151
|
Rao X, Dixon RA. Current Models for Transcriptional Regulation of Secondary Cell Wall Biosynthesis in Grasses. FRONTIERS IN PLANT SCIENCE 2018; 9:399. [PMID: 29670638 PMCID: PMC5893761 DOI: 10.3389/fpls.2018.00399] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/13/2018] [Indexed: 05/17/2023]
Abstract
Secondary cell walls mediate many crucial biological processes in plants including mechanical support, water and nutrient transport and stress management. They also provide an abundant resource of renewable feed, fiber, and fuel. The grass family contains the most important food, forage, and biofuel crops. Understanding the regulatory mechanism of secondary wall formation in grasses is necessary for exploiting these plants for agriculture and industry. Previous research has established a detailed model of the secondary wall regulatory network in the dicot model species Arabidopsis thaliana. Grasses, branching off from the dicot ancestor 140-150 million years ago, display distinct cell wall morphology and composition, suggesting potential for a different secondary wall regulation program from that established for dicots. Recently, combined application of molecular, genetic and bioinformatics approaches have revealed more transcription factors involved in secondary cell wall biosynthesis in grasses. Compared with the dicots, grasses exhibit a relatively conserved but nevertheless divergent transcriptional regulatory program to activate their secondary cell wall development and to coordinate secondary wall biosynthesis with other physiological processes.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN, United States
- *Correspondence: Xiaolan Rao,
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioEnergy Science Center, United States Department of Energy, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, United States Department of Energy, Oak Ridge, TN, United States
| |
Collapse
|
152
|
Chano V, Collada C, Soto A. Transcriptomic analysis of wound xylem formation in Pinus canariensis. BMC PLANT BIOLOGY 2017; 17:234. [PMID: 29202766 PMCID: PMC5715621 DOI: 10.1186/s12870-017-1183-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/22/2017] [Indexed: 05/13/2023]
Abstract
BACKGROUND Woody plants, especially trees, usually must face several injuries caused by different agents during their lives. Healing of injuries in stem and branches, affecting the vascular cambium and xylem can take several years. In conifers, healing takes place mainly from the remaining vascular cambium in the margin of the wound. The woundwood formed in conifers during healing usually presents malformed and disordered tracheids as well as abundant traumatic resin ducts. These characteristics affect its functionality as water conductor and its technological properties. RESULTS In this work we analyze for the first time the transcriptomic basis of the formation of traumatic wood in conifers, and reveal some differences with normal early- and late-wood. Microarray analysis of the differentiating traumatic wood, confirmed by quantitative RT-PCR, has revealed alterations in the transcription profile of up to 1408 genes during the first period of healing. We have grouped these genes in twelve clusters, according to their transcription profiles, and have distinguished accordingly two main phases during this first healing. CONCLUSIONS Wounding induces a complete rearrangement of the transcriptional program in the cambial zone close to the injuries. At the first instance, radial growth is stopped, and a complete set of defensive genes, mostly related to biotic stress, are induced. Later on, cambial activity is restored in the lateral borders of the wound, even at a high rate. During this second stage certain genes related to early-wood formation, including genes involved in cell wall formation and transcription factors, are significantly overexpressed, while certain late-wood related genes are repressed. Additionally, significant alterations in the transcription profile of abundant non annotated genes are reported.
Collapse
Affiliation(s)
- V. Chano
- G.I. Genética, Fisiología e Historia Forestal. ETSI Montes, Forestal y del Medio Natural. Dpto. Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s, /n 28040 Madrid, Spain
| | - C. Collada
- G.I. Genética, Fisiología e Historia Forestal. ETSI Montes, Forestal y del Medio Natural. Dpto. Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s, /n 28040 Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal INIA/UPM, Madrid, Spain
| | - A. Soto
- G.I. Genética, Fisiología e Historia Forestal. ETSI Montes, Forestal y del Medio Natural. Dpto. Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, Ciudad Universitaria s, /n 28040 Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal INIA/UPM, Madrid, Spain
| |
Collapse
|
153
|
Tian X, Li X, Zhou W, Ren Y, Wang Z, Liu Z, Tang J, Tong H, Fang J, Bu Q. Transcription Factor OsWRKY53 Positively Regulates Brassinosteroid Signaling and Plant Architecture. PLANT PHYSIOLOGY 2017; 175:1337-1349. [PMID: 28894020 PMCID: PMC5664471 DOI: 10.1104/pp.17.00946] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/06/2017] [Indexed: 05/19/2023]
Abstract
Brassinosteroids (BRs) are a class of steroid hormones regulating multiple aspects of plant growth, development, and adaptation. Compared with extensive studies in Arabidopsis (Arabidopsis thaliana), the mechanism of BR signaling in rice (Oryza sativa) is less understood. Here, we identified OsWRKY53, a transcription factor involved in defense responses, as an important regulator of rice BR signaling. Phenotypic analyses showed that OsWRKY53 overexpression led to enlarged leaf angles and increased grain size, in contrast to the erect leaves and smaller seeds in oswrky53 mutant. In addition, the oswrky53 exhibited decreased BR sensitivity, whereas OsWRKY53 overexpression plants were hypersensitive to BR, suggesting that OsWRKY53 positively regulates rice BR signaling. Moreover, we show that OsWRKY53 can interact with and be phosphorylated by the OsMAPKK4-OsMAPK6 cascade, and the phosphorylation is required for the biological function of OsWRKY53 in regulating BR responses. Furthermore, we found that BR promotes OsWRKY53 protein accumulation but represses OsWRKY53 transcript level. Taken together, this study revealed the novel role of OsWRKY53 as a regulator of rice BR signaling and also suggested a potential role of OsWRKY53 in mediating the cross talk between the hormone and other signaling pathways.
