151
|
Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydr Polym 2021; 273:118565. [PMID: 34560976 DOI: 10.1016/j.carbpol.2021.118565] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
Bacterial cellulose (BC) is a promising unique material for various biomedical and cosmetic applications due to its morphology, mechanical strength, high purity, high water uptake, non-toxicity, chemical controllability, and biocompatibility. Today, extensive investigation is into the manufacturing of BC-based composites with other components such as nanoparticles, synthetic polymers, natural polymers, carbon materials, and biomolecules, which will allow the development of a wide range of biomedical and cosmetic products. Moreover, the addition of different reinforcement substances into BC and the organized arrangement of BC nano-fibers have proven a promising improvement in their properties for biomedical applications. This review paper highlights the progress in synthesizing BC-based composites and their applications in biomedical fields, such as wound healing, drug delivery, tissue engineering, and cancer treatment. It emphasizes high-performance BC-based materials and cosmetic applications. Furthermore, it presents challenges yet to be defeated and future possibilities for BC-based composites for biomedical and cosmetic applications.
Collapse
|
152
|
Rothe H, Rost J, Kramer F, Alkhatib Y, Petzold-Welcke K, Klemm D, Fischer D, Liefeith K. Bacterial nanocellulose: Reinforcement of compressive strength using an adapted Mobile Matrix Reservoir Technology and suitable post-modification strategies. J Mech Behav Biomed Mater 2021; 125:104978. [PMID: 34837799 DOI: 10.1016/j.jmbbm.2021.104978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/14/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022]
Abstract
Bacterial nanocellulose (BNC) is a highly interesting biomaterial due to some outstanding properties especially when used in medical therapeutics and diagnostics. BNC is absolutely bioinert and is characterised by intrinsic properties such as high tensile stiffness and elasticity, high porosity, exceptional water uptake and swelling capacity. Furthermore, these properties can be adjusted in a very defined way by specifically changing the cultivation conditions or performing post-modifications such as crosslinking, functionalisation with additives, dehydration or drying. Especially the high tensile strength of the nanofibrillar material has been the subject of many investigations in the past couple of years. Nevertheless, the enormous tensile strength and elasticity of BNC is contrary to an almost purely viscous behaviour under compressive load. In the present study, different methods to influence the mechanical behaviour under compression with respect to load bearing applications of BNC are systematically investigated. The possibilities and limitations of the variable layer-by-layer cultivation known as Mobile Matrix Reservoir Technology (MMR-Tech) as well as the effect of different post-modification strategies of BNC are thoroughly investigated. Beside of commonly used indentation tests for characterising the mechanical properties of BNC, we introduce a novel evaluation methodology based on mechanical relaxation measurements and an evolutionary regression algorithm for the derivation of a viscoelastic material law, which for the first time allows standardised, comparative viscoelastic investigations of soft-matter biomaterials to be performed independently of the measurement setup. Using this methodology, we are able to show, that cultivation conditions for BNC and suitable post-modifications can result in different effects on the viscoelastic behaviour of the fabricated composites. We show that the cultivation conditions for BNC primarily affect the height of dispersion and the frequency of the relaxation centre which corresponds roughly to the mean value of the logarithmic distributed relaxation times, and that these effects could be enhanced by post-modifications. However, we also identify parameters, such as the width of the relaxation region, which corresponds roughly to the standard deviation of the logarithmic distributed relaxation times, on which the type of cultivation obviously shows no influence but which can be influenced exclusively by post-modifications. Our methodology enables for the first time a clear identification of those parameters which represent a significant factor of influence to the viscoelastic material behaviour, which should enable a more targeted and application-relevant development of BNC composites in the future.
Collapse
Affiliation(s)
- Holger Rothe
- Institute for Bioprocessing and Analytical Measurements Techniques e.V., Department of Biomaterials, Rosenhof, 37308, Heilbad Heiligenstadt, Germany.
| | - Jürgen Rost
- Institute for Bioprocessing and Analytical Measurements Techniques e.V., Department of Biomaterials, Rosenhof, 37308, Heilbad Heiligenstadt, Germany.
| | | | - Yaser Alkhatib
- Friedrich-Schiller-University Jena, Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Lessingstraße 8, 07743, Jena, Germany.
| | | | - Dieter Klemm
- Polymet Jena e.V., Wildenbruchstr. 15, 07745, Jena, Germany; KKF-Gesellschaft, Hans-Knöll-Str. 6, 07745, Jena, Germany.
| | - Dagmar Fischer
- Friedrich-Schiller-University Jena, Institute of Pharmacy, Department of Pharmaceutical Technology and Biopharmacy, Lessingstraße 8, 07743, Jena, Germany.
| | - Klaus Liefeith
- Institute for Bioprocessing and Analytical Measurements Techniques e.V., Department of Biomaterials, Rosenhof, 37308, Heilbad Heiligenstadt, Germany.
| |
Collapse
|
153
|
Haque ST, Saha SK, Haque ME, Biswas N. Nanotechnology-based therapeutic applications: in vitro and in vivo clinical studies for diabetic wound healing. Biomater Sci 2021; 9:7705-7747. [PMID: 34709244 DOI: 10.1039/d1bm01211h] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetic wounds often indicate chronic complications that are difficult to treat. Unfortunately, existing conventional treatment modalities often cause unpremeditated side effects, given the need to develop alternative therapeutic phenotypes that are safe or have minimal side effects and risks. Nanotechnology-based platforms, including nanotherapeutics, nanoparticles (NPs), nanofibers, nanohydrogels, and nanoscaffolds, have garnered attention for their groundbreaking potential to decipher the biological environment and offer personalized treatment methods for wound healing. These nanotechnology-based platforms can successfully overcome the impediments posed by drug toxicity, existing treatment modalities, and the physiology and complexity of the wound sites. Furthermore, studies have shown that they play an essential role in influencing angiogenesis, collagen production, and extracellular matrix (ECM) synthesis, which are integral in skin repair mechanisms. In this review, we emphasized the importance of various nanotechnology-based platforms for healing diabetic wounds and report on the innovative preclinical and clinical outcomes of different nanotechnology-based platforms. This review also outlined the limitations of existing conventional treatment modalities and summarized the physiology of acute and chronic diabetic wounds.
Collapse
Affiliation(s)
- Sheikh Tanzina Haque
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Subbroto Kumar Saha
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA.,Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neugdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Md Enamul Haque
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Nirupam Biswas
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN-46202, USA.,Department of Immunology and Microbial Diseases, Albany Medical College, Albany, NY-12208, USA.
| |
Collapse
|
154
|
|
155
|
He W, Wu J, Xu J, Mosselhy DA, Zheng Y, Yang S. Bacterial Cellulose: Functional Modification and Wound Healing Applications. Adv Wound Care (New Rochelle) 2021; 10:623-640. [PMID: 32870775 PMCID: PMC8392072 DOI: 10.1089/wound.2020.1219] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Significance: Wound dressings are frequently used for wound covering and healing. Ideal wound dressings should provide a moist environment for wounds and actively promote wound healing and skin recovery. The materials used as ideal wound dressings should possess specific properties, thus accelerating skin tissue regeneration process. Recent Advances: Bacterial cellulose (BC) is a natural polymer synthesized by some bacteria. As a kind of natural biopolymer, BC shows good biological activity, biodegradability, and biological adaptability. It has many unique physical, chemical, and biological properties, such as ultrafine nanofiber network, high crystallinity, high water absorption and retention capacity, and high tensile strength and elastic modulus. These excellent properties of BC have laid the foundation for its application as dressing in wound healing. Critical Issues: To optimize the biocompatibility and antimicrobial activity of BC, different methods including microbial fermentation, physical modification, chemical modification, and compound modification have been adopted to modify BC to ensure a better application in wound healing. BC-based wound dressings have been applied in infected wounds, acute traumatic injuries, burns, and diabetic wounds, showing remarkable therapeutic effects on promoting wound healing. Furthermore, there have been some commercial BC-based dressings and they have been utilized in clinical practice. Future Directions: Because of its excellent physicochemical characteristics and biological properties, BC shows high clinical value to be used as a wound dressing for skin tissue regeneration.
Collapse
Affiliation(s)
- Wei He
- School of Materials Science and Engineering, University of Science and Technology, Beijing, China
- Suzhou Xiangcheng Medical Materials Science and Technology Co., Ltd., Suzhou, China
| | - Jian Wu
- Suzhou Xiangcheng Medical Materials Science and Technology Co., Ltd., Suzhou, China
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
- Division of Nanomaterials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Nanchang, China
| | - Jin Xu
- Department of Basic Medicine, Kangda College of Nanjing Medical University, Lianyungang, China
| | - Dina A. Mosselhy
- Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology, Beijing, China
| | - Siming Yang
- Key Laboratory of Wound Repair and Regeneration of PLA, Chinese PLA General Hospital, Medical College of PLA, Beijing, China
| |
Collapse
|
156
|
Benign Production of AgNPs/Bacterial Nanocellulose for Wound Healing Dress: Antioxidant, Cytotoxicity and In Vitro Studies. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02190-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
157
|
Bacterial cellulose and its potential for biomedical applications. Biotechnol Adv 2021; 53:107856. [PMID: 34666147 DOI: 10.1016/j.biotechadv.2021.107856] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/11/2022]
Abstract
Bacterial cellulose (BC) is an important polysaccharide synthesized by some bacterial species under specific culture conditions, which presents several remarkable features such as microporosity, high water holding capacity, good mechanical properties and good biocompatibility, making it a potential biomaterial for medical applications. Since its discovery, BC has been used for wound dressing, drug delivery, artificial blood vessels, bone tissue engineering, and so forth. Additionally, BC can be simply manipulated to form its derivatives or composites with enhanced physicochemical and functional properties. Several polymers, carbon-based nanomaterials, and metal nanoparticles (NPs) have been introduced into BC by ex situ and in situ methods to design hybrid materials with enhanced functional properties. This review provides comprehensive knowledge and highlights recent advances in BC production strategies, its structural features, various in situ and ex situ modification techniques, and its potential for biomedical applications.
