151
|
Chen QJ, Deng BH, Gao J, Zhao ZY, Chen ZL, Song SR, Wang L, Zhao LP, Xu WP, Zhang CX, Ma C, Wang SP. A miRNA-Encoded Small Peptide, vvi-miPEP171d1, Regulates Adventitious Root Formation. PLANT PHYSIOLOGY 2020; 183:656-670. [PMID: 32241877 PMCID: PMC7271809 DOI: 10.1104/pp.20.00197] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 03/17/2020] [Indexed: 05/07/2023]
Abstract
One of the biggest challenges in clonal propagation of grapevine (Vitis vinifera) is difficulty of rooting. Adventitious root initiation and development are the critical steps in the cutting and layering process of grapevine, but the molecular mechanism of these processes remains unclear. Previous reports have found that microRNA (miRNA)-encoded peptides (miPEPs) can regulate plant root development by increasing the transcription of their corresponding primary miRNA. Here, we report the role of a miPEP in increasing adventitious root formation in grapevine. In this study, we performed a global analysis of miPEPs in grapevine and characterized the function of vvi-miPEP171d1, a functional, small peptide encoded by primary-miR171d. There were three small open reading frames in the 500-bp upstream sequence of pre-miR171d. One of them encoded a small peptide, vvi-miPEP171d1, which could increase the transcription of vvi-MIR171d Exogenous application of vvi-miPEP171d1 to grape tissue culture plantlets promoted adventitious root development by activating the expression of vvi-MIR171d Interestingly, neither exogenous application of the vvi-miPEP171d1 peptide nor overexpression of the vvi-miPEP171d1 coding sequence resulted in phenotypic changes in Arabidopsis (Arabidopsis thaliana). Similarly, application of synthetic ath-miPEP171c, the small peptide encoded by the Arabidopsis ortholog of vvi-MIR171d, inhibited the growth of primary roots and induced the early initiation of lateral and adventitious roots in Arabidopsis, while it had no effect on grape root development. Our findings reveal that miPEP171d1 regulates root development by promoting vvi-MIR171d expression in a species-specific manner, further enriching the theoretical research into miPEPs.
Collapse
Affiliation(s)
- Qiu-Ju Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo-Han Deng
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Gao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhong-Yang Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zi-Li Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi-Ren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li-Ping Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Ping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cai-Xi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi-Ping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Agro-food Science and Technology/Key Laboratory of Agro-products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
152
|
Stührwohldt N, Scholl S, Lang L, Katzenberger J, Schumacher K, Schaller A. The biogenesis of CLEL peptides involves several processing events in consecutive compartments of the secretory pathway. eLife 2020; 9:e55580. [PMID: 32297855 PMCID: PMC7162652 DOI: 10.7554/elife.55580] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/05/2020] [Indexed: 01/12/2023] Open
Abstract
Post-translationally modified peptides are involved in many aspects of plant growth and development. The maturation of these peptides from their larger precursors is still poorly understood. We show here that the biogenesis of CLEL6 and CLEL9 peptides in Arabidopsis thaliana requires a series of processing events in consecutive compartments of the secretory pathway. Following cleavage of the signal peptide upon entry into the endoplasmic reticulum (ER), the peptide precursors are processed in the cis-Golgi by the subtilase SBT6.1. SBT6.1-mediated cleavage within the variable domain allows for continued passage of the partially processed precursors through the secretory pathway, and for subsequent post-translational modifications including tyrosine sulfation and proline hydroxylation within, and proteolytic maturation after exit from the Golgi. Activation by subtilases including SBT3.8 in post-Golgi compartments depends on the N-terminal aspartate of the mature peptides. Our work highlights the complexity of post-translational precursor maturation allowing for stringent control of peptide biogenesis.
Collapse
Affiliation(s)
- Nils Stührwohldt
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of HohenheimStuttgartGermany
| | - Stefan Scholl
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Lisa Lang
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of HohenheimStuttgartGermany
| | - Julia Katzenberger
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of HohenheimStuttgartGermany
| | - Karin Schumacher
- Department of Cell Biology, Centre for Organismal Studies, Heidelberg UniversityHeidelbergGermany
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of HohenheimStuttgartGermany
| |
Collapse
|
153
|
Negrini F, O’Grady K, Hyvönen M, Folta KM, Baraldi E. Genomic structure and transcript analysis of the Rapid Alkalinization Factor (RALF) gene family during host-pathogen crosstalk in Fragaria vesca and Fragaria x ananassa strawberry. PLoS One 2020; 15:e0226448. [PMID: 32214345 PMCID: PMC7098601 DOI: 10.1371/journal.pone.0226448] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/01/2020] [Indexed: 11/19/2022] Open
Abstract
Rapid Alkalinization Factors (RALFs) are cysteine-rich peptides ubiquitous within plant kingdom. They play multiple roles as hormonal signals in diverse processes, including root elongation, cell growth, pollen tube development, and fertilization. Their involvement in host-pathogen crosstalk as negative regulators of immunity in Arabidopsis has also been recognized. In addition, peptides homologous to RALF are secreted by different fungal pathogens as effectors during early stages of infection. Previous studies have identified nine RALF genes in the diploid strawberry (Fragaria vesca) genome. This work describes the genomic organization of the RALF gene families in commercial octoploid strawberry (Fragaria × ananassa) and the re-annotated genome of F. vesca, and then compares findings with orthologs in Arabidopsis thaliana. We reveal the presence of 15 RALF genes in F. vesca genotype Hawaii 4 and 50 in Fragaria x ananassa cv. Camarosa, showing a non-homogenous localization of genes among the different Fragaria x ananassa subgenomes. Expression analysis of Fragaria x ananassa RALF genes upon infection with Colletotrichum acutatum or Botrytis cinerea showed that FanRALF3-1 was the only fruit RALF gene upregulated after fungal infection. In silico analysis was used to identify distinct pathogen inducible elements upstream of the FanRALF3-1 gene. Agroinfiltration of strawberry fruit with deletion constructs of the FanRALF3-1 promoter identified a 5' region required for FanRALF3-1 expression in fruit, but failed to identify a region responsible for fungal induced expression.
Collapse
Affiliation(s)
- Francesca Negrini
- Laboratory of Plant Pathology and Biotechnology, DISTAL, University of Bologna, Bologna Italy
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - Kevin O’Grady
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Kevin M. Folta
- Horticultural Sciences Department, University of Florida, Gainesville, Florida, United States of America
| | - Elena Baraldi
- Laboratory of Plant Pathology and Biotechnology, DISTAL, University of Bologna, Bologna Italy
| |
Collapse
|
154
|
Roy P, Achom M, Wilkinson H, Lagunas B, Gifford ML. Symbiotic Outcome Modified by the Diversification from 7 to over 700 Nodule-Specific Cysteine-Rich Peptides. Genes (Basel) 2020; 11:E348. [PMID: 32218172 PMCID: PMC7230169 DOI: 10.3390/genes11040348] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/11/2020] [Accepted: 03/22/2020] [Indexed: 12/31/2022] Open
Abstract
Legume-rhizobium symbiosis represents one of the most successfully co-evolved mutualisms. Within nodules, the bacterial cells undergo distinct metabolic and morphological changes and differentiate into nitrogen-fixing bacteroids. Legumes in the inverted repeat lacking clade (IRLC) employ an array of defensin-like small secreted peptides (SSPs), known as nodule-specific cysteine-rich (NCR) peptides, to regulate bacteroid differentiation and activity. While most NCRs exhibit bactericidal effects in vitro, studies confirm that inside nodules they target the bacterial cell cycle and other cellular pathways to control and extend rhizobial differentiation into an irreversible (or terminal) state where the host gains control over bacteroids. While NCRs are well established as positive regulators of effective symbiosis, more recent findings also suggest that NCRs affect partner compatibility. The extent of bacterial differentiation has been linked to species-specific size and complexity of the NCR gene family that varies even among closely related species, suggesting a more recent origin of NCRs followed by rapid expansion in certain species. NCRs have diversified functionally, as well as in their expression patterns and responsiveness, likely driving further functional specialisation. In this review, we evaluate the functions of NCR peptides and their role as a driving force underlying the outcome of rhizobial symbiosis, where the plant is able to determine the outcome of rhizobial interaction in a temporal and spatial manner.
Collapse
Affiliation(s)
- Proyash Roy
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK; (P.R.); (M.A.); (H.W.); (B.L.)
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1205, Bangladesh
| | - Mingkee Achom
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK; (P.R.); (M.A.); (H.W.); (B.L.)
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, New York, NY 14853, USA
| | - Helen Wilkinson
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK; (P.R.); (M.A.); (H.W.); (B.L.)
| | - Beatriz Lagunas
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK; (P.R.); (M.A.); (H.W.); (B.L.)
| | - Miriam L. Gifford
- School of Life Sciences, Gibbet Hill Road, University of Warwick, Coventry CV4 7AL, UK; (P.R.); (M.A.); (H.W.); (B.L.)
| |
Collapse
|
155
|
Boschiero C, Lundquist PK, Roy S, Dai X, Zhao PX, Scheible WR. Identification and Functional Investigation of Genome-Encoded, Small, Secreted Peptides in Plants. ACTA ACUST UNITED AC 2020; 4:e20098. [PMID: 31479208 DOI: 10.1002/cppb.20098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hundreds to thousands of small secreted peptides (SSPs) are encoded in plant genomes but have been overlooked, and most remain unannotated and unstudied. Despite their low profile, they have been found to confer dramatic effects on growth and development of plants. With the growing appreciation of their significance, the development of appropriate methods to identify and functionally assess the myriad SSPs encoded in plant genomes has become critical. Here, we provide protocols for the computational and physiological analysis of SSPs in plant genomes. We first describe our methodology successfully used for genome-wide identification and annotation of SSP-coding genes in the model legume Medicago truncatula, which can be readily adapted for other plant species. We then provide protocols for the functional analysis of SSPs using various synthetic peptide screens. Considerations for the design and handling of peptides are included. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
| | - Peter K Lundquist
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan.,Plant Resilience Institute, Michigan State University, East Lansing, Michigan
| | - Sonali Roy
- Noble Research Institute, LLC, Ardmore, Oklahoma
| | - Xinbin Dai
- Noble Research Institute, LLC, Ardmore, Oklahoma
| | | | | |
Collapse
|
156
|
Chen YL, Fan KT, Hung SC, Chen YR. The role of peptides cleaved from protein precursors in eliciting plant stress reactions. THE NEW PHYTOLOGIST 2020; 225:2267-2282. [PMID: 31595506 DOI: 10.1111/nph.16241] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/17/2019] [Indexed: 05/18/2023]
Abstract
As sessile organisms, plants are exposed to diverse abiotic and biotic stresses, and thus have developed complex signaling mechanisms that orchestrate multiple stress responses. Plant peptides have recently emerged as key signaling molecules of stress responses, not only to mechanical wounding and pathogen infection but also to nutrient imbalance, drought and high salinity. The currently identified stress-related signaling peptides in plants are derived from proteolytic processing of protein precursors. Here, we review these protein-derived peptides and the evidence for their functions in stress signaling. We recommend potential research directions that could clarify their roles in stress biology, and propose possible crosstalk with regard to the physiological outcome. The stress-centric perspective allows us to highlight the crucial roles of peptides in regulating the dynamics of stress physiology. Inspired by historic and recent findings, we review how peptides initiate complex molecular interactions to coordinate biotic and abiotic stress responses in plants.