Collapse
Affiliation(s)
- Xiaojie Tian
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiufeng Li
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
| | - Wenjia Zhou
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuekun Ren
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenyu Wang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
| | - Zhiqi Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jiaqi Tang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongning Tong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Fang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
154
|
Wai CM, Zhang J, Jones TC, Nagai C, Ming R. Cell wall metabolism and hexose allocation contribute to biomass accumulation in high yielding extreme segregants of a Saccharum interspecific F2 population. BMC Genomics 2017; 18:773. [PMID: 29020919 PMCID: PMC5637070 DOI: 10.1186/s12864-017-4158-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 10/05/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Sugarcane is an emerging dual-purpose biofuel crop for energy and sugar production, owing to its rapid growth rate, high sucrose storage in the stems, and high lignocellulosic yield. It has the highest biomass production reaching 1.9 billion tonnes in 2014 worldwide. RESULTS To improve sugarcane biomass accumulation, we developed an interspecific cross between Saccharum officinarum 'LA Purple' and Saccharum robustum 'MOL5829'. Selected F1 individuals were self-pollinated to generate a transgressive F2 population with a wide range of biomass yield. Leaf and stem internodes of fourteen high biomass and eight low biomass F2 extreme segregants were used for RNA-seq to decipher the molecular mechanism of rapid plant growth and dry weight accumulation. Gene Ontology terms involved in cell wall metabolism and carbohydrate catabolism were enriched among 3274 differentially expressed genes between high and low biomass groups. Up-regulation of cellulose metabolism, pectin degradation and lignin biosynthesis genes were observed in the high biomass group, in conjunction with higher transcript levels of callose metabolic genes and the cell wall loosening enzyme expansin. Furthermore, UDP-glucose biosynthesis and sucrose conversion genes were differentially expressed between the two groups. A positive correlation between stem glucose, but not sucrose, levels and dry weight was detected. CONCLUSIONS We thus postulated that the high biomass sugarcane plants rapidly convert sucrose to UDP-glucose, which is the building block of cell wall polymers and callose, in order to maintain the rapid plant growth. The gene interaction of cell wall metabolism, hexose allocation and cell division contributes to biomass yield.
Collapse
Affiliation(s)
- Ching Man Wai
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Jisen Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
| | | | | | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002 China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| |
Collapse
|
155
|
Xu Z, Li S, Zhang C, Zhang B, Zhu K, Zhou Y, Liu Q. Genetic connection between cell-wall composition and grain yield via parallel QTL analysis in indica and japonica subspecies. Sci Rep 2017; 7:12561. [PMID: 28970550 PMCID: PMC5624937 DOI: 10.1038/s41598-017-12903-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/11/2017] [Indexed: 12/12/2022] Open
Abstract
Grain yield is a complicated trait, which is highly associated with biomass productivity. The cell wall is a central element of biomass, and its biogenesis contributes to plant architecture and development. However, the genetic link between cell-wall property and grain yield is largely unclear. Here, we report on identification of quantitative trait loci (QTLs) for grain yield-related traits and cell-wall composition with a set of chromosomal segment substitution lines (CSSLs) that were generated by using 9311, an indica cultivar as donor, and Nipponbare, a japonica cultivar as recipient. Nipponbare and 9311 showed significant differences in grain yield-related traits and cell-wall composition. Genotyping with molecular markers, 125 lines covering 95.6% of the whole genome of 9311 were employed for phenotypic and chemical examinations. Thirty-seven QTLs for grain yield-related traits and nineteen QTLs for cell-wall composition have been identified. In addition to correlation analysis, we found overlapped and closely linked QTLs for two sets of traits. Fine-mapping further narrowed a QTL for cellulose content together with HD17, a known QTL for heading date and grain yield, suggesting that plants may regulate cell wall biogenesis and grain yield via related means. Our study provided genetic clues for cloning QTLs for both complicated traits.
Collapse
Affiliation(s)
- Zuopeng Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Shance Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.,Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou, 225009, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kongzhi Zhu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
156
|
Zhang J, Luo T, Wang W, Cao T, Li R, Lou Y. Silencing OsSLR1 enhances the resistance of rice to the brown planthopper Nilaparvata lugens. PLANT, CELL & ENVIRONMENT 2017; 40:2147-2159. [PMID: 28666057 DOI: 10.1111/pce.13012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/21/2017] [Indexed: 06/07/2023]
Abstract
DELLA proteins, negative regulators of the gibberellin (GA) pathway, play important roles in plant growth, development and pathogen resistance by regulating multiple phytohormone signals. Yet, whether and how they regulate plant herbivore resistance remain unknown. We found that the expression of the rice DELLA gene OsSLR1 was down-regulated by an infestation of female adults of the brown planthopper (BPH) Nilaparvata lugens. On one hand, OsSLR1 positively regulated BPH-induced levels of two mitogen-activated protein kinase and four WRKY transcripts, and of jasmonic acid, ethylene and H2 O2 . On the other hand, silencing OsSLR1 enhanced constitutive levels of defence-related compounds, phenolic acids, lignin and cellulose, as well as the resistance of rice to BPH in the laboratory and in the field. The increased resistance in rice with silencing of OsSLR1 is probably due to impaired JA and ethylene pathways, and, at least in part, to the increased lignin level and mechanical hardness of rice leaf sheaths. Our findings illustrate that OsSLR1, acting as an early negative regulator, plays an important role in regulating the resistance of rice to BPH by activating appropriate defence-related signalling pathways and compounds. Moreover, our data also provide new insights into relationships between plant growth and defence.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ting Luo
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wanwan Wang
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tiantian Cao
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ran Li
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
157
|
Li F, Xie G, Huang J, Zhang R, Li Y, Zhang M, Wang Y, Li A, Li X, Xia T, Qu C, Hu F, Ragauskas AJ, Peng L. OsCESA9 conserved-site mutation leads to largely enhanced plant lodging resistance and biomass enzymatic saccharification by reducing cellulose DP and crystallinity in rice. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1093-1104. [PMID: 28117552 PMCID: PMC5552474 DOI: 10.1111/pbi.12700] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/16/2016] [Accepted: 01/02/2017] [Indexed: 05/17/2023]
Abstract
Genetic modification of plant cell walls has been posed to reduce lignocellulose recalcitrance for enhancing biomass saccharification. Since cellulose synthase (CESA) gene was first identified, several dozen CESA mutants have been reported, but almost all mutants exhibit the defective phenotypes in plant growth and development. In this study, the rice (Oryza sativa) Osfc16 mutant with substitutions (W481C, P482S) at P-CR conserved site in CESA9 shows a slightly affected plant growth and higher biomass yield by 25%-41% compared with wild type (Nipponbare, a japonica variety). Chemical and ultrastructural analyses indicate that Osfc16 has a significantly reduced cellulose crystallinity (CrI) and thinner secondary cell walls compared with wild type. CESA co-IP detection, together with implementations of a proteasome inhibitor (MG132) and two distinct cellulose inhibitors (Calcofluor, CGA), shows that CESA9 mutation could affect integrity of CESA4/7/9 complexes, which may lead to rapid CESA proteasome degradation for low-DP cellulose biosynthesis. These may reduce cellulose CrI, which improves plant lodging resistance, a major and integrated agronomic trait on plant growth and grain production, and enhances biomass enzymatic saccharification by up to 2.3-fold and ethanol productivity by 34%-42%. This study has for the first time reported a direct modification for the low-DP cellulose production that has broad applications in biomass industries.