Collapse
|
158
|
TAKEJIMA ML, MAGALHÃES MAB, RIBAS JM, TABUSHI FI, BUFON CCB, CAMARGO TMS, MALUF IC, MALAFAIA O. VEGETABLE CELLULOSE NANOFIBER DRESSING AIDS IN THE HEALING PROCESS OF THIRD-DEGREE BURNS? STUDY ON RATS. ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2021; 34:e1586. [PMID: 34669881 PMCID: PMC8521782 DOI: 10.1590/0102-672020210002e1586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The treatment of 3rd degree burns represents a major medical challenge. Pinus vegetable cellulose is a biomaterial with characteristic similar to bacterial cellulose. AIM To evaluate the safety of cellulose membrane (Pinus sp) in the treatment of 3rd burns in rats and to compare its effectiveness with the bacterial membrane already on the market. METHOD Thirty-three Wistar rats were beaten with a 3rd degree burn on back skin by applying water at 98º C for 30 s. Then, they were divided into three groups (n=11): group 1 - simple dressing with gauze; group 2 - dressing with bacterial cellulose membrane; and group 3 - dressing with vegetable cellulose membrane. The animals were maintained for 15 days to check the general clinical status, macroscopic aspect, contraction of the wounds and microscopic analysis for the degree of healing and collagenization. RESULTS They were clinically well during the experiment. During the removal of the dressing, there was bleeding in the wound of the control group, unlike the groups treated with cellulose membranes, which protected the bed from injury. The macroscopic evaluation showed a greater contraction of the wounds treated with the membranes in relation to the control. A microscopic analysis revealed that most of the wounds were in advanced healing degree with predominance of mature collagen in all groups. CONCLUSION Pinus sp cellulose membrane showed efficacy similar to that of the bacterial membrane in the treatment of 3rd degree burns.
Collapse
Affiliation(s)
- Milka Lie TAKEJIMA
- Mackenzie Evangelical Faculty of Paraná, Curitiba, PR, Brazil,University Evangelical Mackenzie Hospital, Curitiba, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Danial WH, Md Bahri NF, Abdul Majid Z. Preparation, Marriage Chemistry and Applications of Graphene Quantum Dots-Nanocellulose Composite: A Brief Review. Molecules 2021; 26:6158. [PMID: 34684739 PMCID: PMC8537986 DOI: 10.3390/molecules26206158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/02/2021] [Accepted: 10/11/2021] [Indexed: 12/03/2022] Open
Abstract
Graphene quantum dots (GQDs) are zero-dimensional carbon-based materials, while nanocellulose is a nanomaterial that can be derived from naturally occurring cellulose polymers or renewable biomass resources. The unique geometrical, biocompatible and biodegradable properties of both these remarkable nanomaterials have caught the attention of the scientific community in terms of fundamental research aimed at advancing technology. This study reviews the preparation, marriage chemistry and applications of GQDs-nanocellulose composites. The preparation of these composites can be achieved via rapid and simple solution mixing containing known concentration of nanomaterial with a pre-defined composition ratio in a neutral pH medium. They can also be incorporated into other matrices or drop-casted onto substrates, depending on the intended application. Additionally, combining GQDs and nanocellulose has proven to impart new hybrid nanomaterials with excellent performance as well as surface functionality and, therefore, a plethora of applications. Potential applications for GQDs-nanocellulose composites include sensing or, for analytical purposes, injectable 3D printing materials, supercapacitors and light-emitting diodes. This review unlocks windows of research opportunities for GQDs-nanocellulose composites and pave the way for the synthesis and application of more innovative hybrid nanomaterials.
Collapse
Affiliation(s)
- Wan Hazman Danial
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Nur Fathanah Md Bahri
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, Kuantan 25200, Pahang, Malaysia;
| | - Zaiton Abdul Majid
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia;
| |
Collapse
|
160
|
Momin M, Mishra V, Gharat S, Omri A. Recent advancements in cellulose-based biomaterials for management of infected wounds. Expert Opin Drug Deliv 2021; 18:1741-1760. [PMID: 34605347 DOI: 10.1080/17425247.2021.1989407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Chronic wounds are a substantial burden on the healthcare system. Their treatment requires advanced dressings, which can provide a moist wound environment, prevent bacterial infiltration, and act as a drug carrier. Cellulose is biocompatible, biodegradable, and can be functionalized according to specific requirements, which makes it a highly versatile biomaterial. Antimicrobial cellulose dressings are proving to be highly effective against infected wounds. AREAS COVERED This review briefly addresses the mechanism of wound healing and its pathophysiology. It also discusses wound infections, biofilm formation, and progressive emergence of drug-resistant bacteria in chronic wounds and the treatment strategies for such types of infected wounds. It also summarizes the general properties, method of production, and types of cellulose wound dressings. It explores recent studies and advancements regarding the use of cellulose and its derivatives in wound management. EXPERT OPINION Cellulose and its various functionalized derivatives represent a promising choice of wound dressing material. Cellulose-based dressings loaded with antimicrobials are very useful in controlling infection in a chronic wound. Recent studies showing its efficacy against drug-resistant bacteria make it a favorable choice for chronic wound infections. Further research and large-scale clinical trials are required for better clinical evidence of its efficiency.
Collapse
Affiliation(s)
- Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India.,SVKM's C B Patel Research Center for Chemistry and Biological Sciences, Mumbai, India
| | - Varsha Mishra
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
161
|
Kadier A, Ilyas RA, Huzaifah MRM, Harihastuti N, Sapuan SM, Harussani MM, Azlin MNM, Yuliasni R, Ibrahim R, Atikah MSN, Wang J, Chandrasekhar K, Islam MA, Sharma S, Punia S, Rajasekar A, Asyraf MRM, Ishak MR. Use of Industrial Wastes as Sustainable Nutrient Sources for Bacterial Cellulose (BC) Production: Mechanism, Advances, and Future Perspectives. Polymers (Basel) 2021; 13:3365. [PMID: 34641185 PMCID: PMC8512337 DOI: 10.3390/polym13193365] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
A novel nanomaterial, bacterial cellulose (BC), has become noteworthy recently due to its better physicochemical properties and biodegradability, which are desirable for various applications. Since cost is a significant limitation in the production of cellulose, current efforts are focused on the use of industrial waste as a cost-effective substrate for the synthesis of BC or microbial cellulose. The utilization of industrial wastes and byproduct streams as fermentation media could improve the cost-competitiveness of BC production. This paper examines the feasibility of using typical wastes generated by industry sectors as sources of nutrients (carbon and nitrogen) for the commercial-scale production of BC. Numerous preliminary findings in the literature data have revealed the potential to yield a high concentration of BC from various industrial wastes. These findings indicated the need to optimize culture conditions, aiming for improved large-scale production of BC from waste streams.
Collapse
Affiliation(s)
- Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; (A.K.); (J.W.)
| | - R. A. Ilyas
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - M. R. M. Huzaifah
- Faculty of Agricultural Science and Forestry, Bintulu Campus, Universiti Putra Malaysia, Bintulu 97000, Sarawak, Malaysia
| | - Nani Harihastuti
- Centre of Industrial Pollution Prevention Technology, The Ministry of Industry, Jawa Tengah 50136, Indonesia; (N.H.); (R.Y.)
| | - S. M. Sapuan
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (M.M.H.)
- Laboratory of Technology Biocomposite, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - M. M. Harussani
- Advanced Engineering Materials and Composites Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.M.S.); (M.M.H.)
| | - M. N. M. Azlin
- Laboratory of Technology Biocomposite, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Department of Textile Technology, School of Industrial Technology, Universiti Teknologi MARA, Universiti Teknologi Mara Negeri Sembilan, Kuala Pilah 72000, Negeri Sembilan, Malaysia
| | - Rustiana Yuliasni
- Centre of Industrial Pollution Prevention Technology, The Ministry of Industry, Jawa Tengah 50136, Indonesia; (N.H.); (R.Y.)
| | - R. Ibrahim
- Innovation & Commercialization Division, Forest Research Institute Malaysia, Kepong 52109, Selangor Darul Ehsan, Malaysia;
| | - M. S. N. Atikah
- Department of Chemical and Environmental Engineering Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Junying Wang
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China; (A.K.); (J.W.)
| | - K. Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Korea;
| | - M Amirul Islam
- Laboratory for Quantum Semiconductors and Photon-Based BioNanotechnology, Department of Electrical and Computer Engineering, Faculty of Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Shubham Sharma
- Department of Mechanical Engineering, IK Gujral Punjab Technical University, Jalandhar 144001, India;
| | - Sneh Punia
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore 632115, India
| | - M. R. M. Asyraf
- Department of Aerospace Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.R.M.A.); (M.R.I.)
| | - M. R. Ishak
- Department of Aerospace Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (M.R.M.A.); (M.R.I.)
| |
Collapse
|
162
|
Huang R, Hu J, Qian W, Chen L, Zhang D. Recent advances in nanotherapeutics for the treatment of burn wounds. BURNS & TRAUMA 2021; 9:tkab026. [PMID: 34778468 PMCID: PMC8579746 DOI: 10.1093/burnst/tkab026] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/24/2021] [Indexed: 12/24/2022]
Abstract
Moderate or severe burns are potentially devastating injuries that can even cause death, and many of them occur every year. Infection prevention, anti-inflammation, pain management and administration of growth factors play key roles in the treatment of burn wounds. Novel therapeutic strategies under development, such as nanotherapeutics, are promising prospects for burn wound treatment. Nanotherapeutics, including metallic and polymeric nanoformulations, have been extensively developed to manage various types of burns. Both human and animal studies have demonstrated that nanotherapeutics are biocompatible and effective in this application. Herein, we provide comprehensive knowledge of and an update on the progress of various nanoformulations for the treatment of burn wounds.
Collapse
Affiliation(s)
- Rong Huang
- Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Wei Qian
- Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Liang Chen
- Department of plastic surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Dinglin Zhang
- Department of Chemistry, College of Basic Medicine, Third Military Medical University (Army Medical University), Chongqing 400038, China
- State Key Laboratory of Trauma, Burn and Combined Injury, Chongqing, 400038, China
| |
Collapse
|
163
|
Stanescu PO, Radu IC, Leu Alexa R, Hudita A, Tanasa E, Ghitman J, Stoian O, Tsatsakis A, Ginghina O, Zaharia C, Shtilman M, Mezhuev Y, Galateanu B. Novel chitosan and bacterial cellulose biocomposites tailored with polymeric nanoparticles for modern wound dressing development. Drug Deliv 2021; 28:1932-1950. [PMID: 34550033 PMCID: PMC8462918 DOI: 10.1080/10717544.2021.1977423] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Dressing biomaterials play a key role in wound management keeping a moisture medium and protecting against external factors. Natural and synthetic materials could be used as dressings where chitosan and bacterial cellulose is one of the most important solutions. These biopolymers have been used for wound dressing based on their non-toxic, biodegradable, and biocompatible features. In this study, biocomposites based on bacterial cellulose and chitosan membranes tailored with antimicrobial loaded poly(N-isopropylacrylamide)/polyvinyl alcohol nanoparticles were prepared. Core-shell polymeric nanoparticles, bacterial cellulose/chitosan membranes, and biocomposites were independently loaded with silver sulfadiazine, a well-known sulfonamide antibacterial agent used in the therapy of mild-to-moderate infections for sensitive organisms. The chemistry, structure, morphology, and size distribution were investigated by Fourier transformed infrared spectroscopy (FTIR-ATR), RAMAN spectroscopy, Scanning electron (SEM) and Transmission electron microscopy (TEM), and Dynamic light scattering (DLS). In vitro release behaviors of silver sulfadiazine from polymeric nanoparticles and biocomposites were investigated. The biological investigations revealed good biocompatibility of both the nanoparticles and the biocomposites in terms of human dermal fibroblasts viability and proliferation potential. Finally, the drug-loaded polymeric biomaterials showed promising characteristics, proving their high potential as an alternative support to develop a biocompatible and antibacterial wound dressing.
