151
|
Milczek EM. Commercial Applications for Enzyme-Mediated Protein Conjugation: New Developments in Enzymatic Processes to Deliver Functionalized Proteins on the Commercial Scale. Chem Rev 2017. [DOI: 10.1021/acs.chemrev.6b00832] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
152
|
Harris HMB, Bourin MJB, Claesson MJ, O'Toole PW. Phylogenomics and comparative genomics of Lactobacillus salivarius, a mammalian gut commensal. Microb Genom 2017; 3:e000115. [PMID: 29026656 PMCID: PMC5610712 DOI: 10.1099/mgen.0.000115] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/12/2017] [Indexed: 01/15/2023] Open
Abstract
The genus Lactobacillus is a diverse group with a combined species count of over 200. They are the largest group within the lactic acid bacteria and one of the most important bacterial groups involved in food microbiology and human nutrition because of their fermentative and probiotic properties. Lactobacillus salivarius, a species commonly isolated from the gastrointestinal tract of humans and animals, has been described as having potential probiotic properties and results of previous studies have revealed considerable functional diversity existing on both the chromosomes and plasmids. Our study consists of comparative genomic analyses of the functional and phylogenomic diversity of 42 genomes of strains of L. salivarius using bioinformatic techniques. The main aim of the study was to describe intra-species diversity and to determine how this diversity is spread across the replicons. We found that multiple phylogenomic and non-phylogenomic methods used for reconstructing trees all converge on similar tree topologies, showing that different metrics largely agree on the evolutionary history of the species. The greatest genomic variation lies on the small plasmids, followed by the repA-type circular megaplasmid, with the chromosome varying least of all. Additionally, the presence of extra linear and circular megaplasmids is noted in several strains, while small plasmids are not always present. Glycosyl hydrolases, bacteriocins and proteases vary considerably on all replicons while two exopolysaccharide clusters and several clustered regularly interspaced short palindromic repeats-associated systems show a lot of variation on the chromosome. Overall, despite its reputation as a mammalian gastrointestinal tract specialist, the intra-specific variation of L. salivarius reveals potential strain-dependant effects on human health.
Collapse
Affiliation(s)
- Hugh M B Harris
- School of Microbiology, University College Cork, Cork, Munster, Ireland
| | | | - Marcus J Claesson
- School of Microbiology, University College Cork, Cork, Munster, Ireland
| | - Paul W O'Toole
- School of Microbiology, University College Cork, Cork, Munster, Ireland
| |
Collapse
|
153
|
Jacobitz AW, Kattke MD, Wereszczynski J, Clubb RT. Sortase Transpeptidases: Structural Biology and Catalytic Mechanism. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 109:223-264. [PMID: 28683919 DOI: 10.1016/bs.apcsb.2017.04.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gram-positive bacteria use sortase cysteine transpeptidase enzymes to covalently attach proteins to their cell wall and to assemble pili. In pathogenic bacteria sortases are potential drug targets, as many of the proteins that they display on the microbial surface play key roles in the infection process. Moreover, the Staphylococcus aureus Sortase A (SaSrtA) enzyme has been developed into a valuable biochemical reagent because of its ability to ligate biomolecules together in vitro via a covalent peptide bond. Here we review what is known about the structures and catalytic mechanism of sortase enzymes. Based on their primary sequences, most sortase homologs can be classified into six distinct subfamilies, called class A-F enzymes. Atomic structures reveal unique, class-specific variations that support alternate substrate specificities, while structures of sortase enzymes bound to sorting signal mimics shed light onto the molecular basis of substrate recognition. The results of computational studies are reviewed that provide insight into how key reaction intermediates are stabilized during catalysis, as well as the mechanism and dynamics of substrate recognition. Lastly, the reported in vitro activities of sortases are compared, revealing that the transpeptidation activity of SaSrtA is at least 20-fold faster than other sortases that have thus far been characterized. Together, the results of the structural, computational, and biochemical studies discussed in this review begin to reveal how sortases decorate the microbial surface with proteins and pili, and may facilitate ongoing efforts to discover therapeutically useful small molecule inhibitors.
Collapse
Affiliation(s)
- Alex W Jacobitz
- The Molecular Biology Institute and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, United States
| | - Michele D Kattke
- The Molecular Biology Institute and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, United States
| | - Jeff Wereszczynski
- Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, United States
| | - Robert T Clubb
- The Molecular Biology Institute and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, United States.
| |
Collapse
|
154
|
Puorger C, Di Girolamo S, Lipps G. Elucidation of the Recognition Sequence of Sortase B from Bacillus anthracis by Using a Newly Developed Liquid Chromatography–Mass Spectrometry-Based Method. Biochemistry 2017; 56:2641-2650. [DOI: 10.1021/acs.biochem.7b00108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chasper Puorger
- Institute for Chemistry and
Bioanalytics, University of Applied Sciences and Arts, Gründenstrasse
40, 4132 Muttenz, Switzerland
| | - Salvatore Di Girolamo
- Institute for Chemistry and
Bioanalytics, University of Applied Sciences and Arts, Gründenstrasse
40, 4132 Muttenz, Switzerland
| | - Georg Lipps
- Institute for Chemistry and
Bioanalytics, University of Applied Sciences and Arts, Gründenstrasse
40, 4132 Muttenz, Switzerland
| |
Collapse
|
155
|
Khare B, V L Narayana S. Pilus biogenesis of Gram-positive bacteria: Roles of sortases and implications for assembly. Protein Sci 2017; 26:1458-1473. [PMID: 28493331 DOI: 10.1002/pro.3191] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 12/26/2022]
Abstract
Successful adherence, colonization, and survival of Gram-positive bacteria require surface proteins, and multiprotein assemblies called pili. These surface appendages are attractive pharmacotherapeutic targets and understanding their assembly mechanisms is essential for identifying a new class of 'anti-infectives' that do not elicit microbial resistance. Molecular details of the Gram-negative pilus assembly are available indepth, but the Gram-positive pilus biogenesis is still an emerging field and investigations continue to reveal novel insights into this process. Pilus biogenesis in Gram-positive bacteria is a biphasic process that requires enzymes called pilus-sortases for assembly and a housekeeping sortase for covalent attachment of the assembled pilus to the peptidoglycan cell wall. Emerging structural and functional data indicate that there are at least two groups of Gram-positive pili, which require either the Class C sortase or Class B sortase in conjunction with LepA/SipA protein for major pilin polymerization. This observation suggests two distinct modes of sortase-mediated pilus biogenesis in Gram-positive bacteria. Here we review the structural and functional biology of the pilus-sortases from select streptococcal pilus systems and their role in Gram-positive pilus assembly.
Collapse
Affiliation(s)
- Baldeep Khare
- Center for Structural Biology, School of Optometry, University of Alabama at Birmingham, Birmingham, USA
| | - Sthanam V L Narayana
- Center for Structural Biology, School of Optometry, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
156
|
Lapirattanakul J, Takashima Y, Tantivitayakul P, Maudcheingka T, Leelataweewud P, Nakano K, Matsumoto-Nakano M. Cariogenic properties of Streptococcus mutans clinical isolates with sortase defects. Arch Oral Biol 2017; 81:7-14. [PMID: 28458044 DOI: 10.1016/j.archoralbio.2017.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/27/2017] [Accepted: 04/17/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE In Streptococcus mutans, a Gram-positive pathogen of dental caries, several surface proteins are anchored by the activity of sortase enzyme. Although various reports have shown that constructed S. mutans mutants deficient of sortase as well as laboratory reference strains with a sortase gene mutation have low cariogenic potential, no known studies have investigated clinical isolates with sortase defects. Here, we examined the cariogenic properties of S. mutans clinical isolates with sortase defects as well as caries status in humans harboring such defective isolates. DESIGN Sortase-defective clinical isolates were evaluated for biofilm formation, sucrose-dependent adhesion, stress-induced dextran-dependent aggregation, acid production, and acid tolerance. Additionally, caries indices of subjects possessing such defective isolates were determined. RESULTS Our in vitro results indicated that biofilm with a lower quantity was formed by sortase-defective as compared to non-defective isolates. Moreover, impairments of sucrose-dependent adhesion and stress-induced dextran-dependent aggregation were found among the isolates with defects, whereas no alterations were seen in regard to acid production or tolerance. Furthermore, glucan-binding protein C, a surface protein anchored by sortase activity, was predominantly detected in culture supernatants of all sortase-defective S. mutans isolates. Although the sortase-defective isolates showed lower cariogenic potential because of a reduction in some cariogenic properties, deft/DMFT indices revealed that all subjects harboring those isolates had caries experience. CONCLUSIONS Our findings suggest the impairment of cariogenic properties in S. mutans clinical isolates with sortase defects, though the detection of these defective isolates seemed not to imply low caries risk in the subjects harboring them.