Collapse
Affiliation(s)
- Fengcheng Li
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
- Key Laboratory of Crop Physiology, Ecology, Genetics and BreedingMinistry of AgricultureRice Research InstituteShenyang Agricultural UniversityShenyangChina
| | - Guosheng Xie
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jiangfeng Huang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ran Zhang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yu Li
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Miaomiao Zhang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yanting Wang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ao Li
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xukai Li
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Tao Xia
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chengcheng Qu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Fan Hu
- Department of Chemical and Biomolecular EngineeringThe University of Tennessee‐ KnoxvilleKnoxvilleTNUSA
- Department of ForestryThe University of Tennessee‐KnoxvilleKnoxvilleTNUSA
| | - Arthur J. Ragauskas
- Department of Chemical and Biomolecular EngineeringThe University of Tennessee‐ KnoxvilleKnoxvilleTNUSA
- Department of ForestryThe University of Tennessee‐KnoxvilleKnoxvilleTNUSA
| | - Liangcai Peng
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
158
|
Cao A, Jin J, Li S, Wang J. Integrated analysis of mRNA and miRNA expression profiling in rice backcrossed progenies (BC2F12) with different plant height. PLoS One 2017; 12:e0184106. [PMID: 28859136 PMCID: PMC5578646 DOI: 10.1371/journal.pone.0184106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/17/2017] [Indexed: 11/18/2022] Open
Abstract
Inter-specific hybridization and backcrossing commonly occur in plants. The use of progeny generated from inter-specific hybridization and backcrossing has been developed as a novel model system to explore gene expression divergence. The present study investigated the analysis of gene expression and miRNA regulation in backcrossed introgression lines constructed from cultivated and wild rice. High-throughput sequencing was used to compare gene and miRNA expression profiles in three progeny lines (L1710, L1817 and L1730), with different plant heights resulting from the backcrossing of introgression lines (BC2F12) and their parents (O. sativa and O. longistaminata). A total of 25,387 to 26,139 mRNAs and 379 to 419 miRNAs were obtained in these rice lines. More differentially expressed genes and miRNAs were detected in progeny/O. longistaminata comparison groups than in progeny/O. sativa comparison groups. Approximately 80% of the genes and miRNAs showed expression level dominance to O. sativa, indicating that three progeny lines were closer to the recurrent parent, which might be influenced by their parental genome dosage. Approximately 16% to 64% of the differentially expressed miRNAs possessing coherent target genes were predicted, and many of these miRNAs regulated multiple target genes. Most genes were up-regulated in progeny lines compared with their parents, but down-regulated in the higher plant height line in the comparison groups among the three progeny lines. Moreover, certain genes related to cell walls and plant hormones might play crucial roles in the plant height variations of the three progeny lines. Taken together, these results provided valuable information on the molecular mechanisms of hybrid backcrossing and plant height variations based on the gene and miRNA expression levels in the three progeny lines.
Collapse
Affiliation(s)
- Aqin Cao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Jin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail:
| |
Collapse
|
159
|
Zhang Y, Yu C, Lin J, Liu J, Liu B, Wang J, Huang A, Li H, Zhao T. OsMPH1 regulates plant height and improves grain yield in rice. PLoS One 2017; 12:e0180825. [PMID: 28708834 PMCID: PMC5510837 DOI: 10.1371/journal.pone.0180825] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/21/2017] [Indexed: 12/03/2022] Open
Abstract
Plant height is a major trait affecting yield potential in rice. Using a large-scale hybrid transcription factor approach, we identified the novel MYB-like transcription factor OsMPH1 (MYB-like gene of Plant Height 1), which is involved in the regulation of plant height in rice. Overexpression of OsMPH1 leads to increases of plant height and grain yield in rice, while knockdown of OsMPH1 leads to the opposite phenotypes. Microscopy of longitudinal stem sections indicated that a change in internode cell length resulted in the change in plant height. RNA sequencing (RNA-seq) analysis of transgenic rice lines showed that multiple genes related to cell elongation and cell wall synthesis, which are associated with plant height and yield phenotypes, exhibited an altered expression profile. These results imply that OsMPH1 might be involved in specific recognition and signal transduction processes related to plant height and yield formation, providing further insights into the mechanisms underlying the regulation of plant height and providing a candidate gene for the efficient improvement of rice yield.
Collapse
Affiliation(s)
- Yongxing Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunsheng Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianzhong Lin
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, China
| | - Jun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Wang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Sciences, Ningxia, China
| | - Aobo Huang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongyu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (TZ); (HL)
| | - Tao Zhao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (TZ); (HL)
| |
Collapse
|
160
|
Hirano K, Masuda R, Takase W, Morinaka Y, Kawamura M, Takeuchi Y, Takagi H, Yaegashi H, Natsume S, Terauchi R, Kotake T, Matsushita Y, Sazuka T. Screening of rice mutants with improved saccharification efficiency results in the identification of CONSTITUTIVE PHOTOMORPHOGENIC 1 and GOLD HULL AND INTERNODE 1. PLANTA 2017; 246:61-74. [PMID: 28357539 DOI: 10.1007/s00425-017-2685-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/27/2017] [Indexed: 05/28/2023]
Abstract
The screening of rice mutants with improved cellulose to glucose saccharification efficiency (SE) identifies reduced xylan and/or ferulic acid, and a qualitative change of lignin to impact SE. To ensure the availability of sustainable energy, considerable effort is underway to utilize lignocellulosic plant biomass as feedstock for the production of biofuels. However, the high cost of degrading plant cell wall components to fermentable sugars (saccharification) has been problematic. One way to overcome this barrier is to develop plants possessing cell walls that are amenable to saccharification. In this study, we aimed to identify new molecular factors that influence saccharification efficiency (SE) in rice. By screening 22 rice mutants, we identified two lines, 122 and 108, with improved SE. Reduced xylan and ferulic acid within the cell wall of line 122 were probable reasons of improved SE. Line 108 showed reduced levels of thioglycolic-released lignin; however, the amount of Klason lignin was comparable to the wild-type, indicating that structural changes had occurred in the 108 lignin polymer which resulted in improved SE. Positional cloning revealed that the genes responsible for improved SE in 122 and 108 were rice CONSTITUTIVE PHOTOMORPHOGENIC 1 (OsCOP1) and GOLD HULL AND INTERNODE 1 (GH1), respectively, which have not been previously reported to influence SE. The screening of mutants for improved SE is an efficient approach to identify novel genes that affect SE, which is relevant in the development of crops as biofuel sources.