Collapse
Affiliation(s)
- Paul-Octavian Stanescu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Ionut-Cristian Radu
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Rebeca Leu Alexa
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Ariana Hudita
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Eugenia Tanasa
- Department of Physics, University Politehnica of Bucharest, Bucharest, Romania
| | - Jana Ghitman
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Oana Stoian
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Aristidis Tsatsakis
- Department of Toxicology and Forensic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| | - Octav Ginghina
- Department of Surgery, "Sf. Ioan" Clinical Emergency Hospital, Bucharest, Romania.,Department II, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Catalin Zaharia
- Advanced Polymer Materials Group, University Politehnica of Bucharest, Bucharest, Romania
| | - Mikhail Shtilman
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Yaroslav Mezhuev
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - Bianca Galateanu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
164
|
Nam G, Kim M, Jang Y, Cho S. Cold Atmospheric Pressure Microplasma Pipette for Disinfection of Methicillin-Resistant Staphylococcus aureus. MICROMACHINES 2021; 12:1103. [PMID: 34577746 PMCID: PMC8465082 DOI: 10.3390/mi12091103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022]
Abstract
Microbial infections should be controlled and prevented for successful wound healing and tissue regeneration. Various disinfection methods exist that use antibiotics, ultraviolet (UV), heat, radiation, or chemical disinfectants; however, cold atmospheric pressure plasma has exhibited a unique and effective antibacterial ability that is not affected by antibiotic resistance or pain. This study develops a cold atmospheric pressure microplasma pipette (CAPMP) that outputs an Ar plasma plume through a tube with an inner radius of 180 μm for disinfection in a small area. The CAPMP was evaluated using Staphylococcus aureus and methicillin-resistant Staphylococcus aureus diluted in liquid media, spread on solid agar, or covered by dressing gauze. An increase in the treatment time of CAPMP resulted in a decrease in the number of colonies of the grown microorganism (colony forming unit) and an increase in the disinfected area for both bacteria. The disinfection ability of CAPMP was observed when the bacteria were covered with dressing gauze and was dependent on the number of gauze layers.
Collapse
Affiliation(s)
- Geunyoung Nam
- Department of Biomedical Engineering, Gachon Advanced Institute for Health Science & Technology, Gachon University, 191 Hambakmoe-ro, Incheon 21999, Korea;
| | - Muhwan Kim
- Femto Science Inc., 557 Dongtangiheung-ro, Hwaseong-si 18469, Gyeonggi-do, Korea; (M.K.); (Y.J.)
| | - Yeonsook Jang
- Femto Science Inc., 557 Dongtangiheung-ro, Hwaseong-si 18469, Gyeonggi-do, Korea; (M.K.); (Y.J.)
| | - Sungbo Cho
- Department of Biomedical Engineering, Gachon Advanced Institute for Health Science & Technology, Gachon University, 191 Hambakmoe-ro, Incheon 21999, Korea;
- Department of Electronic Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea
| |
Collapse
|
165
|
A Review on the Enhancement of Calcium Phosphate Cement with Biological Materials in Bone Defect Healing. Polymers (Basel) 2021; 13:polym13183075. [PMID: 34577976 PMCID: PMC8472520 DOI: 10.3390/polym13183075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 01/28/2023] Open
Abstract
Calcium phosphate cement (CPC) is a promising material used in the treatment of bone defects due to its profitable features of self-setting capability, osteoconductivity, injectability, mouldability, and biocompatibility. However, the major limitations of CPC, such as the brittleness, lack of osteogenic property, and poor washout resistance, remain to be resolved. Thus, significant research effort has been committed to modify and reinforce CPC. The mixture of CPC with various biological materials, defined as the materials produced by living organisms, have been fabricated by researchers and their characteristics have been investigated in vitro and in vivo. This present review aimed to provide a comprehensive overview enabling the readers to compare the physical, mechanical, and biological properties of CPC upon the incorporation of different biological materials. By mixing the bone-related transcription factors, proteins, and/or polysaccharides with CPC, researchers have demonstrated that these combinations not only resolved the lack of mechanical strength and osteogenic effects of CPC but also further improve its own functional properties. However, exceptions were seen in CPC incorporated with certain proteins (such as elastin-like polypeptide and calcitonin gene-related peptide) as well as blood components. In conclusion, the addition of biological materials potentially improves CPC features, which vary depending on the types of materials embedded into it. The significant enhancement of CPC seen in vitro and in vivo requires further verification in human trials for its clinical application.
Collapse
|
166
|
Ross IL, Shah S, Hankamer B, Amiralian N. Microalgal nanocellulose - opportunities for a circular bioeconomy. TRENDS IN PLANT SCIENCE 2021; 26:924-939. [PMID: 34144878 DOI: 10.1016/j.tplants.2021.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/16/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Over 3 billion years, photosynthetic algae have evolved complex uses for cellulose, the most abundant polymer worldwide. A major cell-wall component of lignocellulosic plants, seaweeds, microalgae, and bacteria, cellulose can be processed to nanocellulose, a promising nanomaterial with novel properties. The structural diversity of macro- and microalgal nanocelluloses opens opportunities to couple low-impact biomass production with novel, green-chemistry processing to yield valuable, sustainable nanomaterials for a multitude of applications ranging from novel wound dressings to organic solar cells. We review the origins of algal cellulose and the applications and uses of nanocellulose, and highlight the potential for microalgae as a nanocellulose source. Given the limited state of current knowledge, we identify research challenges and strategies to help to realise this potential.
Collapse
Affiliation(s)
- Ian L Ross
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Sarah Shah
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ben Hankamer
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nasim Amiralian
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
167
|
Catalyst-Free Crosslinking Modification of Nata-de-Coco-Based Bacterial Cellulose Nanofibres Using Citric Acid for Biomedical Applications. Polymers (Basel) 2021; 13:polym13172966. [PMID: 34503006 PMCID: PMC8433797 DOI: 10.3390/polym13172966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/02/2022] Open
Abstract
Bacterial cellulose (BC) has gained attention among researchers in materials science and bio-medicine due to its fascinating properties. However, BC’s fibre collapse phenomenon (i.e., its inability to reabsorb water after dehydration) is one of the drawbacks that limit its potential. To overcome this, a catalyst-free thermal crosslinking reaction was employed to modify BC using citric acid (CA) without compromising its biocompatibility. FTIR, XRD, SEM/EDX, TGA, and tensile analysis were carried out to evaluate the properties of the modified BC (MBC). The results confirm the fibre crosslinking phenomenon and the improvement of some properties that could be advantageous for various applications. The modified nanofibre displayed an improved crystallinity and thermal stability with increased water absorption/swelling and tensile modulus. The MBC reported here can be used for wound dressings and tissue scaffolding.
Collapse
|
168
|
Alizadeh V, Kirchner B. Molecular level insight into the solvation of cellulose in deep eutectic solvents. J Chem Phys 2021; 155:084501. [PMID: 34470350 DOI: 10.1063/5.0058333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Deep eutectic solvents as sustainable and new-generation solvents show potential in the field of cellulose dissolution. Although these novel materials are tested for numerous industrial, environmental, and medical applications, little is known about the structural features of cellulose interacting with deep eutectic solvents. In this work, the interplay of cellulose is studied in two deep eutectic solvents: choline acetate mixed with urea and choline chloride mixed with urea using classical molecular dynamics simulations. Dissolution of cellulose in the studied liquids was not observed to be in agreement with experimental work from the literature. However, a slight swelling in the chloride, as compared to the acetate-based solvent, is apparent. A possible rationale might be found in the stronger hydrogen bonding of the chloride anion compared to the acetate anion with the hydrogen atoms of the cellulose. Moreover, chloride approaches the outer glucose units comparatively more, which could be interpreted as the onset of entering and thus dissolving the cellulose as was previously observed. Specific hydrogen bonds between all units are analyzed and discussed in detail.
Collapse
Affiliation(s)
- Vahideh Alizadeh
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstraße 4+6, D-53115 Bonn, Germany
| |
Collapse
|
169
|
Controlled Release of the α-Tocopherol-Derived Metabolite α-13'-Carboxychromanol from Bacterial Nanocellulose Wound Cover Improves Wound Healing. NANOMATERIALS 2021; 11:nano11081939. [PMID: 34443772 PMCID: PMC8398652 DOI: 10.3390/nano11081939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/29/2023]
Abstract
Inflammation is a hallmark of tissue remodeling during wound healing. The inflammatory response to wounds is tightly controlled and well-coordinated; dysregulation compromises wound healing and causes persistent inflammation. Topical application of natural anti-inflammatory products may improve wound healing, in particular under chronic pathological conditions. The long-chain metabolites of vitamin E (LCM) are bioactive molecules that mediate cellular effects via oxidative stress signaling as well as anti-inflammatory pathways. However, the effect of LCM on wound healing has not been investigated. We administered the α-tocopherol-derived LCMs α-13'-hydroxychromanol (α-13'-OH) and α-13'-carboxychromanol (α-13'-COOH) as well as the natural product garcinoic acid, a δ-tocotrienol derivative, in different pharmaceutical formulations directly to wounds using a splinted wound mouse model to investigate their effects on the wounds' proinflammatory microenvironment and wound healing. Garcinoic acid and, in particular, α-13'-COOH accelerated wound healing and quality of the newly formed tissue. We next loaded bacterial nanocellulose (BNC), a valuable nanomaterial used as a wound dressing with high potential for drug delivery, with α-13'-COOH. The controlled release of α-13'-COOH using BNC promoted wound healing and wound closure, mainly when a diabetic condition was induced before the injury. This study highlights the potential of α-13'-COOH combined with BNC as a potential active wound dressing for the advanced therapy of skin injuries.