Collapse
Affiliation(s)
- Ying-Lan Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Kai-Ting Fan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Sheng-Chi Hung
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
157
|
Zhao N, Cheng M, Lv W, Wu Y, Liu D, Zhang X. Peptides as Potential Biomarkers for Authentication of Mountain-Cultivated Ginseng and Cultivated Ginseng of Different Ages Using UPLC-HRMS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2263-2275. [PMID: 31986019 DOI: 10.1021/acs.jafc.9b05568] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The growth conditions and age of Panax ginseng are vital for determining the quality of the ginseng plant. However, the considerable difference in price according to the cultivation method and period of P. ginseng leads to its adulteration in the trade market. We herein focused on ginseng peptides and the possibility of these peptides to be used as biomarker(s) for discrimination of P. ginseng. We applied an ultraperformance liquid chromatography-high resolution mass spectrometry-based peptidomics approach to characterize ginseng peptides and discover novel peptide biomarkers for authentication of mountain-cultivated ginseng (MCG). We identified 52 high-confidence peptides and screened 20 characteristic peptides differentially expressed between MCG and cultivated ginseng (CG). Intriguingly, 6 differential peptides were expressed significantly in MCG and originated from dehydrins that accumulated during cold or drought conditions. In addition, 14 other differential peptides that were significantly expressed in CG derived from ginseng major protein, an essential protein for nitrogen storage. These biological associations confirmed the reliability and credibility of the differential peptides. Additionally, we determined several robust peptide biomarkers for discrimination of MCG through a precise selection process. These findings demonstrate the potential of peptide biomarkers for identification and quality control of P. ginseng in addition to ginsenoside analysis.
Collapse
Affiliation(s)
- Nan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
- University of Chinese Academy of Sciences , Yuquan Road 19 , Beijing 100049 , China
| | - Mengchun Cheng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| | - Wei Lv
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
- School of Chemistry and Chemical Engineering , North Minzu University , Yinchuan 750021 , China
| | - Yulin Wu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
- Henan University of Chinese Medicine , Jinshui East Road 156 , Zhengzhou 450046 , China
| | - Dan Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| | - Xiaozhe Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Zhongshan Road 457 , Dalian 116023 , China
| |
Collapse
|
158
|
I. Fedoreyeva L, F. Vanyushin B, N. Baranova E. Peptide AEDL alters chromatin conformation via histone binding. AIMS BIOPHYSICS 2020. [DOI: 10.3934/biophy.2020001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
159
|
Keller C, Gemperline E, Li L. MALDI Mass Spectrometry Imaging of Peptides in Medicago truncatula Root Nodules. Methods Mol Biol 2020; 2139:341-351. [PMID: 32462598 PMCID: PMC7430052 DOI: 10.1007/978-1-0716-0528-8_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mass spectrometry imaging is routinely used to visualize the distributions of biomolecules in tissue sections. In plants, mass spectrometry imaging of metabolites is more often conducted, but the imaging of larger molecules is less frequently performed despite the importance of proteins and endogenous peptides to the plant. Here, we describe a matrix-assisted laser desorption/ionization mass spectrometry imaging method for the imaging of peptides in Medicago truncatula root nodules. Sample preparation steps including embedding in gelatin, sectioning, and matrix application are described. The method described is employed to determine the spatial distribution of hundreds of peptide peaks.
Collapse
Affiliation(s)
- Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Erin Gemperline
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA. .,School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
160
|
Coudert Y, Harris S, Charrier B. Design Principles of Branching Morphogenesis in Filamentous Organisms. Curr Biol 2019; 29:R1149-R1162. [PMID: 31689405 DOI: 10.1016/j.cub.2019.09.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The radiation of life on Earth was accompanied by the diversification of multicellular body plans in the eukaryotic kingdoms Animalia, Plantae, Fungi and Chromista. Branching forms are ubiquitous in nature and evolved repeatedly in the above lineages. The developmental and genetic basis of branch formation is well studied in the three-dimensional shoot and root systems of land plants, and in animal organs such as the lung, kidney, mammary gland, vasculature, etc. Notably, recent thought-provoking studies combining experimental analysis and computational modeling of branching patterns in whole animal organs have identified global patterning rules and proposed unifying principles of branching morphogenesis. Filamentous branching forms represent one of the simplest expressions of the multicellular body plan and constitute a key step in the evolution of morphological complexity. Similarities between simple and complex branching forms distantly related in evolution are compelling, raising the question whether shared mechanisms underlie their development. Here, we focus on filamentous branching organisms that represent major study models from three distinct eukaryotic kingdoms, including the moss Physcomitrella patens (Plantae), the brown alga Ectocarpus sp. (Chromista), and the ascomycetes Neurospora crassa and Aspergillus nidulans (Fungi), and bring to light developmental regulatory mechanisms and design principles common to these lineages. Throughout the review we explore how the regulatory mechanisms of branching morphogenesis identified in other models, and in particular animal organs, may inform our thinking on filamentous systems and thereby advance our understanding of the diverse strategies deployed across the eukaryotic tree of life to evolve similar forms.
Collapse
Affiliation(s)
- Yoan Coudert
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, INRIA, Lyon 69007, France.
| | - Steven Harris
- University of Manitoba, Department of Biological Sciences, Winnipeg, MB, Canada; Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE, USA
| | - Bénédicte Charrier
- CNRS, Sorbonne Université, Laboratoire de Biologie Intégrative des Modèles Marins LBI2M, Station Biologique de Roscoff, Roscoff 29680, France
| |
Collapse
|
161
|
Gu Z, Li W, Doughty J, Meng D, Yang Q, Yuan H, Li Y, Chen Q, Yu J, Liu CS, Li T. A gamma-thionin protein from apple, MdD1, is required for defence against S-RNase-induced inhibition of pollen tube prior to self/non-self recognition. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2184-2198. [PMID: 31001872 PMCID: PMC6790362 DOI: 10.1111/pbi.13131] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 05/09/2023]
Abstract
Apple exhibits S-RNase-mediated self-incompatibility. Although the cytotoxic effect of S-RNase inside the self-pollen tube has been studied extensively, the underlying defence mechanism in pollen tube in Rosaceae remains unclear. On exposure to stylar S-RNase, plant defence responses are activated in the pollen tube; however, how these are regulated is currently poorly understood. Here, we show that entry of both self and non-self S-RNase into pollen tubes of apple (Malus domestica) stimulates jasmonic acid (JA) production, in turn inducing the accumulation of MdMYC2 transcripts, a transcription factor in the JA signalling pathway widely considered to be involved in plant defence processes. MdMYC2 acts as a positive regulator in the pollen tube activating expression of MdD1, a gene encoding a defence protein. Importantly, MdD1 was shown to bind to the RNase activity sites of S-RNase leading to inhibition of enzymatic activity. This work provides intriguing insights into an ancient defence mechanism present in apple pollen tubes where MdD1 likely acts as a primary line of defence to inhibit S-RNase cytotoxicity prior to self/non-self recognition.
Collapse
Affiliation(s)
- Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Wei Li
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - James Doughty
- Department of Biology and BiochemistryUniversity of BathBathUK
| | - Dong Meng
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Qing Yang
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Hui Yuan
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yang Li
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Qiuju Chen
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Jie Yu
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Chun sheng Liu
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
162
|
Takahashi F, Hanada K, Kondo T, Shinozaki K. Hormone-like peptides and small coding genes in plant stress signaling and development. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:88-95. [PMID: 31265991 DOI: 10.1016/j.pbi.2019.05.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 05/27/2019] [Indexed: 05/06/2023]
Abstract
Recent works have shed light on the long-distance interorgan signaling by which hormone-like peptides precisely regulate physiological effects in a manner similar to phytohormones. Many such peptides have already been identified in the primary model plant, Arabidopsis thaliana. In addition, Arabidopsis genome reanalysis revealed over 7000 novel candidate small coding genes, some of which are likely to be associated with hormone-like peptides. Hormone-like peptides have also been reported to play critical roles in interorgan communications during morphogenesis and stress responses. In this review, we focus on the functional roles of hormone-like peptides and small coding genes in cell-to-cell and/or long-distance communications during plant stress signaling and development and discuss the evolutionary conservation of these peptides among plants.
Collapse
Affiliation(s)
- Fuminori Takahashi
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan.
| | - Kousuke Hanada
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan.
| | - Takayuki Kondo
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Iizuka, Fukuoka 820-8502, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
163
|
Segonzac C, Monaghan J. Modulation of plant innate immune signaling by small peptides. CURRENT OPINION IN PLANT BIOLOGY 2019; 51:22-28. [PMID: 31026543 DOI: 10.1016/j.pbi.2019.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 05/03/2023]
Abstract
Small peptides regulate the cellular coordination of growth, development, and stress tolerance in plants. In addition to direct antimicrobial activities, small secreted peptides have emerged as key signaling molecules in the plant immune response. Here, we highlight recent discoveries of several small peptides that amplify and fine-tune immune signaling.
