151
|
Ma C, Shu Y, Zheng Z, Chen Y, Yao H, Greenquist KW, White FA, LaMotte RH. Similar electrophysiological changes in axotomized and neighboring intact dorsal root ganglion neurons. J Neurophysiol 2003; 89:1588-602. [PMID: 12612024 DOI: 10.1152/jn.00855.2002] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated electrophysiological changes in chronically axotomized and neighboring intact dorsal root ganglion (DRG) neurons in rats after either a peripheral axotomy consisting of an L5 spinal nerve ligation (SNL) or a central axotomy produced by an L5 partial rhizotomy (PR). SNL produced lasting hyperalgesia to punctate indentation and tactile allodynia to innocuous stroking of the foot ipsilateral to the injury. PR produced ipsilateral hyperalgesia without allodynia with recovery by day 10. Intracellular recordings were obtained in vivo from the cell bodies (somata) of axotomized and intact DRG neurons, some with functionally identified peripheral receptive fields. PR produced only minor electrophysiological changes in both axotomized and intact somata in L5 DRG. In contrast, extensive changes were observed after SNL in large- and medium-sized, but not small-sized, somata of intact (L4) as well as axotomized (L5) DRG neurons. These changes included (in relation to sham values) higher input resistance, lower current and voltage thresholds, and action potentials with longer durations and slower rising and falling rates. The incidence of spontaneous activity, recorded extracellularly from dorsal root fibers in vitro, was significantly higher (in relation to sham) after SNL but not after PR, and occurred in myelinated but not unmyelinated fibers from both L4 (9.1%) and L5 (16.7%) DRGs. We hypothesize that the changes in the electrophysiological properties of axotomized and intact DRG neurons after SNL are produced by a mechanism associated with Wallerian degeneration and that the hyperexcitability of intact neurons may contribute to SNL-induced hyperalgesia and allodynia.
Collapse
Affiliation(s)
- Chao Ma
- Department of Anesthesiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Petruska JC, Napaporn J, Johnson RD, Cooper BY. Chemical responsiveness and histochemical phenotype of electrophysiologically classified cells of the adult rat dorsal root ganglion. Neuroscience 2003; 115:15-30. [PMID: 12401318 DOI: 10.1016/s0306-4522(02)00409-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Whole cell patch recordings were obtained from medium diameter (35-45 microm) dorsal root ganglion neurons. Using electrophysiological parameters, we were able to subclassify acutely dissociated dorsal root ganglion cells into three uniform (types 5, 6 and 9) and one mixed class (type 8) of neurons. All subtypes (types 5, 6, 8 and 9) had broad action potentials (7.0+/-0.2, 5.2+/-0.4, 7.3+/-0.5 and 6.0+/-0.4 ms) and exceptionally long afterhyperpolarizations (112+/-9, 178+/-19, 124+/-31 and 204+/-33 ms). Long afterhyperpolarizations have been linked to mechanically insensitive (silent) nociceptors by other laboratories [Djouhri et al., J. Physiol. 513 (1998) 857-872]. Chemosensitivity varied among cell classes. Cell types 5, 8 and 9 were capsaicin sensitive (45+/-13, 87+/-30 and 28+/-13 pA/pF; 5 microM) groups, while the type 6 cell was capsaicin insensitive. All cell types expressed ASIC-like (acid sensing ion channel) amiloride sensitive, proton-activated currents with a threshold of pH 6.8 and a peak near pH 5.0. All medium sized cells were sensitive to ATP (50 microM) and exhibited the 'mixed' form of ATP-gated current [Burgard et al., J. Neurophysiol. 82 (1999) 1590-1598; Grubb and Evans, Eur. J. Neurosci. 11 (1999) 149-154]. Immunohistochemistry performed on individual cells indicated the expression of both P2X(1) and P2X(3) subunits. Electrophysiologically defined classes were histochemically uniform. All types were examined for the presence of substance P (SP), calcitonin gene related peptide (CGRP) and binding of isolectin B4 (IB4). All subtypes expressed CGRP immunoreactivity. Types 5 and 8 co-expressed SP and CGRP immunoreactivity and also bound IB4. Subtypes 6 and 9 were positive for neurofilament m. It is likely that these cells represent major classes of myelinated and unmyelinated peptide expressing nociceptors.
Collapse
Affiliation(s)
- J C Petruska
- Department of Neurobiology and Behavior, 550 Life Sciences Building, SUNY Stony Brook, Stony Brook, NY 11794-5230, USA
| | | | | | | |
Collapse
|
153
|
Djouhri L, Newton R, Levinson SR, Berry CM, Carruthers B, Lawson SN. Sensory and electrophysiological properties of guinea-pig sensory neurones expressing Nav 1.7 (PN1) Na+ channel alpha subunit protein. J Physiol 2003; 546:565-76. [PMID: 12527742 PMCID: PMC2342520 DOI: 10.1113/jphysiol.2002.026559] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/16/2002] [Accepted: 10/07/2002] [Indexed: 12/20/2022] Open
Abstract
The TTX-sensitive Na(v)1.7 (PN1) Na(+) channel alpha subunit protein is expressed mainly in small dorsal root ganglion (DRG) neurones. This study examines immunocytochemically whether it is expressed exclusively or preferentially in nociceptive primary afferent DRG neurones, and determines the electrophysiological properties of neurones that express it. Intracellular somatic action potentials (APs) evoked by dorsal root stimulation were recorded in L6/S1 DRG neurones at 30 +/- 2 degrees C in vivo in deeply anaesthetised young guinea-pigs. Each neurone was classified, from its dorsal root conduction velocity (CV) as a C-, Adelta- or Aalpha/beta-fibre unit and from its response to mechanical and thermal stimuli, as a nociceptive, low threshold mechanoreceptive (LTM) or unresponsive unit. Fluorescent dye was injected into the soma and Na(v)1.7-like immunoreactivity (Na(v)1.7-LI) was examined on sections of dye-injected neurones. All C-, 90 % of Adelta- and 40 % of Aalpha/beta-fibre units, including both nociceptive and LTM units, showed Na(v)1.7-LI. Positive units included 1/1 C-LTM, 6/6 C-nociceptive, 4/4 C-unresponsive (possible silent nociceptive) units, 5/6 Adelta-LTM (D hair), 13/14 Adelta-nociceptive, 2/9 Aalpha/beta-nociceptive, 10/18 Aalpha/beta-LTM cutaneous and 0/9 Aalpha/beta-muscle spindle afferent units. Overall, a higher proportion of nociceptive than of LTM neurones was positive, and the median relative staining intensity was greater in nociceptive than LTM units. Na(v)1.7-LI intensity was clearly positively correlated with AP duration and (less strongly) negatively correlated with CV and soma size. Since nociceptive units tend overall to have longer duration APs, slower CVs and smaller somata, these correlations may be related to the generally greater expression of Na(v)1.7 in nociceptive units.