Collapse
Affiliation(s)
- Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan.
| | - Reiko Masuda
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Wakana Takase
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoichi Morinaka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
- Zensho Holdings Co., Ltd., Tokyo, Japan
| | - Mayuko Kawamura
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Yoshinobu Takeuchi
- Rice Breeding Research Team, NARO Institute of Crop Science, Tsukuba, Ibaraki, Japan
| | - Hiroki Takagi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | | | | | | | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
- Institute for Environmental Science and Technology, Saitama University, Saitama, Japan
| | - Yasuyuki Matsushita
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takashi Sazuka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
161
|
Renau-Morata B, Molina RV, Carrillo L, Cebolla-Cornejo J, Sánchez-Perales M, Pollmann S, Domínguez-Figueroa J, Corrales AR, Flexas J, Vicente-Carbajosa J, Medina J, Nebauer SG. Ectopic Expression of CDF3 Genes in Tomato Enhances Biomass Production and Yield under Salinity Stress Conditions. FRONTIERS IN PLANT SCIENCE 2017; 8:660. [PMID: 28515731 PMCID: PMC5414387 DOI: 10.3389/fpls.2017.00660] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/11/2017] [Indexed: 05/03/2023]
Abstract
Cycling Dof Factor (CDF) transcription factors (TFs) are involved in multiple processes related to plant growth and development. A member of this family, CDF3, has recently been linked in Arabidopsis to the regulation of primary metabolism and abiotic stress responses, but its role in crop production under stress is still unknown. In this study, we characterized tomato plants overexpressing the CDF3 genes from Arabidopsis and tomato and analyzed their effects on growth and yield under salinity, additionally gaining deeper insights into the molecular function of these TFs. Our results provide evidence for higher biomass production and yield in the 35S::AtCDF3 and 35S::SlCDF3 plants, likely due to a higher photosynthetic capacity resulting in increased sucrose availability. Transcriptome analysis revealed that CDF3 genes regulate a set of genes involved in redox homeostasis, photosynthesis performance and primary metabolism that lead to enhanced biomass production. Consistently, metabolomic profiling revealed that CDF3 evokes changes in the primary metabolism triggering enhanced nitrogen assimilation, and disclosed that the amount of some protective metabolites including sucrose, GABA and asparagine were higher in vegetative tissues of CDF3 overexpressing plants. Altogether these changes improved performance of 35S::AtCDF3 and 35S::SlCDF3 plants under salinity conditions. Moreover, the overexpression of CDF3 genes modified organic acid and sugar content in fruits, improving variables related to flavor perception and fruit quality. Overall, our results associate the CDF3 TF with a role in the control of growth and C/N metabolism, and highlight that overexpression of CDF3 genes can substantially improve plant yield.
Collapse
Affiliation(s)
- Begoña Renau-Morata
- Área de Fisiología Vegetal, Universitat Politècnica de ValènciaValència, Spain
| | - Rosa V. Molina
- Área de Fisiología Vegetal, Universitat Politècnica de ValènciaValència, Spain
| | - Laura Carrillo
- Centro de Biotecnología y Genómica de PlantasMadrid, Spain
| | | | | | | | | | | | - Jaume Flexas
- Departamento de Biología, Universitat de les Illes BalearsPalma, Spain
| | | | - Joaquín Medina
- Centro de Biotecnología y Genómica de PlantasMadrid, Spain
| | - Sergio G. Nebauer
- Área de Fisiología Vegetal, Universitat Politècnica de ValènciaValència, Spain
| |
Collapse
|
162
|
Zhang B, Zhang L, Li F, Zhang D, Liu X, Wang H, Xu Z, Chu C, Zhou Y. Control of secondary cell wall patterning involves xylan deacetylation by a GDSL esterase. NATURE PLANTS 2017; 3:17017. [PMID: 28260782 DOI: 10.1038/nplants.2017.17] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/27/2017] [Indexed: 05/17/2023]
Abstract
O-acetylation, a ubiquitous modification of cell wall polymers, has striking impacts on plant growth and biomass utilization and needs to be tightly controlled. However, the mechanisms that underpin the control of cell wall acetylation remain elusive. Here, we show a rice brittle leaf sheath1 (bs1) mutant, which contains a lesion in a Golgi-localized GDSL esterase that deacetylates the prominent hemicellulose xylan. Cell wall composition, detailed xylan structure characterization and enzyme kinetics and activity assays on acetylated sugars and xylooligosaccharides demonstrate that BS1 is an esterase that cleaves acetyl moieties from the xylan backbone at O-2 and O-3 positions of xylopyranosyl residues. BS1 thus plays an important role in the maintenance of proper acetylation level on the xylan backbone, which is crucial for secondary wall formation and patterning. Our findings outline a mechanism for how plants modulate wall acetylation and endow a plethora of uncharacterized GDSL esterases with surmisable activities.
Collapse
Affiliation(s)
- Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dongmei Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangling Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hang Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuopeng Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
163
|
Ji R, Ye W, Chen H, Zeng J, Li H, Yu H, Li J, Lou Y. A Salivary Endo-β-1,4-Glucanase Acts as an Effector That Enables the Brown Planthopper to Feed on Rice. PLANT PHYSIOLOGY 2017; 173:1920-1932. [PMID: 28126846 PMCID: PMC5338667 DOI: 10.1104/pp.16.01493] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/25/2017] [Indexed: 05/25/2023]
Abstract
The brown planthopper (BPH) Nilaparvata lugens is one of the most destructive insect pests on rice (Oryza sativa) in Asia. After landing on plants, BPH rapidly accesses plant phloem and sucks the phloem sap through unknown mechanisms. We discovered a salivary endo-β-1,4-glucanase (NlEG1) that has endoglucanase activity with a maximal activity at pH 6 at 37°C and is secreted into rice plants by BPH NlEG1 is highly expressed in the salivary glands and midgut. Silencing NlEG1 decreases the capacity of BPH to reach the phloem and reduces its food intake, mass, survival, and fecundity on rice plants. By contrast, NlEG1 silencing had only a small effect on the survival rate of BPH raised on artificial diet. Moreover, NlEG1 secreted by BPH did not elicit the production of the defense-related signal molecules salicylic acid, jasmonic acid, and jasmonoyl-isoleucine in rice, although wounding plus the application of the recombination protein NlEG1 did slightly enhance the levels of jasmonic acid and jasmonoyl-isoleucine in plants compared with the corresponding controls. These data suggest that NlEG1 enables the BPH's stylet to reach the phloem by degrading celluloses in plant cell walls, thereby functioning as an effector that overcomes the plant cell wall defense in rice.