Collapse
Affiliation(s)
- Jinthana Lapirattanakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand.
| | - Yukiko Takashima
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| | - Pornpen Tantivitayakul
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | - Thaniya Maudcheingka
- Department of Oral Microbiology, Faculty of Dentistry, Mahidol University, Bangkok, 10400, Thailand
| | | | - Kazuhiko Nakano
- Department of Pediatric Dentistry, Osaka University Graduate School of Dentistry, Osaka, 565-0871, Japan
| | - Michiyo Matsumoto-Nakano
- Department of Pediatric Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8525, Japan
| |
Collapse
|
157
|
Singh G, Singh V. Functional elucidation of hypothetical proteins for their indispensable roles toward drug designing targets from Helicobacter pylori strain HPAG1. J Biomol Struct Dyn 2017; 36:906-918. [DOI: 10.1080/07391102.2017.1302361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Gagandeep Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, TAB, Shahpur 176206, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, TAB, Shahpur 176206, India
| |
Collapse
|
158
|
Silvius JR, Leventis R. A Novel “Prebinding” Strategy Dramatically Enhances Sortase-Mediated Coupling of Proteins to Liposomes. Bioconjug Chem 2017; 28:1271-1282. [DOI: 10.1021/acs.bioconjchem.7b00087] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- John R. Silvius
- Department of Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC, Canada H3G 1A9
| | - Rania Leventis
- Department of Biochemistry, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC, Canada H3G 1A9
| |
Collapse
|
159
|
Chalupowicz L, Barash I, Reuven M, Dror O, Sharabani G, Gartemann K, Eichenlaub R, Sessa G, Manulis‐Sasson S. Differential contribution of Clavibacter michiganensis ssp. michiganensis virulence factors to systemic and local infection in tomato. MOLECULAR PLANT PATHOLOGY 2017; 18:336-346. [PMID: 26992141 PMCID: PMC6638269 DOI: 10.1111/mpp.12400] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/13/2016] [Accepted: 03/15/2016] [Indexed: 05/03/2023]
Abstract
Clavibacter michiganensis ssp. michiganensis (Cmm) causes substantial economic losses in tomato production worldwide. The disease symptoms observed in plants infected systemically by Cmm are wilting and canker on the stem, whereas blister-like spots develop in locally infected leaves. A wide repertoire of serine proteases and cell wall-degrading enzymes has been implicated in the development of wilt and canker symptoms. However, virulence factors involved in the formation of blister-like spots, which play an important role in Cmm secondary spread in tomato nurseries, are largely unknown. Here, we demonstrate that Cmm virulence factors play different roles during blister formation relative to wilting. Inoculation with a green fluorescent protein (GFP)-labelled Cmm382 indicates that penetration occurs mainly through trichomes. When spray inoculated on tomato leaves, the wild-type Cmm382 and Cmm100 (lacking plasmids pCM1 and pCM2) strains form blister-like spots on leaves, whereas Cmm27 (lacking the chp/tomA pathogenicity island) is non-pathogenic, indicating that plasmid-borne genes, which have a crucial role in wilting, are not required for blister formation. Conversely, mutations in chromosomal genes encoding serine proteases (chpC and sbtA), cell wall-degrading enzymes (pgaA and endX/Y), a transcriptional regulator (vatr2), a putative perforin (perF) and a putative sortase (srtA) significantly affect disease incidence and the severity of blister formation. The transcript levels of these genes, as measured by quantitative reverse transcription-polymerase chain reaction, showed that, during blister formation, they are expressed early at 8-16 h after inoculation, whereas, during wilting, they are expressed after 24-72 h or expressed at low levels. Plant gene expression studies suggest that chpC is involved in the suppression of host defence.
Collapse
Affiliation(s)
- Laura Chalupowicz
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Isaac Barash
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Michal Reuven
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Orit Dror
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Galit Sharabani
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| | - Karl‐Heinz Gartemann
- Department of Genetechnology/MicrobiologyUniversity of BielefeldBielefeld33501Germany
| | - Rudolf Eichenlaub
- Department of Genetechnology/MicrobiologyUniversity of BielefeldBielefeld33501Germany
| | - Guido Sessa
- Department of Molecular Biology and Ecology of Plants, Faculty of Life SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Shulamit Manulis‐Sasson
- Department of Plant Pathology and Weed ResearchAgricultural Research Organization, The Volcani CenterBet Dagan50250Israel
| |
Collapse
|
160
|
Chan AH, Yi SW, Weiner EM, Amer BR, Sue CK, Wereszczynski J, Dillen CA, Senese S, Torres JZ, McCammon JA, Miller LS, Jung ME, Clubb RT. NMR structure-based optimization of Staphylococcus aureus sortase A pyridazinone inhibitors. Chem Biol Drug Des 2017; 90:327-344. [PMID: 28160417 DOI: 10.1111/cbdd.12962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/25/2017] [Accepted: 01/28/2017] [Indexed: 12/24/2022]
Abstract
Staphylococcus aureus is a leading cause of hospital-acquired infections in the USA and is a major health concern as methicillin-resistant S. aureus and other antibiotic-resistant strains are common. Compounds that inhibit the S. aureus sortase (SrtA) cysteine transpeptidase may function as potent anti-infective agents as this enzyme attaches virulence factors to the bacterial cell wall. While a variety of SrtA inhibitors have been discovered, the vast majority of these small molecules have not been optimized using structure-based approaches. Here we have used NMR spectroscopy to determine the molecular basis through which pyridazinone-based small molecules inhibit SrtA. These inhibitors covalently modify the active cysteine thiol and partially mimic the natural substrate of SrtA by inducing the closure of an active site loop. Computational and synthetic chemistry methods led to second-generation analogues that are ~70-fold more potent than the lead molecule. These optimized molecules exhibit broad-spectrum activity against other types of class A sortases, have reduced cytotoxicity, and impair SrtA-mediated protein display on S. aureus cell surface. Our work shows that pyridazinone analogues are attractive candidates for further development into anti-infective agents, and highlights the utility of employing NMR spectroscopy and solubility-optimized small molecules in structure-based drug discovery.
Collapse
Affiliation(s)
- Albert H Chan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sung Wook Yi
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ethan M Weiner
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brendan R Amer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher K Sue
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, USA
| | - Carly A Dillen
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Silvia Senese
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.,Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael E Jung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.,UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
161
|
Wang J, Liu B, Teng Z, Zhou X, Wang X, Zhang B, Lu G, Niu X, Yang Y, Deng X. Phloretin Attenuates Listeria monocytogenes Virulence Both In vitro and In vivo by Simultaneously Targeting Listeriolysin O and Sortase A. Front Cell Infect Microbiol 2017; 7:9. [PMID: 28154809 PMCID: PMC5244253 DOI: 10.3389/fcimb.2017.00009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 01/05/2017] [Indexed: 01/05/2023] Open
Abstract
The critical roles of sortase A (SrtA) and listeriolysin O (LLO) in Listeria monocytogenes pathogenicity render these two virulence factors as ideal targets for the development of anti-virulence agents against L. monocytogenes infection. Additionally, the structures of SrtA and LLO are highly conserved among the members of sortase enzyme family and cholesterol dependent toxin family. Here, phloretin, a natural polyphenolic compound derived from apples and pears that has little anti-L. monocytogenes activity, was identified to simultaneously inhibit LLO expression and neutralize SrtA catalytic activity. Phloretin neutralized SrtA activity by causing a conformational change in the protein's active pocket, which prevented engagement with its substrate. Treatment with phloretin simultaneously reduced L. monocytogenes invasion into host cells and blocked the escape of vacuole-entrapped L. monocytogenes into cytoplasm. Further, L. monocytogenes-infected mice that received phloretin showed lower mortality, decreased bacterial burden and reduced pathological injury. Our results demonstrate that phloretin is a promising anti-infective therapeutic for infections caused by L. monocytogenes due to its simultaneous targeting of SrtA and LLO, which may result in fewer side effects than those caused by other antibiotics.
Collapse
Affiliation(s)
- Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Bowen Liu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Zihao Teng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Xuan Zhou
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Xiyan Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Bing Zhang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Gejin Lu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Xiaodi Niu
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Yongjun Yang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| | - Xuming Deng
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University Changchun, China
| |
Collapse
|
162
|
Enzyme-Based Strategies to Generate Site-Specifically Conjugated Antibody Drug Conjugates. NEXT GENERATION ANTIBODY DRUG CONJUGATES (ADCS) AND IMMUNOTOXINS 2017. [DOI: 10.1007/978-3-319-46877-8_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
163
|
Kattke MD, Chan AH, Duong A, Sexton DL, Sawaya MR, Cascio D, Elliot MA, Clubb RT. Crystal Structure of the Streptomyces coelicolor Sortase E1 Transpeptidase Provides Insight into the Binding Mode of the Novel Class E Sorting Signal. PLoS One 2016; 11:e0167763. [PMID: 27936128 PMCID: PMC5148588 DOI: 10.1371/journal.pone.0167763] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/18/2016] [Indexed: 01/17/2023] Open
Abstract
Many species of Gram-positive bacteria use sortase transpeptidases to covalently affix proteins to their cell wall or to assemble pili. Sortase-displayed proteins perform critical and diverse functions for cell survival, including cell adhesion, nutrient acquisition, and morphological development, among others. Based on their amino acid sequences, there are at least six types of sortases (class A to F enzymes); however, class E enzymes have not been extensively studied. Class E sortases are used by soil and freshwater-dwelling Actinobacteria to display proteins that contain a non-canonical LAXTG sorting signal, which differs from 90% of known sorting signals by substitution of alanine for proline. Here we report the first crystal structure of a class E sortase, the 1.93 Å resolution structure of the SrtE1 enzyme from Streptomyces coelicolor. The active site is bound to a tripeptide, providing insight into the mechanism of substrate binding. SrtE1 possesses β3/β4 and β6/β7 active site loops that contact the LAXTG substrate and are structurally distinct from other classes. We propose that SrtE1 and other class E sortases employ a conserved tyrosine residue within their β3/β4 loop to recognize the amide nitrogen of alanine at position P3 of the sorting signal through a hydrogen bond, as seen here. Incapability of hydrogen-bonding with canonical proline-containing sorting signals likely contributes to class E substrate specificity. Furthermore, we demonstrate that surface anchoring of proteins involved in aerial hyphae formation requires an N-terminal segment in SrtE1 that is presumably positioned within the cytoplasm. Combined, our results reveal unique features within class E enzymes that enable them to recognize distinct sorting signals, and could facilitate the development of substrate-based inhibitors of this important enzyme family.
Collapse
Affiliation(s)
- Michele D. Kattke
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Albert H. Chan
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Andrew Duong
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Danielle L. Sexton
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Michael R. Sawaya
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Duilio Cascio
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Marie A. Elliot
- Department of Biology and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, United States of America
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
164
|
Gibello A, Galán-Sánchez F, Blanco MM, Rodríguez-Iglesias M, Domínguez L, Fernández-Garayzábal JF. The zoonotic potential of Lactococcus garvieae: An overview on microbiology, epidemiology, virulence factors and relationship with its presence in foods. Res Vet Sci 2016; 109:59-70. [DOI: 10.1016/j.rvsc.2016.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/13/2016] [Accepted: 09/16/2016] [Indexed: 01/10/2023]
|
165
|
Siegel SD, Liu J, Ton-That H. Biogenesis of the Gram-positive bacterial cell envelope. Curr Opin Microbiol 2016; 34:31-37. [PMID: 27497053 PMCID: PMC5164837 DOI: 10.1016/j.mib.2016.07.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 01/29/2023]
Abstract
The Gram-positive cell envelope serves as a molecular platform for surface display of capsular polysaccharides, wall teichoic acids (WTAs), lipoteichoic acids (LTAs), lipoproteins, surface proteins and pili. WTAs, LTAs, and sortase-assembled pili are a few features that make the Gram-positive cell envelope distinct from the Gram-negative counterpart. Interestingly, a set of LytR-CpsA-Psr family proteins, found in all Gram-positives but limited to a minority of Gram-negative organisms, plays divergent functions, while decorating the cell envelope with glycans. Furthermore, a phylum of Gram-positive bacteria, the actinobacteria, appear to employ oxidative protein folding as the major folding mechanism, typically occurring in an oxidizing environment of the Gram-negative periplasm. These distinctive features will be highlighted, along with recent findings in the cell envelope biogenesis.