Collapse
Affiliation(s)
- Laiche Djouhri
- Department of Physiology, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
154
|
Todd AJ, Hughes DI, Polgár E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ. The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci 2003; 17:13-27. [PMID: 12534965 DOI: 10.1046/j.1460-9568.2003.02406.x] [Citation(s) in RCA: 358] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two vesicular glutamate transporters, VGLUT1 and VGLUT2, have recently been identified, and it has been reported that they are expressed by largely nonoverlapping populations of glutamatergic neurons in the brain. We have used immunocytochemistry with antibodies against both transporters, together with markers for various populations of spinal neurons, in an attempt to identify glutamatergic interneurons in the dorsal horn of the mid-lumbar spinal cord of the rat. The great majority (94-100%) of nonprimary axonal boutons that contained somatostatin, substance P or neurotensin, as well as 85% of those that contained enkephalin, were VGLUT2-immunoreactive, which suggests that most dorsal horn neurons that synthesize these peptides are glutamatergic. In support of this, we found that most somatostatin- and enkephalin-containing boutons (including somatostatin-immunoreactive boutons that lacked calcitonin gene-related peptide and were therefore probably derived from local interneurons) formed synapses at which AMPA receptors were present. We also investigated VGLUT expression in central terminals of primary afferents. Myelinated afferents were identified with cholera toxin B subunit; most of those in lamina I were VGLUT2-immunoreactive, whereas all those in deeper laminae were VGLUT1-immunoreactive, and some (in laminae III-VI) appeared to contain both transporters. However, peptidergic primary afferents that contained substance P or somatostatin (most of which are unmyelinated), as well as nonpeptidergic C fibres (identified with Bandeiraea simplicifolia isolectin B4) showed low levels of VGLUT2-immunoreactivity, or were not immunoreactive with either VGLUT antibody. As all primary afferents are thought to be glutamatergic, this raises the possibility that unmyelinated afferents, most of which are nociceptors, express a different vesicular glutamate transporter.
Collapse
Affiliation(s)
- A J Todd
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | | | | | | |
Collapse
|
155
|
The presence and role of the tetrodotoxin-resistant sodium channel Na(v)1.9 (NaN) in nociceptive primary afferent neurons. J Neurosci 2002. [PMID: 12196564 DOI: 10.1523/jneurosci.22-17-07425.2002] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This is the first examination of sensory receptive properties and associated electrophysiological properties in vivo of dorsal root ganglion (DRG) neurons that express the TTX-resistant sodium channel Na(v)1.9 (NaN). Intracellular recordings in lumbar DRGs in Wistar rats enabled units with dorsal root C-, Adelta-, or Aalpha/beta-fibers to be classified as nociceptive, low-threshold mechanoreceptive (LTM), or unresponsive. Intracellular dye injection enabled subsequent immunocytochemistry for Na(v)1.9-like immunoreactivity (Na(v)1.9-LI). Na(v)1.9-LI was expressed selectively in nociceptive-type (C- and A-fiber nociceptive and C-unresponsive) units. Of the nociceptive units, 64, 54, and 31% of C-, Adelta-, and Aalpha/beta-fiber units, respectively, were positive for Na(v)1.9-LI. C-unresponsive units were included in the nociceptive-type group on the basis of their nociceptor-like membrane properties; 91% were positive. Na(v)1.9-LI was undetectable in Adelta- or Aalpha/beta-fiber LTM units and in one C-LTM unit. Na(v)1.9-LI intensity was correlated negatively with soma size and conduction velocity in nociceptive units and with conduction velocity in C-fiber units. There was a positive correlation with action potential rise time in nociceptive-type units with membrane potentials equal to or more negative than -50 mV. The data provide direct evidence that Na(v)1.9 is expressed selectively in (but not in all) C- and A-fiber nociceptive-type units and suggest that Na(v)1.9 contributes to membrane properties that are typical of nociceptive neurons.
Collapse
|
156
|
Clarke RW, Eves S, Harris J, Peachey JE, Stuart E. Interactions between cutaneous afferent inputs to a withdrawal reflex in the decerebrated rabbit and their control by descending and segmental systems. Neuroscience 2002; 112:555-71. [PMID: 12074898 DOI: 10.1016/s0306-4522(02)00093-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Previous studies have suggested that activation of nociceptive afferents from the heel recruits a supraspinal mechanism, which is modulated by adrenergic descending inhibition, that augments withdrawal reflexes in medial gastrocnemius (MG) motoneurones. To test this idea, we have studied the temporal evolution of reflexes evoked in MG by electrical stimulation of sural nerve A(beta)-, A(delta)- and C-fibre axons at 1 Hz, in decerebrated rabbits. Reflexes were analysed in three time bands, estimated to accord to afferent drive from A(beta)- (phase 1), A(delta)- (phase 2) and C-fibre (phase 3) inputs. Stimulation of A(delta)- and C-fibres gave significant temporal summation of all reflexes. The alpha(2)-adrenoceptor antagonist RX 821002 ((2-(2,3-dihydro-2-methoxy-1,4-benzodioxin-2-yl)-4,5-dihydro-1-H-imidazole)-HCl) (100 microg intrathecal (i.t.)) potentiated, and the alpha(2)-agonist dexmedetomidine (1-30 microg i.t.) depressed all reflexes per se, but the effects of these drugs on temporal summation were secondary to changes in baseline excitability. When C-fibres were stimulated, the N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine (1 mg i.t.) reduced temporal summation of phase 2 and 3 but not phase 1 reflexes. Spinalisation at L1 in the absence of drugs increased phase 2 and 3 reflexes but had no effect on phase 1, whereas spinalisation after RX 821002 resulted in decreased phase 1 responses with no significant change in later phases. Spinalisation in the presence of dizocilpine resulted in small reductions in phase 3 reflexes only. In all cases spinalisation virtually abolished temporal summation. In spinalised animals, dizocilpine selectively reduced late reflexes, and the opioid antagonist naloxone (100 microg i.t.) augmented all reflexes but gave rise to temporal subtraction of reflexes when C-fibres were stimulated.The present experiments have revealed a number of novel and important features of the sural-MG reflex pathway: (i) activity in fine afferent axons augments the reflexogenic potential of all subsequent afferent input, thereby allowing all afferent drive from the sural field to contribute to withdrawal of the heel; (ii) endogenous adrenergic control of this reflex pathway is completely non-selective; (iii) there is a non-adrenergic element of descending inhibition that is selective for the late components of MG reflex responses, and this element is directed particularly against transmission through NMDA receptors; (iv) temporal summation in this reflex is dependent on NMDA receptor-dependent and -independent mechanisms; and (v) this temporal summation is in some way dependent on the integrity of descending pathways.