Collapse
Affiliation(s)
- Rui Ji
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Wenfeng Ye
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Hongdan Chen
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jiamei Zeng
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Heng Li
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haixin Yu
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jiancai Li
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology, Institute of Insect Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
164
|
Liu B, De Storme N, Geelen D. Gibberellin Induces Diploid Pollen Formation by Interfering with Meiotic Cytokinesis. PLANT PHYSIOLOGY 2017; 173:338-353. [PMID: 27621423 PMCID: PMC5210705 DOI: 10.1104/pp.16.00480] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/05/2016] [Indexed: 05/06/2023]
Abstract
The plant hormone gibberellic acid (GA) controls many physiological processes, including cell differentiation, cell elongation, seed germination, and response to abiotic stress. In this study, we report that exogenous treatment of flowering Arabidopsis (Arabidopsis thaliana) plants with GA specifically affects the process of male meiotic cytokinesis leading to meiotic restitution and the production of diploid (2n) pollen grains. Similar defects in meiotic cell division and reproductive ploidy stability occur in Arabidopsis plants depleted of RGA and GAI, two members of the DELLA family that function as suppressor of GA signaling. Cytological analysis of the double rga-24 gai-t6 mutant revealed that defects in male meiotic cytokinesis are not caused by alterations in meiosis I (MI or meiosis II (MII) chromosome dynamics, but instead result from aberrations in the spatial organization of the phragmoplast-like radial microtubule arrays (RMAs) at the end of meiosis II. In line with a role for GA in the genetic regulation of the male reproductive system, we additionally show that DELLA downstream targets MYB33 and MYB65 are redundantly required for functional RMA biosynthesis and male meiotic cytokinesis. By analyzing the expression of pRGA::GFP-RGA in the wild-type Landsberg erecta background, we demonstrate that the GFP-RGA protein is specifically expressed in the anther cell layers surrounding the meiocytes and microspores, suggesting that appropriate GA signaling in the somatic anther tissue is critical for male meiotic cell wall formation and thus plays an important role in consolidating the male gametophytic ploidy consistency.
Collapse
Affiliation(s)
- Bing Liu
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, 9000 Ghent, Belgium
| | - Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, 9000 Ghent, Belgium
| | - Danny Geelen
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, 9000 Ghent, Belgium
| |
Collapse
|
165
|
Gao Y, He C, Zhang D, Liu X, Xu Z, Tian Y, Liu XH, Zang S, Pauly M, Zhou Y, Zhang B. Two Trichome Birefringence-Like Proteins Mediate Xylan Acetylation, Which Is Essential for Leaf Blight Resistance in Rice. PLANT PHYSIOLOGY 2017; 173:470-481. [PMID: 27864442 PMCID: PMC5210760 DOI: 10.1104/pp.16.01618] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 11/16/2016] [Indexed: 05/17/2023]
Abstract
Acetylation is a ubiquitous modification on cell wall polymers, which play a structural role in plant growth and stress defenses. However, the mechanisms for how crop plants accomplish cell wall polymer O-acetylation are largely unknown. Here, we report on the isolation and characterization of two trichome birefringence-like (tbl) mutants in rice (Oryza sativa), which are affected in xylan O-acetylation. ostbl1 and ostbl2 single mutant and the tbl1 tbl2 double mutant displayed a stunted growth phenotype with varied degree of dwarfism. As shown by chemical assays, the wall acetylation level is affected in the mutants and the knock-down and overexpression transgenic plants. Furthermore, NMR spectroscopy analyses showed that all those mutants have varied decreases in xylan monoacetylation. The divergent expression levels of OsTBL1 and OsTBL2 explained the chemotype difference and indicated that OsTBL1 is a functionally dominant gene. OsTBL1 was found to be Golgi-localized. The recombinant OsTBL1 protein incorporates acetyl groups onto xylan. By using xylopentaose, a preferred acceptor substrate, OsTBL1 can transfer up to four acetyl residues onto xylopentaose, and this activity showed saturable kinetics. 2D-NMR spectroscopy showed that OsTBL1 transfers acetate to both 2-O and 3-O sites of xylosyl residues. In addition, ostbl1 and tbl1 tbl2 displayed susceptibility to rice blight disease, indicating that this xylan modification is required for pathogen resistance. This study identifies the major genes responsible for xylan acetylation in rice plants.
Collapse
Affiliation(s)
- Yaping Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Congwu He
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Dongmei Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Xiangling Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Zuopeng Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Yanbao Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Xue-Hui Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Shanshan Zang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Markus Pauly
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.)
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.);
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China (Y.G., C.H., D.Z., X.L., Z.X., Y.T., Y.Z., B.Z.); University of Chinese Academy of Sciences, Beijing 100049, China (Y.G., D.Z., Y.Z.);
- Core Facility for Protein Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China (X-H.L, S.Z.); and
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, 40225 Düsseldorf, Germany (M.P.)
| |
Collapse
|
166
|
Briones-Moreno A, Hernández-García J, Vargas-Chávez C, Romero-Campero FJ, Romero JM, Valverde F, Blázquez MA. Evolutionary Analysis of DELLA-Associated Transcriptional Networks. FRONTIERS IN PLANT SCIENCE 2017; 8:626. [PMID: 28487716 PMCID: PMC5404181 DOI: 10.3389/fpls.2017.00626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/07/2017] [Indexed: 05/18/2023]
Abstract
DELLA proteins are transcriptional regulators present in all land plants which have been shown to modulate the activity of over 100 transcription factors in Arabidopsis, involved in multiple physiological and developmental processes. It has been proposed that DELLAs transduce environmental information to pre-wired transcriptional circuits because their stability is regulated by gibberellins (GAs), whose homeostasis largely depends on environmental signals. The ability of GAs to promote DELLA degradation coincides with the origin of vascular plants, but the presence of DELLAs in other land plants poses at least two questions: what regulatory properties have DELLAs provided to the behavior of transcriptional networks in land plants, and how has the recruitment of DELLAs by GA signaling affected this regulation. To address these issues, we have constructed gene co-expression networks of four different organisms within the green lineage with different properties regarding DELLAs: Arabidopsis thaliana and Solanum lycopersicum (both with GA-regulated DELLA proteins), Physcomitrella patens (with GA-independent DELLA proteins) and Chlamydomonas reinhardtii (a green alga without DELLA), and we have examined the relative evolution of the subnetworks containing the potential DELLA-dependent transcriptomes. Network analysis indicates a relative increase in parameters associated with the degree of interconnectivity in the DELLA-associated subnetworks of land plants, with a stronger effect in species with GA-regulated DELLA proteins. These results suggest that DELLAs may have played a role in the coordination of multiple transcriptional programs along evolution, and the function of DELLAs as regulatory 'hubs' became further consolidated after their recruitment by GA signaling in higher plants.
