSPL14 or miR529 and miR156 overexpression significantly increased the tiller number, whereas OsSPL14 overexpression decreased the tiller number. Histological analysis revealed that the OsSPL14-overexpressing line had normal initiation of axillary buds but inhibited outgrowth of tillers. Moreover, OsSPL14 was found to be responsive to indole-acetic acid and 1-naphthylphthalamic acid, and RNA interference of OsSPL14 reduced polar auxin transport and increased 1-naphthylphthalamic acid sensitivity of rice plants. Further analysis revealed that OsSPL14 directly binds to the promoter of PIN-FORMED 1b (OsPIN1b) and PIN-LIKE6b (PILS6b) to regulate their expression positively. OsPIN1b and PILS6b were highly expressed in axillary buds and proved involved in bud outgrowth. Loss of function of OsPIN1b or PILS6b increased the tiller number of rice. Taken together, our findings suggested that OsSPL14 could control axillary bud outgrowth and tiller number by activating the expression of OsPIN1b and PILS6b to fine-tune auxin transport in rice.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Yizhou He
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Zhixin Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Tian Qin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Lei Wang
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhihui Chen
- Huazhong Agricultural University, Wuhan, 430070, China
| | - Biaoming Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Haitao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Haitao Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Li Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jian Zhang
- State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou, 311400, China
| | - Wenya Yuan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan, 430062, China
| |
Collapse
|
156
|
Ren H, Rao J, Tang M, Li Y, Dang X, Lin D. PP2A interacts with KATANIN to promote microtubule organization and conical cell morphogenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1514-1530. [PMID: 35587570 DOI: 10.1111/jipb.13281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
The organization of the microtubule cytoskeleton is critical for cell and organ morphogenesis. The evolutionarily conserved microtubule-severing enzyme KATANIN plays critical roles in microtubule organization in the plant and animal kingdoms. We previously used conical cell of Arabidopsis thaliana petals as a model system to investigate cortical microtubule organization and cell morphogenesis and determined that KATANIN promotes the formation of circumferential cortical microtubule arrays in conical cells. Here, we demonstrate that the conserved protein phosphatase PP2A interacts with and dephosphorylates KATANIN to promote the formation of circumferential cortical microtubule arrays in conical cells. KATANIN undergoes cycles of phosphorylation and dephosphorylation. Using co-immunoprecipitation coupled with mass spectrometry, we identified PP2A subunits as KATANIN-interacting proteins. Further biochemical studies showed that PP2A interacts with and dephosphorylates KATANIN to stabilize its cellular abundance. Similar to the katanin mutant, mutants for genes encoding PP2A subunits showed disordered cortical microtubule arrays and defective conical cell shape. Taken together, these findings identify PP2A as a regulator of conical cell shape and suggest that PP2A mediates KATANIN phospho-regulation during plant cell morphogenesis.
Collapse
Affiliation(s)
- Huibo Ren
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinqiu Rao
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Min Tang
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaxing Li
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xie Dang
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Deshu Lin
- Basic Forestry and Proteomic Research Center, Fujian Provincial Key Laboratory of Plant Functional Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Haixia Institute of Sciences and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
157
|
Cheng S, Wang Y. Subcellular trafficking and post-translational modification regulate PIN polarity in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:923293. [PMID: 35968084 PMCID: PMC9363823 DOI: 10.3389/fpls.2022.923293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Auxin regulates plant growth and tropism responses. As a phytohormone, auxin is transported between its synthesis sites and action sites. Most natural auxin moves between cells via a polar transport system that is mediated by PIN-FORMED (PIN) auxin exporters. The asymmetrically localized PINs usually determine the directionality of intercellular auxin flow. Different internal cues and external stimuli modulate PIN polar distribution and activity at multiple levels, including transcription, protein stability, subcellular trafficking, and post-translational modification, and thereby regulate auxin-distribution-dependent development. Thus, the different regulation levels of PIN polarity constitute a complex network. For example, the post-translational modification of PINs can affect the subcellular trafficking of PINs. In this review, we focus on subcellular trafficking and post-translational modification of PINs to summarize recent progress in understanding PIN polarity.
Collapse
Affiliation(s)
- Shuyang Cheng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Zhejiang Provincial Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou, China
| |
Collapse
|
158
|
Understanding the Role of PIN Auxin Carrier Genes under Biotic and Abiotic Stresses in Olea europaea L. BIOLOGY 2022; 11:biology11071040. [PMID: 36101418 PMCID: PMC9312197 DOI: 10.3390/biology11071040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/19/2022] [Accepted: 06/19/2022] [Indexed: 11/16/2022]
Abstract
The PIN-FORMED (PIN) proteins represent the most important polar auxin transporters in plants. Here, we characterized the PIN gene family in two olive genotypes, the Olea europaea subsp. europaea var. sylvestris and the var. europaea (cv. ‘Farga’). Twelve and 17 PIN genes were identified for vars. sylvestris and europaea, respectively, being distributed across 6 subfamilies. Genes encoding canonical OePINs consist of six exons, while genes encoding non-canonical OePINs are composed of five exons, with implications at protein specificities and functionality. A copia-LTR retrotransposon located in intron 4 of OePIN2b of var. europaea and the exaptation of partial sequences of that element as exons of the OePIN2b of var. sylvestris reveals such kind of event as a driving force in the olive PIN evolution. RNA-seq data showed that members from the subfamilies 1, 2, and 3 responded to abiotic and biotic stress factors. Co-expression of OePINs with genes involved in stress signaling and oxidative stress homeostasis were identified. This study highlights the importance of PIN genes on stress responses, contributing for a holistic understanding of the role of auxins in plants.
Collapse
|
159
|
Shen Y, Fan K, Wang Y, Wang H, Ding S, Song D, Shen J, Li H, Song Y, Han X, Qian W, Ma Q, Ding Z. Red and Blue Light Affect the Formation of Adventitious Roots of Tea Cuttings ( Camellia sinensis) by Regulating Hormone Synthesis and Signal Transduction Pathways of Mature Leaves. FRONTIERS IN PLANT SCIENCE 2022; 13:943662. [PMID: 35873958 PMCID: PMC9301306 DOI: 10.3389/fpls.2022.943662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Light is an important environmental factor which affects plant growth, through changes of intensity and quality. In this study, monochromatic white (control), red (660 nm), and blue (430 nm) light-emitting diodes (LEDs) were used to treat tea short cuttings. The results showed the most adventitious roots in blue light treated tea cuttings, but the lowest roots in that treated by red light. In order to explore the molecular mechanism of light quality affecting adventitious root formation, we performed full-length transcriptome and metabolome analyses of mature leaves under three light qualities, and then conducted weighted gene co-expression network analysis (WGCNA). Phytohormone analysis showed that Indole-3-carboxylic acid (ICA), Abscisic acid (ABA), ABA-glucosyl ester (ABA-GE), trans-Zeatin (tZ), and Jasmonic acid (JA) contents in mature leaves under blue light were significantly higher than those under white and red light. A crosstalk regulatory network comprising 23 co-expression modules was successfully constructed. Among them, the "MEblue" module which had a highly positive correlation with ICA (R = 0.92, P = 4e-04). KEGG analysis showed that related genes were significantly enriched in the "Plant hormone signal transduction (ko04075)" pathway. YUC (a flavin-containing monooxygenase), AUX1, AUX/IAA, and ARF were identified as hub genes, and gene expression analysis showed that the expression levels of these hub genes under blue light were higher than those under white and red light. In addition, we also identified 6 auxin transport-related genes, including PIN1, PIN3, PIN4, PILS5, PILS6, and PILS7. Except PILS5, all of these genes showed the highest expression level under blue light. In conclusion, this study elucidated the molecular mechanism of light quality regulating adventitious root formation of tea short cutting through WGCNA analysis, which provided an innovation for "rapid seedling" of tea plants.
Collapse
Affiliation(s)
- Yaozong Shen
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Kai Fan
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Hui Wang
- Rizhao Tea Research Institute, Rizhao, China
| | - Shibo Ding
- Rizhao Tea Research Institute, Rizhao, China
| | - Dapeng Song
- Rizhao Tea Research Institute, Rizhao, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Rizhao, China
| | - He Li
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Yujie Song
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Xiao Han
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Wenjun Qian
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
| | - Qingping Ma
- College of Agronomy, Liaocheng University, Liaocheng, China
| | - Zhaotang Ding
- Tea Research Institute, Qingdao Agricultural University, Qingdao, China
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Rizhao, China
| |
Collapse
|
160
|
Zhang F, Li C, Qu X, Liu J, Yu Z, Wang J, Zhu J, Yu Y, Ding Z. A feedback regulation between ARF7-mediated auxin signaling and auxin homeostasis involving MES17 affects plant gravitropism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1339-1351. [PMID: 35475598 DOI: 10.1111/jipb.13268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Gravitropism is an essential adaptive response of land plants. Asymmetric auxin gradients across plant organs, interpreted by multiple auxin signaling components including AUXIN RESPONSE FACTOR7 (ARF7), trigger differential growth and bending response. However, how this fundamental process is strictly maintained in nature remains unclear. Here, we report that gravity stimulates the transcription of METHYL ESTERASE17 (MES17) along the lower side of the hypocotyl via ARF7-dependent auxin signaling. The asymmetric distribution of MES17, a methyltransferase that converts auxin from its inactive form methyl indole-3-acetic acid ester (MeIAA) to its biologically active form free-IAA, enhanced the gradient of active auxin across the hypocotyl, which in turn reversely amplified the asymmetric auxin responses and differential growth that shape gravitropic bending. Taken together, our findings reveal the novel role of MES17-mediated auxin homeostasis in gravitropic responses and identify an ARF7-triggered feedback mechanism that reinforces the asymmetric distribution of active auxin and strictly controls gravitropism in plants.