Collapse
Affiliation(s)
- R W Clarke
- Division of Animal Physiology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK.
| | | | | | | | | |
Collapse
|
157
|
Fang X, Djouhri L, Black JA, Dib-Hajj SD, Waxman SG, Lawson SN. The presence and role of the tetrodotoxin-resistant sodium channel Na(v)1.9 (NaN) in nociceptive primary afferent neurons. J Neurosci 2002; 22:7425-33. [PMID: 12196564 PMCID: PMC6757987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2002] [Revised: 05/20/2002] [Accepted: 05/22/2002] [Indexed: 02/26/2023] Open
Abstract
This is the first examination of sensory receptive properties and associated electrophysiological properties in vivo of dorsal root ganglion (DRG) neurons that express the TTX-resistant sodium channel Na(v)1.9 (NaN). Intracellular recordings in lumbar DRGs in Wistar rats enabled units with dorsal root C-, Adelta-, or Aalpha/beta-fibers to be classified as nociceptive, low-threshold mechanoreceptive (LTM), or unresponsive. Intracellular dye injection enabled subsequent immunocytochemistry for Na(v)1.9-like immunoreactivity (Na(v)1.9-LI). Na(v)1.9-LI was expressed selectively in nociceptive-type (C- and A-fiber nociceptive and C-unresponsive) units. Of the nociceptive units, 64, 54, and 31% of C-, Adelta-, and Aalpha/beta-fiber units, respectively, were positive for Na(v)1.9-LI. C-unresponsive units were included in the nociceptive-type group on the basis of their nociceptor-like membrane properties; 91% were positive. Na(v)1.9-LI was undetectable in Adelta- or Aalpha/beta-fiber LTM units and in one C-LTM unit. Na(v)1.9-LI intensity was correlated negatively with soma size and conduction velocity in nociceptive units and with conduction velocity in C-fiber units. There was a positive correlation with action potential rise time in nociceptive-type units with membrane potentials equal to or more negative than -50 mV. The data provide direct evidence that Na(v)1.9 is expressed selectively in (but not in all) C- and A-fiber nociceptive-type units and suggest that Na(v)1.9 contributes to membrane properties that are typical of nociceptive neurons.
Collapse
Affiliation(s)
- Xin Fang
- Department of Physiology, University of Bristol, Medical School, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | |
Collapse
|
158
|
Cheunsuang O, Maxwell D, Morris R. Spinal lamina I neurones that express neurokinin 1 receptors: II. Electrophysiological characteristics, responses to primary afferent stimulation and effects of a selective mu-opioid receptor agonist. Neuroscience 2002; 111:423-34. [PMID: 11983327 DOI: 10.1016/s0306-4522(02)00035-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intracellular recordings were made from neurones in laminae I and II of the dorsal horn of a longitudinal, parasagittal spinal cord slice from the neonatal rat. Their responses to peripheral nerve stimulation were first tested. Then the responses to bath application of [Sar(9),Met(O(2))(11)]-substance P and [D-Ala(2),N-MePhe(4),Gly-ol(5)]-enkephalin, neurokinin 1 (NK(1)) and mu-opioid receptor agonists respectively, were studied. Finally, the structure of each neurone was investigated by injecting neurobiotin intracellularly following recording, and immunocytochemical studies were performed on post-fixed tissues to reveal whether they expressed the NK(1) receptor. Nine lamina I neurones where shown to express NK(1) receptor and these were depolarised by [Sar(9),Met(O(2))(11)]-substance P. These neurones typically received a powerful C-fibre input that was strongly inhibited, presynaptically, by the mu-opioid receptor agonist.The structure, afferent input, opioid sensitivity and intrinsic properties of these neurones are all consistent with the view that they are a major relay for nociceptive information leading to intense pain. The characteristics of 10 other neurones studied in which the NK(1) receptor was not found to be expressed at levels detectable by immunocytochemistry are briefly described for comparison. These results contribute to the emergent view that the large neurones in the most dorsal neuronal layer (lamina I) of the spinal cord, which express the principal receptor for substance P (NK(1)) over their entire soma and dendrites, are a major relay for information leading to intense pain. Inhibition of the relay of information by these neurones would be predicted to result in analgesia and hence, a detailed knowledge of their unique neurochemical characteristics is of paramount importance.
Collapse
Affiliation(s)
- O Cheunsuang
- Department of Veterinary Preclinical Sciences, University of Liverpool, Brownlow Hill and Crown Street, UK
| | | | | |
Collapse
|
159
|
Smith D, Hill RG, Edvinsson L, Longmore J. An immunocytochemical investigation of human trigeminal nucleus caudalis: CGRP, substance P and 5-HT1D-receptor immunoreactivities are expressed by trigeminal sensory fibres. Cephalalgia 2002; 22:424-31. [PMID: 12133041 DOI: 10.1046/j.1468-2982.2002.00378.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
5-HT1D (but not 5-HT1B)-receptor immunoreactivity (i.r.) can be detected on trigeminal fibres within the spinal trigeminal tract of the human brainstem. The present study used immunohistochemical and morphometric techniques to determine the proportions of trigeminal fibres expressing substance P, CGRP or 5-HT1D-receptor immunoreactivities. Co-localization studies between 5-HT1D-receptor and substance P- or CGRP-i.r. were also performed. Brainstem material was obtained with consent (four donors) and the total number of immunoreactive fibres within the trigeminal tract was estimated using random field sampling. A greater proportion of fibres (>1 microm diameter) expressed CGRP-i.r. (80 +/- 6%) compared with substance P-i.r. (46 +/- 7%) or 5-HT1D-receptor-i.r. (25 +/- 1%). 5-HT1D-receptor-i.r. was co-localized on some CGRP- or substance P-i.r. fibres. This suggests that 5-HT1D-receptors can regulate the release of CGRP and substance P and may be relevant to the clinical effectiveness of 5-HT1B/1D-receptor agonists in the treatment of migraine and other cranial pain syndromes.
Collapse
Affiliation(s)
- D Smith
- Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Harlow, UK
| | | | | | | |
Collapse
|
160
|
Projection neurons in lamina I of rat spinal cord with the neurokinin 1 receptor are selectively innervated by substance p-containing afferents and respond to noxious stimulation. J Neurosci 2002. [PMID: 12019329 DOI: 10.1523/jneurosci.22-10-04103.2002] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lamina I of the spinal cord is densely innervated by nociceptive primary afferents, many of which contain substance P. It contains numerous projection neurons: the majority of these respond to noxious stimuli, however some are activated by cooling. In the rat, approximately 80% of the projection neurons express the neurokinin 1 (NK1) receptor, on which substance P acts, and most cells with this receptor are activated by noxious stimuli. Lamina I neurons can be classified morphologically into pyramidal, multipolar, and fusiform types. It has been reported in the cat that pyramidal neurons are activated only by cooling and that in monkey relatively few pyramidal cells are NK1 receptor-immunoreactive. We have used immunocytochemistry to examine the innervation of lamina I projection neurons in the rat by substance P-containing primary afferents and their responses to a noxious stimulus (subcutaneous formalin injection). NK1 receptor-immunoreactive projection cells received a significantly higher density of contacts from substance P-containing afferents than neurons that lacked the receptor. Most contacts on NK1 receptor-immunoreactive cells were associated with synapses. Formalin injection induced c-Fos in approximately 80% of projection neurons with the NK1 receptor and in 25-45% of those without it. More than 80% of pyramidal neurons expressed the receptor, and for both substance P innervation and c-Fos expression there were no significant differences among different morphological types of NK1 receptor-immunoreactive neuron. We conclude that presence or absence of the NK1 receptor is a better indicator of function than morphology for lamina I projection neurons in the rat.