Collapse
Affiliation(s)
- Cécile Segonzac
- Department of Plant Science, Plant Genomics and Breeding Institute and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Plant Immunity Research Center, Seoul National University, Seoul 08826, Republic of Korea.
| | | |
Collapse
|
164
|
Wu HYL, Song G, Walley JW, Hsu PY. The Tomato Translational Landscape Revealed by Transcriptome Assembly and Ribosome Profiling. PLANT PHYSIOLOGY 2019; 181:367-380. [PMID: 31248964 PMCID: PMC6716236 DOI: 10.1104/pp.19.00541] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/10/2019] [Indexed: 05/14/2023]
Abstract
Recent applications of translational control in Arabidopsis (Arabidopsis thaliana) highlight the potential power of manipulating mRNA translation for crop improvement. However, to what extent translational regulation is conserved between Arabidopsis and other species is largely unknown, and the translatome of most crops remains poorly studied. Here, we combined de novo transcriptome assembly and ribosome profiling to study global mRNA translation in tomato (Solanum lycopersicum) roots. Exploiting features corresponding to active translation, we discovered widespread unannotated translation events, including 1,329 upstream open reading frames (uORFs) within the 5' untranslated regions of annotated coding genes and 354 small ORFs (sORFs) among unannotated transcripts. uORFs may repress translation of their downstream main ORFs, whereas sORFs may encode signaling peptides. Besides evolutionarily conserved sORFs, we uncovered 96 Solanaceae-specific sORFs, revealing the importance of studying translatomes directly in crops. Proteomic analysis confirmed that some of the unannotated ORFs generate stable proteins in planta. In addition to defining the translatome, our results reveal the global regulation by uORFs and microRNAs. Despite diverging over 100 million years ago, many translational features are well conserved between Arabidopsis and tomato. Thus, our approach provides a high-throughput method to discover unannotated ORFs, elucidates evolutionarily conserved and unique translational features, and identifies regulatory mechanisms hidden in a crop genome.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Gaoyuan Song
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
165
|
Chakraborty S, Nguyen B, Wasti SD, Xu G. Plant Leucine-Rich Repeat Receptor Kinase (LRR-RK): Structure, Ligand Perception, and Activation Mechanism. Molecules 2019. [PMID: 31450667 DOI: 10.3390/molecules2473081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023] Open
Abstract
In recent years, secreted peptides have been recognized as essential mediators of intercellular communication which governs plant growth, development, environmental interactions, and other mediated biological responses, such as stem cell homeostasis, cell proliferation, wound healing, hormone sensation, immune defense, and symbiosis, among others. Many of the known secreted peptide ligand receptors belong to the leucine-rich repeat receptor kinase (LRR-RK) family of membrane integral receptors, which contain more than 200 members within Arabidopsis making it the largest family of plant receptor kinases (RKs). Genetic and biochemical studies have provided valuable data regarding peptide ligands and LRR-RKs, however, visualization of ligand/LRR-RK complex structures at the atomic level is vital to understand the functions of LRR-RKs and their mediated biological processes. The structures of many plant LRR-RK receptors in complex with corresponding ligands have been solved by X-ray crystallography, revealing new mechanisms of ligand-induced receptor kinase activation. In this review, we briefly elaborate the peptide ligands, and aim to detail the structures and mechanisms of LRR-RK activation as induced by secreted peptide ligands within plants.
Collapse
Affiliation(s)
- Sayan Chakraborty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian Nguyen
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Syed Danyal Wasti
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Guozhou Xu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
166
|
Plant Leucine-Rich Repeat Receptor Kinase (LRR-RK): Structure, Ligand Perception, and Activation Mechanism. Molecules 2019; 24:molecules24173081. [PMID: 31450667 PMCID: PMC6749341 DOI: 10.3390/molecules24173081] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022] Open
Abstract
In recent years, secreted peptides have been recognized as essential mediators of intercellular communication which governs plant growth, development, environmental interactions, and other mediated biological responses, such as stem cell homeostasis, cell proliferation, wound healing, hormone sensation, immune defense, and symbiosis, among others. Many of the known secreted peptide ligand receptors belong to the leucine-rich repeat receptor kinase (LRR-RK) family of membrane integral receptors, which contain more than 200 members within Arabidopsis making it the largest family of plant receptor kinases (RKs). Genetic and biochemical studies have provided valuable data regarding peptide ligands and LRR-RKs, however, visualization of ligand/LRR-RK complex structures at the atomic level is vital to understand the functions of LRR-RKs and their mediated biological processes. The structures of many plant LRR-RK receptors in complex with corresponding ligands have been solved by X-ray crystallography, revealing new mechanisms of ligand-induced receptor kinase activation. In this review, we briefly elaborate the peptide ligands, and aim to detail the structures and mechanisms of LRR-RK activation as induced by secreted peptide ligands within plants.
Collapse
|
167
|
Kaufmann C, Sauter M. Sulfated plant peptide hormones. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4267-4277. [PMID: 31231771 PMCID: PMC6698702 DOI: 10.1093/jxb/erz292] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/11/2019] [Indexed: 05/08/2023]
Abstract
Sulfated peptides are plant hormones that are active at nanomolar concentrations. The sulfation at one or more tyrosine residues is catalysed by tyrosylprotein sulfotransferase (TPST), which is encoded by a single-copy gene. The sulfate group is provided by the co-substrate 3´-phosphoadenosine 5´-phosphosulfate (PAPS), which links synthesis of sulfated signaling peptides to sulfur metabolism. The precursor proteins share a conserved DY-motif that is implicated in specifying tyrosine sulfation. Several sulfated peptides undergo additional modification such as hydroxylation of proline and glycosylation of hydroxyproline. The modifications render the secreted signaling molecules active and stable. Several sulfated signaling peptides have been shown to be perceived by leucine-rich repeat receptor-like kinases (LRR-RLKs) but have signaling pathways that, for the most part, are yet to be elucidated. Sulfated peptide hormones regulate growth and a wide variety of developmental processes, and intricately modulate immunity to pathogens. While basic research on sulfated peptides has made steady progress, their potential in agricultural and pharmaceutical applications has yet to be explored.
Collapse
Affiliation(s)
- Christine Kaufmann
- Plant Developmental Biology and Physiology, University of Kiel, Am Botanischen Garten, Kiel, Germany
- Correspondence:
| | - Margret Sauter
- Plant Developmental Biology and Physiology, University of Kiel, Am Botanischen Garten, Kiel, Germany
| |
Collapse
|
168
|
Fesenko I, Kirov I, Kniazev A, Khazigaleeva R, Lazarev V, Kharlampieva D, Grafskaia E, Zgoda V, Butenko I, Arapidi G, Mamaeva A, Ivanov V, Govorun V. Distinct types of short open reading frames are translated in plant cells. Genome Res 2019; 29:1464-1477. [PMID: 31387879 PMCID: PMC6724668 DOI: 10.1101/gr.253302.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Genomes contain millions of short (<100 codons) open reading frames (sORFs), which are usually dismissed during gene annotation. Nevertheless, peptides encoded by such sORFs can play important biological roles, and their impact on cellular processes has long been underestimated. Here, we analyzed approximately 70,000 transcribed sORFs in the model plant Physcomitrella patens (moss). Several distinct classes of sORFs that differ in terms of their position on transcripts and the level of evolutionary conservation are present in the moss genome. Over 5000 sORFs were conserved in at least one of 10 plant species examined. Mass spectrometry analysis of proteomic and peptidomic data sets suggested that tens of sORFs located on distinct parts of mRNAs and long noncoding RNAs (lncRNAs) are translated, including conserved sORFs. Translational analysis of the sORFs and main ORFs at a single locus suggested the existence of genes that code for multiple proteins and peptides with tissue-specific expression. Functional analysis of four lncRNA-encoded peptides showed that sORFs-encoded peptides are involved in regulation of growth and differentiation in moss. Knocking out lncRNA-encoded peptides resulted in a decrease of moss growth. In contrast, the overexpression of these peptides resulted in a diverse range of phenotypic effects. Our results thus open new avenues for discovering novel, biologically active peptides in the plant kingdom.
Collapse
Affiliation(s)
- Igor Fesenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Ilya Kirov
- Laboratory of marker-assisted and genomic selection of plants, All-Russian Research Institute of Agricultural Biotechnology, 127550 Moscow, Russian Federation
| | - Andrey Kniazev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Regina Khazigaleeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation.,Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russian Federation
| | - Daria Kharlampieva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation
| | - Ekaterina Grafskaia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation.,Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russian Federation
| | - Viktor Zgoda
- Laboratory of System Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russian Federation
| | - Ivan Butenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation
| | - Georgy Arapidi
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation.,Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation
| | - Anna Mamaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Vadim Ivanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Vadim Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation
| |
Collapse
|
169
|
Mergaert P. Role of antimicrobial peptides in controlling symbiotic bacterial populations. Nat Prod Rep 2019; 35:336-356. [PMID: 29393944 DOI: 10.1039/c7np00056a] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2018 Antimicrobial peptides (AMPs) have been known for well over three decades as crucial mediators of the innate immune response in animals and plants, where they are involved in the killing of infecting microbes. However, AMPs have now also been found to be produced by eukaryotic hosts during symbiotic interactions with bacteria. These symbiotic AMPs target the symbionts and therefore have a more subtle biological role: not eliminating the microbial symbiont population but rather keeping it in check. The arsenal of AMPs and the symbionts' adaptations to resist them are in a careful balance, which contributes to the establishment of the host-microbe homeostasis. Although in many cases the biological roles of symbiotic AMPs remain elusive, for a number of symbiotic interactions, precise functions have been assigned or proposed to the AMPs, which are discussed here. The microbiota living on epithelia in animals, from the most primitive ones to the mammals, are challenged by a cocktail of AMPs that determine the specific composition of the bacterial community as well as its spatial organization. In the symbiosis of legume plants with nitrogen-fixing rhizobium bacteria, the host deploys an extremely large panel of AMPs - called nodule-specific cysteine-rich (NCR) peptides - that drive the bacteria into a terminally differentiated state and manipulate the symbiont physiology to maximize the benefit for the host. The NCR peptides are used as tools to enslave the bacterial symbionts, limiting their reproduction but keeping them metabolically active for nitrogen fixation. In the nutritional symbiotic interactions of insects and protists that have vertically transmitted bacterial symbionts with reduced genomes, symbiotic AMPs could facilitate the integration of the endosymbiont and host metabolism by favouring the flow of metabolites across the symbiont membrane through membrane permeabilization.
Collapse
Affiliation(s)
- P Mergaert
- Institute for Integrative Biology of the Cell, UMR9198, CNRS, Université Paris-Sud, CEA, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
170
|
Manipulating the Expression of Small Secreted Protein 1 (Ssp1) Alters Patterns of Development and Metabolism in the White-Rot Fungus Pleurotus ostreatus. Appl Environ Microbiol 2019; 85:AEM.00761-19. [PMID: 31101610 DOI: 10.1128/aem.00761-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/09/2019] [Indexed: 01/30/2023] Open
Abstract
The function of small secreted proteins (SSPs) in saprotrophic fungi is, for the most part, unknown. The white-rot mushroom Pleurotus ostreatus produces considerable amounts of SSPs at the onset of secondary metabolism, during colony development, and in response to chemical compounds such as 5-hydroxymethylfurfural and aryl alcohols. Genetic manipulation of Ssp1, by knockdown (KDssp1) or overexpression (OEssp1), indicated that they are, in fact, involved in the regulation of the ligninolytic system. To elucidate their potential involvement in fungal development, quantitative secretome analysis was performed during the trophophase and the idiophase and at a transition point between the two growth phases. The mutations conferred a time shift in the secretion and expression patterns: OEssp1 preceded the entrance to idiophase and secondary metabolism, while KDssp1 was delayed. This was also correlated with expression patterns of selected genes. The KDssp1 colony aged at a slower pace, accompanied by a slower decline in biomass over time. In contrast, the OEssp1 strain exhibited severe lysis and aging of the colony at the same time point. These phenomena were accompanied by variations in yellow pigment production, characteristic of entrance of the wild type into idiophase. The pigment was produced earlier and in a larger amount in the OEssp1 strain and was absent from the KDssp1 strain. Furthermore, the dikaryon harboring OEssp1 exhibited a delay in the initiation of fruiting body formation as well as earlier aging. We propose that Ssp1 might function as a part of the fungal communication network and regulate the pattern of fungal development and metabolism in P. ostreatus IMPORTANCE Small secreted proteins (SSPs) are common in fungal saprotrophs, but their roles remain elusive. As such, they comprise part of a gene pool which may be involved in governing fungal lifestyles not limited to symbiosis and pathogenicity, in which they are commonly referred to as "effectors." We propose that Ssp1 in the white-rot fungus Pleurotus ostreatus regulates the transition from primary to secondary metabolism, development, aging, and fruiting body initiation. Our observations uncover a novel regulatory role of effector-like SSPs in a saprotroph, suggesting that they may act in fungal communication as well as in response to environmental cues. The presence of Ssp1 homologues in other fungal species supports a common potential role in environmental sensing and fungal development.