Collapse
Affiliation(s)
- Feng Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Cuiling Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xingzhen Qu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jiajia Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zipeng Yu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Junxia Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jiayong Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yongqiang Yu
- Horticulture Biology and Metabolomics Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
161
|
Feraru E, Feraru MI, Moulinier-Anzola J, Schwihla M, Ferreira Da Silva Santos J, Sun L, Waidmann S, Korbei B, Kleine-Vehn J. PILS proteins provide a homeostatic feedback on auxin signaling output. Development 2022; 149:275949. [PMID: 35819066 PMCID: PMC9340555 DOI: 10.1242/dev.200929] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
Abstract
Multiple internal and external signals modulate the metabolism, intercellular transport and signaling of the phytohormone auxin. Considering this complexity, it remains largely unknown how plant cells monitor and ensure the homeostasis of auxin responses. PIN-LIKES (PILS) intracellular auxin transport facilitators at the endoplasmic reticulum are suitable candidates to buffer cellular auxin responses because they limit nuclear abundance and signaling of auxin. We used forward genetics to identify gloomy and shiny pils (gasp) mutants that define the PILS6 protein abundance in a post-translational manner. Here, we show that GASP1 encodes an uncharacterized RING/U-box superfamily protein that impacts on auxin signaling output. The low auxin signaling in gasp1 mutants correlates with reduced abundance of PILS5 and PILS6 proteins. Mechanistically, we show that high and low auxin conditions increase and reduce PILS6 protein levels, respectively. Accordingly, non-optimum auxin concentrations are buffered by alterations in PILS6 abundance, consequently leading to homeostatic auxin output regulation. We envision that this feedback mechanism provides robustness to auxin-dependent plant development. Summary: Auxin exerts a posttranslational feedback regulation on the PILS proteins, contributing to cellular auxin homeostasis and providing robustness to plant growth and development.
Collapse
Affiliation(s)
- Elena Feraru
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
| | - Mugurel I. Feraru
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
| | - Jeanette Moulinier-Anzola
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
| | - Maximilian Schwihla
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
| | - Jonathan Ferreira Da Silva Santos
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Freiburg 2 Faculty of Biology, Department of Molecular Plant Physiology (MoPP) , , 79104 Freiburg , Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg 3 , 79104 Freiburg , Germany
| | - Lin Sun
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
| | - Sascha Waidmann
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Freiburg 2 Faculty of Biology, Department of Molecular Plant Physiology (MoPP) , , 79104 Freiburg , Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg 3 , 79104 Freiburg , Germany
| | - Barbara Korbei
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
| | - Jürgen Kleine-Vehn
- Institute of Molecular Plant Biology (IMPB) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Natural Resources and Life Sciences, Vienna (BOKU) 1 , Department of Applied Genetics and Cell Biology , , Muthgasse 18, 1190 Vienna , Austria
- University of Freiburg 2 Faculty of Biology, Department of Molecular Plant Physiology (MoPP) , , 79104 Freiburg , Germany
- Center for Integrative Biological Signalling Studies (CIBSS), University of Freiburg 3 , 79104 Freiburg , Germany
| |
Collapse
|
162
|
Hamon‐Josse M, Villaécija‐Aguilar JA, Ljung K, Leyser O, Gutjahr C, Bennett T. KAI2 regulates seedling development by mediating light-induced remodelling of auxin transport. THE NEW PHYTOLOGIST 2022; 235:126-140. [PMID: 35313031 PMCID: PMC9320994 DOI: 10.1111/nph.18110] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/05/2022] [Indexed: 05/13/2023]
Abstract
Photomorphogenic remodelling of seedling growth is a key developmental transition in the plant life cycle. The α/β-hydrolase signalling protein KARRIKIN-INSENSITIVE2 (KAI2), a close homologue of the strigolactone receptor DWARF14 (D14), is involved in this process, but it is unclear how the effects of KAI2 on development are mediated. Here, using a combination of physiological, pharmacological, genetic and imaging approaches in Arabidopsis thaliana (Heynh.) we show that kai2 phenotypes arise because of a failure to downregulate auxin transport from the seedling shoot apex towards the root system, rather than a failure to respond to light per se. We demonstrate that KAI2 controls the light-induced remodelling of the PIN-mediated auxin transport system in seedlings, promoting a reduction in PIN7 abundance in older tissues, and an increase of PIN1/PIN2 abundance in the root meristem. We show that removing PIN3, PIN4 and PIN7 from kai2 mutants, or pharmacological inhibition of auxin transport and synthesis, is sufficient to suppress most kai2 seedling phenotypes. We conclude that KAI2 regulates seedling morphogenesis by its effects on the auxin transport system. We propose that KAI2 is not required for the light-mediated changes in PIN gene expression but is required for the appropriate changes in PIN protein abundance within cells.
Collapse
Affiliation(s)
- Maxime Hamon‐Josse
- School of BiologyFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | | | - Karin Ljung
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science CentreSwedish University of Agricultural SciencesSE‐901 83UmeåSweden
| | - Ottoline Leyser
- Sainsbury Laboratory Cambridge UniversityBateman StreetCambridgeCB2 1LRUK
| | - Caroline Gutjahr
- Plant GeneticsTUM School of Life SciencesTechnical University of Munich (TUM)Emil Ramann Str. 485354FreisingGermany
- GeneticsFaculty of BiologyLMU MunichGrosshaderner St. 482152MartinsriedGermany
| | - Tom Bennett
- School of BiologyFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
- Sainsbury Laboratory Cambridge UniversityBateman StreetCambridgeCB2 1LRUK
| |
Collapse
|
163
|
Liu T, Liu Q, Yu Z, Wang C, Mai H, Liu G, Li R, Pang G, Chen D, Liu H, Yang J, Tao LZ. eIF4E1 Regulates Arabidopsis Embryo Development and Root Growth by Interacting With RopGEF7. FRONTIERS IN PLANT SCIENCE 2022; 13:938476. [PMID: 35845661 PMCID: PMC9280432 DOI: 10.3389/fpls.2022.938476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Eukaryotic translation initiation factor 4E1 (eIF4E1) is required for the initiation of protein synthesis. The biological function of eIF4E1 in plant-potyvirus interactions has been extensively studied. However, the role of eIF4E1 in Arabidopsis development remains unclear. In this study, we show that eIF4E1 is highly expressed in the embryo and root apical meristem. In addition, eIF4E1 expression is induced by auxin. eIF4E1 mutants show embryonic cell division defects and short primary roots, a result of reduced cell divisions. Furthermore, our results show that mutation in eIF4E1 severely reduces the accumulation of PIN-FORMED (PIN) proteins and decreases auxin-responsive gene expression at the root tip. Yeast two-hybrid assays identified that eIF4E1 interacts with an RAC/ROP GTPase activator, RopGEF7, which has been previously reported to be involved in the maintenance of the root apical meristem. The interaction between eIF4E1 and RopGEF7 is confirmed by protein pull-down and bimolecular fluorescent complementation assays in plant cells. Taken together, our results demonstrated that eIF4E1 is important for auxin-regulated embryo development and root growth. The eIF4E1-RopGEF7 interaction suggests that eIF4E1 may act through ROP signaling to regulate auxin transport, thus regulating auxin-dependent patterning.
Collapse
Affiliation(s)
- Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qianyu Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhen Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Chunling Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Huafu Mai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Guolan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ruijing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Gang Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Dingwu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Huili Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiangyi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences and Technology, Guangxi University, Nanning, China
| | - Li-Zhen Tao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
164
|
Retzer K, Moulinier-Anzola J, Lugsteiner R, Konstantinova N, Schwihla M, Korbei B, Luschnig C. Endosomally Localized RGLG-Type E3 RING-Finger Ligases Modulate Sorting of Ubiquitylation-Mimic PIN2. Int J Mol Sci 2022; 23:6767. [PMID: 35743207 PMCID: PMC9224344 DOI: 10.3390/ijms23126767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022] Open
Abstract
Intracellular sorting and the abundance of sessile plant plasma membrane proteins are imperative for sensing and responding to environmental inputs. A key determinant for inducing adjustments in protein localization and hence functionality is their reversible covalent modification by the small protein modifier ubiquitin, which is for example responsible for guiding proteins from the plasma membrane to endosomal compartments. This mode of membrane protein sorting control requires the catalytic activity of E3 ubiquitin ligases, amongst which members of the RING DOMAIN LIGASE (RGLG) family have been implicated in the formation of lysine 63-linked polyubiquitin chains, serving as a prime signal for endocytic vacuolar cargo sorting. Nevertheless, except from some indirect implications for such RGLG activity, no further evidence for their role in plasma membrane protein sorting has been provided so far. Here, by employing RGLG1 reporter proteins combined with assessment of plasma membrane protein localization in a rglg1 rglg2 loss-of-function mutant, we demonstrate a role for RGLGs in cargo trafficking between plasma membrane and endosomal compartments. Specifically, our findings unveil a requirement for RGLG1 association with endosomal sorting compartments for fundamental aspects of plant morphogenesis, underlining a vital importance for ubiquitylation-controlled intracellular sorting processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Barbara Korbei
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (K.R.); (J.M.-A.); (R.L.); (N.K.); (M.S.)