Collapse
Affiliation(s)
- Sara D Siegel
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX, USA
| | - Jun Liu
- Department of Pathology & Laboratory Medicine, University of Texas McGovern Medical School, Houston, TX, USA
| | - Hung Ton-That
- Department of Microbiology & Molecular Genetics, University of Texas McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
166
|
Yin JC, Fei CH, Lo YC, Hsiao YY, Chang JC, Nix JC, Chang YY, Yang LW, Huang IH, Wang S. Structural Insights into Substrate Recognition by Clostridium difficile Sortase. Front Cell Infect Microbiol 2016; 6:160. [PMID: 27921010 PMCID: PMC5118464 DOI: 10.3389/fcimb.2016.00160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/07/2016] [Indexed: 01/07/2023] Open
Abstract
Sortases function as cysteine transpeptidases that catalyze the covalent attachment of virulence-associated surface proteins into the cell wall peptidoglycan in Gram-positive bacteria. The substrate proteins targeted by sortase enzymes have a cell wall sorting signal (CWSS) located at the C-terminus. Up to date, it is still not well understood how sortases with structural resemblance among different classes and diverse species of bacteria achieve substrate specificity. In this study, we focus on elucidating the molecular basis for specific recognition of peptide substrate PPKTG by Clostridium difficile sortase B (Cd-SrtB). Combining structural studies, biochemical assays and molecular dynamics simulations, we have constructed a computational model of Cd-SrtBΔN26-PPKTG complex and have validated the model by site-directed mutagensis studies and fluorescence resonance energy transfer (FRET)-based assay. Furthermore, we have revealed that the fourth amino acid in the N-terminal direction from cleavage site of PPKTG forms specific interaction with Cd-SrtB and plays an essential role in configuring the peptide to allow more efficient substrate-specific cleavage by Cd-SrtB.
Collapse
Affiliation(s)
- Jui-Chieh Yin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Chun-Hsien Fei
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Yen-Chen Lo
- Institute of Bioinformatics and Structural Biology, National Tsing Hua UniversityHsinchu, Taiwan,Bioinformatics Program, Taiwan International Graduate Program, Academia SinicaTaipei, Taiwan
| | - Yu-Yuan Hsiao
- Department of Biological Science and Technology, National Chiao Tung UniversityHsinchu, Taiwan
| | - Jyun-Cyuan Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Jay C. Nix
- Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National LaboratoryBerkeley, CA, USA
| | - Yuan-Yu Chang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua UniversityHsinchu, Taiwan
| | - Lee-Wei Yang
- Institute of Bioinformatics and Structural Biology, National Tsing Hua UniversityHsinchu, Taiwan,Physics Division, National Center for Theoretical SciencesHsinchu, Taiwan,*Correspondence: Lee-Wei Yang
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan,I-Hsiu Huang
| | - Shuying Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan,Center of Infectious Disease and Signaling Research, National Cheng Kung UniversityTainan, Taiwan,Shuying Wang
| |
Collapse
|
167
|
Tsai JYC, Loh JMS, Clow F, Lorenz N, Proft T. The Group A Streptococcus serotype M2 pilus plays a role in host cell adhesion and immune evasion. Mol Microbiol 2016; 103:282-298. [PMID: 27741558 DOI: 10.1111/mmi.13556] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2016] [Indexed: 01/22/2023]
Abstract
Group A Streptococcus (GAS), or Streptococcus pyogenes, is a human pathogen that causes diseases ranging from skin and soft tissue infections to severe invasive diseases, such as toxic shock syndrome. Each GAS strain carries a particular pilus type encoded in the variable fibronectin-binding, collagen-binding, T antigen (FCT) genomic region. Here, we describe the functional analysis of the serotype M2 pilus encoded in the FCT-6 region. We found that, in contrast to other investigated GAS pili, the ancillary pilin 1 lacks adhesive properties. Instead, the backbone pilin is important for host cell adhesion and binds several host factors, including fibronectin and fibrinogen. Using a panel of recombinant pilus proteins, GAS gene deletion mutants and Lactococcus lactis gain-of-function mutants we show that, unlike other GAS pili, the FCT-6 pilus also contributes to immune evasion. This was demonstrated by a delay in blood clotting, increased intracellular survival of the bacteria in macrophages, higher bacterial survival rates in human whole blood and greater virulence in a Galleria mellonella infection model in the presence of fully assembled FCT-6 pili.
Collapse
Affiliation(s)
- Jia-Yun C Tsai
- Department of Molecular Medicine & Pathology, School of Medical Sciences.,Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Jacelyn M S Loh
- Department of Molecular Medicine & Pathology, School of Medical Sciences.,Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| | - Fiona Clow
- Department of Molecular Medicine & Pathology, School of Medical Sciences
| | - Natalie Lorenz
- Department of Molecular Medicine & Pathology, School of Medical Sciences
| | - Thomas Proft
- Department of Molecular Medicine & Pathology, School of Medical Sciences.,Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
168
|
Staphylococcus epidermidis ΔSortase A strain elicits protective immunity against Staphylococcus aureus infection. Antonie van Leeuwenhoek 2016; 110:133-143. [PMID: 27757703 DOI: 10.1007/s10482-016-0784-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are two of the most significant opportunistic human pathogens, causing medical implant and nosocomial infections worldwide. These bacteria contain surface proteins that play crucial roles in multiple biological processes. It has become apparent that they have evolved a number of unique mechanisms by which they can immobilise proteins on their surface. Notably, a conserved cell membrane-anchored enzyme, sortase A (SrtA), can catalyse the covalent attachment of precursor bacterial cell wall-attached proteins to peptidoglycan. Considering its indispensable role in anchoring substrates to the cell wall and its effects on virulence, SrtA has attracted great attention. In this study, a 549-bp gene was cloned from a pathogenic S. epidermidis strain, YC-1, which shared high identity with srtA from other Staphylococcus spp. A mutant strain, YC-1ΔsrtA, was then constructed by allelic exchange mutagenesis. The direct survival rate assay suggested that YC-1ΔsrtA had a lower survival capacity in healthy mice blood compare with the wild-type strain, indicating that the deletion of srtA affects the virulence and infectious capacity of S. epidermidis YC-1. YC-1ΔsrtA was then administered via intraperitoneal injection and it provided a relative percent survival value of 72.7 % in mice against S. aureus TC-1 challenge. These findings demonstrate the possbility that YC-1ΔsrtA might be used as a live attenuated vaccine to produce cross-protection against S. aureus.
Collapse
|
169
|
Acacetin Protects Mice from Staphylococcus aureus Bloodstream Infection by Inhibiting the Activity of Sortase A. Molecules 2016; 21:molecules21101285. [PMID: 27681715 PMCID: PMC6272931 DOI: 10.3390/molecules21101285] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/20/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a major cause of infection in hospitals and communities. Widespread dissemination of multi-drug resistant S. aureus is a serious threat to the health of humans and animals. An anti-virulence strategy has been widely considered as an alternative therapeutic approach. Inhibitors of virulence factors are able to treat S. aureus infections without influencing the growth or viability of bacteria and rarely lead to bacterial resistance. Sortase A (SrtA) is a membrane-associated cysteine transpeptidase that catalyzes up to 25 surface proteins that covalently bind to cell wall peptidoglycans. In S. aureus, most of these surface proteins have been identified as important virulence factors that are vital in bacterial pathogenesis. In the present study, we show that acacetin, a natural flavonoid compound, inhibits the activity of SrtA in S. aureus (IC50 = 36.46 ± 4.69 μg/mL, 128 μM) which affects the assembly of protein A (SpA) to cell walls and reduces the binding of S. aureus to fibrinogen (Fg). The mechanism of the interaction between acacetin and SrtA were preliminarily discussed using molecular dynamics simulations. The results suggested that acacetin adopted a compact conformation binding at the pocket of the SrtA via residues Arg-139 and Lys-140. By performing an animal infection model, we demonstrated that acacetin was able to protect mice from renal abscess formation induced by S. aureus and significantly increased survival rates. Taken together, these findings suggest that acacetin may be a promising candidate for the development of anti-S. aureus drugs.
Collapse
|
170
|
Chen J, Dong H, Murfin KE, Feng C, Wu S, Zheng B. Active site analysis of sortase A from Staphylococcus simulans indicates function in cleavage of putative cell wall proteins. Biochem Biophys Res Commun 2016; 478:1653-9. [PMID: 27591898 DOI: 10.1016/j.bbrc.2016.08.175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022]
Abstract
Sortase mediated transpeptidation reactions play a significant role in covalent attachment of surface proteins to the cell wall of Gram-positive bacteria. Earlier studies have shown that sortase A (StrA) is required for the virulence of Staphylococci. The human pathogen Staphylococcus simulans CJ16 carries a putative sortase A (SsiStrA) encoding gene, but neither transpeptidation activity nor biochemical characteristics of SsiStrA have been investigated. Here, we identified and characterized StrA from coagulase-negative Staphylococci. SsiStrA was cloned and overexpressed in Escherichia coli BL21 in a soluble form. Size-exclusion chromatography, cross-linking and dynamic light scattering demonstrated that SsiStrA existed as monomer-dimer equilibrium in vitro. We further demonstrated that SsiStrA has sortase activity, and it recognized and cleaved the sorting motif LXPTG. H117, C180 and R193 residues were critical for enzyme activity, and calcium ions enhanced activity.