Collapse
|
171
|
Laffont C, Huault E, Gautrat P, Endre G, Kalo P, Bourion V, Duc G, Frugier F. Independent Regulation of Symbiotic Nodulation by the SUNN Negative and CRA2 Positive Systemic Pathways. PLANT PHYSIOLOGY 2019; 180:559-570. [PMID: 30782966 PMCID: PMC6501087 DOI: 10.1104/pp.18.01588] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/06/2019] [Indexed: 05/21/2023]
Abstract
Plant systemic signaling pathways allow the integration and coordination of shoot and root organ metabolism and development at the whole-plant level depending on nutrient availability. In legumes, two systemic pathways have been reported in the Medicago truncatula model to regulate root nitrogen-fixing symbiotic nodulation. Both pathways involve leucine-rich repeat receptor-like kinases acting in shoots and proposed to perceive signaling peptides produced in roots depending on soil nutrient availability. In this study, we characterized in the M. truncatula Jemalong A17 genotype a mutant allelic series affecting the Compact Root Architecture2 (CRA2) receptor. These analyses revealed that this pathway acts systemically from shoots to positively regulate nodulation and is required for the activity of carboxyl-terminally encoded peptides (CEPs). In addition, we generated a double mutant to test genetic interactions of the CRA2 systemic pathway with the CLAVATA3/EMBRYO SURROUNDING REGION peptide (CLE)/Super Numeric Nodule (SUNN) receptor systemic pathway negatively regulating nodule number from shoots, which revealed an intermediate nodule number phenotype close to the wild type. Finally, we showed that the nitrate inhibition of nodule numbers was observed in cra2 mutants but not in sunn and cra2 sunn mutants. Overall, these results suggest that CEP/CRA2 and CLE/SUNN systemic pathways act independently from shoots to regulate nodule numbers.
Collapse
Affiliation(s)
- Carole Laffont
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Université Paris Sud, Université Paris Diderot, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Emeline Huault
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Université Paris Sud, Université Paris Diderot, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Pierre Gautrat
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Université Paris Sud, Université Paris Diderot, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Gabriella Endre
- Institute of Plant Biology, Biological Research Centre, 6726 Szeged, Hungary
| | - Peter Kalo
- National Agricultural and Innovation Center, Agricultural Biotechnology Institute, 2100 Godollo, Hungary
| | - Virginie Bourion
- Agroécologie, Institut National de la Recherche Agronomique, AgroSup Dijon, Université Bourgogne Franche-Comté, 21065 Dijon, France
| | - Gérard Duc
- Agroécologie, Institut National de la Recherche Agronomique, AgroSup Dijon, Université Bourgogne Franche-Comté, 21065 Dijon, France
| | - Florian Frugier
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Université Paris Sud, Université Paris Diderot, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|
172
|
Trujillo DI, Silverstein KAT, Young ND. Nodule-specific PLAT domain proteins are expanded in the Medicago lineage and required for nodulation. THE NEW PHYTOLOGIST 2019; 222:1538-1550. [PMID: 30664233 DOI: 10.1111/nph.15697] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
Symbiotic nitrogen fixation in legumes is mediated by an interplay of signaling processes between plant hosts and rhizobial symbionts. In legumes, several secreted protein families have undergone expansions and play key roles in nodulation. Thus, identifying lineage-specific expansions (LSEs) of nodulation-associated genes can be a strategy to discover candidate gene families. Using bioinformatic tools, we identified 13 LSEs of nodulation-related secreted protein families, each unique to either Glycine, Arachis or Medicago lineages. In the Medicago lineage, nodule-specific Polycystin-1, Lipoxygenase, Alpha Toxin (PLAT) domain proteins (NPDs) expanded to five members. We examined NPD function using CRISPR/Cas9 multiplex genome editing to create Medicago truncatula NPD knockout lines, targeting one to five NPD genes. Mutant lines with differing combinations of NPD gene inactivations had progressively smaller nodules, earlier onset of nodule senescence, or ineffective nodules compared to the wild-type control. Double- and triple-knockout lines showed dissimilar nodulation phenotypes but coincided in upregulation of a DHHC-type zinc finger and an aspartyl protease gene, possible candidates for the observed disturbance of proper nodule function. By postulating that gene family expansions can be used to detect candidate genes, we identified a family of nodule-specific PLAT domain proteins and confirmed that they play a role in successful nodule formation.
Collapse
Affiliation(s)
- Diana I Trujillo
- Department of Plant Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Kevin A T Silverstein
- Supercomputing Institute for Advanced Computational Research, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nevin D Young
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
173
|
Olsson V, Joos L, Zhu S, Gevaert K, Butenko MA, De Smet I. Look Closely, the Beautiful May Be Small: Precursor-Derived Peptides in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:153-186. [PMID: 30525926 DOI: 10.1146/annurev-arplant-042817-040413] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During the past decade, a flurry of research focusing on the role of peptides as short- and long-distance signaling molecules in plant cell communication has been undertaken. Here, we focus on peptides derived from nonfunctional precursors, and we address several key questions regarding peptide signaling. We provide an overview of the regulatory steps involved in producing a biologically active peptide ligand that can bind its corresponding receptor(s) and discuss how this binding and subsequent activation lead to specific cellular outputs. We discuss different experimental approaches that can be used to match peptide ligands with their receptors. Lastly, we explore how peptides evolved from basic signaling units regulating essential processes in plants to more complex signaling systems as new adaptive traits developed and how nonplant organisms exploit this signaling machinery by producing peptide mimics.
Collapse
Affiliation(s)
- Vilde Olsson
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Lisa Joos
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Shanshuo Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
- VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Melinka A Butenko
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway;
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- VIB-UGent Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|
174
|
Chen YL, Chang WH, Lee CY, Chen YR. An improved scoring method for the identification of endogenous peptides based on the Mascot MS/MS ion search. Analyst 2019; 144:3045-3055. [PMID: 30912770 DOI: 10.1039/c8an02141d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
To identify endogenous peptides using MS/MS analysis and searching against a polypeptide sequence database, a non-enzyme specific (NES) search considering all of the possible proteolytic cleavages is required. However, the use of a NES search generates more false positive hits than an enzyme specific search, and therefore shows lower identification performance. In this study, the use of the sub-ranked matches for improving the identification performance of the Mascot NES search was investigated and a new scoring method was developed that considered the contribution of all sub-ranked random match probabilities, named the contribution score (CS). The CS showed the highest identification sensitivity using the Mascot NES search with a full protein database when compared to the use of the Mascot first ranked score and the delta score (DS). The confident peptides identified by DS and CS were shown to be complementary. When applied to plant endogenous peptide identification, the identification numbers of tomato endogenous peptides using DS and CS were 176.3% and 184.2%, respectively, higher than the use of the first ranked score of Mascot. The combination of DS and CS identified 200.0% and 8.6% more tomato endogenous peptides compared to the use of Mascot and DS, respectively. This method by combining the CS and DS can significantly improve the identification performance of endogenous peptides without complex computational steps and is also able to improve the identification performance of the enzyme specific search. In addition to the application in the plant peptidomics analysis, this method may be applied to the improvement of peptidomics studies in different species. A web interface for calculating the DS and CS based on Mascot search results was developed herein.
Collapse
Affiliation(s)
- Ying-Lan Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 11529.
| | | | | | | |
Collapse
|
175
|
Le Marquer M, Bécard G, Frei Dit Frey N. Arbuscular mycorrhizal fungi possess a CLAVATA3/embryo surrounding region-related gene that positively regulates symbiosis. THE NEW PHYTOLOGIST 2019; 222:1030-1042. [PMID: 30554405 DOI: 10.1111/nph.15643] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/07/2018] [Indexed: 05/03/2023]
Abstract
The arbuscular mycorrhizal (AM) symbiosis is a beneficial association established between land plants and the members of a subphylum of fungi, the Glomeromycotina. How the two symbiotic partners regulate their association is still enigmatic. Secreted fungal peptides are candidates for regulating this interaction. We searched for fungal peptides with similarities with known plant signalling peptides. We identified CLAVATA (CLV)/EMBRYO SURROUNDING REGION (ESR)-RELATED PROTEIN (CLE) genes in phylogenetically distant AM fungi: four Rhizophagus species and one Gigaspora species. These CLE genes encode a signal peptide for secretion and the conserved CLE C-terminal motif. They seem to be absent in the other fungal clades. Rhizophagus irregularis and Gigaspora rosea CLE genes (RiCLE1 and GrCLE1) are transcriptionally induced in symbiotic vs asymbiotic conditions. Exogenous application of synthetic RiCLE1 peptide on Medicago truncatula affects root architecture, by slowing the apical growth of primary roots and stimulating the formation of lateral roots. In addition, pretreatment of seedlings with RiCLE1 peptide stimulates mycorrhization. Our findings demonstrate for the first time that in addition to plants and nematodes, AM fungi also possess CLE genes. These results pave the way for deciphering new mechanisms by which AM fungi modulate plant cellular responses during the establishment of AM symbiosis.
Collapse
Affiliation(s)
- Morgane Le Marquer
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| |
Collapse
|
176
|
Wang L, Wang Y, Felix G. Peptide Feeding and Mechanical Wounding for Tomato Seedlings. Bio Protoc 2019; 9:e3194. [PMID: 33654993 DOI: 10.21769/bioprotoc.3194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/18/2019] [Accepted: 03/24/2019] [Indexed: 11/02/2022] Open
Abstract
Plants need to respond appropriately to wounding and herbivorous insects. Peptide signals have been implicated in local and systemic induction of appropriate plant defense responses. To study these peptide signals and their perception in host plants, it is important to have reproducible bioassays. Several assays, such as treatment of peptide solution via pressure infiltration, have been developed. Here, we provide detailed protocols for peptide feeding and mechanical wounding for tomato seedlings. To directly introduce peptides into tomato seedlings, peptide solution is fed through the excised stem via the transpiration stream. To mimic the wounding caused by insect feeding, leaflets of tomato seedlings are mechanically damaged with a hemostat; and wounded and systemic unwounded leaves are harvested and analyzed separately. Samples from both assays may be further assessed by examining the transcript level of marker genes by quantitative real-time PCR (qRT-PCR).