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria; (K.R.); (J.M.-A.); (R.L.); (N.K.); (M.S.)
| |
Collapse
|
165
|
Bilanovičová V, Rýdza N, Koczka L, Hess M, Feraru E, Friml J, Nodzyński T. The Hydrophilic Loop of Arabidopsis PIN1 Auxin Efflux Carrier Harbors Hallmarks of an Intrinsically Disordered Protein. Int J Mol Sci 2022; 23:6352. [PMID: 35683031 PMCID: PMC9181416 DOI: 10.3390/ijms23116352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
Much of plant development depends on cell-to-cell redistribution of the plant hormone auxin, which is facilitated by the plasma membrane (PM) localized PIN FORMED (PIN) proteins. Auxin export activity, developmental roles, subcellular trafficking, and polarity of PINs have been well studied, but their structure remains elusive besides a rough outline that they contain two groups of 5 alpha-helices connected by a large hydrophilic loop (HL). Here, we focus on the PIN1 HL as we could produce it in sufficient quantities for biochemical investigations to provide insights into its secondary structure. Circular dichroism (CD) studies revealed its nature as an intrinsically disordered protein (IDP), manifested by the increase of structure content upon thermal melting. Consistent with IDPs serving as interaction platforms, PIN1 loops homodimerize. PIN1 HL cytoplasmic overexpression in Arabidopsis disrupts early endocytic trafficking of PIN1 and PIN2 and causes defects in the cotyledon vasculature formation. In summary, we demonstrate that PIN1 HL has an intrinsically disordered nature, which must be considered to gain further structural insights. Some secondary structures may form transiently during pairing with known and yet-to-be-discovered interactors.
Collapse
Affiliation(s)
- Veronika Bilanovičová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (V.B.); (N.R.); (L.K.); (M.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Nikola Rýdza
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (V.B.); (N.R.); (L.K.); (M.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Lilla Koczka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (V.B.); (N.R.); (L.K.); (M.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Martin Hess
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (V.B.); (N.R.); (L.K.); (M.H.)
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Elena Feraru
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; (E.F.); (J.F.)
- VIB-UGent Center for Plant Systems, Technologiepark 71, 9052 Ghent, Belgium
- Department of Applied Genetics and Cell Biology (DAGZ), Institute of Molecular Plant Biology (IMPB), University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, 1190 Vienna, Austria
| | - Jiří Friml
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; (E.F.); (J.F.)
- VIB-UGent Center for Plant Systems, Technologiepark 71, 9052 Ghent, Belgium
- Institute of Science and Technology (IST), 3400 Klosterneuburg, Austria
| | - Tomasz Nodzyński
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (V.B.); (N.R.); (L.K.); (M.H.)
| |
Collapse
|
166
|
Forgione I, Muto A, Woloszynska M, Chiappetta AA, Ferrari M, Van Lijsebettens M, Bitonti MB, Bruno L. Epigenetic mechanisms affect the curled leaf phenotype in the hypomethylated ddc mutant of Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 319:111254. [PMID: 35487663 DOI: 10.1016/j.plantsci.2022.111254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/02/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The ddc mutant of Arabidopsis thaliana is characterized by pleiotropic phenotypic alterations including a curl-shaped leaf, previously explained by disturbed auxin metabolism and transport. The present study was aimed at further explore the molecular bases underlying the abnormal phenotype of the ddc leaf. We demonstrated that genes specifically related to leaf fate commitment and morphogenesis were misexpressed on developing ddc leaves, such as upregulation of CURLY LEAF (CLF) and downregulation of ASYMMETRIC LEAVES2 (AS2), KNOTTED-like gene from A. thaliana (KNAT6), TEOSINTE-LIKE1 CYCLOIDEA and PROLIFERATING CELL FACTOR 2 (TCP2) and others. The CLF gene, encoding a component of Polycomb repressive complex 2 (PRC2) which adds trimethylation marks at Lys27 of histone H3, was overexpressed in the ddc mutant and concomitantly was correlated with DNA methylation-dependent repression of its negative regulator UCL1. KNAT6, encoding a class 1 KNOX homeotic gene, had increased H3K27me3 trimethylation levels, suggesting it is a target gene of the CLF containing PRC2 complex in the ddc mutant. We postulate that different epigenetic mechanisms modulate expression of genes related to auxin pathways as well as gene targets of Polycomb repressive action, during leaf morphogenesis.
Collapse
Affiliation(s)
- Ivano Forgione
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Antonella Muto
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Magdalena Woloszynska
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Genetics, Faculty of Biology and Animal Sciences, Wroclaw University of Environmental and Life Sciences, ul. Kozuchowska 7, 51-631 Wroclaw, Poland.
| | - Adriana Ada Chiappetta
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Michele Ferrari
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Mieke Van Lijsebettens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Maria Beatrice Bitonti
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Science, University of Calabria, Ponte P. Bucci, Arcavacata di Rende, 87036 Cosenza, Italy.
| |
Collapse
|
167
|
Abstract
Auxin has always been at the forefront of research in plant physiology and development. Since the earliest contemplations by Julius von Sachs and Charles Darwin, more than a century-long struggle has been waged to understand its function. This largely reflects the failures, successes, and inevitable progress in the entire field of plant signaling and development. Here I present 14 stations on our long and sometimes mystical journey to understand auxin. These highlights were selected to give a flavor of the field and to show the scope and limits of our current knowledge. A special focus is put on features that make auxin unique among phytohormones, such as its dynamic, directional transport network, which integrates external and internal signals, including self-organizing feedback. Accented are persistent mysteries and controversies. The unexpected discoveries related to rapid auxin responses and growth regulation recently disturbed our contentment regarding understanding of the auxin signaling mechanism. These new revelations, along with advances in technology, usher us into a new, exciting era in auxin research.
Collapse
Affiliation(s)
- Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
168
|
Mellor NL, Voß U, Ware A, Janes G, Barrack D, Bishopp A, Bennett MJ, Geisler M, Wells DM, Band LR. Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux. THE PLANT CELL 2022; 34:2309-2327. [PMID: 35302640 PMCID: PMC9134068 DOI: 10.1093/plcell/koac086] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/10/2022] [Indexed: 05/11/2023]
Abstract
Members of the B family of membrane-bound ATP-binding cassette (ABC) transporters represent key components of the auxin efflux machinery in plants. Over the last two decades, experimental studies have shown that modifying ATP-binding cassette sub-family B (ABCB) expression affects auxin distribution and plant phenotypes. However, precisely how ABCB proteins transport auxin in conjunction with the more widely studied family of PIN-formed (PIN) auxin efflux transporters is unclear, and studies using heterologous systems have produced conflicting results. Here, we integrate ABCB localization data into a multicellular model of auxin transport in the Arabidopsis thaliana root tip to predict how ABCB-mediated auxin transport impacts organ-scale auxin distribution. We use our model to test five potential ABCB-PIN regulatory interactions, simulating the auxin dynamics for each interaction and quantitatively comparing the predictions with experimental images of the DII-VENUS auxin reporter in wild-type and abcb single and double loss-of-function mutants. Only specific ABCB-PIN regulatory interactions result in predictions that recreate the experimentally observed DII-VENUS distributions and long-distance auxin transport. Our results suggest that ABCBs enable auxin efflux independently of PINs; however, PIN-mediated auxin efflux is predominantly through a co-dependent efflux where co-localized with ABCBs.
Collapse
Affiliation(s)
| | | | - Alexander Ware
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - George Janes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Duncan Barrack
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Anthony Bishopp
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Malcolm J Bennett
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Darren M Wells
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | | |
Collapse
|
169
|
Kim MY, Lee KH. Electrochemical Sensors for Sustainable Precision Agriculture—A Review. Front Chem 2022; 10:848320. [PMID: 35615311 PMCID: PMC9124781 DOI: 10.3389/fchem.2022.848320] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Greenhouse gases released by agriculture account for 19% of global greenhouse gas emission. Moreover, the abuse of pesticides and fertilizers is a fundamental cause of soil and water pollution. Finding sustainable countermeasures for these problems requires completely new approaches and the integration of knowledge. Precision agriculture (PA) is a technology that reduces environmental pollution with minimal input (e.g., fertilizer, herbicides, and pesticides) and maximize the production of high-quality crops by monitoring the conditions and environment of farmland and crops. However, the lack of data—a key technology for realizing PA—remains a major obstacle to the large-scale adoption of PA. Herein, we discuss important research issues, such as data managements and analysis for accurate decision-making, and specific data acquisition strategies. Moreover, we systematically review and discuss electrochemical sensors, including sensors that monitor the plant, soil, and environmental conditions that directly affect plant growth.