Collapse
|
161
|
Priestley JV, Michael GJ, Averill S, Liu M, Willmott N. Regulation of nociceptive neurons by nerve growth factor and glial cell line derived neurotrophic factor. Can J Physiol Pharmacol 2002; 80:495-505. [PMID: 12056559 DOI: 10.1139/y02-034] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nociceptive dorsal root ganglion (DRG) cells can be divided into three main populations, namely (1) small diameter non-peptide-expressing cells, (2) small-diameter peptide-expressing (calcitonin gene related peptide (CGRP), substance P) cells, and (3) medium-diameter peptide-expressing (CGRP) cells. The properties of these cell populations will be reviewed, with a special emphasis on the expression of the vanilloid (capsaicin) receptor VR1 and its regulation by growth factors. Cells in populations 1 and 2 express VR1, a nonselective channel that transduces certain nociceptive stimuli and that is crucial to the functioning of polymodal nociceptors. Cells in population 1 can be regulated by glial cell line derived neurotrophic factor (GDNF) and those in populations 2 and 3 by nerve growth factor (NGF). In vivo, DRG cells express a range of levels of VR1 expression and VR1 is downregulated after axotomy. However, treatment with NGF or GDNF can prevent this downregulation. In vitro, DRG cells also show a range of VR1 expression levels that is NGF and (or) GDNF dependent. Functional studies indicate that freshly dissociated cells also show differences in sensitivity to capsaicin. The significance of this is not known but may indicate a difference in the physiological role of cells in populations 1 and 2.
Collapse
Affiliation(s)
- J V Priestley
- Department of Neuroscience, Bart and The London, School of Medicine and Dentistry, Queen Mary University of London, England.
| | | | | | | | | |
Collapse
|
162
|
Lawson SN, Crepps B, Perl ER. Calcitonin gene-related peptide immunoreactivity and afferent receptive properties of dorsal root ganglion neurones in guinea-pigs. J Physiol 2002; 540:989-1002. [PMID: 11986384 PMCID: PMC2290282 DOI: 10.1113/jphysiol.2001.013086] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
To establish the afferent receptive properties of lumbosacral dorsal root ganglion (DRG) neurones that express calcitonin gene-related peptide (CGRP), intracellular recordings were made with fluorescent dye-filled electrodes in deeply anaesthetised young guinea-pigs. After determination of neuronal functional properties, dye was injected into the soma. CGRP-like immunoreactivity (CGRP-LI) was examined on histological sections of dye-marked neurones. Fourteen of 34 C-fibre neurones showed CGRP-LI. These included 10/21 C-fibre nociceptive neurones. All C-polymodal nociceptors in glabrous (n = 4) but none in hairy skin (n = 4) were positive. Positive C-fibre high threshold mechanoreceptive (HTM) units had receptive fields in dermal or deeper tissue. Four (n = 6) unresponsive or unidentified C-fibre units were positive. Neither C-fibre cooling sensitive (n = 4) nor C-fibre low threshold mechanoreceptive (LTM) units (n = 3) had CGRP-LI. Six of 23 A-fibre nociceptive cells were positive including one Aalpha/beta unit. Three of these positive cells had epidermal and three had dermal/deep receptive fields. Three of 36 A-fibre LTM units exhibited CGRP-LI; all were Aalpha/beta-fibre G hair units. All glabrous skin and muscle spindle units and in hairy skin slowly adapting and field units, and some G-hair units lacked CGRP-LI. CGRP-LI stained fibres were found in tissues containing receptive fields of positive DRG neurones: glabrous skin, near hair follicles and in skeletal muscle. A few substance P-labelled neurones did not exhibit CGRP-LI and vice versa. Thus CGRP expression was detected in under half the nociceptive neurones, was not limited to nociceptive neurones and apart from receptive properties was also related to location/depth in the tissues of a DRG neurone's peripheral terminals.
Collapse
Affiliation(s)
- S N Lawson
- Department of Physiology, Medical School, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
163
|
Grudt TJ, Perl ER. Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn. J Physiol 2002; 540:189-207. [PMID: 11927679 PMCID: PMC2290200 DOI: 10.1113/jphysiol.2001.012890] [Citation(s) in RCA: 302] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Relationships between the morphology of individual neurones of the spinal superficial dorsal horn (SDH), laminae I and II, and their electrophysiological properties were studied in spinal cord slices prepared from anaesthetized, free-ranging hamsters. Tight-seal, whole-cell recordings were made with pipette microelectrodes filled with biocytin to establish electrophysiological characteristics and to label the studied neurones. Neurones were categorized according to location and size of the somata, the dendritic and axonal pattern of arborization, spontaneous synaptic potentials, evoked postsynaptic currents, pattern of discharge to depolarizing pulses and current-voltage relationships. Data were obtained for 170 neurones; 13 of these had somata in lamina I and 157 in lamina II. Stimulation of the segmental dorsal root evoked a prompt excitatory response in almost every neurone sampled (161/166) with nearly 3/4 displaying putative monosynaptic EPSCs. The majority of neurones (133/170) fitted one of several distinctive morphological categories. To a considerable extent, neurones with a common morphological configuration and neurite disposition shared electrophysiological characteristics. Five of the 13 lamina I neurones were relatively large with extensive dendritic arborization in the horizontal dimension and a prominent axon directed ventrally and contralaterally. These presumptive ventrolateral projection neurones differed structurally and electrophysiologically from the other lamina I neurones, which had ipsilateral, locally arborizing axons and/or branches entering the dorsal lateral funiculus. One hundred and twenty lamina II neurones fitted one of five morphological categories: islet, central, medial-lateral, radial or vertical. Central cells were further divided into three groups on functional features. We conclude that the spinal SDH comprises many types of neurones whose morphological characteristics are associated with specific functional features implying diversity in functional organization of the SDH and in its role as a major synaptic termination for thin primary afferent fibres.