Collapse
Affiliation(s)
- Lei Wang
- The Center for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany
| | - Yan Wang
- The Center for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany
| | - Georg Felix
- The Center for Plant Molecular Biology (ZMBP), University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
177
|
Mir Drikvand R, Sohrabi SM, Samiei K. Molecular cloning and characterization of six defensin genes from lentil plant ( Lens culinaris L.). 3 Biotech 2019; 9:104. [PMID: 30800615 PMCID: PMC6387662 DOI: 10.1007/s13205-019-1617-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/06/2019] [Indexed: 12/17/2022] Open
Abstract
Six full-length gene and cDNA sequences of defensin were identified from Lens culinaris L. plant. The identified genes and cDNAs were different in length and their coding sequences contained Knot1 functional domain. Phylogenetic analysis classified the identified defensins into two subfamilies. All defensin genes contained only one intron and had extracellular signal peptides. Secondary structures of identified defensins were completely composed of alpha helix and beta strand. Presence of conserved Cys amino acids and disulfide bridges, interaction with defense and signaling proteins and antimicrobial activity were other common features of these peptides. The identified defensins displayed differential expression pattern in the various tissues. The highest expression level of defensins was observed in seed, pod, and root tissues. Defensin 4 was significantly expressed in all examined tissues, whereas the other defensins were only expressed in some tissues. Also, in the fungal and wounding treatments, lentil defensins showed different expression pattern. Defensin 1 was up-regulated in both fungal and wounding treatments. Defensin 4 showed decreased expression level in both fungal and wounding treatments. Defensins 2 and 6 were up-regulated in wounding and fungal treatments, respectively. In this study, for the first time, six defensin genes were isolated and characterized from lentil. Our results highlighted the role of defensins in lentil plant that can be used for future studies.
Collapse
Affiliation(s)
- Reza Mir Drikvand
- Department of Agronomy and Plant Breeding, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Seyyed Mohsen Sohrabi
- Young Researchers and Elite Club, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Kamran Samiei
- Department of Agriculture, Kangavar Branch, Islamic Azad University, Kangavar, Iran
| |
Collapse
|
178
|
Gully K, Pelletier S, Guillou MC, Ferrand M, Aligon S, Pokotylo I, Perrin A, Vergne E, Fagard M, Ruelland E, Grappin P, Bucher E, Renou JP, Aubourg S. The SCOOP12 peptide regulates defense response and root elongation in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1349-1365. [PMID: 30715439 PMCID: PMC6382344 DOI: 10.1093/jxb/ery454] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/12/2018] [Indexed: 05/20/2023]
Abstract
Small secreted peptides are important players in plant development and stress response. Using a targeted in silico approach, we identified a family of 14 Arabidopsis genes encoding precursors of serine-rich endogenous peptides (PROSCOOP). Transcriptomic analyses revealed that one member of this family, PROSCOOP12, is involved in processes linked to biotic and oxidative stress as well as root growth. Plants defective in this gene were less susceptible to Erwinia amylovora infection and showed an enhanced root growth phenotype. In PROSCOOP12 we identified a conserved motif potentially coding for a small secreted peptide. Exogenous application of synthetic SCOOP12 peptide induces various defense responses in Arabidopsis. Our findings show that SCOOP12 has numerous properties of phytocytokines, activates the phospholipid signaling pathway, regulates reactive oxygen species response, and is perceived in a BAK1 co-receptor-dependent manner.
Collapse
Affiliation(s)
- Kay Gully
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRA, Agrocampus-Ouest, Université d’Angers, QuaSaV, Beaucouzé, France
| | - Sandra Pelletier
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRA, Agrocampus-Ouest, Université d’Angers, QuaSaV, Beaucouzé, France
| | - Marie-Charlotte Guillou
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRA, Agrocampus-Ouest, Université d’Angers, QuaSaV, Beaucouzé, France
| | - Marina Ferrand
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Sophie Aligon
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRA, Agrocampus-Ouest, Université d’Angers, QuaSaV, Beaucouzé, France
| | - Igor Pokotylo
- iEES-Paris (Interaction Plantes-Environnement Institut d’Ecologie et des Sciences de l’Environnement de Paris), UMR CNRS 7618, Université Paris Est Créteil, 61 avenue du général de Gaulle, Créteil, France
| | - Adrien Perrin
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRA, Agrocampus-Ouest, Université d’Angers, QuaSaV, Beaucouzé, France
| | - Emilie Vergne
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRA, Agrocampus-Ouest, Université d’Angers, QuaSaV, Beaucouzé, France
| | - Mathilde Fagard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Eric Ruelland
- iEES-Paris (Interaction Plantes-Environnement Institut d’Ecologie et des Sciences de l’Environnement de Paris), UMR CNRS 7618, Université Paris Est Créteil, 61 avenue du général de Gaulle, Créteil, France
| | - Philippe Grappin
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRA, Agrocampus-Ouest, Université d’Angers, QuaSaV, Beaucouzé, France
| | - Etienne Bucher
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRA, Agrocampus-Ouest, Université d’Angers, QuaSaV, Beaucouzé, France
| | - Jean-Pierre Renou
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRA, Agrocampus-Ouest, Université d’Angers, QuaSaV, Beaucouzé, France
- Correspondence: or
| | - Sébastien Aubourg
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRA, Agrocampus-Ouest, Université d’Angers, QuaSaV, Beaucouzé, France
- Correspondence: or
| |
Collapse
|
179
|
Vaattovaara A, Brandt B, Rajaraman S, Safronov O, Veidenberg A, Luklová M, Kangasjärvi J, Löytynoja A, Hothorn M, Salojärvi J, Wrzaczek M. Mechanistic insights into the evolution of DUF26-containing proteins in land plants. Commun Biol 2019; 2:56. [PMID: 30775457 PMCID: PMC6368629 DOI: 10.1038/s42003-019-0306-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 01/14/2019] [Indexed: 01/01/2023] Open
Abstract
Large protein families are a prominent feature of plant genomes and their size variation is a key element for adaptation. However, gene and genome duplications pose difficulties for functional characterization and translational research. Here we infer the evolutionary history of the DOMAIN OF UNKNOWN FUNCTION (DUF) 26-containing proteins. The DUF26 emerged in secreted proteins. Domain duplications and rearrangements led to the appearance of CYSTEINE-RICH RECEPTOR-LIKE PROTEIN KINASES (CRKs) and PLASMODESMATA-LOCALIZED PROTEINS (PDLPs). The DUF26 is land plant-specific but structural analyses of PDLP ectodomains revealed strong similarity to fungal lectins and thus may constitute a group of plant carbohydrate-binding proteins. CRKs expanded through tandem duplications and preferential retention of duplicates following whole genome duplications, whereas PDLPs evolved according to the dosage balance hypothesis. We propose that new gene families mainly expand through small-scale duplications, while fractionation and genetic drift after whole genome multiplications drive families towards dosage balance.
Collapse
Affiliation(s)
- Aleksia Vaattovaara
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Benjamin Brandt
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Sitaram Rajaraman
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Omid Safronov
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Andres Veidenberg
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5 (POB56), FI-00014 Helsinki, Finland
| | - Markéta Luklová
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
- Present Address: Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC—Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| | - Ari Löytynoja
- Institute of Biotechnology, University of Helsinki, Viikinkaari 5 (POB56), FI-00014 Helsinki, Finland
| | - Michael Hothorn
- Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Centre, VIPS, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 1 (POB65), FI-00014 Helsinki, Finland
| |
Collapse
|
180
|
Chen MX, Zhu FY, Wang FZ, Ye NH, Gao B, Chen X, Zhao SS, Fan T, Cao YY, Liu TY, Su ZZ, Xie LJ, Hu QJ, Wu HJ, Xiao S, Zhang J, Liu YG. Alternative splicing and translation play important roles in hypoxic germination in rice. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:817-833. [PMID: 30535157 PMCID: PMC6363088 DOI: 10.1093/jxb/ery393] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 10/27/2018] [Indexed: 05/04/2023]
Abstract
Post-transcriptional mechanisms (PTMs), including alternative splicing (AS) and alternative translation initiation (ATI), may explain the diversity of proteins involved in plant development and stress responses. Transcriptional regulation is important during the hypoxic germination of rice seeds, but the potential roles of PTMs in this process have not been characterized. We used a combination of proteomics and RNA sequencing to discover how AS and ATI contribute to plant responses to hypoxia. In total, 10 253 intron-containing genes were identified. Of these, ~1741 differentially expressed AS (DAS) events from 811 genes were identified in hypoxia-treated seeds compared with controls. Over 95% of these were not present in the list of differentially expressed genes. In particular, regulatory pathways such as the spliceosome, ribosome, endoplasmic reticulum protein processing and export, proteasome, phagosome, oxidative phosphorylation, and mRNA surveillance showed substantial AS changes under hypoxia, suggesting that AS responses are largely independent of transcriptional regulation. Considerable AS changes were identified, including the preferential usage of some non-conventional splice sites and enrichment of splicing factors in the DAS data sets. Taken together, these results not only demonstrate that AS and ATI function during hypoxic germination but they have also allowed the identification of numerous novel proteins/peptides produced via ATI.
Collapse
Affiliation(s)
- Mo-Xian Chen
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fu-Yuan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Feng-Zhu Wang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Neng-Hui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, Hunan Agricultural University, Changsha, China
| | - Bei Gao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xi Chen
- SpecAlly Life Technology Co., Ltd, Wuhan, China
| | - Shan-Shan Zhao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tao Fan
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Yun-Ying Cao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
- College of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Tie-Yuan Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ze-Zhuo Su
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li-Juan Xie
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Juan Hu
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Hui-Jie Wu
- College of Life Sciences, Nantong University, Nantong, Jiangsu, China
| | - Shi Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianhua Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
- Correspondence: or
| | - Ying-Gao Liu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
- Correspondence: or
| |
Collapse
|
181
|
Fesenko I, Azarkina R, Kirov I, Kniazev A, Filippova A, Grafskaia E, Lazarev V, Zgoda V, Butenko I, Bukato O, Lyapina I, Nazarenko D, Elansky S, Mamaeva A, Ivanov V, Govorun V. Phytohormone treatment induces generation of cryptic peptides with antimicrobial activity in the Moss Physcomitrella patens. BMC PLANT BIOLOGY 2019; 19:9. [PMID: 30616513 PMCID: PMC6322304 DOI: 10.1186/s12870-018-1611-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/20/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Cryptic peptides (cryptides) are small bioactive molecules generated via degradation of functionally active proteins. Only a few examples of plant cryptides playing an important role in plant defense have been reported to date, hence our knowledge about cryptic signals hidden in protein structure remains very limited. Moreover, little is known about how stress conditions influence the size of endogenous peptide pools, and which of these peptides themselves have biological functions is currently unclear. RESULTS Here, we used mass spectrometry to comprehensively analyze the endogenous peptide pools generated from functionally active proteins inside the cell and in the secretome from the model plant Physcomitrella patens. Overall, we identified approximately 4,000 intracellular and approximately 500 secreted peptides. We found that the secretome and cellular peptidomes did not show significant overlap and that respective protein precursors have very different protein degradation patterns. We showed that treatment with the plant stress hormone methyl jasmonate induced specific proteolysis of new functional proteins and the release of bioactive peptides having an antimicrobial activity and capable to elicit the expression of plant defense genes. Finally, we showed that the inhibition of protease activity during methyl jasmonate treatment decreased the secretome antimicrobial potential, suggesting an important role of peptides released from proteins in immune response. CONCLUSIONS Using mass-spectrometry, in vitro experiments and bioinformatics analysis, we found that methyl jasmonate acid induces significant changes in the peptide pools and that some of the resulting peptides possess antimicrobial and regulatory activities. Moreover, our study provides a list of peptides for further study of potential plant cryptides.