Collapse
Affiliation(s)
- Asier Briones-Moreno
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de ValenciaValencia, Spain
| | - Jorge Hernández-García
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de ValenciaValencia, Spain
| | - Carlos Vargas-Chávez
- Institute for Integrative Systems Biology (I2SysBio), University of ValenciaValencia, Spain
| | - Francisco J. Romero-Campero
- Department of Computer Science and Artificial Intelligence, Universidad de SevillaSevilla, Spain
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas – Universidad de SevillaSevilla, Spain
| | - José M. Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas – Universidad de SevillaSevilla, Spain
| | - Federico Valverde
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas – Universidad de SevillaSevilla, Spain
| | - Miguel A. Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas – Universidad Politécnica de ValenciaValencia, Spain
- *Correspondence: Miguel A. Blázquez,
| |
Collapse
|
167
|
Rao X, Dixon RA. Brassinosteroid Mediated Cell Wall Remodeling in Grasses under Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:806. [PMID: 28567047 PMCID: PMC5434148 DOI: 10.3389/fpls.2017.00806] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 04/28/2017] [Indexed: 05/19/2023]
Abstract
Unlike animals, plants, being sessile, cannot escape from exposure to severe abiotic stresses such as extreme temperature and water deficit. The dynamic structure of plant cell wall enables them to undergo compensatory changes, as well as maintain physical strength, with changing environments. Plant hormones known as brassinosteroids (BRs) play a key role in determining cell wall expansion during stress responses. Cell wall deposition differs between grasses (Poaceae) and dicots. Grass species include many important food, fiber, and biofuel crops. In this article, we focus on recent advances in BR-regulated cell wall biosynthesis and remodeling in response to stresses, comparing our understanding of the mechanisms in grass species with those in the more studied dicots. A more comprehensive understanding of BR-mediated changes in cell wall integrity in grass species will benefit the development of genetic tools to improve crop productivity, fiber quality and plant biomass recalcitrance.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, DentonTX, United States
- BioEnergy Science Center, US Department of Energy, Oak RidgeTN, United States
- *Correspondence: Xiaolan Rao,
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, DentonTX, United States
- BioEnergy Science Center, US Department of Energy, Oak RidgeTN, United States
| |
Collapse
|
168
|
Liu X, Wei X, Sheng Z, Jiao G, Tang S, Luo J, Hu P. Polycomb Protein OsFIE2 Affects Plant Height and Grain Yield in Rice. PLoS One 2016; 11:e0164748. [PMID: 27764161 PMCID: PMC5072591 DOI: 10.1371/journal.pone.0164748] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/29/2016] [Indexed: 01/15/2023] Open
Abstract
Polycomb group (PcG) proteins have been shown to affect growth and development in plants. To further elucidate their role in these processes in rice, we isolated and characterized a rice mutant which exhibits dwarfism, reduced seed setting rate, defective floral organ, and small grains. Map-based cloning revealed that abnormal phenotypes were attributed to a mutation of the Fertilization Independent Endosperm 2 (OsFIE2) protein, which belongs to the PcG protein family. So we named the mutant as osfie2-1. Histological analysis revealed that the number of longitudinal cells in the internodes decreased in osfie2-1, and that lateral cell layer of the internodes was markedly thinner than wild-type. In addition, compared to wild-type, the number of large and small vascular bundles decreased in osfie2-1, as well as cell number and cell size in spikelet hulls. OsFIE2 is expressed in most tissues and the coded protein localizes in both nucleus and cytoplasm. Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that OsFIE2 interacts with OsiEZ1 which encodes an enhancer of zeste protein previously identified as a histone methylation enzyme. RNA sequencing-based transcriptome profiling and qRT-PCR analysis revealed that some homeotic genes and genes involved in endosperm starch synthesis, cell division/expansion and hormone synthesis and signaling are differentially expressed between osfie2-1 and wild-type. In addition, the contents of IAA, GA3, ABA, JA and SA in osfie2-1 are significantly different from those in wild-type. Taken together, these results indicate that OsFIE2 plays an important role in the regulation of plant height and grain yield in rice.
Collapse
Affiliation(s)
- Xianbo Liu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 310006, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ju Luo
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, Key Laboratory of Rice Biology and Breeding of Ministry of Agriculture, China National Rice Research Institute, Hangzhou, 310006, China
| |
Collapse
|
169
|
You Q, Xu W, Zhang K, Zhang L, Yi X, Yao D, Wang C, Zhang X, Zhao X, Provart NJ, Li F, Su Z. ccNET: Database of co-expression networks with functional modules for diploid and polyploid Gossypium. Nucleic Acids Res 2016; 45:D1090-D1099. [PMID: 28053168 PMCID: PMC5210623 DOI: 10.1093/nar/gkw910] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 12/28/2022] Open
Abstract
Plant genera with both diploid and polyploid species are a common evolutionary occurrence. Polyploids, especially allopolyploids such as cotton and wheat, are a great model system for heterosis research. Here, we have integrated genome sequences and transcriptome data of Gossypium species to construct co-expression networks and identified functional modules from different cotton species, including 1155 and 1884 modules in G. arboreum and G. hirsutum, respectively. We overlayed the gene expression results onto the co-expression network. We further provided network comparison analysis for orthologous genes across the diploid and allotetraploid Gossypium. We also constructed miRNA-target networks and predicted PPI networks for both cotton species. Furthermore, we integrated in-house ChIP-seq data of histone modification (H3K4me3) together with cis-element analysis and gene sets enrichment analysis tools for studying possible gene regulatory mechanism in Gossypium species. Finally, we have constructed an online ccNET database (http://structuralbiology.cau.edu.cn/gossypium) for comparative gene functional analyses at a multi-dimensional network and epigenomic level across diploid and polyploid Gossypium species. The ccNET database will be beneficial for community to yield novel insights into gene/module functions during cotton development and stress response, and might be useful for studying conservation and diversity in other polyploid plants, such as T. aestivum and Brassica napus.