Collapse
Affiliation(s)
- Jian Chen
- Intensive Care Unit, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huihui Dong
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kristen E Murfin
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, USA
| | - Chunyan Feng
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China
| | - Shaoqiang Wu
- Institute of Animal Quarantine, Chinese Academy of Inspection and Quarantine, Beijing, China.
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
171
|
Diene SM, François P, Zbinden A, Entenza JM, Resch G. Comparative Genomics Analysis of Streptococcus tigurinus Strains Identifies Genetic Elements Specifically and Uniquely Present in Highly Virulent Strains. PLoS One 2016; 11:e0160554. [PMID: 27505001 PMCID: PMC4978470 DOI: 10.1371/journal.pone.0160554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023] Open
Abstract
Streptococcus tigurinus is responsible for severe invasive infections such as infective endocarditis, spondylodiscitis and meningitis. As described, S. tigurinus isolates AZ_3aT and AZ_14 were highly virulent (HV phenotype) in an experimental model of infective endocarditis and showed enhanced adherence and invasion of human endothelial cells when compared to low virulent S. tigurinus isolate AZ_8 (LV phenotype). Here, we sought whether genetic determinants could explain the higher virulence of AZ_3aT and AZ_14 isolates. Several genetic determinants specific to the HV strains were identified through extensive comparative genomics amongst which some were thought to be highly relevant for the observed HV phenotype. These included i) an iron uptake and metabolism operon, ii) an ascorbate assimilation operon, iii) a newly acquired PI-2-like pilus islets described for the first time in S. tigurinus, iv) a hyaluronate metabolism operon, v) an Entner-Doudoroff pathway of carbohydrates metabolism, and vi) an alternate pathways for indole biosynthesis. We believe that the identified genomic features could largely explain the phenotype of high infectivity of the two HV S. tigurinus strains. Indeed, these features include determinants that could be involved at different stages of the disease such as survival of S. tigurinus in blood (iron uptake and ascorbate metabolism operons), initial attachment of bacterial pathogen to the damaged cardiac tissue and/or vegetation that formed on site (PI-2-like pilus islets), tissue invasion (hyaluronate operon and Entner-Doudoroff pathway) and regulation of pathogenicity (indole biosynthesis pathway).
Collapse
Affiliation(s)
- Seydina M. Diene
- Genomic Research Laboratory, Geneva University Hospitals, Geneva, Switzerland
| | - Patrice François
- Genomic Research Laboratory, Geneva University Hospitals, Geneva, Switzerland
| | - Andrea Zbinden
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - José Manuel Entenza
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Grégory Resch
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
172
|
Jensen H, Drømtorp SM, Axelsson L, Grimmer S. Immunomodulation of monocytes by probiotic and selected lactic Acid bacteria. Probiotics Antimicrob Proteins 2016; 7:14-23. [PMID: 25331988 DOI: 10.1007/s12602-014-9174-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Some lactic acid bacteria (LAB), especially bacteria belonging to the genus Lactobacillus, are recognized as common inhabitants of the human gastrointestinal tract and have received considerable attention in the last decades due to their postulated health-promoting effects. LAB and probiotic bacteria can modulate the host immune response. However, much is unknown about the mediators and mechanisms responsible for their immunological effect. Here, we present a study using cytokine secretion from the monocytic cell line THP-1 and NF-κB activation in the monocytic cell line U937-3xkB-LUC to elucidate immune stimulating abilities of LAB in vitro. In this study, we investigate both commercially available and potential probiotic LAB strains, and the role of putative surface proteins of L. reuteri using mutants. L. reuteri strains induced the highest cytokine secretion and the highest NF-κB activation, whereas L. plantarum strains and L. rhamnosus GG were low inducers/activators. One of the putative L. reuteri surface proteins, Hmpref0536_10802, appeared to be of importance for the stimulation of THP-1 cells and the activation of NF-κB in U937-3xkB-LUC cells. Live and UV-inactivated preparations resulted in different responses for two of the strains investigated. Our results add to the complexity in the interaction between LAB and human cells and suggest the possible involvement of secreted pro- and anti-inflammatory mediators of LAB. It is likely that it is the sum of bacterial surface proteins and bacterial metabolites and/or secreted proteins that induce cytokine secretion in THP-1 cells and activate NF-κB in U937-3xkB-LUC cells in this study.
Collapse
Affiliation(s)
- Hanne Jensen
- Nofima, Norwegian Institute of Food, Fisheries, and Aquaculture Research, P.O. Box 210, 1431, Ås, Norway,
| | | | | | | |
Collapse
|
173
|
Burger G, Moreira S, Valach M. Genes in Hiding. Trends Genet 2016; 32:553-565. [PMID: 27460648 DOI: 10.1016/j.tig.2016.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/23/2016] [Accepted: 06/24/2016] [Indexed: 12/25/2022]
Abstract
Unrecognizable genes are an unsettling problem in genomics. Here, we survey the various types of cryptic genes and the corresponding deciphering strategies employed by cells. Encryption that renders genes substantially different from homologs in other species includes sequence substitution, insertion, deletion, fragmentation plus scrambling, and invasion by mobile genetic elements. Cells decode cryptic genes at the DNA, RNA or protein level. We will focus on a recently discovered case of unparalleled encryption involving massive gene fragmentation and nucleotide deletions and substitutions, occurring in the mitochondrial genome of a poorly understood protist group, the diplonemids. This example illustrates that comprehensive gene detection requires not only auxiliary sequence information - transcriptome and proteome data - but also knowledge about a cell's deciphering arsenal.
Collapse
Affiliation(s)
- Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada.
| | - Sandrine Moreira
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| |
Collapse
|
174
|
A Type I Signal Peptidase Is Required for Pilus Assembly in the Gram-Positive, Biofilm-Forming Bacterium Actinomyces oris. J Bacteriol 2016; 198:2064-73. [PMID: 27215787 DOI: 10.1128/jb.00353-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/15/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The Gram-positive bacterium Actinomyces oris, a key colonizer in the development of oral biofilms, contains 18 LPXTG motif-containing proteins, including fimbrillins that constitute two fimbrial types critical for adherence, biofilm formation, and polymicrobial interactions. Export of these protein precursors, which harbor a signal peptide, is thought to be mediated by the Sec machine and require cleavage of the signal peptide by type I signal peptidases (SPases). Like many Gram-positive bacteria, A. oris expresses two SPases, named LepB1 and LepB2. The latter has been linked to suppression of lethal "glyco-stress," caused by membrane accumulation of the LPXTG motif-containing glycoprotein GspA when the housekeeping sortase srtA is genetically disrupted. Consistent with this finding, we show here that a mutant lacking lepB2 and srtA was unable to produce high levels of glycosylated GspA and hence was viable. However, deletion of neither lepB1 nor lepB2 abrogated the signal peptide cleavage and glycosylation of GspA, indicating redundancy of SPases for GspA. In contrast, the lepB2 deletion mutant failed to assemble the wild-type levels of type 1 and 2 fimbriae, which are built by the shaft fimbrillins FimP and FimA, respectively; this phenotype was attributed to aberrant cleavage of the fimbrillin signal peptides. Furthermore, the lepB2 mutants, including the catalytically inactive S101A and K169A variants, exhibited significant defects in polymicrobial interactions and biofilm formation. Conversely, lepB1 was dispensable for the aforementioned processes. These results support the idea that LepB2 is specifically utilized for processing of fimbrial proteins, thus providing an experimental model with which to study the basis of type I SPase specificity. IMPORTANCE Sec-mediated translocation of bacterial protein precursors across the cytoplasmic membrane involves cleavage of their signal peptide by a signal peptidase (SPase). Like many Gram-positive bacteria, A. oris expresses two SPases, LepB1 and LepB2. The latter is a genetic suppressor of lethal "glyco-stress" caused by membrane accumulation of glycosylated GspA when the housekeeping sortase srtA is genetically disrupted. We show here that LepB1 and LepB2 are capable of processing GspA, whereas only LepB2 is required for cleavage of fimbrial signal peptides. This is the first example of a type I SPase dedicated to LPXTG motif-containing fimbrial proteins. Thus, A. oris provides an experimental model with which to investigate the specificity mechanism of type I SPases.
Collapse
|
175
|
Brouwer S, Barnett TC, Rivera-Hernandez T, Rohde M, Walker MJ. Streptococcus pyogenes adhesion and colonization. FEBS Lett 2016; 590:3739-3757. [PMID: 27312939 DOI: 10.1002/1873-3468.12254] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus, GAS) is a human-adapted pathogen responsible for a wide spectrum of disease. GAS can cause relatively mild illnesses, such as strep throat or impetigo, and less frequent but severe life-threatening diseases such as necrotizing fasciitis and streptococcal toxic shock syndrome. GAS is an important public health problem causing significant morbidity and mortality worldwide. The main route of GAS transmission between humans is through close or direct physical contact, and particularly via respiratory droplets. The upper respiratory tract and skin are major reservoirs for GAS infections. The ability of GAS to establish an infection in the new host at these anatomical sites primarily results from two distinct physiological processes, namely bacterial adhesion and colonization. These fundamental aspects of pathogenesis rely upon a variety of GAS virulence factors, which are usually under strict transcriptional regulation. Considerable progress has been made in better understanding these initial infection steps. This review summarizes our current knowledge of the molecular mechanisms of GAS adhesion and colonization.
Collapse
Affiliation(s)
- Stephan Brouwer
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Timothy C Barnett
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre For Infection Research, Braunschweig, Germany
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
176
|
Kirk JA, Banerji O, Fagan RP. Characteristics of the Clostridium difficile cell envelope and its importance in therapeutics. Microb Biotechnol 2016; 10:76-90. [PMID: 27311697 PMCID: PMC5270738 DOI: 10.1111/1751-7915.12372] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 01/08/2023] Open
Abstract
Clostridium difficile infection (CDI) is a challenging threat to human health. Infections occur after disruption of the normal microbiota, most commonly through the use of antibiotics. Current treatment for CDI largely relies on the broad‐spectrum antibiotics vancomycin and metronidazole that further disrupt the microbiota resulting in frequent recurrence, highlighting the need for C. difficile‐specific antimicrobials. The cell surface of C. difficile represents a promising target for the development of new drugs. C. difficile possesses a highly deacetylated peptidoglycan cell wall containing unique secondary cell wall polymers. Bound to the cell wall is an essential S‐layer, formed of SlpA and decorated with an additional 28 related proteins. In addition to the S‐layer, many other cell surface proteins have been identified, including several with roles in host colonization. This review aims to summarize our current understanding of these different C. difficile cell surface components and their viability as therapeutic targets.