Collapse
Affiliation(s)
- T J Grudt
- Department of Cell and Molecular Physiology, University of North Carolina-CH, Chapel Hill, NC 27599-7545, USA
| | | |
Collapse
|
164
|
Spike RC, Puskár Z, Sakamoto H, Stewart W, Watt C, Todd AJ. MOR-1-immunoreactive neurons in the dorsal horn of the rat spinal cord: evidence for nonsynaptic innervation by substance P-containing primary afferents and for selective activation by noxious thermal stimuli. Eur J Neurosci 2002; 15:1306-16. [PMID: 11994125 DOI: 10.1046/j.1460-9568.2002.01969.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A direct action of mu-opioid agonists on neurons in the spinal dorsal horn is thought to contribute to opiate-induced analgesia. In this study we have investigated neurons that express the mu-opioid receptor MOR-1 in rat spinal cord to provide further evidence about their role in nociceptive processing. MOR-1-immunoreactive cells were largely restricted to lamina II, where they comprised approximately 10% of the neuronal population. The cells received few contacts from nonpeptidergic unmyelinated afferents, but many from substance P-containing afferents. However, electron microscopy revealed that most of these contacts were not associated with synapses. None of the MOR-1 cells in lamina II expressed the neurokinin 1 receptor; however, the mu-selective opioid peptide endomorphin-2 was present in the majority (62-82%) of substance P axons that contacted them. Noxious thermal stimulation of the foot induced c-Fos expression in approximately 15% of MOR-1 cells in the medial third of the ipsilateral dorsal horn at mid-lumbar level. However, following pinching of the foot or intraplantar injection of formalin very few MOR-1 cells expressed c-Fos, and for intraplantar formalin injection this result was not altered significantly by pretreatment with systemic naloxone. Although these findings indicate that at least some of the neurons in lamina II with MOR-1 are activated by noxious thermal stimulation, the results do not support the hypothesis that the cells have a role in transmitting nociceptive information following acute mechanical or chemical noxious stimuli.
Collapse
Affiliation(s)
- R C Spike
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | | | | | | |
Collapse
|
165
|
Djouhri L, Lawson SN. Differences in the size of the somatic action potential overshoot between nociceptive and non-nociceptive dorsal root ganglion neurones in the guinea-pig. Neuroscience 2002; 108:479-91. [PMID: 11738261 DOI: 10.1016/s0306-4522(01)00423-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intracellular action potentials evoked by dorsal root stimulation were intracellularly recorded from L6 and S1 dorsal root ganglion neurones in deeply anaesthetised guinea-pigs in vivo. Units were classed as C, Adelta or Aalpha/beta units and as nociceptive, low-threshold mechanoreceptive or unresponsive. Units with membrane potentials of at least -40 mV and action potentials with an amplitude of >20 mV were included. Nociceptive neurones had significantly larger somatic action potential overshoots than low-threshold mechanoreceptors in C, Adelta and Aalpha/beta units. A higher proportion of low-threshold mechanoreceptors than of nociceptors had action potentials that failed to overshoot in all conduction velocity groups. 60% of muscle spindle afferents failed to overshoot. The size of the overshoot was correlated positively with log(10) action potential duration, log(10) action potential rise time, log(10) afterhyperpolarisation duration, action potential amplitude and membrane potential and negatively (weakly) with log(10) conduction velocity.We conclude that nociceptive neurones are more likely to have somatic action potential overshoots than low-threshold mechanoreceptors in any conduction velocity group. This effect was not due to electrode properties or conduction failure at site(s) of failure of action potential regeneration. Differences in overshoot may affect the influence of neuronal firing on cellular processes. If an overshooting action potential is used as a selection criterion, a bias towards nociceptive neurones is likely to occur. An overshooting action potential coupled with a long afterhyperpolarisation or broad action potential may help in identifying sensory neurones as nociceptive.
Collapse
Affiliation(s)
- L Djouhri
- Department of Physiology, University of Bristol, Medical School, University Walk, BS8 TD, Bristol, UK
| | | |
Collapse
|
166
|
Nakatsuka T, Mena N, Ling J, Gu JG. Depletion of substance P from rat primary sensory neurons by ATP, an implication of P2X receptor-mediated release of substance P. Neuroscience 2002; 107:293-300. [PMID: 11731103 DOI: 10.1016/s0306-4522(01)00342-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effects of ATP on substance P immunoreactivity were examined in cultured dorsal root ganglion neurons. We found that treatment of dorsal root ganglion neurons with ATP significantly depleted substance P immunoreactivity on the neurites and somata of the neurons. The effects of ATP were significantly inhibited by the purinergic P2 receptor antagonists suramin (30 microM) and pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid (10 microM). We also showed that ATP-induced depletion of substance P immunoreactivity from dorsal root ganglion neurons depended on the entry of Ca(2+). In a spinal cord slice preparation, we also found the internalization of neurokinin-1/substance P receptors in many dorsal horn neurons following the application of ATP or alpha,beta-methylene-ATP. Together these results indicate that activation of P2X receptors may result in release of substance P from primary afferent neurons.
Collapse
Affiliation(s)
- T Nakatsuka
- McKnight Brain Institute of the University of Florida and Division of Neuroscience, Department of Oral Surgery, University of Florida, Box 100416, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
167
|
Xu GY, Zhao ZQ. Change in excitability and phenotype of substance P and its receptor in cat Abeta sensory neurons following peripheral inflammation. Brain Res 2001; 923:112-9. [PMID: 11743978 DOI: 10.1016/s0006-8993(01)03203-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effect of peripheral inflammation on spontaneous firing and level of substance P (SP) and its receptor in electrophysiologically identified cat Abeta neurons of dorsal root ganglion (DRG) was studied in vivo using a combination of intracellular recording, dye injection and immunohistochemical techniques. Following injection of carrageenan (Carg) into cat hindpaw, the number of Abeta neurons with spontaneous firing was enhanced significantly (42.9%, n=182) in comparison with control (16.8%, n=149, P<0.01). DRG Abeta neurons became less depolarized 2-4 h following Carg injection. After identifying the cell properties, Lucifer Yellow was injected and SP-like immunoreactivity (SP-LI) was then detected. A total of 17% of Abeta sensory neurons exhibited SP-LI in inflammatory cat. We also found in rat DRGs that the number of SP-LI positive large cells (>35 microm) was also significantly increased in Carg-treated DRG (11.8+/-1.2, n=8) compared with untreated DRG (1.8+/-0.8, n=8, P<0.01). In control cat, the topical use of SP in DRG did not induce any response of Abeta neurons. However, in Carg-treated cat, SP depolarized the membrane potential in most Abeta neurons (68.2%, n=22). L668,169, an antagonist of SP receptor, completely blocked the SP-induced responses. Furthermore, repeated application of SP did not induce obvious desensitization of Abeta neurons. These data suggest that peripheral inflammation increased the excitability, SP level and sensitivity of SP receptor of Abeta neurons. Therefore, we concluded that Abeta sensory neurons appear to contribute to inflammatory allodynia.