Collapse
|
170
|
Electrosprayed Shrimp and Mushroom Nanochitins on Cellulose Tissue for Skin Contact Application. Molecules 2021; 26:molecules26144374. [PMID: 34299649 PMCID: PMC8307451 DOI: 10.3390/molecules26144374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 01/01/2023] Open
Abstract
Cosmetics has recently focused on biobased skin-compatible materials. Materials from natural sources can be used to produce more sustainable skin contact products with enhanced bioactivity. Surface functionalization using natural-based nano/microparticles is thus a subject of study, aimed at better understanding the skin compatibility of many biopolymers also deriving from biowaste. This research investigated electrospray as a method for surface modification of cellulose tissues with chitin nanofibrils (CNs) using two different sources-namely, vegetable (i.e., from fungi), and animal (from crustaceans)-and different solvent systems to obtain a biobased and skin-compatible product. The surface of cellulose tissues was uniformly decorated with electrosprayed CNs. Biological analysis revealed that all treated samples were suitable for skin applications since human dermal keratinocytes (i.e., HaCaT cells) successfully adhered to the processed tissues and were viable after being in contact with released substances in culture media. These results indicate that the use of solvents did not affect the final cytocompatibility due to their effective evaporation during the electrospray process. Such treatments did not also affect the characteristics of cellulose; in addition, they showed promising anti-inflammatory and indirect antimicrobial activity toward dermal keratinocytes in vitro. Specifically, cellulosic substrates decorated with nanochitins from shrimp showed strong immunomodulatory activity by first upregulating then downregulating the pro-inflammatory cytokines, whereas nanochitins from mushrooms displayed an overall anti-inflammatory activity via a slight decrement of the pro-inflammatory cytokines and increment of the anti-inflammatory marker. Electrospray could represent a green method for surface modification of sustainable and biofunctional skincare products.
Collapse
|
171
|
Prasathkumar M, Sadhasivam S. Chitosan/Hyaluronic acid/Alginate and an assorted polymers loaded with honey, plant, and marine compounds for progressive wound healing-Know-how. Int J Biol Macromol 2021; 186:656-685. [PMID: 34271047 DOI: 10.1016/j.ijbiomac.2021.07.067] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/04/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
Biomaterials are being extensively used in regenerative medicine including tissue engineering applications, as these enhance tissue development, repair, and help in the process of angiogenesis. Wound healing is a crucial biological process of regeneration of ruptured tissue after getting injury to the skin and other soft tissue in humans and animals. Besides, the accumulation of microbial biofilms around the wound surface can increase the risk and physically obstruct the wound healing activity, and may even lead to amputation. Hence, in both acute and chronic wounds, prominent biomaterials are required for wound healing along with antimicrobial agents. This review comprehensively addresses the antimicrobial and wound healing effects of chitosan, chitin, cellulose acetate, hyaluronic acid, pullulan, bacterial cellulose, fibrin, alginate, etc. based wound dressing biomaterials fabricated with natural resources such as honey, plant bioactive compounds, and marine-based polymers. Due to their excellent biocompatibility and biodegradability, bioactive compounds derived from honey, plants, and marine resources are commonly used in biomedical and tissue engineering applications. Different types of polymer-based biomaterials including hydrogel, film, scaffold, nanofiber, and sponge dressings fabricated with bioactive agents including honey, curcumin, tannin, quercetin, andrographolide, gelatin, carrageenan, etc., can exhibit significant wound healing process in, diabetic wounds, diabetic ulcers, and burns, and help in cartilage repair along with good biocompatibility and antimicrobial effects. Among the reviewed biomaterials, carbohydrate polymers such as chitosan-based biomaterials are prominent and widely used for wound healing applications followed by hyaluronic acid and alginate-based biomaterials loaded with honey, plant, and marine compounds. This review first provides an overview of the vast natural resources used to formulate different biomaterials for the treatment of antimicrobial, acute, and chronic wound healing processes.
Collapse
Affiliation(s)
- Murugan Prasathkumar
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Subramaniam Sadhasivam
- Biomaterials and Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore 641046, India; Department of Extension and Career Guidance, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
172
|
Golonka I, Greber KE, Oleksy-Wawrzyniak M, Paleczny J, Dryś A, Junka A, Sawicki W, Musiał W. Antimicrobial and Antioxidative Activity of Newly Synthesized Peptides Absorbed into Bacterial Cellulose Carrier against Acne vulgaris. Int J Mol Sci 2021; 22:ijms22147466. [PMID: 34299085 PMCID: PMC8306634 DOI: 10.3390/ijms22147466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
The ongoing search for effective treatment of Acne vulgaris is concentrated, i.a., on natural peptides with antimicrobial properties. The aim of this work was the development of new amino acid derivatives with potential activity on dermal infections against selected microorganisms, including the facultative anaerobe C. acne. The peptides P1–P6 were synthesized via Fmoc solid phase peptide synthesis using Rink amide AM resin, analyzed by RP-HPLC-MS, FTIR, DPPH radical scavenging activity, and evaluated against C. acne and S. aureus, both deposited and non-deposited in BC. Peptides P1–P6 presented a lack of cytotoxicity, antimicrobial activity, or antioxidative properties correlated with selected structural properties. P2 and P4–P6 sorption in BC resulted in variable data, i.a., confirming the prospective topical application of these peptides in a BC carrier.
Collapse
Affiliation(s)
- Iwona Golonka
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (I.G.); (A.D.)
| | - Katarzyna E. Greber
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (K.E.G.); (W.S.)
| | - Monika Oleksy-Wawrzyniak
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (M.O.-W.); (J.P.); (A.J.)
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (M.O.-W.); (J.P.); (A.J.)
| | - Andrzej Dryś
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (I.G.); (A.D.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (M.O.-W.); (J.P.); (A.J.)
| | - Wiesław Sawicki
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland; (K.E.G.); (W.S.)
| | - Witold Musiał
- Department of Physical Chemistry and Biophysics, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland; (I.G.); (A.D.)
- Correspondence: ; Tel.: +48-717-840-231
| |
Collapse
|
173
|
Shen H, Jiang C, Li W, Wei Q, Ghiladi RA, Wang Q. Synergistic Photodynamic and Photothermal Antibacterial Activity of In Situ Grown Bacterial Cellulose/MoS 2-Chitosan Nanocomposite Materials with Visible Light Illumination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31193-31205. [PMID: 34164984 DOI: 10.1021/acsami.1c08178] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to the rise in prevalence of multidrug-resistant pathogens attributed to the overuse of antibiotics, infectious diseases caused by the transmission of microbes from contaminated surfaces to new hosts are an ever-increasing threat to public health. Thus, novel materials that can stem this crisis, while also functioning via multiple antimicrobial mechanisms so that pathogens are unable to develop resistance to them, are in urgent need. Toward this goal, in this work, we developed in situ grown bacterial cellulose/MoS2-chitosan nanocomposite materials (termed BC/MoS2-CS) that utilize synergistic membrane disruption and photodynamic and photothermal antibacterial activities to achieve more efficient bactericidal activity. The BC/MoS2-CS nanocomposite exhibited excellent antibacterial efficacy, achieving 99.998% (4.7 log units) and 99.988% (3.9 log units) photoinactivation of Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, respectively, under visible-light illumination (xenon lamp, 500 W, λ ≥ 420 nm, and 30 min). Mechanistic studies revealed that the use of cationic chitosan likely facilitated bacterial membrane disruption and/or permeability, with hyperthermia (photothermal) and reactive oxygen species (photodynamic) leading to synergistic pathogen inactivation upon visible-light illumination. No mammalian cell cytotoxicity was observed for the BC/MoS2-CS membrane, suggesting that such composite nanomaterials are attractive as functional materials for infection control applications.
Collapse
Affiliation(s)
- Huiying Shen
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Chenyu Jiang
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Wei Li
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qufu Wei
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Qingqing Wang
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
174
|
Doxorubicin Embedded into Nanofibrillated Bacterial Cellulose (NFBC) Produces a Promising Therapeutic Outcome for Peritoneally Metastatic Gastric Cancer in Mice Models via Intraperitoneal Direct Injection. NANOMATERIALS 2021; 11:nano11071697. [PMID: 34203462 PMCID: PMC8307241 DOI: 10.3390/nano11071697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
Natural materials such as bacterial cellulose are gaining interest for their use as drug-delivery vehicles. Herein, the utility of nanofibrillated bacterial cellulose (NFBC), which is produced by culturing a cellulose-producing bacterium (Gluconacetobacter intermedius NEDO-01) in a medium supplemented with carboxymethylcellulose (CMC) that is referred to as CM-NFBC, is described. Recently, we demonstrated that intraperitoneal administration of paclitaxel (PTX)-containing CM-NFBC efficiently suppressed tumor growth in a peritoneally disseminated cancer xenograft model. In this study, to confirm the applicability of NFBC in cancer therapy, a chemotherapeutic agent, doxorubicin (DXR), embedded into CM-NFBC, was examined for its efficiency to treat a peritoneally disseminated gastric cancer via intraperitoneal administration. DXR was efficiently embedded into CM-NFBC (DXR/CM-NFBC). In an in vitro release experiment, 79.5% of DXR was released linearly into the peritoneal wash fluid over a period of 24 h. In the peritoneally disseminated gastric cancer xenograft model, intraperitoneal administration of DXR/CM-NFBC induced superior tumor growth inhibition (TGI = 85.5%) by day 35 post-tumor inoculation, compared to free DXR (TGI = 62.4%). In addition, compared with free DXR, the severe side effects that cause body weight loss were lessened via treatment with DXR/CM-NFBC. These results support the feasibility of CM-NFBC as a drug-delivery vehicle for various anticancer agents. This approach may lead to improved therapeutic outcomes for the treatment of intraperitoneally disseminated cancers.
Collapse
|
175
|
Ossowicz-Rupniewska P, Rakoczy R, Nowak A, Konopacki M, Klebeko J, Świątek E, Janus E, Duchnik W, Wenelska K, Kucharski Ł, Klimowicz A. Transdermal Delivery Systems for Ibuprofen and Ibuprofen Modified with Amino Acids Alkyl Esters Based on Bacterial Cellulose. Int J Mol Sci 2021; 22:6252. [PMID: 34200719 PMCID: PMC8229522 DOI: 10.3390/ijms22126252] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
The potential of bacterial cellulose as a carrier for the transport of ibuprofen (a typical example of non-steroidal anti-inflammatory drugs) through the skin was investigated. Ibuprofen and its amino acid ester salts-loaded BC membranes were prepared through a simple methodology and characterized in terms of structure and morphology. Two salts of amino acid isopropyl esters were used in the research, namely L-valine isopropyl ester ibuprofenate ([ValOiPr][IBU]) and L-leucine isopropyl ester ibuprofenate ([LeuOiPr][IBU]). [LeuOiPr][IBU] is a new compound; therefore, it has been fully characterized and its identity confirmed. For all membranes obtained the surface morphology, tensile mechanical properties, active compound dissolution assays, and permeation and skin accumulation studies of API (active pharmaceutical ingredient) were determined. The obtained membranes were very homogeneous. In vitro diffusion studies with Franz cells were conducted using pig epidermal membranes, and showed that the incorporation of ibuprofen in BC membranes provided lower permeation rates to those obtained with amino acids ester salts of ibuprofen. This release profile together with the ease of application and the simple preparation and assembly of the drug-loaded membranes indicates the enormous potentialities of using BC membranes for transdermal application of ibuprofen in the form of amino acid ester salts.