Collapse
Affiliation(s)
- Igor Fesenko
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Regina Azarkina
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ilya Kirov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Andrei Kniazev
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Anna Filippova
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina Grafskaia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region Russia
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow region Russia
| | - Victor Zgoda
- Institute of Biomedical Chemistry, Moscow, Russia
| | - Ivan Butenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Olga Bukato
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Irina Lyapina
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Nazarenko
- Department of Analytical Chemistry, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey Elansky
- Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Mamaeva
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Ivanov
- Laboratory of Proteomics, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Vadim Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
182
|
Stührwohldt N, Schaller A. Regulation of plant peptide hormones and growth factors by post-translational modification. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:49-63. [PMID: 30047205 DOI: 10.1111/plb.12881] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/20/2018] [Indexed: 05/24/2023]
Abstract
The number, diversity and significance of peptides as regulators of cellular differentiation, growth, development and defence of plants has long been underestimated. Peptides have now emerged as an important class of signals for cell-to-cell communication over short distances, and also for long-range signalling. We refer to these signalling molecules as peptide growth factors and peptide hormones, respectively. As compared to remarkable progress with respect to the mechanisms of peptide perception and signal transduction, the biogenesis of signalling peptides is still in its infancy. This review focuses on the biogenesis and activity of small post-translationally modified peptides. These peptides are derived from inactive pre-pro-peptides of approximately 70-120 amino acids. Multiple post-translational modifications (PTMs) may be required for peptide maturation and activation, including proteolytic processing, tyrosine sulfation, proline hydroxylation and hydroxyproline glycosylation. While many of the enzymes responsible for these modifications have been identified, their impact on peptide activity and signalling is not fully understood. These PTMs may or may not be required for bioactivity, they may inactivate the peptide or modify its signalling specificity, they may affect peptide stability or targeting, or its binding affinity with the receptor. In the present review, we will first introduce the peptides that undergo PTMs and for which these PTMs were shown to be functionally relevant. We will then discuss the different types of PTMs and the impact they have on peptide activity and plant growth and development. We conclude with an outlook on the open questions that need to be addressed in future research.
Collapse
Affiliation(s)
- N Stührwohldt
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - A Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
183
|
Filippova A, Lyapina I, Kirov I, Zgoda V, Belogurov A, Kudriaeva A, Ivanov V, Fesenko I. Salicylic acid influences the protease activity and posttranslation modifications of the secreted peptides in the moss Physcomitrella patens. J Pept Sci 2018; 25:e3138. [PMID: 30575224 DOI: 10.1002/psc.3138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/18/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Plant secretome comprises dozens of secreted proteins. However, little is known about the composition of the whole secreted peptide pools and the proteases responsible for the generation of the peptide pools. The majority of studies focus on target detection and characterization of specific plant peptide hormones. In this study, we performed a comprehensive analysis of the whole extracellular peptidome, using moss Physcomitrella patens as a model. Hundreds of modified and unmodified endogenous peptides that originated from functional and nonfunctional protein precursors were identified. The plant proteases responsible for shaping the pool of endogenous peptides were predicted. Salicylic acid (SA) influenced peptide production in the secretome. The proteasome activity was altered upon SA treatment, thereby influencing the composition of the peptide pools. These results shed more light on the role of proteases and posttranslational modification in the "active management" of the extracellular peptide pool in response to stress conditions. It also identifies a list of potential peptide hormones in the moss secretome for further analysis.
Collapse
Affiliation(s)
- Anna Filippova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Irina Lyapina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ilya Kirov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Victor Zgoda
- V.N. Orekhovich Research Institute of Biomedical Chemistry, Department of Proteomic Research and Mass Spectrometry, Moscow, Russian Federation
| | - Alexey Belogurov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anna Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vadim Ivanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Igor Fesenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
184
|
Nutrient-Responsive Small Signaling Peptides and Their Influence on the Root System Architecture. Int J Mol Sci 2018; 19:ijms19123927. [PMID: 30544528 PMCID: PMC6321020 DOI: 10.3390/ijms19123927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
The root system architecture (RSA) of plants is highly dependent on the surrounding nutrient environment. The uptake of essential nutrients triggers various signaling cascades and fluctuations in plant hormones to elicit physical changes in RSA. These pathways may involve signaling components known as small signaling peptides (SSPs), which have been implicated in a variety of plant developmental processes. This review discusses known nutrient-responsive SSPs with a focus on several subclasses that have been shown to play roles in root development. Most functionally well-characterized cases of SSP-mediated changes in RSA are found in responses to nitrogen (N) and phosphorus (P) availability, but other nutrients have also been known to affect the expression of SSP-encoding genes. These nutrient-responsive SSPs may interact downstream with leucine-rich repeat receptor kinases (LRR-RKs) to modulate hormone signaling and cellular processes impacting plant root development. SSPs responsive to multiple nutrient cues potentially act as mediators of crosstalk between the signaling pathways. Study of SSP pathways is complicated because of functional redundancy within peptide and receptor families and due to their functionality partly associated with post-translational modifications; however, as genomic research and techniques progress, novel SSP-encoding genes have been identified in many plant species. Understanding and characterizing the roles of SSPs influencing the root phenotypes will help elucidate the processes that plants use to optimize nutrient acquisition in the environment.
Collapse
|
185
|
Brito MS, DePaoli HC, Cossalter V, Avanci NC, Ferreira PB, Azevedo MS, Strini EJ, Quiapim AC, Goldman GH, Peres LEP, Goldman MHS. A novel cysteine-rich peptide regulates cell expansion in the tobacco pistil and influences its final size. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:55-67. [PMID: 30466601 DOI: 10.1016/j.plantsci.2018.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 06/09/2023]
Abstract
Plant morphogenesis is dependent on cell proliferation and cell expansion, which are responsible for establishing final organ size and shape during development. Several genes have been described as encoding components of the plant cell development machinery, among which are the plant peptides. Here we describe a novel cysteine-rich plant peptide (68 amino acids), encoded by a small open reading frame gene (sORF). It is specifically expressed in the reproductive organs of Nicotiana tabacum and is developmentally regulated. N- and C-terminal translational fusions with GFP in protoplasts have demonstrated that the peptide is not secreted. Knockdown transgenic plants produced by RNAi exhibited enlarged pistils due to cell expansion and the gene was named Small Peptide Inhibitor of Cell Expansion (SPICE). Estimation of nuclear DNA content using flow cytometry has shown that cell expansion in pistils was not correlated with endoreduplication. Decreased SPICE expression also affected anther growth and pollen formation, resulting in male sterility in at least one transgenic plant. Our results revealed that SPICE is a novel reproductive organ specific gene that controls cell expansion, probably as a component of a signal transduction pathway.
Collapse
Affiliation(s)
- Michael S Brito
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Brazil.
| | - Henrique C DePaoli
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Brazil
| | - Viviani Cossalter
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil
| | - Nilton C Avanci
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Biologia Comparada, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil
| | - Pedro B Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Brazil
| | | | - Edward J Strini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil; PPG - Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049-900, Brazil
| | - Andréa C Quiapim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil
| | - Gustavo H Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-903, Brazil
| | - Lázaro E P Peres
- Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo, 13418-900, Brazil
| | - Maria Helena S Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Brazil.
| |
Collapse
|
186
|
BRI1 controls vascular cell fate in the Arabidopsis root through RLP44 and phytosulfokine signaling. Proc Natl Acad Sci U S A 2018; 115:11838-11843. [PMID: 30377268 PMCID: PMC6243276 DOI: 10.1073/pnas.1814434115] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cell-fate determination and cellular behavior in plants rely mainly on positional information and intercellular communication. A plethora of cues are perceived by surface receptors and integrated into an adequate cellular output. Here, we show that the small receptor-like protein RLP44 acts as an intermediary to connect the receptors for two well-known signaling molecules, brassinosteroid and phytosulfokine, to control cell fate in the root vasculature. Furthermore, we show that the brassinosteroid receptor has functions that are independent from the responses to its hormone ligands and reveal that phytosulfokine signaling promotes procambial cell identity. These results provide a mechanistic framework for the integration of multiple signaling pathways at the plasma membrane by shifting associations of receptors in multiprotein complexes. Multicellularity arose independently in plants and animals, but invariably requires a robust determination and maintenance of cell fate that is adaptive to the environment. This is exemplified by the highly specialized water- and nutrient-conducting cells of the plant vasculature, the organization of which is already prepatterned close to the stem-cell niche, but can be modified according to extrinsic cues. Here, we show that the hormone receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1) is required for root vascular cell-fate maintenance, as BRI1 mutants show ectopic xylem in procambial position. However, this phenotype seems unrelated to canonical brassinosteroid signaling outputs. Instead, BRI1 is required for the expression and function of its interacting partner RECEPTOR-LIKE PROTEIN 44 (RLP44), which, in turn, associates with the receptor for the peptide hormone phytosulfokine (PSK). We show that PSK signaling is required for the maintenance of procambial cell identity and quantitatively controlled by RLP44, which promotes complex formation between the PSK receptor and its coreceptor. Mimicking the loss of RLP44, PSK-related mutants show ectopic xylem in the position of the procambium, whereas rlp44 is rescued by exogenous PSK. Based on these findings, we propose that RLP44 controls cell fate by connecting BRI1 and PSK signaling, providing a mechanistic framework for the dynamic balancing of signaling mediated by the plethora of plant receptor-like kinases at the plasma membrane.