Collapse
Affiliation(s)
- Joseph A Kirk
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Oishik Banerji
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Robert P Fagan
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
177
|
Schatte M, Bocola M, Roth T, Martinez R, Kopetzki E, Schwaneberg U, Bönitz-Dulat M. Reporter Immobilization Assay (REIA) for Bioconjugating Reactions. Bioconjug Chem 2016; 27:1484-92. [DOI: 10.1021/acs.bioconjchem.6b00111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martin Schatte
- Lehrstuhl
für Biotechnologie, RWTH Aachen University, 52074 Aachen, Germany
| | - Marco Bocola
- Lehrstuhl
für Biotechnologie, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Ronny Martinez
- Lehrstuhl
für Biotechnologie, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Ulrich Schwaneberg
- Lehrstuhl
für Biotechnologie, RWTH Aachen University, 52074 Aachen, Germany
| | | |
Collapse
|
178
|
Willson BJ, Kovács K, Wilding-Steele T, Markus R, Winzer K, Minton NP. Production of a functional cell wall-anchored minicellulosome by recombinant Clostridium acetobutylicum ATCC 824. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:109. [PMID: 27222664 PMCID: PMC4877998 DOI: 10.1186/s13068-016-0526-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The use of fossil fuels is no longer tenable. Not only are they a finite resource, their use is damaging the environment through pollution and global warming. Alternative, environmentally friendly, renewable sources of chemicals and fuels are required. To date, the focus has been on using lignocellulose as a feedstock for microbial fermentation. However, its recalcitrance to deconstruction is making the development of economic processes extremely challenging. One solution is the generation of an organism suitable for use in consolidated bioprocessing (CBP), i.e. one able to both hydrolyse lignocellulose and ferment the released sugars, and this represents an important goal for synthetic biology. We aim to use synthetic biology to develop the solventogenic bacterium C. acetobutylicum as a CBP organism through the introduction of a cellulosome, a complex of cellulolytic enzymes bound to a scaffold protein called a scaffoldin. In previous work, we were able to demonstrate the in vivo production of a C. thermocellum-derived minicellulosome by recombinant strains of C. acetobutylicum, and aim to develop on this success, addressing potential issues with the previous strategy. RESULTS The genes for the cellulosomal enzymes Cel9G, Cel48F, and Xyn10A from C. cellulolyticum were integrated into the C. acetobutylicum genome using Allele-Coupled Exchange (ACE) technology, along with a miniscaffoldin derived from C. cellulolyticum CipC. The possibility of anchoring the recombinant cellulosome to the cell surface using the native sortase system was assessed, and the cellulolytic properties of the recombinant strains were assayed via plate growth, batch fermentation and sugar release assays. CONCLUSIONS We have been able to demonstrate the synthesis and in vivo assembly of a four-component minicellulosome by recombinant C. acetobutylicum strains. Furthermore, we have been able to anchor a minicellulosome to the C. acetobutylicum cell wall by the use of the native sortase system. The recombinant strains display an improved growth phenotype on xylan and an increase in released reducing sugar from several substrates including untreated powdered wheat straw. This constitutes an important milestone towards the development of a truly cellulolytic strain suitable for CBP.
Collapse
Affiliation(s)
- Benjamin J. Willson
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Katalin Kovács
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Tom Wilding-Steele
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Robert Markus
- />SLIM Imaging Unit, Faculty of Medicine and Health Sciences, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Klaus Winzer
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| | - Nigel P. Minton
- />Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre, School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD UK
| |
Collapse
|
179
|
Si L, Li P, Liu X, Luo L. Chinese herb medicine against Sortase A catalyzed transformations, a key role in gram-positive bacterial infection progress. J Enzyme Inhib Med Chem 2016; 31:184-196. [PMID: 27162091 DOI: 10.1080/14756366.2016.1178639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Many Gram-positive bacteria can anchor their surface proteins to the cell wall peptidoglycan covalently by a common mechanism with Sortase A (SrtA), thus escaping from the host's identification of immune cells. SrtA can complete this anchoring process by cleaving LPXTG motif conserved among these surface proteins and thus these proteins anchor on the cell wall. Moreover, those SrtA mutants lose this capability to anchor these relative proteins, with these bacteria no longer infectious. Therefore, SrtA inhibitors can be promising anti-infective agents to cure bacterial infections. Chinese herb medicines (CHMs) (chosen from Science Citation Index) have exhibited inhibition on SrtA of Gram-positive pathogens irreversibly or reversibly. In general, CHMs are likely to have important long-term impact as new antibacterial compounds and sought after by academia and the pharmaceutical industry. This review mainly focuses on SrtA inhibitors from CHMs and the potential inhibiting mechanism related to chemical structures of compounds in CHMs.
Collapse
Affiliation(s)
- Lifang Si
- a School of Bioscience & Bioengineering, South China University of Technology, Guangzhou University Town , Panyu , Guangzhou , China
| | - Pan Li
- a School of Bioscience & Bioengineering, South China University of Technology, Guangzhou University Town , Panyu , Guangzhou , China
| | - Xiong Liu
- a School of Bioscience & Bioengineering, South China University of Technology, Guangzhou University Town , Panyu , Guangzhou , China
| | - Lixin Luo
- a School of Bioscience & Bioengineering, South China University of Technology, Guangzhou University Town , Panyu , Guangzhou , China
| |
Collapse
|
180
|
Jacobitz AW, Naziga EB, Yi SW, McConnell SA, Peterson R, Jung ME, Clubb RT, Wereszczynski J. The "Lid" in the Streptococcus pneumoniae SrtC1 Sortase Adopts a Rigid Structure that Regulates Substrate Access to the Active Site. J Phys Chem B 2016; 120:8302-12. [PMID: 27109553 DOI: 10.1021/acs.jpcb.6b01930] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many species of Gram-positive bacteria use sortase enzymes to assemble long, proteinaceous pili structures that project from the cell surface to mediate microbial adhesion. Sortases construct highly stable structures by catalyzing a transpeptidation reaction that covalently links pilin subunits together via isopeptide bonds. Most Gram-positive pili are assembled by class C sortases that contain a "lid", a structurally unique N-terminal extension that occludes the active site. It has been hypothesized that the "lid" in many sortases is mobile and thus capable of readily being displaced from the enzyme to facilitate substrate binding. Here, we show using NMR dynamics measurements, in vitro assays, and molecular dynamics simulations that the lid in the class C sortase from Streptococcus pneumoniae (SrtC1) adopts a rigid conformation in solution that is devoid of large magnitude conformational excursions that occur on mechanistically relevant time scales. Additionally, we show that point mutations in the lid induce dynamic behavior that correlates with increased hydrolytic activity and sorting signal substrate access to the active site cysteine residue. These results suggest that the lid of the S. pneumoniae SrtC1 enzyme has a negative regulatory function and imply that a significant energetic barrier must be surmounted by currently unidentified factors to dislodge it from the active site to initiate pilus biogenesis.
Collapse
Affiliation(s)
- Alex W Jacobitz
- Department of Chemistry and Biochemistry and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles , 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Emmanuel B Naziga
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology , 3440 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Sung Wook Yi
- Department of Chemistry and Biochemistry and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles , 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Scott A McConnell
- Department of Chemistry and Biochemistry and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles , 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Robert Peterson
- Department of Chemistry and Biochemistry and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles , 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Michael E Jung
- Department of Chemistry and Biochemistry and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles , 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Robert T Clubb
- Department of Chemistry and Biochemistry and the UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles , 611 Charles E. Young Drive East, Los Angeles, California 90095-1570, United States
| | - Jeff Wereszczynski
- Department of Physics and Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology , 3440 South Dearborn Street, Chicago, Illinois 60616, United States
| |
Collapse
|
181
|
Arai T, Obuchi S, Eguchi K, Seto Y. In vitro investigation of molecules involved in Lactobacillus gasseri SBT2055 adhesion to host intestinal tract components. J Appl Microbiol 2016; 120:1658-67. [PMID: 26999673 DOI: 10.1111/jam.13137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/11/2016] [Accepted: 03/11/2016] [Indexed: 01/06/2023]
Abstract
AIMS The adhesion ability of Lactobacillus gasseri SBT2055 was investigated in vitro by searching for its adhesion molecules. METHODS AND RESULTS Lactobacillus gasseri SBT2055 showed adherence to host components, including two commercially available mucins, Caco-2 epithelial-like cells and the extracellular matrix molecule fibronectin (Fn). Its adhesion rates to host components were generally higher than those of other Lactobacillus strains. We examined sortase-dependent proteins (SDPs) anchored by a sortase enzyme encoded by srtA1. The adhesion rates of an srtA1 disruptant were lower than those of Lact. gasseri SBT2055, and the relative adherences were as follows: two mucins, 43 and 40%; Caco-2, 66% and Fn, 28%. Seven additional gene disruptants were generated to determine the precise SDPs that contribute to adhesion to each component. CONCLUSIONS The adhesion ability of Lact. gasseri SBT2055 was superior to those of other Lactobacillus strains. Additionally, four adhesion molecules were newly identified from candidate SDPs. SIGNIFICANCE AND IMPACT OF THE STUDY Although the contribution of SDPs to adhesion has been reported using sortase gene disruptants, this is the first report to identify the precise SDPs that act as adhesion molecules. Our results will contribute to achieving better understanding of probiotic bacterial adherence.