Collapse
Affiliation(s)
- Paula Ossowicz-Rupniewska
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (E.Ś.); (E.J.)
| | - Rafał Rakoczy
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.)
| | - Anna Nowak
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Maciej Konopacki
- Department of Chemical and Process Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (R.R.); (M.K.)
| | - Joanna Klebeko
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (E.Ś.); (E.J.)
| | - Ewelina Świątek
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (E.Ś.); (E.J.)
| | - Ewa Janus
- Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (J.K.); (E.Ś.); (E.J.)
| | - Wiktoria Duchnik
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Karolina Wenelska
- Department of Nanomaterials Physicochemistry, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 45, 70-311 Szczecin, Poland;
| | - Łukasz Kucharski
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| | - Adam Klimowicz
- Department of Cosmetic and Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich Ave. 72, 70-111 Szczecin, Poland; (A.N.); (W.D.); (Ł.K.); (A.K.)
| |
Collapse
|
176
|
Nizioł M, Paleczny J, Junka A, Shavandi A, Dawiec-Liśniewska A, Podstawczyk D. 3D Printing of Thermoresponsive Hydrogel Laden with an Antimicrobial Agent towards Wound Healing Applications. Bioengineering (Basel) 2021; 8:79. [PMID: 34201362 PMCID: PMC8227034 DOI: 10.3390/bioengineering8060079] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/29/2021] [Accepted: 06/05/2021] [Indexed: 02/06/2023] Open
Abstract
Thermoresponsive hydrogel-based wound dressings with an incorporated antimicrobial agent can be fabricated employing 3D printing technology. A novel printable ink containing poly(N-isopropylacrylamide) (PNIPAAm) precursors, sodium alginate (ALG), methylcellulose (MC) that is laden with a mixture of octenidine dihydrochloride and 2-phenoxyethanol (Octenisept®, OCT) possess accurate printability and shape fidelity. This study also provides the protocol of ink's use for the 3D printing of hydrogel scaffolds. The hydrogel's physicochemical properties and drug release profiles from the hydrogel specimens to the external solution have been determined at two temperatures (20 and 37 °C). The release test showed a sustained OCT delivery into ultrapure water and the PBS solution. The temperature-responsive hydrogel exhibited antimicrobial activity against Staphylococcus aureus, Candida albicans, and Pseudomonas aeruginosa and demonstrated non-cytotoxicity towards fibroblasts. The thermoresponsive behavior along with biocompatibility, antimicrobial activity, and controlled drug release make this hydrogel a promising class of materials for wound dressing applications.
Collapse
Affiliation(s)
- Martyna Nizioł
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (A.J.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (J.P.); (A.J.)
| | - Amin Shavandi
- BioMatter Research Unit-Biomass and Biomaterials (3BIO-BioMatter), Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50, CP 165/61, 1050 Brussels, Belgium;
| | - Anna Dawiec-Liśniewska
- Department of Advanced Material Technology, Faculty of Chemistry, Wroclaw University of Science and Technology, M. Smoluchowskiego 25, 50-372 Wroclaw, Poland;
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| |
Collapse
|
177
|
Azimi B, Milazzo M, Danti S. Cellulose-Based Fibrous Materials From Bacteria to Repair Tympanic Membrane Perforations. Front Bioeng Biotechnol 2021; 9:669863. [PMID: 34164386 PMCID: PMC8215662 DOI: 10.3389/fbioe.2021.669863] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/13/2021] [Indexed: 12/19/2022] Open
Abstract
Perforation is the most common illness of the tympanic membrane (TM), which is commonly treated with surgical procedures. The success rate of the treatment could be improved by novel bioengineering approaches. In fact, a successful restoration of a damaged TM needs a supporting biomaterial or scaffold able to meet mechano-acoustic properties similar to those of the native TM, along with optimal biocompatibility. Traditionally, a large number of biological-based materials, including paper, silk, Gelfoam®, hyaluronic acid, collagen, and chitosan, have been used for TM repair. A novel biopolymer with promising features for tissue engineering applications is cellulose. It is a highly biocompatible, mechanically and chemically strong polysaccharide, abundant in the environment, with the ability to promote cellular growth and differentiation. Bacterial cellulose (BC), in particular, is produced by microorganisms as a nanofibrous three-dimensional structure of highly pure cellulose, which has thus become a popular graft material for wound healing due to a number of remarkable properties, such as water retention, elasticity, mechanical strength, thermal stability, and transparency. This review paper provides a comprehensive overview of the current experimental studies of BC, focusing on the application of BC patches in the treatment of TM perforations. In addition, computational approaches to model cellulose and TM are summarized, with the aim to synergize the available tools toward the best design and exploitation of BC patches and scaffolds for TM repair and regeneration.
Collapse
Affiliation(s)
- Bahareh Azimi
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| | - Mario Milazzo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| | - Serena Danti
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Civil and Industrial Engineering, University of Pisa, Pisa, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), Florence, Italy
| |
Collapse
|
178
|
Blanco FG, Hernández N, Rivero-Buceta V, Maestro B, Sanz JM, Mato A, Hernández-Arriaga AM, Prieto MA. From Residues to Added-Value Bacterial Biopolymers as Nanomaterials for Biomedical Applications. NANOMATERIALS 2021; 11:nano11061492. [PMID: 34200068 PMCID: PMC8228158 DOI: 10.3390/nano11061492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/16/2022]
Abstract
Bacterial biopolymers are naturally occurring materials comprising a wide range of molecules with diverse chemical structures that can be produced from renewable sources following the principles of the circular economy. Over the last decades, they have gained substantial interest in the biomedical field as drug nanocarriers, implantable material coatings, and tissue-regeneration scaffolds or membranes due to their inherent biocompatibility, biodegradability into nonhazardous disintegration products, and their mechanical properties, which are similar to those of human tissues. The present review focuses upon three technologically advanced bacterial biopolymers, namely, bacterial cellulose (BC), polyhydroxyalkanoates (PHA), and γ-polyglutamic acid (PGA), as models of different carbon-backbone structures (polysaccharides, polyesters, and polyamides) produced by bacteria that are suitable for biomedical applications in nanoscale systems. This selection models evidence of the wide versatility of microorganisms to generate biopolymers by diverse metabolic strategies. We highlight the suitability for applied sustainable bioprocesses for the production of BC, PHA, and PGA based on renewable carbon sources and the singularity of each process driven by bacterial machinery. The inherent properties of each polymer can be fine-tuned by means of chemical and biotechnological approaches, such as metabolic engineering and peptide functionalization, to further expand their structural diversity and their applicability as nanomaterials in biomedicine.
Collapse
Affiliation(s)
- Francisco G. Blanco
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Natalia Hernández
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Virginia Rivero-Buceta
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Beatriz Maestro
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Jesús M. Sanz
- Host-Parasite Interplay in Pneumococcal Infection Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain; (B.M.); (J.M.S.)
| | - Aránzazu Mato
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - Ana M. Hernández-Arriaga
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
| | - M. Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28040 Madrid, Spain; (F.G.B.); (N.H.); (V.R.-B.); (A.M.); (A.M.H.-A.)
- Polymer Biotechnology Group, Microbial and Plant Biotechnology Department, Biological Research Centre Margarita Salas, CIB-CSIC, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
179
|
Nascimento FX, Torres CA, Freitas F, Reis MA, Crespo MT. Functional and genomic characterization of Komagataeibacter uvaceti FXV3, a multiple stress resistant bacterium producing increased levels of cellulose. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 30:e00606. [PMID: 33747802 PMCID: PMC7970039 DOI: 10.1016/j.btre.2021.e00606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 02/17/2021] [Accepted: 03/02/2021] [Indexed: 11/29/2022]
Abstract
Bacterial cellulose is one of the most promising biomaterials for the development of a wide array of novel biotechnological solutions. Nevertheless, the commercial production of bacterial cellulose is still a challenge and obtaining novel strains presenting increased cellulose biosynthesis and stress resistance properties is of extreme importance. This work demonstrates the increased stress resistance, cellulose production abilities, and overall genomic properties of Komagataeibacter uvaceti FXV3, a novel cellulose-producing and stress resistant strain isolated from a fermented grape must. K. uvaceti FXV3 was able to grow under several stress conditions, including the presence of high concentrations of ethanol (up to 7.5 % v/v), a trait that is not observed in the model strain K. xylinus CECT 7351T. Moreover, K. uvaceti FXV3 produced increased concentrations of cellulose (4.31 mg/mL, 7 days after inoculation-DAI) when compared to K. xylinus CECT 7351T (1.42 mg/mL, 7 DAI). Moreover, the detailed analysis of strain FXV3 genome revealed the presence of several genes involved in cellulose and acetan biosynthesis, quorum-sensing and quenching mechanisms, carbohydrate, amino acid, alcohol and aldehyde metabolism, as well as several other genes involved in stress resistance. Additionally, comparative genomic analysis revealed the increased prevalence of stress resistance genes in K. uvaceti FXV3 when compared to K. xylinus CECT 7351T. Ultimately, this study reveals the increased biotechnological potential of K. uvaceti FXV3 and brings new insights into the genetics behind Komagataeibacter stress resistance and cellulose production abilities.