Collapse
Affiliation(s)
- Min-Yeong Kim
- Department of Electrochemistry, Korea Institute of Materials Science (KIMS), Changwon, South Korea
| | - Kyu Hwan Lee
- Department of Electrochemistry, Korea Institute of Materials Science (KIMS), Changwon, South Korea
- Advanced Materials Engineering, Korea University of Science and Technology, Changwon, South Korea
- *Correspondence: Kyu Hwan Lee,
| |
Collapse
|
170
|
Zhang Q, Deng A, Xiang M, Lan Q, Li X, Yuan S, Gou X, Hao S, Du J, Xiao C. The Root Hair Development of Pectin Polygalacturonase PGX2 Activation Tagging Line in Response to Phosphate Deficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:862171. [PMID: 35586221 PMCID: PMC9108675 DOI: 10.3389/fpls.2022.862171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Pectin, cellulose, and hemicellulose constitute the primary cell wall in eudicots and function in multiple developmental processes in plants. Root hairs are outgrowths of specialized epidermal cells that absorb water and nutrients from the soil. Cell wall architecture influences root hair development, but how cell wall remodeling might enable enhanced root hair formation in response to phosphate (P) deficiency remains relatively unclear. Here, we found that POLYGALACTURONASE INVOLVED IN EXPANSION 2 (PGX2) functions in conditional root hair development. Under low P conditions, a PGX2 activation tagged line (PGX2AT ) displays bubble-like root hairs and abnormal callose deposition and superoxide accumulation in roots. We found that the polar localization and trafficking of PIN2 are altered in PGX2AT roots in response to P deficiency. We also found that actin filaments were less compact but more stable in PGX2AT root hair cells and that actin filament skewness in PGX2AT root hairs was recovered by treatment with 1-N-naphthylphthalamic acid (NPA), an auxin transport inhibitor. These results demonstrate that activation tagging of PGX2 affects cell wall remodeling, auxin signaling, and actin microfilament orientation, which may cooperatively regulate root hair development in response to P starvation.
Collapse
|
171
|
Identification, Phylogenetic and Expression Analyses of the AAAP Gene Family in Liriodendron chinense Reveal Their Putative Functions in Response to Organ and Multiple Abiotic Stresses. Int J Mol Sci 2022; 23:ijms23094765. [PMID: 35563155 PMCID: PMC9100865 DOI: 10.3390/ijms23094765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, 52 AAAP genes were identified in the L. chinense genome and divided into eight subgroups based on phylogenetic relationships, gene structure, and conserved motif. A total of 48 LcAAAP genes were located on the 14 chromosomes, and the remaining four genes were mapped in the contigs. Multispecies phylogenetic tree and codon usage bias analysis show that the LcAAAP gene family is closer to the AAAP of Amborella trichopoda, indicating that the LcAAAP gene family is relatively primitive in angiosperms. Gene duplication events revealed six pairs of segmental duplications and one pair of tandem duplications, in which many paralogous genes diverged in function before monocotyledonous and dicotyledonous plants differentiation and were strongly purification selected. Gene expression pattern analysis showed that the LcAAAP gene plays a certain role in the development of Liriodendron nectary and somatic embryogenesis. Low temperature, drought, and heat stresses may activate some WRKY/MYB transcription factors to positively regulate the expression of LcAAAP genes to achieve long-distance transport of amino acids in plants to resist the unfavorable external environment. In addition, the GAT and PorT subgroups could involve gamma-aminobutyric acid (GABA) transport under aluminum poisoning. These findings could lay a solid foundation for further study of the biological role of LcAAAP and improvement of the stress resistance of Liriodendron.
Collapse
|
172
|
Yin Y, Li J, Guo B, Li L, Ma G, Wu K, Yang F, Zhu G, Fang L, Zeng S. Exogenous GA 3 promotes flowering in Paphiopedilum callosum (Orchidaceae) through bolting and lateral flower development regulation. HORTICULTURE RESEARCH 2022; 9:uhac091. [PMID: 35795390 PMCID: PMC9249578 DOI: 10.1093/hr/uhac091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/05/2022] [Indexed: 05/30/2023]
Abstract
Paphiopedilum orchids have a high ornamental value, and their flower abundance and timing are both key horticultural traits regulated by phytohormones. All one-flowered Paphiopedilum have additional lateral buds in the apical bract that fail to develop. In this study, an exogenous gibberellin (GA3) application promoted flowering of Pathiopedilum callosum by inducing its early bolting instead of the floral transition of dominant flowers. Applying GA3 effectively promoted lateral flower differentiation, resulting in a two-flowered inflorescence. GA-promoted lateral flower formation involved GA interacting with indole-3-acetic acid (IAA) and cytokinins (CTKs), given the decreased CTK content and downregulated expression of CTK synthesis genes, the increased IAA content and downregulated expression of IAA degradation, and the upregulated expression of transport genes. Further, GA acted via PcDELLA, PcTCP15, and PcXTH9 expressed in stage 5 to promote bolting, and via expression of PcAP3, PcPI, and PcSEP to promote flowering. This study provides insight into mechanisms regulating flower development of P. callosum.
Collapse
Affiliation(s)
- Yuying Yin
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Beiyi Guo
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Guohua Ma
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Kunlin Wu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | | | | |
Collapse
|
173
|
Wang R, Himschoot E, Grenzi M, Chen J, Safi A, Krebs M, Schumacher K, Nowack MK, Van Damme D, De Smet I, Geelen D, Beeckman T, Friml J, Costa A, Vanneste S. Auxin analog-induced Ca2+ signaling is independent of inhibition of endosomal aggregation in Arabidopsis roots. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2308-2319. [PMID: 35085386 PMCID: PMC7612644 DOI: 10.1093/jxb/erac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Much of what we know about the role of auxin in plant development derives from exogenous manipulations of auxin distribution and signaling, using inhibitors, auxins, and auxin analogs. In this context, synthetic auxin analogs, such as 1-naphthalene acetic acid (1-NAA), are often favored over the endogenous auxin, indole-3-acetic acid (IAA), in part due to their higher stability. While such auxin analogs have proven instrumental in revealing the various faces of auxin, they display in some cases bioactivities distinct from IAA. Here, we focused on the effect of auxin analogs on the accumulation of PIN proteins in brefeldin A-sensitive endosomal aggregations (BFA bodies), and correlation with the ability to elicit Ca2+ responses. For a set of commonly used auxin analogs, we evaluated if auxin analog-induced Ca2+ signaling inhibits PIN accumulation. Not all auxin analogs elicited a Ca2+ response, and their differential ability to elicit Ca2+ responses correlated partially with their ability to inhibit BFA-body formation. However, in tir1/afb and cngc14, 1-NAA-induced Ca2+ signaling was strongly impaired, yet 1-NAA still could inhibit PIN accumulation in BFA bodies. This demonstrates that TIR1/AFB-CNGC14-dependent Ca2+ signaling does not inhibit BFA body formation in Arabidopsis roots.
Collapse
Affiliation(s)
- Ren Wang
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ellie Himschoot
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Matteo Grenzi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Jian Chen
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Alaeddine Safi
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Melanie Krebs
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Karin Schumacher
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Moritz K. Nowack
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Daniёl Van Damme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ive De Smet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Danny Geelen
- Ghent University, Department of Plants and Crops, 9000 Ghent, Belgium
| | - Tom Beeckman
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Jiří Friml
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), 20133 Milano, Italy
| | - Steffen Vanneste
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium
- Ghent University, Department of Plants and Crops, 9000 Ghent, Belgium
- Lab of Plant Growth Analysis, Ghent University Global Campus, Incheon 21985, Republic of Korea
| |
Collapse
|
174
|
PIN3 from Liriodendron May Function in Inflorescence Development and Root Elongation. FORESTS 2022. [DOI: 10.3390/f13040568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Auxin, the first discovered phytohormone, is important for the growth and development of plants through the establishment of homeostasis and asymmetry. Here, we cloned the auxin transporter gene PIN-FORMED3 (PIN3) from the valuable timber tree hybrid Liriodendron (Liriodendron chinense × Liriodendron tulipifera). The gene contained a complete open reading frame of 1917 bp that encoded 638 amino acids. Phylogenetic analysis indicated that LhPIN3 exhibited the highest sequence similarity to the PIN3 of Vitis vinifera. Quantitative real-time PCR analysis showed that LhPIN3 was broadly expressed across different tissues/organs of Liriodendron, with the highest expression level in the roots. Heterologous overexpression of LhPIN3 in Arabidopsis thaliana caused considerable phenotypic changes, such as the root length and number of flowers. Genetic complementation of Arabidopsis pin1 mutants by LhPIN3, driven by the cauliflower mosaic virus 35S promoter, fully restored the root length and number of flowers of the pin1 mutant. Overall, our findings reveal that LhPIN3 has similar capacities to regulate the root length and number of flowers of Arabidopsis with AtPIN1.