Collapse
Affiliation(s)
- T Arai
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Kawagoe-shi, Saitama, Japan
| | - S Obuchi
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Kawagoe-shi, Saitama, Japan
| | - K Eguchi
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Kawagoe-shi, Saitama, Japan
| | - Y Seto
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Kawagoe-shi, Saitama, Japan
| |
Collapse
|
182
|
Zhuang PL, Yu LX, Tao Y, Zhou Y, Zhi QH, Lin HC. Effects of missense mutations in sortase A gene on enzyme activity in Streptococcus mutans. BMC Oral Health 2016; 16:47. [PMID: 27068451 PMCID: PMC4827206 DOI: 10.1186/s12903-016-0204-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 04/01/2016] [Indexed: 11/21/2022] Open
Abstract
Background Streptococcus mutans (S. mutans) is the major aetiological agent of dental caries, and the transpeptidase Sortase A (SrtA) plays a major role in cariogenicity. The T168G and G470A missense mutations in the srtA gene may be linked to caries susceptibility, as demonstrated in our previous studies. This study aimed to investigate the effects of these missense mutations of the srtA gene on SrtA enzyme activity in S. mutans. Methods The point mutated recombinant S.mutans T168G and G470A sortases were expressed in expression plasmid pET32a. S. mutans UA159 sortase coding gene srtA was used as the template for point mutation. Enzymatic activity was assessed by quantifying increases in the fluorescence intensity generated when a substrate Dabcyl-QALPNTGEE-Edans was cleaved by SrtA. The kinetic constants were calculated based on the curve fit for the Michaelis-Menten equation. Results SrtA△N40(UA159) and the mutant enzymes, SrtA△N40(D56E) and SrtA△N40(R157H), were expressed and purified. A kinetic analysis showed that the affinity of SrtA△N40(D56E) and SrtA△N40(R157H) remained approximately equal to the affinity of SrtA△N40(UA159), as determined by the Michaelis constant (Km). However, the catalytic rate constant (kcat) and catalytic efficiency (kcat/Km) of SrtA△N40(D56E) were reduced compared with those of SrtA△N40(R157H) and SrtA△N40(UA159), whereas the kcat and kcat/Km values of SrtA△N40(R157H) were slightly lower than those of SrtA△N40(UA159). Conclusions The findings of this study indicate that the T168G missense mutation of the srtA gene results in a significant reduction in enzymatic activity compared with S. mutans UA159, suggesting that the T168G missense mutation of the srtA gene may be related to low cariogenicity. Electronic supplementary material The online version of this article (doi:10.1186/s12903-016-0204-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P L Zhuang
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Road West, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China.,Department of Stomatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Road West, Guangzhou, China
| | - L X Yu
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Road West, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Y Tao
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Road West, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Y Zhou
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Road West, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Q H Zhi
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Road West, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - H C Lin
- Department of Preventive Dentistry, Guanghua School of Stomatology, Sun Yat-Sen University, 56 Ling Yuan Road West, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
183
|
Wallock-Richards DJ, Marles-Wright J, Clarke DJ, Maitra A, Dodds M, Hanley B, Campopiano DJ. Molecular basis of Streptococcus mutans sortase A inhibition by the flavonoid natural product trans-chalcone. Chem Commun (Camb) 2016; 51:10483-5. [PMID: 26029850 DOI: 10.1039/c5cc01816a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sortase A (SrtA) from Gram positive pathogens is an attractive target for inhibitors due to its role in the attachment of surface proteins to the cell wall. We found that the plant natural product trans-chalcone inhibits Streptococcus mutans SrtA in vitro and also inhibited S. mutans biofilm formation. Mass spectrometry revealed that the trans-chalcone forms a Michael addition adduct with the active site cysteine. The X-ray crystal structure of the SrtA H139A mutant provided new insights into substrate recognition by the sortase family. Our study suggests that chalcone flavonoids have potential as sortase-specific oral biofilm inhibitors.
Collapse
Affiliation(s)
- Daynea J Wallock-Richards
- EastChem School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | | | | | | | | | | | | |
Collapse
|
184
|
Amer BR, Macdonald R, Jacobitz AW, Liauw B, Clubb RT. Rapid addition of unlabeled silent solubility tags to proteins using a new substrate-fused sortase reagent. JOURNAL OF BIOMOLECULAR NMR 2016; 64:197-205. [PMID: 26852413 PMCID: PMC5110246 DOI: 10.1007/s10858-016-0019-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
Many proteins can't be studied using solution NMR methods because they have limited solubility. To overcome this problem, recalcitrant proteins can be fused to a more soluble protein that functions as a solubility tag. However, signals arising from the solubility tag hinder data analysis because they increase spectral complexity. We report a new method to rapidly and efficiently add a non-isotopically labeled Small Ubiquitin-like Modifier protein (SUMO) solubility tag to an isotopically labeled protein. The method makes use of a newly developed SUMO-Sortase tagging reagent in which SUMO and the Sortase A (SrtA) enzyme are present within the same polypeptide. The SUMO-Sortase reagent rapidly attaches SUMO to any protein that contains the sequence LPXTG at its C-terminus. It modifies proteins at least 15-times faster than previously described approaches, and does not require active dialysis or centrifugation during the reaction to increase product yields. In addition, silently tagged proteins are readily purified using the well-established SUMO expression and purification system. The utility of the SUMO-Sortase tagging reagent is demonstrated using PhoP and green fluorescent proteins, which are ~90% modified with SUMO at room temperature within four hours. SrtA is widely used as a tool to construct bioconjugates. Significant rate enhancements in these procedures may also be achieved by fusing the sortase enzyme to its nucleophile substrate.
Collapse
Affiliation(s)
- Brendan R Amer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 602 Boyer Hall, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Ramsay Macdonald
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 602 Boyer Hall, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Alex W Jacobitz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 602 Boyer Hall, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Brandon Liauw
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 602 Boyer Hall, Los Angeles, CA, 90095, USA
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA
| | - Robert T Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 602 Boyer Hall, Los Angeles, CA, 90095, USA.
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, 611 Charles Young Drive East, Los Angeles, CA, 90095, USA.
| |
Collapse
|
185
|
Duong A, Koteva K, Sexton DL, Elliot MA. Liquid Chromatography-Tandem Mass Spectrometry to Define Sortase Cleavage Products. Methods Mol Biol 2016; 1440:99-108. [PMID: 27311667 DOI: 10.1007/978-1-4939-3676-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Sortase enzymes have specific endopeptidase activity, cleaving within a defined pentapeptide sequence at the C-terminal end of their protein substrates. Here, we describe how monitoring sortase cleavage activity can be achieved using peptide substrates. Peptide cleavage can be readily analyzed by liquid chromatography/tandem mass spectrometry (LC/MS/MS), which allows for the precise definition of cleavage sites. This technique could be used to analyze the peptidase activity of any enzyme, and identify sites of cleavage within any peptide.
Collapse
Affiliation(s)
- Andrew Duong
- Department of Biology, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Kalinka Koteva
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Danielle L Sexton
- Department of Biology, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Marie A Elliot
- Department of Biology, McMaster University, Hamilton, ON, Canada.
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Life Science Building, RM 329, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
186
|
Spatial Organization of Cell Wall-Anchored Proteins at the Surface of Gram-Positive Bacteria. Curr Top Microbiol Immunol 2016; 404:177-201. [DOI: 10.1007/82_2016_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
187
|
van 't Hof W, Hansenová Maňásková S, Veerman ECI, Bolscher JGM. Sortase-mediated backbone cyclization of proteins and peptides. Biol Chem 2015; 396:283-93. [PMID: 25581753 DOI: 10.1515/hsz-2014-0260] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/07/2015] [Indexed: 11/15/2022]
Abstract
Backbone cyclization has a profound impact on the biological activity and thermal and proteolytic stability of proteins and peptides. Chemical methods for cyclization are not always feasible, especially for large peptides or proteins. Recombinant Staphylococcus aureus sortase A shows potential as a new tool for the cyclization of both proteins and peptides. In this review, the scope and background of the sortase-mediated cyclization are discussed. High efficiency, versatility, and easy access make sortase A a promising cyclization tool, both for recombinant and chemo-enzymatic production methods.
Collapse
|
188
|
Shahbaaz M, Bisetty K, Ahmad F, Hassan MI. In silico approaches for the identification of virulence candidates amongst hypothetical proteins of Mycoplasma pneumoniae 309. Comput Biol Chem 2015; 59 Pt A:67-80. [PMID: 26414949 DOI: 10.1016/j.compbiolchem.2015.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 01/25/2023]
Abstract
Mycoplasma pneumoniae type 2a strain 309 is a simplest known bacterium and is the primary cause of community acquired pneumonia in the children. It mainly causes severe atypical pneumonia as well as several other non-pulmonary manifestations such as neurological, hepatic, hemolytic anemia, cardiac diseases and polyarthritis. The size of M. pneumoniae genome (Accession number: NC_016807.1) is relatively smaller as compared to other bacteria and contains 707 functional proteins, in which 204 are classified as hypothetical proteins (HPs) because of the unavailability of experimentally validated functions. The functions of the HPs were predicted by integrating a variety of protein classification systems, motif discovery tools as well as methods that are based on characteristic features obtained from the protein sequence and metabolic pathways. The probable functions of 83HPs were predicted successfully. The accuracy of the diverse tools used in the adopted pipeline was evaluated on the basis of statistical techniques of Receiver Operating Characteristic (ROC), which indicated the reliability of the functional predictions. Furthermore, the virulent HPs present in the set of 83 functionally annotated proteins were predicted by using the Bioinformatics tools and the conformational behaviours of the proteins with highest virulence scores were studied by using the molecular dynamics (MD) simulations. This study will facilitate in the better understanding of various drug resistance and pathogenesis mechanisms present in the M. pneumoniae and can be utilized in designing of better therapeutic agents.