Collapse
Affiliation(s)
- Francisco X. Nascimento
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
| | - Cristiana A.V. Torres
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Filomena Freitas
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Maria A.M. Reis
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Maria T.B. Crespo
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
180
|
Birnbaum DP, Manjula‐Basavanna A, Kan A, Tardy BL, Joshi NS. Hybrid Living Capsules Autonomously Produced by Engineered Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004699. [PMID: 34141524 PMCID: PMC8188213 DOI: 10.1002/advs.202004699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Bacterial cellulose (BC) has excellent material properties and can be produced sustainably through simple bacterial culture, but BC-producing bacteria lack the extensive genetic toolkits of model organisms such as Escherichia coli (E. coli). Here, a simple approach is reported for producing highly programmable BC materials through incorporation of engineered E. coli. The acetic acid bacterium Gluconacetobacter hansenii is cocultured with engineered E. coli in droplets of glucose-rich media to produce robust cellulose capsules, which are then colonized by the E. coli upon transfer to selective lysogeny broth media. It is shown that the encapsulated E. coli can produce engineered protein nanofibers within the cellulose matrix, yielding hybrid capsules capable of sequestering specific biomolecules from the environment and enzymatic catalysis. Furthermore, capsules are produced which can alter their own bulk physical properties through enzyme-induced biomineralization. This novel system uses a simple fabrication process, based on the autonomous activity of two bacteria, to significantly expand the functionality of BC-based living materials.
Collapse
Affiliation(s)
- Daniel P. Birnbaum
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMA02115USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Avinash Manjula‐Basavanna
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMA02115USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Anton Kan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| | - Blaise L. Tardy
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
| | - Neel S. Joshi
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMA02115USA
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMA02115USA
| |
Collapse
|
181
|
Production of Bacterial Cellulose from Acetobacter Species and Its Applications – A Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial cellulose (BC) is a natural polymer secreted as a protective cell covering of certain bacterial species. In contrary to plant cellulose, BC possesses some unique features like high moisture-holding capacity, high durability, high liquid absorbing capabilities, biostability, and biodegradability, makes BC an excellent raw material in wide-ranging areas like biomedical, food, agriculture, paper, textile industries and electronics. The main objective of this review is to discuss various aspects of BC production (different sources for bacterial strain isolation, culture media and, its alternatives also major culture techniques). In addition, various applications of BC are also reviewed.
Collapse
|
182
|
Wu A, Hu X, Ao H, Chen Z, Chu Z, Jiang T, Deng X, Wan Y. Rational design of bacterial cellulose‐based air filter with antibacterial activity for highly efficient particulate matters removal. NANO SELECT 2021. [DOI: 10.1002/nano.202100086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Aifang Wu
- Jiangxi Key Laboratory of Nanobiomaterials & Institute of Advanced Materials East China Jiaotong University Nanchang 330013 China
| | - Xiaoming Hu
- Jiangxi Key Laboratory of Nanobiomaterials & Institute of Advanced Materials East China Jiaotong University Nanchang 330013 China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & Institute of Advanced Materials East China Jiaotong University Nanchang 330013 China
| | - Zejing Chen
- Jiangxi Key Laboratory of Nanobiomaterials & Institute of Advanced Materials East China Jiaotong University Nanchang 330013 China
| | - Zhaomiao Chu
- Jiangxi Key Laboratory of Nanobiomaterials & Institute of Advanced Materials East China Jiaotong University Nanchang 330013 China
| | - Tao Jiang
- School of Pharmacy Jiangxi University of Traditional Chinese Medicine Nanchang 330004 China
| | - Xiaoyan Deng
- Jiangxi Key Laboratory of Nanobiomaterials & Institute of Advanced Materials East China Jiaotong University Nanchang 330013 China
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials & Institute of Advanced Materials East China Jiaotong University Nanchang 330013 China
| |
Collapse
|
183
|
Swingler S, Gupta A, Gibson H, Heaselgrave W, Kowalczuk M, Adamus G, Radecka I. The Mould War: Developing an Armamentarium against Fungal Pathogens Utilising Thymoquinone, Ocimene, and Miramistin within Bacterial Cellulose Matrices. MATERIALS 2021; 14:ma14102654. [PMID: 34070218 PMCID: PMC8158721 DOI: 10.3390/ma14102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 11/17/2022]
Abstract
An increase in antifungal resistance has seen a surge in fungal wound infections in patients who are immunocompromised resulting from chemotherapy, disease, and burns. Human pathogenic fungi are increasingly becoming resistant to a sparse repertoire of existing antifungal drugs, which has given rise to the need to develop novel treatments for potentially lethal infections. Bacterial cellulose (BC) produced by Gluconacetobacter xylinus has been shown to possess many properties that make it innately useful as a next-generation biopolymer to be utilised as a wound dressing. The current study demonstrates the creation of a pharmacologically active wound dressing by loading antifungal agents into a biopolymer hydrogel to produce a novel wound dressing. Amphotericin B is known to be highly hepatotoxic, which reduces its appeal as an antifungal drug, especially in patients who are immunocompromised. This, coupled with an increase in antifungal resistance, has seen a surge in fungal wound infections in patients who are immunodeficient due to chemotherapy, disease, or injury. Antifungal activity was conducted via Clinical & Laboratory Standards Institute (CLSI) M27, M38, M44, and M51 against Candida auris, Candida albicans, Aspergillus fumigatus, and Aspergillus niger. This study showed that thymoquinone has a comparable antifungal activity to amphotericin B with mean zones of inhibition of 21.425 ± 0.925 mm and 22.53 ± 0.969 mm, respectively. However, the mean survival rate of HEp-2 cells when treated with 50 mg/L amphotericin B was 29.25 ± 0.854% compared to 71.25 ± 1.797% when treated with 50 mg/L thymoquinone. Following cytotoxicity assays against HEp-2 cells, thymoquinone showed a 71.25 ± 3.594% cell survival, whereas amphotericin B had a mean cell survival rate of 29.25 ± 1.708%. The purpose of this study was to compare the efficacy of thymoquinone, ocimene, and miramistin against amphotericin B in the application of novel antifungal dressings.
Collapse
Affiliation(s)
- Sam Swingler
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Correspondence: (S.S.); (I.R.)
| | - Abhishek Gupta
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Institute of Health, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Jerome K Jerome Building, Gorway Road, Walsall Campus, Walsall WS1 3BD, UK
| | - Hazel Gibson
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
| | - Wayne Heaselgrave
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Department of Biomedical Science, University of Wolverhampton, MA Building, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (M.K.); (G.A.)
| | - Grazyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland; (M.K.); (G.A.)
| | - Iza Radecka
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Correspondence: (S.S.); (I.R.)
| |
Collapse
|
184
|
|
185
|
Yuan H, Chen L, Hong FF. Homogeneous and efficient production of a bacterial nanocellulose-lactoferrin-collagen composite under an electric field as a matrix to promote wound healing. Biomater Sci 2021; 9:930-941. [PMID: 33284290 DOI: 10.1039/d0bm01553a] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BNC was functionalized with collagen (COL) and lactoferrin (LF) to form three different composites: BNC/COL, BNC/LF and BNC/LF/COL using a novel electrophoresis-based technology. The technology is less time-consuming than traditional immersion-adsorption methods and offers the additional advantages of greater protein loading, better homogeneity and a lower requirement for processing solution. Significantly, it has general applicability and great potential for fabricating other similar composites. The water-holding capability and water vapor transmission rate (WVTR) of BNC composites were significantly improved, particularly in the case of BNC/LF/COL, with a WVTR of 2600 g m-2 d-1, indicating that the composite maintains a moderately moist environment over the wound bed, which would enhance epithelial cell migration during the healing process. Compared with BNC and BNC/COL, the LF-impregnated composites mediated a reduction in bacterial viability of at least 77%. Impregnation with COL significantly improved the cytocompatibility of BNC composites to promote the adhesion and proliferation of fibroblast cells. Furthermore, a greater therapeutic effect of BNC/LF/COL was observed in a rat model of wound healing, with a new epithelium formed within 9 days and without any significant adverse reactions. These results suggest that BNC/LF/COL obtained using the electrophoresis method represents a promising wound dressing for use in practical applications.
Collapse
Affiliation(s)
- Haibin Yuan
- Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology (Donghua University), China Textile Engineering Society, Shanghai 201620, China. and Group of Microbiological Engineering and Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road 2999, Shanghai 201620, China and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, North Ren Min Road 2999, Shanghai 201620, China
| | - Lin Chen
- Group of Microbiological Engineering and Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road 2999, Shanghai 201620, China
| | - Feng F Hong
- Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology (Donghua University), China Textile Engineering Society, Shanghai 201620, China. and Group of Microbiological Engineering and Industrial Biotechnology, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Ren Min Road 2999, Shanghai 201620, China and State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, North Ren Min Road 2999, Shanghai 201620, China
| |
Collapse
|
186
|
Carvalho LT, Vieira TA, Zhao Y, Celli A, Medeiros SF, Lacerda TM. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int J Biol Macromol 2021; 183:1514-1539. [PMID: 33989687 DOI: 10.1016/j.ijbiomac.2021.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/10/2023]
Abstract
In recent years, growing attention has been devoted to naturally occurring biological macromolecules and their ensuing application in agriculture, cosmetics, food and pharmaceutical industries. They inherently have antigenicity, low immunogenicity, excellent biocompatibility and cytocompatibility, which are ideal properties for the design of biomedical devices, especially for the controlled delivery of active ingredients in the most diverse contexts. Furthermore, these properties can be modulated by chemical modification via the incorporation of other (macro)molecules in a random or controlled way, aiming at improving their functionality for each specific application. Among the wide variety of natural polymers, microbial polyhydroxyalkanoates (PHAs) and exopolysaccharides (EPS) are often considered for the development of original biomaterials due to their unique physicochemical and biological features. Here, we aim to fullfil a gap on the present associated literature, bringing an up-to-date overview of ongoing research strategies that make use of PHAs (poly (3-hydroxybutyrate), poly (3-hydroxybutyrate-co-3-hydroxyvalerate), poly (3-hydroxyoctanoate), poly(3-hydroxypropionate), poly (3-hydroxyhexanoate-co-3-hydroxyoctanoate), and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)) and EPS (bacterial cellulose, alginates, curdlan, pullulan, xanthan gum, dextran, hyaluronan, and schizophyllan) as sources of interesting and versatile biomaterials. For the first time, a monograph addressing the properties, pros and cons, status, challenges, and recent progresses regarding the application of these two important classes of biopolymers in biomedicine is presented.