Collapse
|
175
|
Tissue specificity and responses to abiotic stresses and hormones of PIN genes in rice. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01031-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
176
|
Zou Y, Zhang Y, Testerink C. Root dynamic growth strategies in response to salinity. PLANT, CELL & ENVIRONMENT 2022; 45:695-704. [PMID: 34716934 PMCID: PMC9298695 DOI: 10.1111/pce.14205] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 10/09/2021] [Indexed: 05/25/2023]
Abstract
Increasing soil salinization largely impacts crop yield worldwide. To deal with salinity stress, plants exhibit an array of responses, including root system architecture remodelling. Here, we review recent progress in physiological, developmental and cellular mechanisms of root growth responses to salinity. Most recent research in modulation of root branching, root tropisms, as well as in root cell wall modifications under salinity stress, is discussed in the context of the contribution of these responses to overall plant performance. We highlight the power of natural variation approaches revealing novel potential pathways responsible for differences in root salt stress responses. Together, these new findings promote our understanding of how salt shapes the root phenotype, which may provide potential avenues for engineering crops with better yield and survival in saline soils.
Collapse
Affiliation(s)
- Yutao Zou
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| | - Yanxia Zhang
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences GroupWageningen University and ResearchWageningenthe Netherlands
| |
Collapse
|
177
|
Yang Z, Yang F, Liu JL, Wu HT, Yang H, Shi Y, Liu J, Zhang YF, Luo YR, Chen KM. Heavy metal transporters: Functional mechanisms, regulation, and application in phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151099. [PMID: 34688763 DOI: 10.1016/j.scitotenv.2021.151099] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 05/22/2023]
Abstract
Heavy metal pollution in soil is a global problem with serious impacts on human health and ecological security. Phytoextraction in phytoremediation, in which plants uptake and transport heavy metals (HMs) to the tissues of aerial parts, is the most environmentally friendly method to reduce the total amount of HMs in soil and has wide application prospects. However, the molecular mechanism of phytoextraction is still under investigation. The uptake, translocation, and retention of HMs in plants are mainly mediated by a variety of transporter proteins. A better understanding of the accumulation strategy of HMs via transporters in plants is a prerequisite for the improvement of phytoextraction. In this review, the biochemical structure and functions of HM transporter families in plants are systematically summarized, with emphasis on their roles in phytoremediation. The accumulation mechanism and regulatory pathways related to hormones, regulators, and reactive oxygen species (ROS) of HMs concerning these transporters are described in detail. Scientific efforts and practices for phytoremediation carried out in recent years suggest that creation of hyperaccumulators by transgenic or gene editing techniques targeted to these transporters and their regulators is the ultimate powerful path for the phytoremediation of HM contaminated soils.
Collapse
Affiliation(s)
- Zi Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jia-Lan Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hai-Tao Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hao Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yi Shi
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Jie Liu
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China
| | - Yan-Feng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Yan-Rong Luo
- Guangdong Kaiyuan Environmental Technology Co., Ltd, Dongguan 523000, China.
| | - Kun-Ming Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
178
|
Lyu J, Guo Y, Du C, Yu H, Guo L, Liu L, Zhao H, Wang X, Hu S. BnERF114.A1, a Rapeseed Gene Encoding APETALA2/ETHYLENE RESPONSE FACTOR, Regulates Plant Architecture through Auxin Accumulation in the Apex in Arabidopsis. Int J Mol Sci 2022; 23:ijms23042210. [PMID: 35216327 PMCID: PMC8877518 DOI: 10.3390/ijms23042210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 02/01/2023] Open
Abstract
Plant architecture is crucial for rapeseed breeding. Here, we demonstrate the involvement of BnERF114.A1, a transcription factor for ETHYLENE RESPONSE FACTOR (ERF), in the regulation of plant architecture in Brassica napus. BnERF114.A1 is a member of the ERF family group X-a, encoding a putative 252-amino acid (aa) protein, which harbours the AP2/ERF domain and the conserved CMX-1 motif. BnERF114.A1 is localised to the nucleus and presents transcriptional activity, with the functional region located at 142–252 aa of the C-terminus. GUS staining revealed high BnERF114.A1 expression in leaf primordia, shoot apical meristem, leaf marginal meristem, and reproductive organs. Ectopic BnERF114.A1 expression in Arabidopsis reduced plant height, increased branch and silique number per plant, and improved seed yield per plant. Furthermore, in Arabidopsis, BnERF114.A1 overexpression inhibited indole-3-acetic acid (IAA) efflux, thus promoting auxin accumulation in the apex and arresting apical dominance. Therefore, BnERF114.A1 probably plays an important role in auxin-dependent plant architecture regulation.
Collapse
Affiliation(s)
- Jinyang Lyu
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Yuan Guo
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Chunlei Du
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Haibo Yu
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Lijian Guo
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Li Liu
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Huixian Zhao
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Correspondence: (X.W.); (S.H.)
| | - Shengwu Hu
- State Key Laboratory of Stress Biology for Arid Areas, Northwest A&F University, Xianyang 712100, China; (J.L.); (Y.G.); (C.D.); (H.Y.); (L.G.); (L.L.); (H.Z.)
- Correspondence: (X.W.); (S.H.)
| |
Collapse
|
179
|
Brophy JAN. Toward synthetic plant development. PLANT PHYSIOLOGY 2022; 188:738-748. [PMID: 34904660 PMCID: PMC8825267 DOI: 10.1093/plphys/kiab568] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
The ability to engineer plant form will enable the production of novel agricultural products designed to tolerate extreme stresses, boost yield, reduce waste, and improve manufacturing practices. While historically, plants were altered through breeding to change their size or shape, advances in our understanding of plant development and our ability to genetically engineer complex eukaryotes are leading to the direct engineering of plant structure. In this review, I highlight the central role of auxin in plant development and the synthetic biology approaches that could be used to turn auxin-response regulators into powerful tools for modifying plant form. I hypothesize that recoded, gain-of-function auxin response proteins combined with synthetic regulation could be used to override endogenous auxin signaling and control plant structure. I also argue that auxin-response regulators are key to engineering development in nonmodel plants and that single-cell -omics techniques will be essential for characterizing and modifying auxin response in these plants. Collectively, advances in synthetic biology, single-cell -omics, and our understanding of the molecular mechanisms underpinning development have set the stage for a new era in the engineering of plant structure.
Collapse
Affiliation(s)
- Jennifer A N Brophy
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
180
|
Hajný J, Tan S, Friml J. Auxin canalization: From speculative models toward molecular players. CURRENT OPINION IN PLANT BIOLOGY 2022; 65:102174. [PMID: 35123880 DOI: 10.1016/j.pbi.2022.102174] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 05/12/2023]
Abstract
Among the most fascinated properties of the plant hormone auxin is its ability to promote formation of its own directional transport routes. These gradually narrowing auxin channels form from the auxin source toward the sink and involve coordinated, collective polarization of individual cells. Once established, the channels provide positional information, along which new vascular strands form, for example, during organogenesis, regeneration, or leave venation. The main prerequisite of this still mysterious auxin canalization mechanism is a feedback between auxin signaling and its directional transport. This is manifested by auxin-induced re-arrangements of polar, subcellular localization of PIN-FORMED (PIN) auxin exporters. Immanent open questions relate to how position of auxin source and sink as well as tissue context are sensed and translated into tissue polarization and how cells communicate to polarize coordinately. Recently, identification of the first molecular players opens new avenues into molecular studies of this intriguing example of self-organizing plant development.
Collapse
Affiliation(s)
- Jakub Hajný
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria; Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Shutang Tan
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400, Klosterneuburg, Austria.
| |
Collapse
|
181
|
Naramoto S, Hata Y, Fujita T, Kyozuka J. The bryophytes Physcomitrium patens and Marchantia polymorpha as model systems for studying evolutionary cell and developmental biology in plants. THE PLANT CELL 2022; 34:228-246. [PMID: 34459922 PMCID: PMC8773975 DOI: 10.1093/plcell/koab218] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 05/03/2023]
Abstract
Bryophytes are nonvascular spore-forming plants. Unlike in flowering plants, the gametophyte (haploid) generation of bryophytes dominates the sporophyte (diploid) generation. A comparison of bryophytes with flowering plants allows us to answer some fundamental questions raised in evolutionary cell and developmental biology. The moss Physcomitrium patens was the first bryophyte with a sequenced genome. Many cell and developmental studies have been conducted in this species using gene targeting by homologous recombination. The liverwort Marchantia polymorpha has recently emerged as an excellent model system with low genomic redundancy in most of its regulatory pathways. With the development of molecular genetic tools such as efficient genome editing, both P. patens and M. polymorpha have provided many valuable insights. Here, we review these advances with a special focus on polarity formation at the cell and tissue levels. We examine current knowledge regarding the cellular mechanisms of polarized cell elongation and cell division, including symmetric and asymmetric cell division. We also examine the role of polar auxin transport in mosses and liverworts. Finally, we discuss the future of evolutionary cell and developmental biological studies in plants.
Collapse
Affiliation(s)
| | - Yuki Hata
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
182
|
Ramalho JJ, Jones VAS, Mutte S, Weijers D. Pole position: How plant cells polarize along the axes. THE PLANT CELL 2022; 34:174-192. [PMID: 34338785 PMCID: PMC8774072 DOI: 10.1093/plcell/koab203] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/30/2021] [Indexed: 05/10/2023]
Abstract
Having a sense of direction is a fundamental cellular trait that can determine cell shape, division orientation, or function, and ultimately the formation of a functional, multicellular body. Cells acquire and integrate directional information by establishing discrete subcellular domains along an axis with distinct molecular profiles, a process known as cell polarization. Insight into the principles and mechanisms underlying cell polarity has been propelled by decades of extensive research mostly in yeast and animal models. Our understanding of cell polarity establishment in plants, which lack most of the regulatory molecules identified in other eukaryotes, is more limited, but significant progress has been made in recent years. In this review, we explore how plant cells coordinately establish stable polarity axes aligned with the organ axes, highlighting similarities in the molecular logic used to polarize both plant and animal cells. We propose a classification system for plant cell polarity events and nomenclature guidelines. Finally, we provide a deep phylogenetic analysis of polar proteins and discuss the evolution of polarity machineries in plants.