Collapse
|
187
|
Hazarika RR, Sostaric N, Sun Y, van Noort V. Large-scale docking predicts that sORF-encoded peptides may function through protein-peptide interactions in Arabidopsis thaliana. PLoS One 2018; 13:e0205179. [PMID: 30321192 PMCID: PMC6188750 DOI: 10.1371/journal.pone.0205179] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Several recent studies indicate that small Open Reading Frames (sORFs) embedded within multiple eukaryotic non-coding RNAs can be translated into bioactive peptides of up to 100 amino acids in size. However, the functional roles of the 607 Stress Induced Peptides (SIPs) previously identified from 189 Transcriptionally Active Regions (TARs) in Arabidopsis thaliana remain unclear. To provide a starting point for functional annotation of these plant-derived peptides, we performed a large-scale prediction of peptide binding sites on protein surfaces using coarse-grained peptide docking. The docked models were subjected to further atomistic refinement and binding energy calculations. A total of 530 peptide-protein pairs were successfully docked. In cases where a peptide encoded by a TAR is predicted to bind at a known ligand or cofactor-binding site within the protein, it can be assumed that the peptide modulates the ligand or cofactor-binding. Moreover, we predict that several peptides bind at protein-protein interfaces, which could therefore regulate the formation of the respective complexes. Protein-peptide binding analysis further revealed that peptides employ both their backbone and side chain atoms when binding to the protein, forming predominantly hydrophobic interactions and hydrogen bonds. In this study, we have generated novel predictions on the potential protein-peptide interactions in A. thaliana, which will help in further experimental validation.
Collapse
Affiliation(s)
- Rashmi R. Hazarika
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Nikolina Sostaric
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
| | - Yifeng Sun
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Faculty of Engineering Technology, Campus Group T, KU Leuven, Leuven, Belgium
| | - Vera van Noort
- Department of Microbial and Molecular Systems, KU Leuven, Leuven, Belgium
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
188
|
Campos ML, de Souza CM, de Oliveira KBS, Dias SC, Franco OL. The role of antimicrobial peptides in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4997-5011. [PMID: 30099553 DOI: 10.1093/jxb/ery294] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/31/2018] [Indexed: 05/21/2023]
Abstract
Selective pressure imposed by millions of years of relentless biological attack has led to the development of an extraordinary array of defense strategies in plants. Among these, antimicrobial peptides (AMPs) stand out as one of the most prominent components of the plant immune system. These small and usually basic peptides are deployed as a generalist defense strategy that grants direct and durable resistance against biotic stress. Even though their name implies a function against microbes, the range of plant-associated organisms affected by these peptides is much broader. In this review, we highlight the advances in our understanding on the role of AMPs in plant immunity. We demonstrate that the capacity of plant AMPs to act against a large spectrum of enemies relies on their diverse mechanism of action and remarkable structural stability. The efficacy of AMPs as a defense strategy is evidenced by their widespread occurrence in the plant kingdom, an astonishing heterogeneity in host peptide composition, and the extent to which plant enemies have evolved effective counter-measures to evade AMP action. Plant AMPs are becoming an important topic of research due to their significance in allowing plants to thrive and for their enormous potential in agronomical and pharmaceutical fields.
Collapse
Affiliation(s)
- Marcelo Lattarulo Campos
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
- Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá/MT, Brazil
| | - Camila Maurmann de Souza
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
| | | | - Simoni Campos Dias
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
- Universidade de Brasilia, Pós-Graduação em Biologia Animal, Campus Darcy Ribeiro, Brasilia/DF, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasilia, Brasilia/DF, Brazil
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande/MS, Brazil
| |
Collapse
|
189
|
Yang M, Lin X, Liu X, Zhang J, Ge F. Genome Annotation of a Model Diatom Phaeodactylum tricornutum Using an Integrated Proteogenomic Pipeline. MOLECULAR PLANT 2018; 11:1292-1307. [PMID: 30176371 DOI: 10.1016/j.molp.2018.08.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/26/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Diatoms comprise a diverse and ecologically important group of eukaryotic phytoplankton that significantly contributes to marine primary production and global carbon cycling. Phaeodactylum tricornutum is commonly used as a model organism for studying diatom biology. Although its genome was sequenced in 2008, a high-quality genome annotation is still not available for this diatom. Here we report the development of an integrated proteogenomic pipeline and its application for improved annotation of P. tricornutum genome using mass spectrometry (MS)-based proteomics data. Our proteogenomic analysis unambiguously identified approximately 8300 genes and revealed 606 novel proteins, 506 revised genes, 94 splice variants, 58 single amino acid variants, and a holistic view of post-translational modifications in P. tricornutum. We experimentally confirmed a subset of novel events and obtained MS evidence for more than 200 micropeptides in P. tricornutum. These findings expand the genomic landscape of P. tricornutum and provide a rich resource for the study of diatom biology. The proteogenomic pipeline we developed in this study is applicable to any sequenced eukaryote and thus represents a significant contribution to the toolset for eukaryotic proteogenomic analysis. The pipeline and its source code are freely available at https://sourceforge.net/projects/gapeproteogenomic.
Collapse
Affiliation(s)
- Mingkun Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaohuang Lin
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jia Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Feng Ge
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
190
|
Zhu X, Zhao J, Abbas HMK, Liu Y, Cheng M, Huang J, Cheng W, Wang B, Bai C, Wang G, Dong W. Pyramiding of nine transgenes in maize generates high-level resistance against necrotrophic maize pathogens. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2145-2156. [PMID: 30006836 DOI: 10.1007/s00122-018-3143-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/06/2018] [Indexed: 05/25/2023]
Abstract
Key message Nine transgenes from different categories, viz. plant defense response genes and anti-apoptosis genes, played combined roles in maize to inhibit the necrotrophic pathogens Rhizoctonia solani and Bipolaris maydis. Maize sheath blight and southern corn leaf blight are major global threats to maize production. The management of these necrotrophic pathogens has encountered limited success due to the characteristics of their lifestyle. Here, we presented a transgenic pyramiding breeding strategy to achieve nine different resistance genes integrated in one transgenic maize line to combat different aspects of necrotrophic pathogens. These nine genes, selected from two different categories, plant defense response genes (Chi, Glu, Ace-AMP1, Tlp, Rs-AFP2, ZmPROPEP1 and Pti4), and anti-apoptosis genes (Iap and p35), were successfully transferred into maize and further implicated in resistance against the necrotrophic pathogens Rhizoctonia solani and Bipolaris maydis. Furthermore, the transgenic maize line 910, with high expression levels of the nine integrated genes, was selected from 49 lines. Under greenhouse and field trial conditions, line 910 showed significant resistance against maize sheath blight and southern corn leaf blight diseases. Higher-level resistance was obtained after the pyramiding of more resistance transgenes from different categories that function via different mechanisms. The present study provides a successful strategy for the management of necrotrophic pathogens.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jinfeng Zhao
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, 046011, Shanxi Province, China
| | - Hafiz Muhammad Khalid Abbas
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yunjun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, South Street of Zhongguancun 12, Beijing, 100081, China
| | - Menglan Cheng
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jue Huang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenjuan Cheng
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Beibei Wang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Cuiying Bai
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guoying Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, South Street of Zhongguancun 12, Beijing, 100081, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
191
|
Zhu X, Zhao J, Abbas HMK, Liu Y, Cheng M, Huang J, Cheng W, Wang B, Bai C, Wang G, Dong W. Pyramiding of nine transgenes in maize generates high-level resistance against necrotrophic maize pathogens. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1-12. [PMID: 29134240 DOI: 10.1007/s00122-017-2954-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 07/26/2017] [Indexed: 05/10/2023]
Abstract
Key message Nine transgenes from different categories, viz. plant defense response genes and anti-apoptosis genes, played combined roles in maize to inhibit the necrotrophic pathogens Rhizoctonia solani and Bipolaris maydis. Maize sheath blight and southern corn leaf blight are major global threats to maize production. The management of these necrotrophic pathogens has encountered limited success due to the characteristics of their lifestyle. Here, we presented a transgenic pyramiding breeding strategy to achieve nine different resistance genes integrated in one transgenic maize line to combat different aspects of necrotrophic pathogens. These nine genes, selected from two different categories, plant defense response genes (Chi, Glu, Ace-AMP1, Tlp, Rs-AFP2, ZmPROPEP1 and Pti4), and anti-apoptosis genes (Iap and p35), were successfully transferred into maize and further implicated in resistance against the necrotrophic pathogens Rhizoctonia solani and Bipolaris maydis. Furthermore, the transgenic maize line 910, with high expression levels of the nine integrated genes, was selected from 49 lines. Under greenhouse and field trial conditions, line 910 showed significant resistance against maize sheath blight and southern corn leaf blight diseases. Higher-level resistance was obtained after the pyramiding of more resistance transgenes from different categories that function via different mechanisms. The present study provides a successful strategy for the management of necrotrophic pathogens.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jinfeng Zhao
- Millet Research Institute, Shanxi Academy of Agricultural Sciences, Changzhi, 046011, Shanxi Province, China
| | - Hafiz Muhammad Khalid Abbas
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yunjun Liu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, South Street of Zhongguancun 12, Beijing, 100081, China
| | - Menglan Cheng
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jue Huang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenjuan Cheng
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Beibei Wang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Cuiying Bai
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Guoying Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, South Street of Zhongguancun 12, Beijing, 100081, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
192
|
Fesenko IA, Kirov IV, Filippova AA. Impact of Noncoding Part of the Genome on the Proteome Plasticity of the Eukaryotic Cell. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018040076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
193
|
Kereszt A, Mergaert P, Montiel J, Endre G, Kondorosi É. Impact of Plant Peptides on Symbiotic Nodule Development and Functioning. FRONTIERS IN PLANT SCIENCE 2018; 9:1026. [PMID: 30065740 PMCID: PMC6056668 DOI: 10.3389/fpls.2018.01026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/25/2018] [Indexed: 05/20/2023]
Abstract
Ribosomally synthesized peptides have wide ranges of functions in plants being, for example, signal molecules, transporters, alkaloids, or antimicrobial agents. Legumes are an unprecedented rich source of peptides, which are used to control the symbiosis of these plants with the nitrogen-fixing Rhizobium bacteria. Here, we discuss the function and the evolution of these peptides playing an important role in the formation or functioning of the symbiotic organs, the root nodules. We distinguish peptides that can be either cell-autonomous or secreted short-range or long-range signals, carrying messages in or between plant cells or that can act as effectors interacting with the symbiotic bacteria. Peptides are further classified according to the stage of the symbiotic process where they act. Several peptide classes, including RALF, DLV, ENOD40, and others, control Rhizobium infection and the initiation of cell divisions and the formation of nodule primordia. CLE and CEP peptides are implicated in systemic and local control of nodule initiation during autoregulation of nodulation and in response to the nutritional demands of the plant. Still other peptides act at later stages of the symbiosis. The PSK peptide is thought to be involved in the suppression of immunity in nodules and the nodule-specific cysteine-rich, GRP, and SNARP (LEED..PEED) peptide families are essential in the functioning of the nitrogen fixing root nodules. The NCRs and possibly also the GRP and SNARPs are targeted to the endosymbionts and play essential roles in the terminal differentiation of these bacteria.