Collapse
Affiliation(s)
- Mohd Shahbaaz
- Department of Chemistry, Durban University of Technology, Durban 4000, South Africa
| | - Krishna Bisetty
- Department of Chemistry, Durban University of Technology, Durban 4000, South Africa
| | - Faizan Ahmad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
189
|
Chahales P, Thanassi DG. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria. Microbiol Spectr 2015; 3:10.1128/microbiolspec.UTI-0018-2013. [PMID: 26542038 PMCID: PMC4638162 DOI: 10.1128/microbiolspec.uti-0018-2013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Indexed: 01/02/2023] Open
Abstract
Bacteria assemble a wide range of adhesive proteins, termed adhesins, to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities, including biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites such as the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens. Adhesins vary from monomeric proteins that are directly anchored to the bacterial surface to polymeric, hair-like fibers that extend out from the cell surface. These latter fibers are termed pili or fimbriae, and were among the first identified virulence factors of uropathogenic Escherichia coli. Studies since then have identified a range of both pilus and non-pilus adhesins that contribute to bacterial colonization of the urinary tract, and have revealed molecular details of the structures, assembly pathways, and functions of these adhesive organelles. In this review, we describe the different types of adhesins expressed by both Gram-negative and Gram-positive uropathogens, what is known about their structures, how they are assembled on the bacterial surface, and the functions of specific adhesins in the pathogenesis of urinary tract infections.
Collapse
Affiliation(s)
- Peter Chahales
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| | - David G Thanassi
- Center for Infectious Diseases and Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
190
|
Abstract
Protein-protein interactions are fundamental to many biological processes. Yet, the weak and transient noncovalent bonds that characterize most protein-protein interactions found in nature impose limits on many bioengineering experiments. Here, a new class of genetically encodable peptide-protein pairs--isopeptag-N/pilin-N, isopeptag/pilin-C, and SpyTag/SpyCatcher--that interact through autocatalytic intermolecular isopeptide bond formation is described. Reactions between peptide-protein pairs are specific, robust, orthogonal, and able to proceed under most biologically relevant conditions both in vitro and in vivo. As fusion constructs, they provide a handle on molecules of interest, both organic and inorganic, that can be grasped with an iron grip. Such stable interactions provide robust post-translational control over biological processes and open new opportunities in synthetic biology for engineering programmable and self-assembling protein nanoarchitectures.
Collapse
Affiliation(s)
- Bijan Zakeri
- Department of Electrical Engineering and Computer Science, Department of Biological Engineering, Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA. .,MIT Synthetic Biology Center, 500 Technology Square, Cambridge, MA, 02139, USA.
| |
Collapse
|
191
|
Chan AH, Yi SW, Terwilliger AL, Maresso AW, Jung ME, Clubb RT. Structure of the Bacillus anthracis Sortase A Enzyme Bound to Its Sorting Signal: A FLEXIBLE AMINO-TERMINAL APPENDAGE MODULATES SUBSTRATE ACCESS. J Biol Chem 2015; 290:25461-74. [PMID: 26324714 DOI: 10.1074/jbc.m115.670984] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Indexed: 12/31/2022] Open
Abstract
The endospore forming bacterium Bacillus anthracis causes lethal anthrax disease in humans and animals. The ability of this pathogen to replicate within macrophages is dependent upon the display of bacterial surface proteins attached to the cell wall by the B. anthracis Sortase A ((Ba)SrtA) enzyme. Previously, we discovered that the class A (Ba)SrtA sortase contains a unique N-terminal appendage that wraps around the body of the protein to contact the active site of the enzyme. To gain insight into its function, we determined the NMR structure of (Ba)SrtA bound to a LPXTG sorting signal analog. The structure, combined with dynamics, kinetics, and whole cell protein display data suggest that the N terminus modulates substrate access to the enzyme. We propose that it may increase the efficiency of protein display by reducing the unproductive hydrolytic cleavage of enzyme-protein covalent intermediates that form during the cell wall anchoring reaction. Notably, a key active site loop (β7/β8 loop) undergoes a disordered to ordered transition upon binding the sorting signal, potentially facilitating recognition of lipid II.
Collapse
Affiliation(s)
- Albert H Chan
- From the Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, and the Molecular Biology Institute, University of California, Los Angeles, California 90095 and
| | - Sung Wook Yi
- From the Department of Chemistry and Biochemistry
| | - Austen L Terwilliger
- the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Anthony W Maresso
- the Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | | | - Robert T Clubb
- From the Department of Chemistry and Biochemistry, UCLA-DOE Institute of Genomics and Proteomics, and the Molecular Biology Institute, University of California, Los Angeles, California 90095 and
| |
Collapse
|
192
|
Peltier J, Shaw HA, Couchman EC, Dawson LF, Yu L, Choudhary JS, Kaever V, Wren BW, Fairweather NF. Cyclic diGMP regulates production of sortase substrates of Clostridium difficile and their surface exposure through ZmpI protease-mediated cleavage. J Biol Chem 2015; 290:24453-69. [PMID: 26283789 PMCID: PMC4591827 DOI: 10.1074/jbc.m115.665091] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Indexed: 01/12/2023] Open
Abstract
In Gram-positive pathogens, surface proteins may be covalently anchored to the bacterial peptidoglycan by sortase, a cysteine transpeptidase enzyme. In contrast to other Gram-positive bacteria, only one single sortase enzyme, SrtB, is conserved between strains of Clostridium difficile. Sortase-mediated peptidase activity has been reported in vitro, and seven potential substrates have been identified. Here, we demonstrate the functionality of sortase in C. difficile. We identify two sortase-anchored proteins, the putative adhesins CD2831 and CD3246, and determine the cell wall anchor structure of CD2831. The C-terminal PPKTG sorting motif of CD2831 is cleaved between the threonine and glycine residues, and the carboxyl group of threonine is amide-linked to the side chain amino group of diaminopimelic acid within the peptidoglycan peptide stem. We show that CD2831 protein levels are elevated in the presence of high intracellular cyclic diGMP (c-diGMP) concentrations, in agreement with the control of CD2831 expression by a c-diGMP-dependent type II riboswitch. Low c-diGMP levels induce the release of CD2831 and presumably CD3246 from the surface of cells. This regulation is mediated by proteolytic cleavage of CD2831 and CD3246 by the zinc metalloprotease ZmpI, whose expression is controlled by a type I c-diGMP riboswitch. These data reveal a novel regulatory mechanism for expression of two sortase substrates by the secondary messenger c-diGMP, on which surface anchoring is dependent.
Collapse
Affiliation(s)
- Johann Peltier
- From the Department of Life Sciences, Center for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Helen A Shaw
- From the Department of Life Sciences, Center for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Edward C Couchman
- From the Department of Life Sciences, Center for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom
| | - Lisa F Dawson
- the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Lu Yu
- the Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom, and
| | - Jyoti S Choudhary
- the Wellcome Trust Sanger Institute, Hinxton CB10 1SA, United Kingdom, and
| | - Volkhard Kaever
- the Research Core Unit Metabolomics, Hannover Medical School, Hannover D-30625, Germany
| | - Brendan W Wren
- the Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Neil F Fairweather
- From the Department of Life Sciences, Center for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom,
| |
Collapse
|
193
|
Lazzarin M, Cozzi R, Malito E, Martinelli M, D'Onofrio M, Maione D, Margarit I, Rinaudo CD. Noncanonical sortase‐mediated assembly of pilus type 2b in group B
Streptococcus. FASEB J 2015. [DOI: 10.1096/fj.15-272500] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Roberta Cozzi
- Novartis Vaccines and Diagnostics, GlaxoSmithKlineSienaItaly
| | - Enrico Malito
- Novartis Vaccines and Diagnostics, GlaxoSmithKlineSienaItaly
| | | | - Mariapina D'Onofrio
- Nuclear Magnetic Resonance LaboratoryDepartment of BiotechnologyUniversity of VeronaVeronaItaly
| | - Domenico Maione
- Novartis Vaccines and Diagnostics, GlaxoSmithKlineSienaItaly
| | | | | |
Collapse
|
194
|
Suryadinata R, Seabrook SA, Adams TE, Nuttall SD, Peat TS. Structural and biochemical analyses of a Clostridium perfringens sortase D transpeptidase. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:1505-13. [PMID: 26143922 PMCID: PMC4498605 DOI: 10.1107/s1399004715009219] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/14/2015] [Indexed: 01/08/2023]
Abstract
The assembly and anchorage of various pathogenic proteins on the surface of Gram-positive bacteria is mediated by the sortase family of enzymes. These cysteine transpeptidases catalyze a unique sorting signal motif located at the C-terminus of their target substrate and promote the covalent attachment of these proteins onto an amino nucleophile located on another protein or on the bacterial cell wall. Each of the six distinct classes of sortases displays a unique biological role, with sequential activation of multiple sortases often observed in many Gram-positive bacteria to decorate their peptidoglycans. Less is known about the members of the class D family of sortases (SrtD), but they have a suggested role in spore formation in an oxygen-limiting environment. Here, the crystal structure of the SrtD enzyme from Clostridium perfringens was determined at 1.99 Å resolution. Comparative analysis of the C. perfringens SrtD structure reveals the typical eight-stranded β-barrel fold observed in all other known sortases, along with the conserved catalytic triad consisting of cysteine, histidine and arginine residues. Biochemical approaches further reveal the specifics of the SrtD catalytic activity in vitro, with a significant preference for the LPQTGS sorting motif. Additionally, the catalytic activity of SrtD is most efficient at 316 K and can be further improved in the presence of magnesium cations. Since C. perfringens spores are heat-resistant and lead to foodborne illnesses, characterization of the spore-promoting sortase SrtD may lead to the development of new antimicrobial agents.