Collapse
Affiliation(s)
| | | | - Sumanth Mutte
- Laboratory of Biochemistry, Wageningen University, Stippeneng 4, 6703WE Wageningen, The Netherlands
| | | |
Collapse
|
183
|
Connected function of PRAF/RLD and GNOM in membrane trafficking controls intrinsic cell polarity in plants. Nat Commun 2022; 13:7. [PMID: 35013279 PMCID: PMC8748900 DOI: 10.1038/s41467-021-27748-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cell polarity is a fundamental feature underlying cell morphogenesis and organismal development. In the Arabidopsis stomatal lineage, the polarity protein BASL controls stomatal asymmetric cell division. However, the cellular machinery by which this intrinsic polarity site is established remains unknown. Here, we identify the PRAF/RLD proteins as BASL physical partners and mutating four PRAF members leads to defects in BASL polarization. Members of PRAF proteins are polarized in stomatal lineage cells in a BASL-dependent manner. Developmental defects of the praf mutants phenocopy those of the gnom mutants. GNOM is an activator of the conserved Arf GTPases and plays important roles in membrane trafficking. We further find PRAF physically interacts with GNOM in vitro and in vivo. Thus, we propose that the positive feedback of BASL and PRAF at the plasma membrane and the connected function of PRAF and GNOM in endosomal trafficking establish intrinsic cell polarity in the Arabidopsis stomatal lineage.
Collapse
|
184
|
McKay DW, McFarlane HE, Qu Y, Situmorang A, Gilliham M, Wege S. Plant Trans-Golgi Network/Early Endosome pH regulation requires Cation Chloride Cotransporter (CCC1). eLife 2022; 11:70701. [PMID: 34989335 PMCID: PMC8791640 DOI: 10.7554/elife.70701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/05/2022] [Indexed: 01/04/2023] Open
Abstract
Plant cells maintain a low luminal pH in the trans-Golgi-network/early endosome (TGN/EE), the organelle in which the secretory and endocytic pathways intersect. Impaired TGN/EE pH regulation translates into severe plant growth defects. The identity of the proton pump and proton/ion antiporters that regulate TGN/EE pH have been determined, but an essential component required to complete the TGN/EE membrane transport circuit remains unidentified − a pathway for cation and anion efflux. Here, we have used complementation, genetically encoded fluorescent sensors, and pharmacological treatments to demonstrate that Arabidopsis cation chloride cotransporter (CCC1) is this missing component necessary for regulating TGN/EE pH and function. Loss of CCC1 function leads to alterations in TGN/EE-mediated processes including endocytic trafficking, exocytosis, and response to abiotic stress, consistent with the multitude of phenotypic defects observed in ccc1 knockout plants. This discovery places CCC1 as a central component of plant cellular function.
Collapse
Affiliation(s)
- Daniel W McKay
- School of Agriculture, Food and Wine, Waite Research Institute, ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Adelaide, Australia
| | - Heather E McFarlane
- School of Biosciences, University of Melbourne, Melbourne, Australia.,Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Yue Qu
- School of Agriculture, Food and Wine, Waite Research Institute, ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Adelaide, Australia
| | - Apriadi Situmorang
- School of Agriculture, Food and Wine, Waite Research Institute, ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Adelaide, Australia
| | - Matthew Gilliham
- School of Agriculture, Food and Wine, Waite Research Institute, ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Adelaide, Australia
| | - Stefanie Wege
- School of Agriculture, Food and Wine, Waite Research Institute, ARC Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Campus, Adelaide, Australia
| |
Collapse
|
185
|
Jia Z, Giehl RFH, von Wirén N. Nutrient-hormone relations: Driving root plasticity in plants. MOLECULAR PLANT 2022; 15:86-103. [PMID: 34920172 DOI: 10.1016/j.molp.2021.12.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 05/25/2023]
Abstract
Optimal plant development requires root uptake of 14 essential mineral elements from the soil. Since the bioavailability of these nutrients underlies large variation in space and time, plants must dynamically adjust their root architecture to optimize nutrient access and acquisition. The information on external nutrient availability and whole-plant demand is translated into cellular signals that often involve phytohormones as intermediates to trigger a systemic or locally restricted developmental response. Timing and extent of such local root responses depend on the overall nutritional status of the plant that is transmitted from shoots to roots in the form of phytohormones or other systemic long-distance signals. The integration of these systemic and local signals then determines cell division or elongation rates in primary and lateral roots, the initiation, emergence, or elongation of lateral roots, as well as the formation of root hairs. Here, we review the cascades of nutrient-related sensing and signaling events that involve hormones and highlight nutrient-hormone relations that coordinate root developmental plasticity in plants.
Collapse
Affiliation(s)
- Zhongtao Jia
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Ricardo F H Giehl
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Department of Physiology & Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, 06466 Stadt Seeland, OT Gatersleben, Germany.
| |
Collapse
|
186
|
Marhava P. Recent developments in the understanding of PIN polarity. THE NEW PHYTOLOGIST 2022; 233:624-630. [PMID: 34882802 DOI: 10.1111/nph.17867] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/05/2021] [Indexed: 05/20/2023]
Abstract
Polar localization of PIN-FORMED proteins (PINs) at the plasma membrane is essential for plant development as they direct the transport of phytohormone auxin between cells. PIN polar localization to certain sides of a given cell is dynamic, strictly regulated and provides directionality to auxin flow. Signals that act upstream to control subcellular PIN localization modulate auxin distribution, thereby regulating diverse aspects of plant development. Here I summarize the current understanding of mechanisms by which PIN polarity is established, maintained and rearranged to provide a glimpse into the complexity of PIN polarity.
Collapse
Affiliation(s)
- Petra Marhava
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| |
Collapse
|
187
|
Kashkan I, Hrtyan M, Retzer K, Humpolíčková J, Jayasree A, Filepová R, Vondráková Z, Simon S, Rombaut D, Jacobs TB, Frilander MJ, Hejátko J, Friml J, Petrášek J, Růžička K. Mutually opposing activity of PIN7 splicing isoforms is required for auxin-mediated tropic responses in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 233:329-343. [PMID: 34637542 DOI: 10.1111/nph.17792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Advanced transcriptome sequencing has revealed that the majority of eukaryotic genes undergo alternative splicing (AS). Nonetheless, little effort has been dedicated to investigating the functional relevance of particular splicing events, even those in the key developmental and hormonal regulators. Combining approaches of genetics, biochemistry and advanced confocal microscopy, we describe the impact of alternative splicing on the PIN7 gene in the model plant Arabidopsis thaliana. PIN7 encodes a polarly localized transporter for the phytohormone auxin and produces two evolutionarily conserved transcripts, PIN7a and PIN7b. PIN7a and PIN7b, differing in a four amino acid stretch, exhibit almost identical expression patterns and subcellular localization. We reveal that they are closely associated and mutually influence each other's mobility within the plasma membrane. Phenotypic complementation tests indicate that the functional contribution of PIN7b per se is minor, but it markedly reduces the prominent PIN7a activity, which is required for correct seedling apical hook formation and auxin-mediated tropic responses. Our results establish alternative splicing of the PIN family as a conserved, functionally relevant mechanism, revealing an additional regulatory level of auxin-mediated plant development.
Collapse
Affiliation(s)
- Ivan Kashkan
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, 16502, Czech Republic
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, 62500, Czech Republic
| | - Mónika Hrtyan
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, 62500, Czech Republic
| | - Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Jana Humpolíčková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague 6, 166 10, Czech Republic
| | - Aswathy Jayasree
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, 62500, Czech Republic
| | - Roberta Filepová
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Zuzana Vondráková
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Sibu Simon
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Debbie Rombaut
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, 9052, Belgium
| | - Mikko J Frilander
- Institute of Biotechnology, University of Helsinki, Helsinki, 00014, Finland
| | - Jan Hejátko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, 62500, Czech Republic
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg, 3400, Austria
| | - Jan Petrášek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, 16502, Czech Republic
| | - Kamil Růžička
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, Prague, 16502, Czech Republic
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, 62500, Czech Republic
| |
Collapse
|
188
|
Chen R, Deng Y, Ding Y, Guo J, Qiu J, Wang B, Wang C, Xie Y, Zhang Z, Chen J, Chen L, Chu C, He G, He Z, Huang X, Xing Y, Yang S, Xie D, Liu Y, Li J. Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2022. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
Affiliation(s)
- Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Jie Qiu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Bing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Changsheng Wang
- National Center for Gene Research, Center of Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Zhihua Zhang
- College of Plant Science, Jilin University, Changchun, 130062, China
| | - Jiaxin Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xuehui Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Daoxin Xie
- MOE Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yaoguang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
189
|
Rice functional genomics: decades' efforts and roads ahead. SCIENCE CHINA. LIFE SCIENCES 2021; 65:33-92. [PMID: 34881420 DOI: 10.1007/s11427-021-2024-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Rice (Oryza sativa L.) is one of the most important crops in the world. Since the completion of rice reference genome sequences, tremendous progress has been achieved in understanding the molecular mechanisms on various rice traits and dissecting the underlying regulatory networks. In this review, we summarize the research progress of rice biology over past decades, including omics, genome-wide association study, phytohormone action, nutrient use, biotic and abiotic responses, photoperiodic flowering, and reproductive development (fertility and sterility). For the roads ahead, cutting-edge technologies such as new genomics methods, high-throughput phenotyping platforms, precise genome-editing tools, environmental microbiome optimization, and synthetic methods will further extend our understanding of unsolved molecular biology questions in rice, and facilitate integrations of the knowledge for agricultural applications.