Collapse
Affiliation(s)
- G Y Xu
- Shanghai Brain Research Institute, Chinese Academy of Sciences, Shanghai 200031, PR China
| | | |
Collapse
|
168
|
Price MP, McIlwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ. The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 2001; 32:1071-83. [PMID: 11754838 DOI: 10.1016/s0896-6273(01)00547-5] [Citation(s) in RCA: 462] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cation channels in the DEG/ENaC family are proposed to detect cutaneous stimuli in mammals. We localized one such channel, DRASIC, in several different specialized sensory nerve endings of skin, suggesting it might participate in mechanosensation and/or acid-evoked nociception. Disrupting the mouse DRASIC gene altered sensory transduction in specific and distinct ways. Loss of DRASIC increased the sensitivity of mechanoreceptors detecting light touch, but it reduced the sensitivity of a mechanoreceptor responding to noxious pinch and decreased the response of acid- and noxious heat-sensitive nociceptors. The data suggest that DRASIC subunits participate in heteromultimeric channel complexes in sensory neurons. Moreover, in different cellular contexts, DRASIC may respond to mechanical stimuli or to low pH to mediate normal touch and pain sensation.
Collapse
Affiliation(s)
- M P Price
- Howard Hughes Medical Institute, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
A sensory neuron subpopulation with unique sequential survival dependence on nerve growth factor and basic fibroblast growth factor during development. J Neurosci 2001. [PMID: 11698599 DOI: 10.1523/jneurosci.21-22-08873.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We characterized a subpopulation of dorsal root ganglion (DRG) sensory neurons that were previously identified as preferential targets of enkephalins. This group, termed P-neurons after their "pear" shape, sequentially required nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) for survival in vitro during different developmental stages. Embryonic P-neurons required NGF, but not bFGF. NGF continued to promote their survival, although less potently, up to postnatal day 2 (P2). Conversely, at P5, they needed bFGF but not NGF, with either factor having similar effects at P2. This trophic switch was unique to that DRG neuronal group. In addition, neither neurotrophin-3 (NT-3) nor brain-derived neurotrophic factor influenced their survival during embryonic and postnatal stages, respectively. The expression of NGF (Trk-A) and bFGF (flg) receptors paralleled the switch in trophic requirement. No single P-neuron appeared to coexpress both Trk-A and flg. In contrast, all of them coexpressed flg and substance P, providing a specific marker of these cells. Immunosuppression of bFGF in newborn animals greatly reduced their number, suggesting that the factor was required in vivo. bFGF was present in the DRG and spinal cord, as well as in skeletal muscle, the peripheral projection site of P-neurons, as revealed by tracer DiIC(18)3. The lack of requirement of NT-3 for survival and immunoreactivity for the neurofilament of 200 kDa distinguished them from muscle proprioceptors, suggesting that they are likely to be unmyelinated muscle fibers. Collectively, their properties indicate that P-neurons constitute a distinct subpopulation of sensory neurons for which the function may be modulated by enkephalins.
Collapse
|
170
|
Time course and nerve growth factor dependence of inflammation-induced alterations in electrophysiological membrane properties in nociceptive primary afferent neurons. J Neurosci 2001. [PMID: 11698584 DOI: 10.1523/jneurosci.21-22-08722.2001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel findings of changes in nociceptive dorsal root ganglion (DRG) neurons during hindlimb inflammation induced by complete Freund's adjuvant (CFA) injections in the hindpaw and hindleg are reported. These include increased maximum fiber following frequency in nociceptive C- and Adelta-fiber units by 2.7 and 3 times, respectively, and increased incidence of ongoing (spontaneous) activity by 3.3 times (to 54%) and 2.4 times (to 27%), respectively. These changes and the CFA-induced changes in somatic action potential (AP) configuration in nociceptive neurons (Djouhri and Lawson, 1999) were incomplete 24 hr after CFA. The nerve growth factor (NGF) dependence of the inflammation-induced changes was examined by injecting a synthetic NGF sequestering protein [tyrosine receptor kinase A Ig2 (trkA Ig2)] with CFA and subsequently into the CFA injection sites. NGF sequestration prevented some CFA-induced changes in nociceptive neurons including: the increased fiber following frequency (C and Adelta), the increased proportions of units with ongoing activity (C and Adelta), the decreased AP duration (C and Adelta), but not the decreased afterhyperpolarization (AHP) durations (C, Adelta, and Aalpha/beta) (Djouhri and Lawson, 1999). AP variables of nociceptive units with spontaneous activity were examined. The time course of electrophysiological changes in nociceptive units is consistent with processes involving altered protein expression and/or retrograde transport of factors. These results (1) implicate NGF in regulating inflammation-induced decreases in AP duration and in increases in firing rate and spontaneous activity but not in decreases in AHP duration and (2) suggest clinical advantages of reducing NGF in some inflammatory pain states.
Collapse
|
171
|
Djouhri L, Dawbarn D, Robertson A, Newton R, Lawson SN. Time course and nerve growth factor dependence of inflammation-induced alterations in electrophysiological membrane properties in nociceptive primary afferent neurons. J Neurosci 2001; 21:8722-33. [PMID: 11698584 PMCID: PMC6762293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
Novel findings of changes in nociceptive dorsal root ganglion (DRG) neurons during hindlimb inflammation induced by complete Freund's adjuvant (CFA) injections in the hindpaw and hindleg are reported. These include increased maximum fiber following frequency in nociceptive C- and Adelta-fiber units by 2.7 and 3 times, respectively, and increased incidence of ongoing (spontaneous) activity by 3.3 times (to 54%) and 2.4 times (to 27%), respectively. These changes and the CFA-induced changes in somatic action potential (AP) configuration in nociceptive neurons (Djouhri and Lawson, 1999) were incomplete 24 hr after CFA. The nerve growth factor (NGF) dependence of the inflammation-induced changes was examined by injecting a synthetic NGF sequestering protein [tyrosine receptor kinase A Ig2 (trkA Ig2)] with CFA and subsequently into the CFA injection sites. NGF sequestration prevented some CFA-induced changes in nociceptive neurons including: the increased fiber following frequency (C and Adelta), the increased proportions of units with ongoing activity (C and Adelta), the decreased AP duration (C and Adelta), but not the decreased afterhyperpolarization (AHP) durations (C, Adelta, and Aalpha/beta) (Djouhri and Lawson, 1999). AP variables of nociceptive units with spontaneous activity were examined. The time course of electrophysiological changes in nociceptive units is consistent with processes involving altered protein expression and/or retrograde transport of factors. These results (1) implicate NGF in regulating inflammation-induced decreases in AP duration and in increases in firing rate and spontaneous activity but not in decreases in AHP duration and (2) suggest clinical advantages of reducing NGF in some inflammatory pain states.