Collapse
Affiliation(s)
- Attila Kereszt
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Peter Mergaert
- Institute of Integrative Biology of the Cell, UMR 9198, CNRS – CEA – Université Paris-Sud, Gif-sur-Yvette, France
| | - Jesús Montiel
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Gabriella Endre
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Éva Kondorosi
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
194
|
Velivelli SLS, Islam KT, Hobson E, Shah DM. Modes of Action of a Bi-domain Plant Defensin MtDef5 Against a Bacterial Pathogen Xanthomonas campestris. Front Microbiol 2018; 9:934. [PMID: 29867843 PMCID: PMC5964164 DOI: 10.3389/fmicb.2018.00934] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/23/2018] [Indexed: 11/24/2022] Open
Abstract
Defensins are small cysteine-rich endogenous host defense peptides expressed in all higher plants. They are thought to be important players in the defense arsenal of plants against fungal and oomycete pathogens. However, little is known regarding the antibacterial activity of these peptides. The genome of the model legume Medicago truncatula contains 63 genes each encoding a defensin with a tetradisulfide array. A unique bi-domain defensin, designated MtDef5, was recently characterized for its potent broad-spectrum antifungal activity. This 107-amino acid defensin contains two domains, 50 amino acids each, linked by a short peptide APKKVEP. Here, we characterize antibacterial activity of this defensin and its two domains, MtDef5A and MtDef5B, against two economically important plant bacterial pathogens, Gram-negative Xanthomonas campestris and Gram-positive Clavibacter michiganensis. MtDef5 inhibits the growth of X. campestris, but not C. michiganensis, at micromolar concentrations. MtDef5B, but not MtDef5A, exhibits more potent antibacterial activity than its parent MtDef5. MtDef5 and each of its two domains induce distinct morphological changes and cell death in X. campestris. They permeabilize the bacterial plasma membrane and translocate across membranes to the cytoplasm. They bind to negatively charged DNA indicating these peptides may kill bacterial cells by inhibiting DNA synthesis and/or transcription. The cationic amino acids present in the two γ-core motifs of MtDef5 that were previously shown to be important for its antifungal activity are also important for its antibacterial activity. MtDef5 and its more potent single domain MtDef5B have the potential to be deployed as antibacterial agents for control of a Xanthomonas wilt disease in transgenic crops.
Collapse
Affiliation(s)
| | - Kazi T Islam
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| | - Eric Hobson
- Donald Danforth Plant Science Center, St. Louis, MO, United States.,Department of Biology, Jackson State University, Jackson, MS, United States
| | - Dilip M Shah
- Donald Danforth Plant Science Center, St. Louis, MO, United States
| |
Collapse
|
195
|
AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants. Proc Natl Acad Sci U S A 2018; 115:5810-5815. [PMID: 29760074 DOI: 10.1073/pnas.1719491115] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Peptides encoded by small coding genes play an important role in plant development, acting in a similar manner as phytohormones. Few hormone-like peptides, however, have been shown to play a role in abiotic stress tolerance. In the current study, 17 Arabidopsis genes coding for small peptides were found to be up-regulated in response to salinity stress. To identify peptides leading salinity stress tolerance, we generated transgenic Arabidopsis plants overexpressing these small coding genes and assessed survivability and root growth under salinity stress conditions. Results indicated that 4 of the 17 overexpressed genes increased salinity stress tolerance. Further studies focused on AtPROPEP3, which was the most highly up-regulated gene under salinity stress. Treatment of plants with synthetic peptides encoded by AtPROPEP3 revealed that a C-terminal peptide fragment (AtPep3) inhibited the salt-induced bleaching of chlorophyll in seedlings. Conversely, knockdown AtPROPEP3 transgenic plants exhibited a hypersensitive phenotype under salinity stress, which was complemented by the AtPep3 peptide. This functional AtPep3 peptide region overlaps with an AtPep3 elicitor peptide that is related to the immune response of plants. Functional analyses with a receptor mutant of AtPep3 revealed that AtPep3 was recognized by the PEPR1 receptor and that it functions to increase salinity stress tolerance in plants. Collectively, these data indicate that AtPep3 plays a significant role in both salinity stress tolerance and immune response in Arabidopsis.
Collapse
|
196
|
Schaller A, Stintzi A, Rivas S, Serrano I, Chichkova NV, Vartapetian AB, Martínez D, Guiamét JJ, Sueldo DJ, van der Hoorn RAL, Ramírez V, Vera P. From structure to function - a family portrait of plant subtilases. THE NEW PHYTOLOGIST 2018; 218:901-915. [PMID: 28467631 DOI: 10.1111/nph.14582] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/13/2017] [Indexed: 05/20/2023]
Abstract
Contents Summary 901 I. Introduction 901 II. Biochemistry and structure of plant SBTs 902 III. Phylogeny of plant SBTs and family organization 903 IV. Physiological roles of plant SBTs 905 V. Conclusions and outlook 911 Acknowledgements 912 References 912 SUMMARY: Subtilases (SBTs) are serine peptidases that are found in all three domains of life. As compared with homologs in other Eucarya, plant SBTs are more closely related to archaeal and bacterial SBTs, with which they share many biochemical and structural features. However, in the course of evolution, functional diversification led to the acquisition of novel, plant-specific functions, resulting in the present-day complexity of the plant SBT family. SBTs are much more numerous in plants than in any other organism, and include enzymes involved in general proteolysis as well as highly specific processing proteases. Most SBTs are targeted to the cell wall, where they contribute to the control of growth and development by regulating the properties of the cell wall and the activity of extracellular signaling molecules. Plant SBTs affect all stages of the life cycle as they contribute to embryogenesis, seed development and germination, cuticle formation and epidermal patterning, vascular development, programmed cell death, organ abscission, senescence, and plant responses to their biotic and abiotic environments. In this article we provide a comprehensive picture of SBT structure and function in plants.
Collapse
Affiliation(s)
- Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Susana Rivas
- Laboratoire des Interactions Plantes-Microorganismes, LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Irene Serrano
- Laboratoire des Interactions Plantes-Microorganismes, LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Nina V Chichkova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Andrey B Vartapetian
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Dana Martínez
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Juan J Guiamét
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Daniela J Sueldo
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, Düsseldorf, 40225, Germany
| | - Pablo Vera
- Institute for Plant Molecular and Cell Biology, Universidad Politécnica de Valencia-CSIC, Valencia, 46022, Spain
| |
Collapse
|
197
|
Abstract
As fixed organisms, plants are especially affected by changes in their environment and have consequently evolved extensive mechanisms for acclimation and adaptation. Initially considered by-products from aerobic metabolism, reactive oxygen species (ROS) have emerged as major regulatory molecules in plants and their roles in early signaling events initiated by cellular metabolic perturbation and environmental stimuli are now established. Here, we review recent advances in ROS signaling. Compartment-specific and cross-compartmental signaling pathways initiated by the presence of ROS are discussed. Special attention is dedicated to established and hypothetical ROS-sensing events. The roles of ROS in long-distance signaling, immune responses, and plant development are evaluated. Finally, we outline the most challenging contemporary questions in the field of plant ROS biology and the need to further elucidate mechanisms allowing sensing, signaling specificity, and coordination of multiple signals.
Collapse
Affiliation(s)
- Cezary Waszczak
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| | | | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
198
|
Taleski M, Imin N, Djordjevic MA. CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1829-1836. [PMID: 29579226 DOI: 10.1093/jxb/ery037] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Secreted peptide hormones play pivotal roles in plant growth and development. So far, CEPs (C-TERMINALLY ENCODED PEPTIDEs) have been shown to act through CEP receptors (CEPRs) to control nitrogen (N)-demand signalling, nodulation, and lateral root development. Secreted CEP peptides can enter the xylem stream to act as long-distance signals, but evidence also exists for CEPs acting in local circuits. Recently, CEP peptide species varying in sequence, length, and post-translational modifications have been identified. A more comprehensive understanding of CEP biology requires insight into the in planta function of CEP genes, CEP peptide biogenesis, the components of CEP signalling cascades and, finally, how CEP peptide length, amino-acid composition, and post-translational modifications affect biological activity. In this review, we highlight recent studies that have advanced our understanding in these key areas and discuss some future directions.
Collapse
Affiliation(s)
- Michael Taleski
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra ACT, Australia
| | - Nijat Imin
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra ACT, Australia
| | - Michael A Djordjevic
- Division of Plant Sciences, Research School of Biology, ANU College of Science, Australian National University, Canberra ACT, Australia
| |
Collapse
|
199
|
Chagas FO, Pessotti RDC, Caraballo-Rodríguez AM, Pupo MT. Chemical signaling involved in plant-microbe interactions. Chem Soc Rev 2018; 47:1652-1704. [PMID: 29218336 DOI: 10.1039/c7cs00343a] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Microorganisms are found everywhere, and they are closely associated with plants. Because the establishment of any plant-microbe association involves chemical communication, understanding crosstalk processes is fundamental to defining the type of relationship. Although several metabolites from plants and microbes have been fully characterized, their roles in the chemical interplay between these partners are not well understood in most cases, and they require further investigation. In this review, we describe different plant-microbe associations from colonization to microbial establishment processes in plants along with future prospects, including agricultural benefits.
Collapse
Affiliation(s)
- Fernanda Oliveira Chagas
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (FCFRP-USP), Avenida do Café, s/n, 14040-903, Ribeirão Preto-SP, Brazil.
| | | | | | | |
Collapse
|
200
|
Oh E, Seo PJ, Kim J. Signaling Peptides and Receptors Coordinating Plant Root Development. TRENDS IN PLANT SCIENCE 2018; 23:337-351. [PMID: 29366684 DOI: 10.1016/j.tplants.2017.12.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 05/03/2023]
Abstract
Small peptides mediate cell-cell communication to coordinate a variety of plant developmental processes. Signaling peptides specifically bind to the extracellular domains of receptors that belong to the receptor-like kinase family, and the peptide-receptor interaction activates a range of biochemical and physiological processes. The plant root is crucial for the anchorage of plants in soil as well as for the uptake of water and nutrients. Over recent years great progress has been made in the identification of receptors, structural analysis of peptide-receptor pairs, and characterization of their signaling pathways during plant root development. We review here recent advances in the elucidation of the functions and molecular mechanisms of signaling peptides, the peptide-receptor pairs that activate signal initiation, and their signaling pathways during root development.
Collapse
Affiliation(s)
- Eunkyoo Oh
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju 61186, Korea; These authors contributed equally to this work
| | - Pil Joon Seo
- Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea; These authors contributed equally to this work
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Buk-Gu, Gwangju 61186, Korea.
| |
Collapse
|