Collapse
|
190
|
Martinière A, Zelazny E. Membrane nanodomains and transport functions in plant. PLANT PHYSIOLOGY 2021; 187:1839-1855. [PMID: 35235669 PMCID: PMC8644385 DOI: 10.1093/plphys/kiab312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/16/2021] [Indexed: 05/25/2023]
Abstract
Far from a homogeneous environment, biological membranes are highly structured with lipids and proteins segregating in domains of different sizes and dwell times. In addition, membranes are highly dynamics especially in response to environmental stimuli. Understanding the impact of the nanoscale organization of membranes on cellular functions is an outstanding question. Plant channels and transporters are tightly regulated to ensure proper cell nutrition and signaling. Increasing evidence indicates that channel and transporter nano-organization within membranes plays an important role in these regulation mechanisms. Here, we review recent advances in the field of ion, water, but also hormone transport in plants, focusing on protein organization within plasma membrane nanodomains and its cellular and physiological impacts.
Collapse
Affiliation(s)
| | - Enric Zelazny
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
191
|
Feki K, Tounsi S, Mrabet M, Mhadhbi H, Brini F. Recent advances in physiological and molecular mechanisms of heavy metal accumulation in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64967-64986. [PMID: 34599711 DOI: 10.1007/s11356-021-16805-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/24/2021] [Indexed: 05/27/2023]
Abstract
Among abiotic stress, the toxicity of metals impacts negatively on plants' growth and productivity. This toxicity promotes various perturbations in plants at different levels. To withstand stress, plants involve efficient mechanisms through the implication of various signaling pathways. These pathways enhance the expression of many target genes among them gene coding for metal transporters. Various metal transporters which are localized at the plasma membrane and/or at the tonoplast are crucial in metal stress response. Furthermore, metal detoxification is provided by metal-binding proteins like phytochelatins and metallothioneins. The understanding of the molecular basis of metal toxicities signaling pathways and tolerance mechanisms is crucial for genetic engineering to produce transgenic plants that enhance phytoremediation. This review presents an overview of the recent advances in our understanding of metal stress response. Firstly, we described the effect of metal stress on plants. Then, we highlight the mechanisms involved in metal detoxification and the importance of the regulation in the response to heavy metal stress. Finally, we mentioned the importance of genetic engineering for enhancing the phytoremediation technique. In the end, the response to heavy metal stress is complex and implicates various components. Thus, further studies are needed to better understand the mechanisms involved in response to this abiotic stress.
Collapse
Affiliation(s)
- Kaouthar Feki
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", 3018, Sfax, Tunisia
| | - Moncef Mrabet
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Haythem Mhadhbi
- Laboratory of Legumes and Sustainable Agrosystem (L2AD), Center of Biotechnology of Borj-Cédria, BP901, 2050, Hammam-Lif, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Center of Biotechnology of Sfax (CBS), University of Sfax, B.P "1177", 3018, Sfax, Tunisia.
| |
Collapse
|
192
|
Differences in the Abundance of Auxin Homeostasis Proteins Suggest Their Central Roles for In Vitro Tissue Differentiation in Coffea arabica. PLANTS 2021; 10:plants10122607. [PMID: 34961078 PMCID: PMC8708889 DOI: 10.3390/plants10122607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/04/2023]
Abstract
Coffea arabica is one of the most important crops worldwide. In vitro culture is an alternative for achieving Coffea regeneration, propagation, conservation, genetic improvement, and genome editing. The aim of this work was to identify proteins involved in auxin homeostasis by isobaric tandem mass tag (TMT) and the synchronous precursor selection (SPS)-based MS3 technology on the Orbitrap Fusion™ Tribrid mass spectrometer™ in three types of biological materials corresponding to C. arabica: plantlet leaves, calli, and suspension cultures. Proteins included in the β-oxidation of indole butyric acid and in the signaling, transport, and conjugation of indole-3-acetic acid were identified, such as the indole butyric response (IBR), the auxin binding protein (ABP), the ATP-binding cassette transporters (ABC), the Gretchen-Hagen 3 proteins (GH3), and the indole-3-acetic-leucine-resistant proteins (ILR). A more significant accumulation of proteins involved in auxin homeostasis was found in the suspension cultures vs. the plantlet, followed by callus vs. plantlet and suspension culture vs. callus, suggesting important roles of these proteins in the cell differentiation process.
Collapse
|
193
|
Lacek J, García-González J, Weckwerth W, Retzer K. Lessons Learned from the Studies of Roots Shaded from Direct Root Illumination. Int J Mol Sci 2021; 22:12784. [PMID: 34884591 PMCID: PMC8657594 DOI: 10.3390/ijms222312784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The root is the below-ground organ of a plant, and it has evolved multiple signaling pathways that allow adaptation of architecture, growth rate, and direction to an ever-changing environment. Roots grow along the gravitropic vector towards beneficial areas in the soil to provide the plant with proper nutrients to ensure its survival and productivity. In addition, roots have developed escape mechanisms to avoid adverse environments, which include direct illumination. Standard laboratory growth conditions for basic research of plant development and stress adaptation include growing seedlings in Petri dishes on medium with roots exposed to light. Several studies have shown that direct illumination of roots alters their morphology, cellular and biochemical responses, which results in reduced nutrient uptake and adaptability upon additive stress stimuli. In this review, we summarize recent methods that allow the study of shaded roots under controlled laboratory conditions and discuss the observed changes in the results depending on the root illumination status.
Collapse
Affiliation(s)
- Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.L.); (J.G.-G.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Judith García-González
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.L.); (J.G.-G.)
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Wolfram Weckwerth
- Department of Functional and Evolutionary Ecology, Molecular Systems Biology (MoSys), Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria;
- Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Katarzyna Retzer
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague, Czech Republic; (J.L.); (J.G.-G.)
| |
Collapse
|
194
|
Hu QQ, Shu JQ, Li WM, Wang GZ. Role of Auxin and Nitrate Signaling in the Development of Root System Architecture. FRONTIERS IN PLANT SCIENCE 2021; 12:690363. [PMID: 34858444 PMCID: PMC8631788 DOI: 10.3389/fpls.2021.690363] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/25/2021] [Indexed: 06/12/2023]
Abstract
The plant root is an important storage organ that stores indole-3-acetic acid (IAA) from the apical meristem, as well as nitrogen, which is obtained from the external environment. IAA and nitrogen act as signaling molecules that promote root growth to obtain further resources. Fluctuations in the distribution of nitrogen in the soil environment induce plants to develop a set of strategies that effectively improve nitrogen use efficiency. Auxin integrates the information regarding the nitrate status inside and outside the plant body to reasonably distribute resources and sustainably construct the plant root system. In this review, we focus on the main factors involved in the process of nitrate- and auxin-mediated regulation of root structure to better understand how the root system integrates the internal and external information and how this information is utilized to modify the root system architecture.
Collapse
|
195
|
Marconi M, Gallemi M, Benkova E, Wabnik K. A coupled mechano-biochemical model for cell polarity guided anisotropic root growth. eLife 2021; 10:72132. [PMID: 34723798 PMCID: PMC8716106 DOI: 10.7554/elife.72132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Plants develop new organs to adjust their bodies to dynamic changes in the environment. How independent organs achieve anisotropic shapes and polarities is poorly understood. To address this question, we constructed a mechano-biochemical model for Arabidopsis root meristem growth that integrates biologically plausible principles. Computer model simulations demonstrate how differential growth of neighboring tissues results in the initial symmetry-breaking leading to anisotropic root growth. Furthermore, the root growth feeds back on a polar transport network of the growth regulator auxin. Model, predictions are in close agreement with in vivo patterns of anisotropic growth, auxin distribution, and cell polarity, as well as several root phenotypes caused by chemical, mechanical, or genetic perturbations. Our study demonstrates that the combination of tissue mechanics and polar auxin transport organizes anisotropic root growth and cell polarities during organ outgrowth. Therefore, a mobile auxin signal transported through immobile cells drives polarity and growth mechanics to coordinate complex organ development.