Collapse
Affiliation(s)
- L Djouhri
- Department of Physiology, University of Bristol, Medical School, University Walk, Bristol BS8 TD, United Kingdom.
| | | | | | | | | |
Collapse
|
172
|
Acosta CG, Fábrega AR, Mascó DH, López HS. A sensory neuron subpopulation with unique sequential survival dependence on nerve growth factor and basic fibroblast growth factor during development. J Neurosci 2001; 21:8873-85. [PMID: 11698599 PMCID: PMC6762266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
We characterized a subpopulation of dorsal root ganglion (DRG) sensory neurons that were previously identified as preferential targets of enkephalins. This group, termed P-neurons after their "pear" shape, sequentially required nerve growth factor (NGF) and basic fibroblast growth factor (bFGF) for survival in vitro during different developmental stages. Embryonic P-neurons required NGF, but not bFGF. NGF continued to promote their survival, although less potently, up to postnatal day 2 (P2). Conversely, at P5, they needed bFGF but not NGF, with either factor having similar effects at P2. This trophic switch was unique to that DRG neuronal group. In addition, neither neurotrophin-3 (NT-3) nor brain-derived neurotrophic factor influenced their survival during embryonic and postnatal stages, respectively. The expression of NGF (Trk-A) and bFGF (flg) receptors paralleled the switch in trophic requirement. No single P-neuron appeared to coexpress both Trk-A and flg. In contrast, all of them coexpressed flg and substance P, providing a specific marker of these cells. Immunosuppression of bFGF in newborn animals greatly reduced their number, suggesting that the factor was required in vivo. bFGF was present in the DRG and spinal cord, as well as in skeletal muscle, the peripheral projection site of P-neurons, as revealed by tracer DiIC(18)3. The lack of requirement of NT-3 for survival and immunoreactivity for the neurofilament of 200 kDa distinguished them from muscle proprioceptors, suggesting that they are likely to be unmyelinated muscle fibers. Collectively, their properties indicate that P-neurons constitute a distinct subpopulation of sensory neurons for which the function may be modulated by enkephalins.
Collapse
MESH Headings
- Animals
- Antibodies/pharmacology
- Brain-Derived Neurotrophic Factor/pharmacology
- Cell Count
- Cell Survival/drug effects
- Cells, Cultured
- Fibroblast Growth Factor 2/antagonists & inhibitors
- Fibroblast Growth Factor 2/pharmacology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Muscle, Skeletal/innervation
- Nerve Growth Factor/pharmacology
- Neurons, Afferent/classification
- Neurons, Afferent/cytology
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurotrophin 3/pharmacology
- Patch-Clamp Techniques
- Phenotype
- Rats
- Receptor, trkA/metabolism
- Substance P/biosynthesis
Collapse
Affiliation(s)
- C G Acosta
- Instituto de Investigación Médica Mercedes y Martin Ferreyra, INIMEC-Consejo Nacional de Investigaciones Cientificas y Técnicas, (5000) Córdoba, Argentina
| | | | | | | |
Collapse
|
173
|
Pawlak M, Schmidt RF, Heppelmann B, Hanesch U. The neurokinin-1 receptor antagonist RP 67580 reduces the sensitization of primary afferents by substance P in the rat. Eur J Pain 2001; 5:69-79. [PMID: 11394924 DOI: 10.1053/eujp.2000.0222] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The inflammatory mediator substance P (SP) produces a variety of biological effects in several tissues by binding to the tachykinin receptor neurokinin 1 (NK1) and, to a lesser extent, by binding to the neurokinin 2 receptor (NK2). To assess the sensitizing effect of SP on articular afferent fibres the NK1receptor antagonist RP 67580 was applied in normal and acutely inflamed rat knee joints. Altogether 38 fine afferent nerve fibres from the rat knee with conduction velocities of 0.71-13.5 m/s were recorded as single units, during non-noxious and noxious joint rotations. SP, injected i.a. as a bolus close to the knee joint, was able to sensitize 45.5% (10 of 22) of the units recorded from normal joints and 33.3% (five of 15) of afferents from inflamed joints. The following i.a. application of RP 67580 in a range of 20-200 nmol antagonized in a dose-dependent manner the sensitizing effect of SP in a large proportion of slowly conducting articular afferents from normal (66.7%) and inflamed (46.2%) knee joints. Subsequent SP application enhanced the afferent sensitivity further. The electrophysiological results presented here further support the suggestion that the sensitization of afferents by SP in the rat knee joint is mediated mainly by the NK1 receptor, which is probably located on the primary afferents.
Collapse
Affiliation(s)
- M Pawlak
- Physiologisches Institut der Universität Würzburg, Röntgenring 9, D-97070 Würzburg, Federal Republic of Germany.
| | | | | | | |
Collapse
|
174
|
Djouhri L, Lawson SN. Increased conduction velocity of nociceptive primary afferent neurons during unilateral hindlimb inflammation in the anaesthetised guinea-pig. Neuroscience 2001; 102:669-79. [PMID: 11226703 DOI: 10.1016/s0306-4522(00)00503-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Decreases in durations of action potentials (C- and Adelta-fibre units) and afterhyperpolarisations (A-fibre units) occur in somata of nociceptive dorsal root ganglion neurons during hindlimb inflammation induced in young guinea-pigs by intradermal injections of Complete Freund's Adjuvant into the ipsilateral leg and foot. Here we present evidence that the single-point conduction velocity (i.e. estimated over a single conduction distance) of these nociceptive neurons is increased during this type of inflammation. The single-point conduction velocities in anaesthetised untreated guinea-pigs (control) were compared with those two and four days after Complete Freund's Adjuvant treatment in two types of experiment. The first involved intracellular voltage recordings from somata of ipsilateral L6 and S1 dorsal root ganglion neurons. Units were classified as C, Adelta or Aalpha/beta on the basis of their dorsal root conduction velocities and characterised as nociceptive, low-threshold mechanoreceptive or unresponsive according to their responses to mechanical and thermal stimuli. Compared with untreated animals, significant increases of 54% for C-fibre nociceptive units and 46% for A-fibre nociceptive units in the medians of dorsal root single-point conduction velocities were found four days after Complete Freund's Adjuvant treatment. These increases were greater at four days than at two days after Complete Freund's Adjuvant. A slight tendency in the same direction (10%) that was not significant was also seen in low-threshold mechanoreceptors four days after treatment, but not after two days. The increased velocities were confirmed with compound action potential recordings from ipsilateral S2 dorsal roots and sural nerves, in treated and control animals. Recordings showed a tendency for increased single-point velocities in C, Adelta and Aalpha/beta waves, with the upper border of the Adelta wave (i.e. the border between Adelta and Aalpha/beta waves) falling at a significantly higher conduction velocity in treated than control animals. This was seen both in S2 dorsal roots and in sural nerves. There was also a significant decrease in the mean electrical threshold for eliciting the C and Adelta components of compound action potentials of both dorsal root and sural nerves during inflammation. No evidence was found for a reduction in utilisation time for any components of the sural nerve compound action potential (C, Adelta or Aalpha/beta). The conduction velocity increases may be due to altered expression or activation/inactivation of certain ion channel types, such as Na(+) channels. The present experiments demonstrate that hindlimb inflammation caused a significant increase in conduction velocity of nociceptive but not of low-threshold mechanoreceptive primary afferent neurons during inflammation, as well as a significant decrease in the mean electrical threshold for eliciting the C and Adelta components of compound action potentials of both dorsal root and sural nerves. These changes, together with the previously described changes in the action potential shape of nociceptive neurons during inflammation, probably reflect alterations in membrane function that contribute to inflammatory hyperalgesia.