Collapse
Affiliation(s)
- Randy Suryadinata
- Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organisation, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Shane A. Seabrook
- Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organisation, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Timothy E. Adams
- Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organisation, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Stewart D. Nuttall
- Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organisation, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Thomas S. Peat
- Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organisation, 343 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
195
|
Raj KK, Ganesh Kumar V, Leela Madhuri C, Mathi P, Durga Lakshmi R, Ravi M, Sri Ramudu B, Venkata Rao SV, Ramachandran D. Designing of potential inhibitors against Staphylococcus aureus sortase A: Combined analogue and structure based approach with in vitro validation. J Mol Graph Model 2015; 60:89-97. [PMID: 26119984 DOI: 10.1016/j.jmgm.2015.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 11/30/2022]
Abstract
Staphylococcus aureus sortase A is an attractive target of Gram-positive bacteria that plays a crucial role in anchoring of surface proteins to peptidoglycan present in bacterial cell wall. Inhibiting sortase A is an elementary and essential effort in preventing the pathogenesis. In this context, in silico virtual screening of in-house database was performed using ligand based pharmacophore model as a filter. The developed pharmacophore model AAHR 11 consists of two acceptors, one hydrophobic and one ring aromatic feature. Top ranked molecule KKR1 was docked into the active site of the target. After profound analysis, it was analyzed and optimized based on the observations from its binding pose orientation. Upgraded version of KKR1 was KKR2 and has improved docking score, binding interactions and best fit in the binding pocket. KKR1 along with KKR2 were further validated using 100 ns molecular dynamic studies. Both KKR1 and KKR2 contain Indole-thiazolidine moiety and were synthesized. The disk diffusion assay has good initial results (ZI of KKR1, KKR2 were 24, 38 mm at 10 μg/mL and ZI of Ampicillin was 22 at 10 μg/mL) and calculated MICs of the molecules (KKR1 5.56±0.28 μg/mL, KKR2 1.32±0.12 μg/mL, Ampicillin 8±1.1 μg/mL) were in good agreement with standard drug Ampicillin. KKR1 has shown IC50 of 1.23±0.14 μM whereas the optimized lead molecule KKR2 show IC50 of 0.008±0.07 μM. Results from in silico were validated by in vitro studies and proved that indole-thiazolidine molecules would be useful for future development as lead molecules against S. aureus sortase A.
Collapse
Affiliation(s)
- K Kranthi Raj
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, India
| | - Veeramachaneni Ganesh Kumar
- Department of Biotechnology, K L E F University, Green Fields, Vaddeswaram, Guntur (Dt.), 522 502 Guntur, AP, India
| | - Chalasani Leela Madhuri
- Department of Biotechnology, K L E F University, Green Fields, Vaddeswaram, Guntur (Dt.), 522 502 Guntur, AP, India
| | - Pardhasaradhi Mathi
- Department of Biotechnology, K L E F University, Green Fields, Vaddeswaram, Guntur (Dt.), 522 502 Guntur, AP, India
| | - Ravulapati Durga Lakshmi
- Department of Electronics and Computer Engineering, K L E F University, Green Fields, Vaddeswaram, Guntur (Dt.), 522 502 Guntur, AP, India
| | - M Ravi
- Bioinformatics Division, Environmental Microbiology Lab, Department of Botany, Osmania University, Hyderabad 500 007, India
| | - B Sri Ramudu
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, India
| | - S V Venkata Rao
- Department of Chemistry, Rajiv Gandhi University of Knowledge Technologies, Nuzvid 521 201 AP, India
| | - D Ramachandran
- Department of Chemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 510, India.
| |
Collapse
|
196
|
Bradshaw WJ, Davies AH, Chambers CJ, Roberts AK, Shone CC, Acharya KR. Molecular features of the sortase enzyme family. FEBS J 2015; 282:2097-114. [PMID: 25845800 DOI: 10.1111/febs.13288] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/28/2015] [Indexed: 01/31/2023]
Abstract
Bacteria possess complex and varying cell walls with many surface exposed proteins. Sortases are responsible for the covalent attachment of specific proteins to the peptidoglycan of the cell wall of Gram-positive bacteria. Sortase A of Staphylococcus aureus, which is seen as the archetypal sortase, has been shown to be essential for pathogenesis and has therefore received much attention as a potential target for novel therapeutics. Being widely present in Gram-positive bacteria, it is likely that other Gram-positive pathogens also require sortases for their pathogenesis. Sortases have also been shown to be of significant use in a range of industrial applications. We review current knowledge of the sortase family in terms of their structures, functions and mechanisms and summarize work towards their use as antibacterial targets and microbiological tools.
Collapse
Affiliation(s)
- William J Bradshaw
- Department of Biology and Biochemistry, University of Bath, UK.,Public Health England, Porton Down, Salisbury, UK
| | | | - Christopher J Chambers
- Department of Biology and Biochemistry, University of Bath, UK.,Public Health England, Porton Down, Salisbury, UK
| | | | | | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
197
|
Lapirattanakul J, Nomura R, Matsumoto-Nakano M, Srisatjaluk R, Ooshima T, Nakano K. Variation of expression defects in cell surface 190-kDa protein antigen of Streptococcus mutans. Int J Med Microbiol 2015; 305:383-91. [PMID: 25792295 DOI: 10.1016/j.ijmm.2015.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 02/23/2015] [Accepted: 03/01/2015] [Indexed: 10/23/2022] Open
Abstract
Streptococcus mutans, which consists of four serotypes, c, e, f, and k, possesses a 190-kDa cell surface protein antigen (PA) for initial tooth adhesion. We used Western blot analysis to determine PA expression in 750 S. mutans isolates from 150 subjects and found a significantly higher prevalence of the isolates with PA expression defects in serotypes f and k compared to serotypes c and e. Moreover, the defect patterns could be classified into three types; no PA expression on whole bacterial cells and in their supernatant samples (Type N1), PA expression mainly seen in supernatant samples (Type N2), and only low expression of PA in the samples of whole bacterial cells (Type W). The underlying reasons for the defects were mutations in the gene encoding PA as well as in the transcriptional processing of this gene for Type N1, defects in the sortase gene for Type N2, and low mRNA expression of PA for Type W. Since cellular hydrophobicity and phagocytosis susceptibility of the PA-defective isolates were significantly lower than those of the normal expression isolates, the potential implication of such defective isolates in systemic diseases involving bacteremia other than dental caries was suggested. Additionally, multilocus sequence typing was utilized to characterize S. mutans clones that represented a proportion of isolates with PA defects of 65-100%. Therefore, we described the molecular basis for variation defects in PA expression of S. mutans. Furthermore, we also emphasized the strong association between PA expression defects and serotypes f and k as well as the clonal relationships among these isolates.
Collapse
Affiliation(s)
| | - Ryota Nomura
- Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Michiyo Matsumoto-Nakano
- Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8525, Japan
| | | | - Takashi Ooshima
- Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| | - Kazuhiko Nakano
- Osaka University Graduate School of Dentistry, Osaka 565-0871, Japan
| |
Collapse
|
198
|
Giménez MI, Cerletti M, De Castro RE. Archaeal membrane-associated proteases: insights on Haloferax volcanii and other haloarchaea. Front Microbiol 2015; 6:39. [PMID: 25774151 PMCID: PMC4343526 DOI: 10.3389/fmicb.2015.00039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/12/2015] [Indexed: 11/17/2022] Open
Abstract
The function of membrane proteases range from general house-keeping to regulation of cellular processes. Although the biological role of these enzymes in archaea is poorly understood, some of them are implicated in the biogenesis of the archaeal cell envelope and surface structures. The membrane-bound ATP-dependent Lon protease is essential for cell viability and affects membrane carotenoid content in Haloferax volcanii. At least two different proteases are needed in this archaeon to accomplish the posttranslational modifications of the S-layer glycoprotein. The rhomboid protease RhoII is involved in the N-glycosylation of the S-layer protein with a sulfoquinovose-containing oligosaccharide while archaeosortase ArtA mediates the proteolytic processing coupled-lipid modification of this glycoprotein facilitating its attachment to the archaeal cell surface. Interestingly, two different signal peptidase I homologs exist in H. volcanii, Sec11a and Sec11b, which likely play distinct physiological roles. Type IV prepilin peptidase PibD processes flagellin/pilin precursors, being essential for the biogenesis and function of the archaellum and other cell surface structures in H. volcanii.
Collapse
Affiliation(s)
- María I Giménez
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas Mar del Plata, Argentina
| | - Micaela Cerletti
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas Mar del Plata, Argentina
| | - Rosana E De Castro
- Instituto de Investigaciones Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Consejo Nacional de Investigaciones Científicas y Técnicas Mar del Plata, Argentina
| |
Collapse
|
199
|
Call EK, Goh YJ, Selle K, Klaenhammer TR, O'Flaherty S. Sortase-deficient lactobacilli: effect on immunomodulation and gut retention. MICROBIOLOGY (READING, ENGLAND) 2015; 161. [PMID: 25500495 PMCID: PMC4811640 DOI: 10.1099/mic.0.000007-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Surface proteins of probiotic microbes, including Lactobacillus acidophilus and Lactobacillus gasseri, are believed to promote retention in the gut and mediate host-bacterial communications. Sortase, an enzyme that covalently couples a subset of extracellular proteins containing an LPXTG motif to the cell surface, is of particular interest in characterizing bacterial adherence and communication with the mucosal immune system. A sortase gene, srtA, was identified in L. acidophilus NCFM (LBA1244) and L. gasseri ATCC 33323 (LGAS_0825). Additionally, eight and six intact sortase-dependent proteins were predicted in L. acidophilus and L. gasseri, respectively. Due to the role of sortase in coupling these proteins to the cell wall, ΔsrtA deletion mutants of L. acidophilus and L. gasseri were created using the upp-based counterselective gene replacement system. Inactivation of sortase did not cause significant alteration in growth or survival in simulated gastrointestinal juices. Meanwhile, both ΔsrtA mutants showed decreased adhesion to porcine mucin in vitro. Murine dendritic cells exposed to the ΔsrtA mutant of L. acidophilus or L. gasseri induced lower levels of pro-inflammatory cytokines TNF-α and IL-12, respectively, compared with the parent strains. In vivo co-colonization of the L. acidophilus ΔsrtA mutant and its parent strain in germ-free 129S6/SvEv mice resulted in a significant one-log reduction of the ΔsrtA mutant population. Additionally, a similar reduction of the ΔsrtA mutant was observed in the caecum. This study shows for the first time that sortase-dependent proteins contribute to gut retention of probiotic microbes in the gastrointestinal tract.
Collapse
Affiliation(s)
- Emma K Call
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Yong Jun Goh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kurt Selle
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Todd R Klaenhammer
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Sarah O'Flaherty
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
200
|
Call EK, Goh YJ, Selle K, Klaenhammer TR, O’Flaherty S. Sortase-deficient lactobacilli: effect on immunomodulation and gut retention. Microbiology (Reading) 2015; 161:311-321. [DOI: 10.1099/mic.0.000007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Emma K. Call
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Yong Jun Goh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Kurt Selle
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Todd R. Klaenhammer
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| | - Sarah O’Flaherty
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|