Collapse
Affiliation(s)
- Marco Marconi
- CBGP Centro de Biotecnologia y Genomica de Plantas UPM-INIA, Pozuelo de Alarcón, Spain
| | - Marcal Gallemi
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Eva Benkova
- Institute of Science and Technology (IST), Klosterneuburg, Austria
| | - Krzysztof Wabnik
- CBGP Centro de Biotecnologia y Genomica de Plantas UPM-INIA, Pozuelo de Alarcón, Spain
| |
Collapse
|
196
|
Ma Y, Wolf S, Lohmann JU. Casting the Net-Connecting Auxin Signaling to the Plant Genome. Cold Spring Harb Perspect Biol 2021; 13:a040006. [PMID: 33903151 PMCID: PMC8559546 DOI: 10.1101/cshperspect.a040006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Auxin represents one of the most potent and most versatile hormonal signals in the plant kingdom. Built on a simple core of only a few dedicated components, the auxin signaling system plays important roles for diverse aspects of plant development, physiology, and defense. Key to the diversity of context-dependent functional outputs generated by cells in response to this small molecule are gene duplication events and sub-functionalization of signaling components on the one hand, and a deep embedding of the auxin signaling system into complex regulatory networks on the other hand. Together, these evolutionary innovations provide the mechanisms to allow each cell to display a highly specific auxin response that suits its individual requirements. In this review, we discuss the regulatory networks connecting auxin with a large number of diverse pathways at all relevant levels of the signaling system ranging from biosynthesis to transcriptional response.
Collapse
Affiliation(s)
- Yanfei Ma
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Sebastian Wolf
- Cell Wall Signalling Group, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| | - Jan U Lohmann
- Department of Stem Cell Biology, Centre for Organismal Studies, Heidelberg University, D-69120 Heidelberg, Germany
| |
Collapse
|
197
|
Gao S, Zhang X, Wang L, Wang X, Zhang H, Xie H, Ma Y, Qiu QS. Arabidopsis antiporter CHX23 and auxin transporter PIN8 coordinately regulate pollen growth. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153539. [PMID: 34628190 DOI: 10.1016/j.jplph.2021.153539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 05/08/2023]
Abstract
Both the antiporter CHX23 (Cation/Proton Exchangers 23) and auxin transporter PIN8 (PIN-FORMED 8) are localized in the ER and regulate pollen growth in Arabidopsis. But how these two proteins regulate pollen growth remains to be studied. Here, we report that CHX23 and PIN8 act coordinately in regulating pollen growth. The chx23 mutant was reduced in pollen growth and normally shaped pollen grains, and complementation with CHX23 restored both pollen growth and normal pollen morphology. NAA treatments showed that CHX23 was crucial for pollen auxin homeostasis. The pin8 chx23 double mutant was decreased in pollen growth and normal pollen grains, indicating the joint effort of CHX23 and PIN8 in pollen growth. In vivo germination assay showed that CHX23 and PIN8 were involved in the early stage of pollen growth. CHX23 and PIN8 also function collaboratively in maintaining pollen auxin homeostasis. PIN8 depends on CHX23 in regulating pollen morphology and response to NAA treatments. CHX23 co-localized with PIN8, but there was no physical interaction. KCl and NaCl treatments showed that pollen growth of chx23 was reduced less than Col-0; pin8 chx23 was reduced less than chx23 and pin8. Together, CHX23 may regulate PIN8 function and hence pollen growth through controlling K+ and Na+ homeostasis mediated by its transport activity.
Collapse
Affiliation(s)
- Shenglan Gao
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lu Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiufang Wang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hua Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huichun Xie
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Yonggui Ma
- Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, School of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
198
|
Martin RC, Kronmiller BA, Dombrowski JE. Transcriptome Analysis of Lolium temulentum Exposed to a Combination of Drought and Heat Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112247. [PMID: 34834610 PMCID: PMC8621252 DOI: 10.3390/plants10112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Drought and heat are two major stresses predicted to increase in the future due to climate change. Plants exposed to multiple stressors elicit unique responses from those observed under individual stresses. A comparative transcriptome analysis of Lolium temulentum exposed to drought plus heat and non-stressed control plants revealed 20,221 unique up-regulated and 17,034 unique down-regulated differentially regulated transcripts. Gene ontology analysis revealed a strong emphasis on transcriptional regulation, protein folding, cell cycle/parts, organelles, binding, transport, signaling, oxidoreductase, and antioxidant activity. Differentially expressed genes (DEGs) encoding for transcriptional control proteins such as basic leucine zipper, APETALA2/Ethylene Responsive Factor, NAC, and WRKY transcription factors, and Zinc Finger (CCCH type and others) proteins were more often up-regulated, while DEGs encoding Basic Helix-Loop-Helix, MYB and GATA transcription factors, and C2H2 type Zinc Finger proteins were more often down-regulated. The DEGs encoding heat shock transcription factors were only up-regulated. Of the hormones, auxin-related DEGs were the most prevalent, encoding for auxin response factors, binding proteins, and efflux/influx carriers. Gibberellin-, cytokinin- and ABA-related DEGs were also prevalent, with fewer DEGs related to jasmonates and brassinosteroids. Knowledge of genes/pathways that grasses use to respond to the combination of heat/drought will be useful in developing multi-stress resistant grasses.
Collapse
Affiliation(s)
- Ruth C. Martin
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331-7102, USA;
| | - Brent A. Kronmiller
- Center for Quantitative Life Sciences, Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331-7102, USA;
| | - James E. Dombrowski
- USDA-ARS, National Forage Seed Production Research Center, 3450 SW Campus Way, Corvallis, OR 97331-7102, USA;
| |
Collapse
|
199
|
Hemelíková N, Žukauskaitė A, Pospíšil T, Strnad M, Doležal K, Mik V. Caged Phytohormones: From Chemical Inactivation to Controlled Physiological Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12111-12125. [PMID: 34610745 DOI: 10.1021/acs.jafc.1c02018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plant hormones, also called phytohormones, are small signaling molecules regulating a wide range of growth and developmental processes. These unique compounds respond to both external (light, temperature, water, nutrition, or pathogen attack) and internal factors (e.g., age) and mediate signal transduction leading to gene expression with the aim of allowing plants to adapt to constantly changing environmental conditions. Within the regulation of biological processes, individual groups of phytohormones act mostly through a web of interconnected responses rather than linear pathways, making elucidation of their mode of action in living organisms quite challenging. To further progress with our knowledge, the development of novel tools for phytohormone research is required. Although plenty of small molecules targeting phytohormone metabolic or signaling pathways (agonists, antagonists, and inhibitors) and labeled or tagged (fluorescently, isotopically, or biotinylated) compounds have been produced, the control over them in vivo is lost at the time of their administration. Caged compounds, on the other hand, represent a new approach to the development of small organic substances for phytohormone research. The term "caged compounds" refers to light-sensitive probes with latent biological activity, where the active molecule can be freed using a light beam in a highly spatio/temporal-, amplitude-, or frequency-defined manner. This review summarizes the up-to-date development in the field of caged plant hormones. Research progress is arranged in chronological order for each phytohormone regardless of the cage compound formulation and bacterial/plant/animal cell applications. Several known drawbacks and possible directions for future research are highlighted.
Collapse
Affiliation(s)
- Noemi Hemelíková
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Tomáš Pospíšil
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| | - Václav Mik
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc CZ-78371, Czech Republic
| |
Collapse
|
200
|
Zhang L, Ma J, Liu H, Yi Q, Wang Y, Xing J, Zhang P, Ji S, Li M, Li J, Shen J, Lin J. SNARE proteins VAMP721 and VAMP722 mediate the post-Golgi trafficking required for auxin-mediated development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:426-440. [PMID: 34343378 DOI: 10.1111/tpj.15450] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/27/2021] [Indexed: 05/27/2023]
Abstract
The plant hormone auxin controls many aspects of plant development. Membrane trafficking processes, such as secretion, endocytosis and recycling, regulate the polar localization of auxin transporters in order to establish an auxin concentration gradient. Here, we investigate the function of the Arabidopsis thaliana R-SNAREs VESICLE-ASSOCIATED MEMBRANE PROTEIN 721 (VAMP721) and VAMP722 in the post-Golgi trafficking required for proper auxin distribution and seedling growth. We show that multiple growth phenotypes, such as cotyledon development, vein patterning and lateral root growth, were defective in the double homozygous vamp721 vamp722 mutant. Abnormal auxin distribution and root patterning were also observed in the mutant seedlings. Fluorescence imaging revealed that three auxin transporters, PIN-FORMED 1 (PIN1), PIN2 and AUXIN RESISTANT 1 (AUX1), aberrantly accumulate within the cytoplasm of the double mutant, impairing the polar localization at the plasma membrane (PM). Analysis of intracellular trafficking demonstrated the involvement of VAMP721 and VAMP722 in the endocytosis of FM4-64 and the secretion and recycling of the PIN2 transporter protein to the PM, but not its trafficking to the vacuole. Furthermore, vamp721 vamp722 mutant roots display enlarged trans-Golgi network (TGN) structures, as indicated by the subcellular localization of a variety of marker proteins and the ultrastructure observed using transmission electron microscopy. Thus, our results suggest that the R-SNAREs VAMP721 and VAMP722 mediate the post-Golgi trafficking of auxin transporters to the PM from the TGN subdomains, substantially contributing to plant growth.
Collapse
Affiliation(s)
- Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingwen Ma
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Huan Liu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Qian Yi
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yanan Wang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Jingjing Xing
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 457001, China
| | - Peipei Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Shengdong Ji
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Mingjun Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Jingyuan Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jinxing Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|