Collapse
Affiliation(s)
- Qi You
- State key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wenying Xu
- State key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kang Zhang
- State key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liwei Zhang
- State key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xin Yi
- State key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dongxia Yao
- State key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunchao Wang
- State key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences (CAAS), Anyang, Henan 455000, China
| | - Xinhua Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences (CAAS), Anyang, Henan 455000, China
| | - Nicholas J Provart
- Department of Cell & Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St, Toronto, ON M5S 3B2, Canada
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agriculture Sciences (CAAS), Anyang, Henan 455000, China
| | - Zhen Su
- State key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
170
|
Yang C, Ma Y, Li J. The rice YABBY4 gene regulates plant growth and development through modulating the gibberellin pathway. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5545-5556. [PMID: 27578842 DOI: 10.1093/jxb/erw319] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
YABBY genes encode seed plant-specific transcription factors that play pivotal roles in diverse aspects of leaf, shoot, and flower development. Members of the YABBY gene family are primarily expressed in lateral organs in a polar manner and function to specify abaxial cell fate in dicotyledons, but this polar expression is not conserved in monocotyledons. The function of YABBY genes is therefore not well understood in monocotyledons. Here we show that overexpression of the rice (Oryza sativa L.) YABBY4 gene (OsYABBY4) leads to a semi-dwarf phenotype, abnormal development in the uppermost internode, an increased number of floral organs, and insensitivity to gibberellin (GA) treatment. We report on an important role for OsYABBY4 in negative control of the expression of a GA biosynthetic gene by binding to the promoter region of the gibberellin 20-oxidase 2 gene (GA20ox2), which is a direct target of SLR1 (the sole DELLA protein negatively controlling GA responses in rice). OsYABBY4 also suppresses the expression level of SLR1 and interacts with SLR1 protein. The interaction inhibits GA-dependent degradation of SLR1 and therefore leads to GA insensitivity. These data together suggest that OsYABBY4 serves as a DNA-binding intermediate protein for SLR1 and is associated with the GA signaling pathway regulating gene expression during plant growth and development.
Collapse
Affiliation(s)
- Chao Yang
- University of Chinese Academy of Sciences, Yuquan Road 19, Shijingshan District, Beijing 100049, China Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yamei Ma
- University of Chinese Academy of Sciences, Yuquan Road 19, Shijingshan District, Beijing 100049, China Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jianxiong Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
171
|
Wang J, Wu F, Zhu S, Xu Y, Cheng Z, Wang J, Li C, Sheng P, Zhang H, Cai M, Guo X, Zhang X, Wang C, Wan J. Overexpression of OsMYB1R1-VP64 fusion protein increases grain yield in rice by delaying flowering time. FEBS Lett 2016; 590:3385-3396. [DOI: 10.1002/1873-3468.12374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 07/26/2016] [Accepted: 07/30/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Jiachang Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Yang Xu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Peike Sheng
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Huan Zhang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
| | - Maohong Cai
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| | - Chunming Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
| | - Jianmin Wan
- National Key Laboratory for Crop Genetics and Germplasm Enhancement; Nanjing Agricultural University; China
- National Key Facility for Crop Gene Resources and Genetic Improvement; Institute of Crop Science; Chinese Academy of Agricultural Sciences; Beijing China
| |
Collapse
|
172
|
Zhao Q. Lignification: Flexibility, Biosynthesis and Regulation. TRENDS IN PLANT SCIENCE 2016; 21:713-721. [PMID: 27131502 DOI: 10.1016/j.tplants.2016.04.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/11/2016] [Accepted: 04/04/2016] [Indexed: 05/18/2023]
Abstract
Lignin is a complex phenolic polymer that is deposited in the secondary cell wall of all vascular plants. The evolution of lignin is considered to be a critical event during vascular plant development, because lignin provides mechanical strength, rigidity, and hydrophobicity to secondary cell walls to allow plants to grow tall and transport water and nutrients over a long distance. In recent years, great research efforts have been made to genetically alter lignin biosynthesis to improve biomass degradability for the production of second-generation biofuels. This global focus on lignin research has significantly advanced our understanding of the lignification process. Based on these advances, here I provide an overview of lignin composition, the biosynthesis pathway and its regulation.
Collapse
Affiliation(s)
- Qiao Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
173
|
Wang Y, Fan C, Hu H, Li Y, Sun D, Wang Y, Peng L. Genetic modification of plant cell walls to enhance biomass yield and biofuel production in bioenergy crops. Biotechnol Adv 2016; 34:997-1017. [PMID: 27269671 DOI: 10.1016/j.biotechadv.2016.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 02/06/2023]
Abstract
Plant cell walls represent an enormous biomass resource for the generation of biofuels and chemicals. As lignocellulose property principally determines biomass recalcitrance, the genetic modification of plant cell walls has been posed as a powerful solution. Here, we review recent progress in understanding the effects of distinct cell wall polymers (cellulose, hemicelluloses, lignin, pectin, wall proteins) on the enzymatic digestibility of biomass under various physical and chemical pretreatments in herbaceous grasses, major agronomic crops and fast-growing trees. We also compare the main factors of wall polymer features, including cellulose crystallinity (CrI), hemicellulosic Xyl/Ara ratio, monolignol proportion and uronic acid level. Furthermore, the review presents the main gene candidates, such as CesA, GH9, GH10, GT61, GT43 etc., for potential genetic cell wall modification towards enhancing both biomass yield and enzymatic saccharification in genetic mutants and transgenic plants. Regarding cell wall modification, it proposes a novel groove-like cell wall model that highlights to increase amorphous regions (density and depth) of the native cellulose microfibrils, providing a general strategy for bioenergy crop breeding and biofuel processing technology.
Collapse
Affiliation(s)
- Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunfen Fan
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huizhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Sun
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Chemistry and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Youmei Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
174
|
Xiao GH, Wang K, Huang G, Zhu YX. Genome-scale analysis of the cotton KCS gene family revealed a binary mode of action for gibberellin A regulated fiber growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:577-89. [PMID: 26399709 PMCID: PMC5061104 DOI: 10.1111/jipb.12429] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/22/2015] [Indexed: 05/05/2023]
Abstract
Production of β-ketoacyl-CoA, which is catalyzed by 3-ketoacyl-CoA synthase (KCS), is the first step in very long chain fatty acid (VLCFA) biosynthesis. Here we identified 58 KCS genes from Gossypium hirsutum, 31 from G. arboreum and 33 from G. raimondii by searching the assembled cotton genomes. The gene family was divided into the plant-specific FAE1-type and the more general ELO-type. KCS transcripts were widely expressed and 32 of them showed distinct subgenome-specific expressions in one or more cotton tissues/organs studied. Six GhKCS genes rescued the lethality of elo2Δelo3Δ yeast double mutant, indicating that this gene family possesses diversified functions. Most KCS genes with GA-responsive elements (GAREs) in the promoters were significantly upregulated by gibberellin A3 (GA). Exogenous GA3 not only promoted fiber length, but also increased the thickness of cell walls significantly. GAREs present also in the promoters of several cellulose synthase (CesA) genes required for cell wall biosynthesis and they were all induced significantly by GA3 . Because GA treatment resulted in longer cotton fibers with thicker cell walls and higher dry weight per unit cell length, we suggest that it may regulate fiber elongation upstream of the VLCFA-ethylene pathway and also in the downstream steps towards cell wall synthesis.