Collapse
Affiliation(s)
- Layde T Carvalho
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Thiago A Vieira
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil
| | - Yanjun Zhao
- School of Pharmaceutical Science and Technology, Tianjin Key Laboratory for Modern Drug Delivery 449 and High Efficiency, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Simone F Medeiros
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil; Chemical Engineering Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| | - Talita M Lacerda
- Biotechnology Department, Engineering School of Lorena, University of São Paulo, 12602-810 Lorena, SP, Brazil.
| |
Collapse
|
187
|
Modifications of Wound Dressings with Bioactive Agents to Achieve Improved Pro-Healing Properties. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094114] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The great variety of wounds and the lack of an effective universal treatment method has resulted in high demand for modern treatment strategies. Traditional approaches are often ineffective on a variety of chronic wounds, such as venous ulcers or the diabetic foot ulcer. There is strong evidence that naturally derived bioactive compounds have pro-healing properties, raising a great interest in their potential use for wound healing. Plant-derived compounds, such as curcumin and essential oils, are widely used to modify materials applied as wound dressings. Moreover, dressing materials are more often enriched with vitamins (e.g., L-ascorbic acid, tocopherol) and drugs (e.g., antibiotics, inhibitors of proteases) to improve the skin healing rate. Biomaterials loaded with the above-mentioned molecules show better biocompatibility and are basically characterized by better biological properties, ensuring faster tissue repair process. The main emphasis of the presented review is put on the novel findings concerning modern pro-healing wound dressings that have contributed to the development of regenerative medicine. The article briefly describes the synthesis and modifications of biomaterials with bioactive compounds (including curcumin, essential oils, vitamins) to improve their pro-healing properties. The paper also summarizes biological effects of the novel wound dressings on the enhancement of skin regeneration. The current review was prepared based on the scientific contributions in the PubMed database (supported with Google Scholar searching) over the past 5 years using relevant keywords. Scientific reports on the modification of biomaterials using curcumin, vitamins, and essential oils were mainly considered.
Collapse
|
188
|
Characterizing Bacterial Cellulose Produced by Komagataeibacter sucrofermentans H-110 on Molasses Medium and Obtaining a Biocomposite Based on It for the Adsorption of Fluoride. Polymers (Basel) 2021; 13:polym13091422. [PMID: 33925017 PMCID: PMC8125506 DOI: 10.3390/polym13091422] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022] Open
Abstract
Currently, there is an increased demand for biodegradable materials in society due to growing environmental problems. Special attention is paid to bacterial cellulose, which, due to its unique properties, has great prospects for obtaining functional materials for a wide range of applications, including adsorbents. In this regard, the aim of this study was to obtain a biocomposite material with adsorption properties in relation to fluoride ions based on bacterial cellulose using a highly productive strain of Komagataeibacter sucrofermentans H-110 on molasses medium. Films of bacterial cellulose were obtained. Their structure and properties were investigated by FTIR spectroscopy, NMR, atomic force microscopy, scanning electron microscopy, and X-ray structural analysis. The results show that the fiber thickness of the bacterial cellulose formed by the K. sucrofermentans H-110 strain on molasses medium was 60–90 nm. The degree of crystallinity of bacterial cellulose formed on the medium was higher than on standard Hestrin and Schramm medium and amounted to 83.02%. A new biocomposite material was obtained based on bacterial cellulose chemically immobilized on its surface using atomic-layer deposition of nanosized aluminum oxide films. The composite material has high sorption ability to remove fluoride ions from an aqueous medium. The maximum adsorption capacity of the composite is 80.1 mg/g (F/composite). The obtained composite material has the highest adsorption capacity of fluoride from water in comparison with other sorbents. The results prove the potential of bacterial cellulose-based biocomposites as highly effective sorbents for fluoride.
Collapse
|
189
|
Ermini ML, Voliani V. Antimicrobial Nano-Agents: The Copper Age. ACS NANO 2021; 15:6008-6029. [PMID: 33792292 PMCID: PMC8155324 DOI: 10.1021/acsnano.0c10756] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/24/2021] [Indexed: 05/21/2023]
Abstract
The constant advent of major health threats such as antibacterial resistance or highly communicable viruses, together with a declining antimicrobial discovery, urgently requires the exploration of innovative therapeutic approaches. Nowadays, strategies based on metal nanoparticle technology have demonstrated interesting outcomes due to their intrinsic features. In this scenario, there is an emerging and growing interest in copper-based nanoparticles (CuNPs). Indeed, in their pure metallic form, as oxides, or in combination with sulfur, CuNPs have peculiar behaviors that result in effective antimicrobial activity associated with the stimulation of essential body functions. Here, we present a critical review on the state of the art regarding the in vitro and in vivo evaluations of the antimicrobial activity of CuNPs together with absorption, distribution, metabolism, excretion, and toxicity (ADMET) assessments. Considering the potentiality of CuNPs in antimicrobial treatments, within this Review we encounter the need to summarize the behaviors of CuNPs and provide the expected perspectives on their contributions to infectious and communicable disease management.
Collapse
Affiliation(s)
- Maria Laura Ermini
- Center for Nanotechnology
Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12-56126 Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology
Innovation @NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12-56126 Pisa, Italy
| |
Collapse
|
190
|
Dydak K, Junka A, Dydak A, Brożyna M, Paleczny J, Fijalkowski K, Kubielas G, Aniołek O, Bartoszewicz M. In Vitro Efficacy of Bacterial Cellulose Dressings Chemisorbed with Antiseptics against Biofilm Formed by Pathogens Isolated from Chronic Wounds. Int J Mol Sci 2021; 22:3996. [PMID: 33924416 PMCID: PMC8069587 DOI: 10.3390/ijms22083996] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 01/10/2023] Open
Abstract
Local administration of antiseptics is required to prevent and fight against biofilm-based infections of chronic wounds. One of the methods used for delivering antiseptics to infected wounds is the application of dressings chemisorbed with antimicrobials. Dressings made of bacterial cellulose (BC) display several features, making them suitable for such a purpose. This work aimed to compare the activity of commonly used antiseptic molecules: octenidine, polyhexanide, povidone-iodine, chlorhexidine, ethacridine lactate, and hypochlorous solutions and to evaluate their usefulness as active substances of BC dressings against 48 bacterial strains (8 species) and 6 yeast strains (1 species). A silver dressing was applied as a control material of proven antimicrobial activity. The methodology applied included the assessment of minimal inhibitory concentrations (MIC) and minimal biofilm eradication concentration (MBEC), the modified disc-diffusion method, and the modified antibiofilm dressing activity measurement (A.D.A.M.) method. While in 96-well plate-based methods (MIC and MBEC assessment), the highest antimicrobial activity was recorded for chlorhexidine, in the modified disc-diffusion method and in the modified A.D.A.M test, povidone-iodine performed the best. In an in vitro setting simulating chronic wound conditions, BC dressings chemisorbed with polyhexanide, octenidine, or povidone-iodine displayed a similar or even higher antibiofilm activity than the control dressing containing silver molecules. If translated into clinical conditions, the obtained results suggest high applicability of BC dressings chemisorbed with antiseptics to eradicate biofilm from chronic wounds.
Collapse
Affiliation(s)
- Karolina Dydak
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Adam Junka
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Agata Dydak
- Faculty of Biological Sciences, University of Wroclaw, 51-148 Wroclaw, Poland;
| | - Malwina Brożyna
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Justyna Paleczny
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| | - Karol Fijalkowski
- Department of Microbiology and Biotechnology, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Szczecin, Piastow 45, 70-311 Szczecin, Poland;
| | - Grzegorz Kubielas
- Faculty of Health Sciences, Wroclaw Medical University, 50-996 Wroclaw, Poland;
| | - Olga Aniołek
- Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland;
| | - Marzenna Bartoszewicz
- Department of Pharmaceutical Microbiology and Parasitology, Medical University of Wroclaw, 50-556 Wroclaw, Poland; (K.D.); (M.B.); (J.P.); (M.B.)
| |
Collapse
|
191
|
Bacterial Biopolymer: Its Role in Pathogenesis to Effective Biomaterials. Polymers (Basel) 2021; 13:polym13081242. [PMID: 33921239 PMCID: PMC8069653 DOI: 10.3390/polym13081242] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022] Open
Abstract
Bacteria are considered as the major cell factories, which can effectively convert nitrogen and carbon sources to a wide variety of extracellular and intracellular biopolymers like polyamides, polysaccharides, polyphosphates, polyesters, proteinaceous compounds, and extracellular DNA. Bacterial biopolymers find applications in pathogenicity, and their diverse materialistic and chemical properties make them suitable to be used in medicinal industries. When these biopolymer compounds are obtained from pathogenic bacteria, they serve as important virulence factors, but when they are produced by non-pathogenic bacteria, they act as food components or biomaterials. There have been interdisciplinary studies going on to focus on the molecular mechanism of synthesis of bacterial biopolymers and identification of new targets for antimicrobial drugs, utilizing synthetic biology for designing and production of innovative biomaterials. This review sheds light on the mechanism of synthesis of bacterial biopolymers and its necessary modifications to be used as cell based micro-factories for the production of tailor-made biomaterials for high-end applications and their role in pathogenesis.
Collapse
|
192
|
Modification of chitosan using amino acids for wound healing purposes: A review. Carbohydr Polym 2021; 258:117675. [DOI: 10.1016/j.carbpol.2021.117675] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/01/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022]
|
193
|
Recent Advances in the Synthesis of Nanocellulose Functionalized–Hybrid Membranes and Application in Water Quality Improvement. Processes (Basel) 2021. [DOI: 10.3390/pr9040611] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The increasing discharge of voluminous non or partially treated wastewaters characterized by complex contaminants poses significant ecological and health risks. Particularly, this practice impacts negatively on socio-economic, technological, industrial, and agricultural development. Therefore, effective control of water pollution is imperative. Over the past decade, membrane filtration has been established as an effective and commercially attractive technology for the separation and purification of water. The performance of membrane-based technologies relies on the intrinsic properties of the membrane barrier itself. As a result, the development of innovative techniques for the preparation of highly efficient membranes has received remarkable attention. Moreover, growing concerns related to cost-effective and greener technologies have induced the need for eco-friendly, renewable, biodegradable, and sustainable source materials for membrane fabrication. Recently, advances in nanotechnology have led to the development of new high-tech nanomaterials from natural polymers (e.g., cellulose) for the preparation of environmentally benign nanocomposite membranes. The synthesis of nanocomposite membranes using nanocelluloses (NCs) has become a prominent research field. This is attributed to the exceptional characteristics of these nanomaterials (NMs) namely; excellent and tuneable surface chemistry, high mechanical strength, low-cost, biodegradability, biocompatibility, and renewability. For this purpose, the current paper opens with a comprehensive yet concise description of the various types of NCs and their most broadly utilized production techniques. This is closely followed by a critical review of how NC substrates and their surface-modified versions affect the performance of the fabricated NC-based membranes in various filtration processes. Finally, the most recent processing technologies for the preparation of functionalized NCs-based composite membranes are discussed in detail and their hybrid characteristics relevant to membrane filtration processes are highlighted.