Collapse
Affiliation(s)
- Guang-Hui Xiao
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China
| | - Kun Wang
- Institute for Advanced Studies/College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Gai Huang
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Yu-Xian Zhu
- The State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, 100871, China
- Institute for Advanced Studies/College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
175
|
Dale R, Ohmuro-Matsuyama Y, Ueda H, Kato N. Mathematical Model of the Firefly Luciferase Complementation Assay Reveals a Non-Linear Relationship between the Detected Luminescence and the Affinity of the Protein Pair Being Analyzed. PLoS One 2016; 11:e0148256. [PMID: 26886551 PMCID: PMC4757408 DOI: 10.1371/journal.pone.0148256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/15/2016] [Indexed: 01/11/2023] Open
Abstract
The firefly luciferase complementation assay is widely used as a bioluminescent reporter technology to detect protein-protein interactions in vitro, in cellulo, and in vivo. Upon the interaction of a protein pair, complemented firefly luciferase emits light through the adenylation and oxidation of its substrate, luciferin. Although it has been suggested that kinetics of light production in the firefly luciferase complementation assay is different from that in full length luciferase, the mechanism behind this is still not understood. To quantitatively understand the different kinetics and how changes in affinity of a protein pair affect the light emission in the assay, a mathematical model of the in vitro firefly luciferase complementation assay was constructed. Analysis of the model finds that the change in kinetics is caused by rapid dissociation of the protein pair, low adenylation rate of luciferin, and increased affinity of adenylated luciferin to the enzyme. The model suggests that the affinity of the protein pair has an exponential relationship with the light detected in the assay. This relationship causes the change of affinity in a protein pair to be underestimated. This study underlines the importance of understanding the molecular mechanism of the firefly luciferase complementation assay in order to analyze protein pair affinities quantitatively.
Collapse
Affiliation(s)
- Renee Dale
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Yuki Ohmuro-Matsuyama
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa, Japan
| | - Hiroshi Ueda
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Kanagawa, Japan
| | - Naohiro Kato
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
176
|
Ye Y, Liu B, Zhao M, Wu K, Cheng W, Chen X, Liu Q, Liu Z, Fu X, Wu Y. CEF1/OsMYB103L is involved in GA-mediated regulation of secondary wall biosynthesis in rice. PLANT MOLECULAR BIOLOGY 2015; 89:385-401. [PMID: 26350403 DOI: 10.1007/s11103-015-0376-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/02/2015] [Indexed: 05/19/2023]
Abstract
Although the main genes in rice involved in the biosynthesis of secondary wall components have been characterized, the molecular mechanism underlying coordinated regulation of genes expression is not clear. In this study, we reported a new rice variety, cef1, showed the culm easily fragile (CEF) without other concomitant phenotypes. The CEF1 gene encodes a MYB family transcription factor OsMYB103L, was cloned based on map-based approach. Bioinformatics analyses indicated that CEF1 belongs to the R2R3-MYB subfamily and highly similar to Arabidopsis AtMYB103. Expression pattern analysis indicated that CEF1 is mainly expressed in internodes and panicles. Biochemical assays demonstrated that OsMYB103L is a nuclear protein and shows high transcriptional activation activity at C-terminus. OsMYB103L mediates cellulose biosynthesis and secondary walls formation mainly through directly binding the CESA4, CESA7, CESA9 and BC1 promoters and regulating their expression. OsMYB103L may also function as a master switch to regulate the expression of several downstream TFs, which involved in secondary cell wall biosynthesis. Furthermore, OsMYB103L physically interacts with SLENDER RICE1 (SLR1), a DELLA repressor of GA signaling, and involved in GA-mediated regulation of cellulose synthesis pathway. Our findings revealed that OsMYB103L plays an important role in GA-regulating secondary cell wall synthesis, and the manipulation of this gene provide a new strategy to help the straw decay in soil.
Collapse
Affiliation(s)
- Yafeng Ye
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, 230031, China
- Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Binmei Liu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, 230031, China
- Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Meng Zhao
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, 230031, China
| | - Kun Wu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, 230031, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weimin Cheng
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, 230031, China
| | - Xiangbin Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zan Liu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, 230031, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yuejin Wu
- Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences and Anhui Province, Hefei, 230031, China.
- Institute of Technical Biology and Agriculture Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| |
Collapse
|
177
|
Petti C, Hirano K, Stork J, DeBolt S. Mapping of a Cellulose-Deficient Mutant Named dwarf1-1 in Sorghum bicolor to the Green Revolution Gene gibberellin20-oxidase Reveals a Positive Regulatory Association between Gibberellin and Cellulose Biosynthesis. PLANT PHYSIOLOGY 2015; 169. [PMID: 26198258 PMCID: PMC4577427 DOI: 10.1104/pp.15.00928] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Here, we show a mechanism for expansion regulation through mutations in the green revolution gene gibberellin20 (GA20)-oxidase and show that GAs control biosynthesis of the plants main structural polymer cellulose. Within a 12,000 mutagenized Sorghum bicolor plant population, we identified a single cellulose-deficient and male gametophyte-dysfunctional mutant named dwarf1-1 (dwf1-1). Through the Sorghum propinquum male/dwf1-1 female F2 population, we mapped dwf1-1 to a frameshift in GA20-oxidase. Assessment of GAs in dwf1-1 revealed ablation of GA. GA ablation was antagonistic to the expression of three specific cellulose synthase genes resulting in cellulose deficiency and growth dwarfism, which were complemented by exogenous bioactive gibberellic acid application. Using quantitative polymerase chain reaction, we found that GA was positively regulating the expression of a subset of specific cellulose synthase genes. To cross reference data from our mapped Sorghum sp. allele with another monocotyledonous plant, a series of rice (Oryza sativa) mutants involved in GA biosynthesis and signaling were isolated, and these too displayed cellulose deficit. Taken together, data support a model whereby suppressed expansion in green revolution GA genes involves regulation of cellulose biosynthesis.
Collapse
Affiliation(s)
- Carloalberto Petti
- Department of Horticulture, University of Kentucky, Lexington, Kentucky 40546 (C.P., J.S., S.D.); andBioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan (K.H.)
| | - Ko Hirano
- Department of Horticulture, University of Kentucky, Lexington, Kentucky 40546 (C.P., J.S., S.D.); andBioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan (K.H.)
| | - Jozsef Stork
- Department of Horticulture, University of Kentucky, Lexington, Kentucky 40546 (C.P., J.S., S.D.); andBioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan (K.H.)
| | - Seth DeBolt
- Department of Horticulture, University of Kentucky, Lexington, Kentucky 40546 (C.P., J.S., S.D.); andBioscience and Biotechnology Center, Nagoya University, Nagoya 464-8601, Japan (K.H.)
| |
Collapse
|