Collapse
|
194
|
Rao H, Choo S, Rajeswari Mahalingam SR, Adisuri DS, Madhavan P, Md. Akim A, Chong PP. Approaches for Mitigating Microbial Biofilm-Related Drug Resistance: A Focus on Micro- and Nanotechnologies. Molecules 2021; 26:1870. [PMID: 33810292 PMCID: PMC8036581 DOI: 10.3390/molecules26071870] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.
Collapse
Affiliation(s)
- Harinash Rao
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Sulin Choo
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| | | | - Diajeng Sekar Adisuri
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Priya Madhavan
- School of Medicine, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia; (H.R.); (D.S.A.); (P.M.)
| | - Abdah Md. Akim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Pei Pei Chong
- School of Biosciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
| |
Collapse
|
195
|
Almeida T, Silvestre AJD, Vilela C, Freire CSR. Bacterial Nanocellulose toward Green Cosmetics: Recent Progresses and Challenges. Int J Mol Sci 2021; 22:2836. [PMID: 33799554 PMCID: PMC8000719 DOI: 10.3390/ijms22062836] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
In the skin care field, bacterial nanocellulose (BNC), a versatile polysaccharide produced by non-pathogenic acetic acid bacteria, has received increased attention as a promising candidate to replace synthetic polymers (e.g., nylon, polyethylene, polyacrylamides) commonly used in cosmetics. The applicability of BNC in cosmetics has been mainly investigated as a carrier of active ingredients or as a structuring agent of cosmetic formulations. However, with the sustainability issues that are underway in the highly innovative cosmetic industry and with the growth prospects for the market of bio-based products, a much more prominent role is envisioned for BNC in this field. Thus, this review provides a comprehensive overview of the most recent (last 5 years) and relevant developments and challenges in the research of BNC applied to cosmetic, aiming at inspiring future research to go beyond in the applicability of this exceptional biotechnological material in such a promising area.
Collapse
Affiliation(s)
| | | | | | - Carmen S. R. Freire
- CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (T.A.); (A.J.D.S.); (C.V.)
| |
Collapse
|
196
|
Emre Oz Y, Keskin-Erdogan Z, Safa N, Esin Hames Tuna E. A review of functionalised bacterial cellulose for targeted biomedical fields. J Biomater Appl 2021; 36:648-681. [PMID: 33673762 DOI: 10.1177/0885328221998033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bacterial cellulose (BC), which can be produced by microorganisms, is an ideal biomaterial especially for tissue engineering and drug delivery systems thanks to its properties of high purity, biocompatibility, high mechanical strength, high crystallinity, 3 D nanofiber structure, porosity and high-water holding capacity. Therefore, wide ranges of researches have been done on the BC production process and its structural and physical modifications to make it more suitable for certain targeted biomedical applications thoroughly. BC's properties such as mechanical strength, pore diameter and porosity can be tuned in situ or ex situ processes by using various polymer and compounds. Besides, different organic or inorganic compounds that support cell attachment, proliferation and differentiation or provide functions such as antimicrobial effectiveness can be gained to its structure for targeted application. These processes not only increase the usage options of BC but also provide success for mimicking the natural tissue microenvironment, especially in tissue engineering applications. In this review article, the studies on optimisation of BC production in the last decade and the BC modification and functionalisation studies conducted for the three main perspectives as tissue engineering, drug delivery and wound dressing with diverse approaches are summarized.
Collapse
Affiliation(s)
- Yunus Emre Oz
- Department of Bioengineering, Graduate School of Natural and Applied Science, Ege University, Izmir, Turkey
| | - Zalike Keskin-Erdogan
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
| | - Neriman Safa
- Department of Bioengineering, Graduate School of Natural and Applied Science, Ege University, Izmir, Turkey
| | - E Esin Hames Tuna
- Department of Bioengineering, Graduate School of Natural and Applied Science, Ege University, Izmir, Turkey.,Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey
| |
Collapse
|
197
|
Abstract
Surgicel® (regenerated oxidized cellulose) is a bio-absorbable hemostatic material widely applied to prevent surgery-derived adhesions. Some critical issues have been reported associated with this biomaterial, which we aimed to overcome by producing bacterial nanocellulose (BNC) membranes with hemostatic activity, through electrochemical oxidation using the tetramethylpiperidine-1-oxyl (TEMPO) radical. Samples were characterized by FTIR, NMR, SEM, XRD and their degree of polymerization. The oxidation degree was evaluated by titration of the carboxyl groups and the hemostatic behavior by whole-blood-clotting assays. In vitro and in vivo biodegradability of oxidized BNC membranes were evaluated and compared with that of Surgicel®. The oxidation degree increased from 4% to 7% and up to 15%, corresponding to an applied charge of 400, 700 and 1200 Coulombs, respectively. The oxidized BNC preserved the crystallinity and the 3D nano-fibrillar network, and demonstrated hemostatic activity, although not as effective as that of Surgicel®. In vivo assays demonstrated that the oxidized membranes did not induce an inflammatory response, revealing a good biocompatibility. However, non-degraded oxidized BNC was still detected at the implantation site after 56 days.
Collapse
|
198
|
Balasubramaniam B, Prateek, Ranjan S, Saraf M, Kar P, Singh SP, Thakur VK, Singh A, Gupta RK. Antibacterial and Antiviral Functional Materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics. ACS Pharmacol Transl Sci 2021; 4:8-54. [PMID: 33615160 PMCID: PMC7784665 DOI: 10.1021/acsptsci.0c00174] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/12/2022]
Abstract
The ongoing worldwide pandemic due to COVID-19 has created awareness toward ensuring best practices to avoid the spread of microorganisms. In this regard, the research on creating a surface which destroys or inhibits the adherence of microbial/viral entities has gained renewed interest. Although many research reports are available on the antibacterial materials or coatings, there is a relatively small amount of data available on the use of antiviral materials. However, with more research geared toward this area, new information is being added to the literature every day. The combination of antibacterial and antiviral chemical entities represents a potentially path-breaking intervention to mitigate the spread of disease-causing agents. In this review, we have surveyed antibacterial and antiviral materials of various classes such as small-molecule organics, synthetic and biodegradable polymers, silver, TiO2, and copper-derived chemicals. The surface protection mechanisms of the materials against the pathogen colonies are discussed in detail, which highlights the key differences that could determine the parameters that would govern the future development of advanced antibacterial and antiviral materials and surfaces.
Collapse
Affiliation(s)
| | - Prateek
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Sudhir Ranjan
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Mohit Saraf
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Prasenjit Kar
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Surya Pratap Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, United Kingdom
| | - Anand Singh
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Raju Kumar Gupta
- Department
of Chemical Engineering, Indian Institute
of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Center
for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
199
|
Taokaew S, Chiaoprakobkij N, Siripong P, Sanchavanakit N, Pavasant P, Phisalaphong M. Multifunctional cellulosic nanofiber film with enhanced antimicrobial and anticancer properties by incorporation of ethanolic extract of Garcinia mangostana peel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111783. [PMID: 33545910 DOI: 10.1016/j.msec.2020.111783] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/04/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022]
Abstract
Natural polymeric nanofibers-based materials for medical application is an intensive research area due to the unique features of natural polymeric nanofibers. Bacterial nanocellulose (BC) films containing various concentrations of mangosteen (Garcinia mangostana) peel extract were prepared and evaluated as a multifunctional nanofiber film. The extract was absorbed into BC hydrogel and air dried to entrap the extract into nanofiber network. The resulting films contained about 3, 35, and 294 mg of total phenolic compounds and 2, 24, and 250 mg of α-mangostin per cm3 of the dried films. The film containing the highest phenolic compounds and α-mangostin performed the inhibitory effect to Staphylococcus epidermidis, Propionibacterium acnes, and Staphylococcus aureus. High anticancer activity against B16F10 melanoma and MCF-7 breast cancer cells having viabilities of 10 and 5%, respectively after 48 h were detected after the treatments with the film. However, the film had a low toxicity against normal fibroblast and keratinocyte cells with 41 and 99% viability, respectively. The research suggested that the prepared films were a multifunctional nanofiber films with antimicrobial and anticancer properties.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Chemical Engineering Research Unit for Value Adding of Bioresources, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand; Department of Materials Science and Technology, School of Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan.
| | - Nadda Chiaoprakobkij
- Chemical Engineering Research Unit for Value Adding of Bioresources, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pongpun Siripong
- Natural Products Research Section, Research Division, National Cancer Institute of Thailand, Bangkok 10400, Thailand
| | - Neeracha Sanchavanakit
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prasit Pavasant
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Muenduen Phisalaphong
- Chemical Engineering Research Unit for Value Adding of Bioresources, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
200
|
Swingler S, Gupta A, Gibson H, Kowalczuk M, Heaselgrave W, Radecka I. Recent Advances and Applications of Bacterial Cellulose in Biomedicine. Polymers (Basel) 2021; 13:412. [PMID: 33525406 PMCID: PMC7865233 DOI: 10.3390/polym13030412] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Bacterial cellulose (BC) is an extracellular polymer produced by Komagateibacter xylinus, which has been shown to possess a multitude of properties, which makes it innately useful as a next-generation biopolymer. The structure of BC is comprised of glucose monomer units polymerised by cellulose synthase in β-1-4 glucan chains which form uniaxially orientated BC fibril bundles which measure 3-8 nm in diameter. BC is chemically identical to vegetal cellulose. However, when BC is compared with other natural or synthetic analogues, it shows a much higher performance in biomedical applications, potable treatment, nano-filters and functional applications. The main reason for this superiority is due to the high level of chemical purity, nano-fibrillar matrix and crystallinity. Upon using BC as a carrier or scaffold with other materials, unique and novel characteristics can be observed, which are all relatable to the features of BC. These properties, which include high tensile strength, high water holding capabilities and microfibrillar matrices, coupled with the overall physicochemical assets of bacterial cellulose makes it an ideal candidate for further scientific research into biopolymer development. This review thoroughly explores several areas in which BC is being investigated, ranging from biomedical applications to electronic applications, with a focus on the use as a next-generation wound dressing. The purpose of this review is to consolidate and discuss the most recent advancements in the applications of bacterial cellulose, primarily in biomedicine, but also in biotechnology.
Collapse
Affiliation(s)
- Sam Swingler
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
| | - Abhishek Gupta
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Hazel Gibson
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, 41-819 Zabrze, Poland;
| | - Wayne Heaselgrave
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
- Department of Biomedical Science, University of Wolverhampton, MA Building, Wulfruna Street, Wolverhampton WV1 1LY, UK
| | - Iza Radecka
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
- Research Institute in Healthcare Science, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK; (A.G.); (W.H.)
| |
Collapse
|