Collapse
Affiliation(s)
- L Djouhri
- Department of Physiology, University of Bristol, Medical School, University Walk, BS8 1TD, Bristol, UK
| | | |
Collapse
|
175
|
Abstract
The peripheral apparatus of muscle pain consists of nociceptors that can be excited by endogenous substances and mechanical stimuli. Histologically, the nociceptors are free nerve endings supplied by group III (thin myelinated) and group IV (nonmyelinated) afferents with conduction velocities less than 30 m/s. At the molecular level, nociceptors have receptors for algesic substances, such as bradykinin, serotonin, and prostagladin E2. The purinergic receptors and tetrodotoxin-resistant sodium channels might be new important targets for the treatment of muscle pain. Algesic substances (capsaicin, bradykinin, serotonin, potassium chloride, and hypertonic saline) and other stimuli (ischemia, strong mechanical stimuli, and electrical stimuli) have been shown to induce nociception from muscle in animals and muscle pain in humans. Muscle nociceptors can be sensitized to chemical and mechanical stimuli. Contrary to a former belief, the sensitization is not an unspecific process; rather, it is caused by endogenous algesic substances binding to highly specific receptor molecules in the membrane of the nociceptive ending. For example, animal studies showed that serotonin sensitizes muscle nociceptors to chemical and mechanical stimuli. Later, human studies showed that serotonin combined with bradykinin induces muscle hyperalgesia to pressure. The sensitization process by endogenous substances that are likely to be released during trauma or inflammatory injury is probably the best established peripheral mechanism for muscle tenderness and hyperalgesia.
Collapse
Affiliation(s)
- T Graven-Nielsen
- Center for Sensory-Motor Interaction, Laboratory for Experimental Pain Research, Aalborg University, Denmark.
| | | |
Collapse
|
176
|
Abstract
This review summarizes recent developments in the context of the neurochemical classification of nociceptors and explores the relationships between functionally and neurochemically defined subgroups. Although the complete picture is not yet available, several lines of intriguing evidence suggest that despite the complexity and diversity of nociceptor properties, a relatively "simple" neurochemical classification fits well with several recently identified molecular characteristics.
Collapse
Affiliation(s)
- F J Alvarez
- Department of Anatomy, School of Medicine, Wright State University, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA.
| | | |
Collapse
|
177
|
Abstract
Previous studies have reported that the mRNAs encoding the cloned mu-opioid receptor (MOR1) and the cloned delta-opioid receptor (DOR1) are expressed in the dorsal root ganglia (DRG) of rats. In the present study, we determined the sizes of DRG neurons expressing DOR1 and MOR1 mRNAs and examined whether or not DRG neurons were likely to be the source of the DOR1 and MOR1 immunoreactivity previously observed in the spinal dorsal horn. DRG neurons were labeled in five male Sprague-Dawley rats by applying Fluoro-Gold (FG) topically to the dorsal root entry zone. Five-micrometer cryostat sections were cut, and in situ hybridization was performed using full-length cRNA probes labeled with 35S-UTP. The distribution of sizes of DRG neuronal profiles (1372 neuronal profiles were evaluated) ranged from 98 to 2081 microm(2) and was similar to those found in previous reports. Of 583 retrogradely labeled neuronal profiles in DRGs, 246 (40 +/- 14%, mean +/- SD, n = 5) expressed MOR1 mRNA. Of 789 DRG cell profiles from sections that were hybridized for DOR1 mRNA, 687 (85 +/- 18%, mean +/- SD, n = 5) were labeled for DOR1. The proportion of DRG cell profiles expressing DOR1 mRNA was significantly higher than that expressing MOR1 mRNA (P < 0.0001, chi-square test). No significant differences were observed between small (less than or = 700 microm(2)) and large (> 700 microm(2)) FG-labeled neurons in the proportions labeled for either MOR1 mRNA (202/497 vs. 44/86, P > 0.2, chi-square test) or DOR1 mRNA (555/651 vs. 132/138, P > 0.3, chi-square test). Most FG-labeled neurons that expressed either MOR1 mRNA or DOR1 mRNA (82.1 and 80.8%, respectively) were smaller than 700 microm(2). In addition to cells expressing a single opioid receptor, individual DRG neurons were observed that expressed both MOR1 and DOR1. In a sample of 25 DRG neurons expressing MOR1-mRNA, 23 also expressed DOR1 mRNA. Within the spinal cord itself, DOR1 and MOR1 mRNAs had different patterns of expression. Both were expressed in the dorsal horn, but of the two, only MOR1 message was expressed in the superficial dorsal horn. We conclude that both small and large DRG neurons express DOR1 and MOR1 mRNAs, but most cells expressing these mRNAs are small. In addition, some DRG neurons express both MOR1 and DOR1 mRNAs. Finally, both DOR1 and MOR1 in the spinal dorsal horn originate, at least in part, from DRG neurons.
Collapse
Affiliation(s)
- H Wang
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
178
|
Valtschanoff JG, Rustioni A, Guo A, Hwang SJ. Vanilloid receptor VR1 is both presynaptic and postsynaptic in the superficial laminae of the rat dorsal horn. J Comp Neurol 2001. [DOI: 10.1002/cne.1063] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
179
|
Li YQ, Li H, Yang K, Wang ZM, Kaneko T, Mizuno N. Intracellular labeling study of neurons in the superficial part of the magnocellular layer of the medullary dorsal horn of the rat. J Comp Neurol 2000; 428:641-55. [PMID: 11077418 DOI: 10.1002/1096-9861(20001225)428:4<641::aid-cne5>3.0.co;2-q] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Morphology and electrical membrane properties of neurons in the superficial part of the magnocellular layer of the rat medullary dorsal horn (MDH: caudal subnucleus of the spinal trigeminal nucleus) were examined by using horizontal slice preparations. Intracellular recording and biocytin-injection combined with histochemical and immunohistochemical staining were done. Twenty-four neurons were examined successfully and classified into projection neurons (PNs) and intrinsic neurons (INs). The PNs were further divided into type I PNs (I-PNs) and type II PNs (II-PNs). The I-PNs sent axons to the medullary reticular formation; the II-PNs sent axons to the interpolar subnucleus of the spinal trigeminal nucleus but had no axons extending to the medullary reticular formation. The INs that sent no axons to the brain regions outside the MDH were also divided into small INs with spiny dendrites (INSSs) and large INs with aspiny dendrites (INLAs). The dendritic fields of the PNs extended to laminae I and II of the MDH and occasionally further to the spinal tract of the trigeminal nerve, whereas those of the INs were confined within the magnocellular layer of the MDH. The axonal branches of each IN formed a dense axonal mesh around the cell body of the parent neuron. Although the main bodies of the axonal fields of the INs were located in the magnocellular layer, some axonal branches extended to laminae I and II of the MDH. Immunoreactivity for NK1 receptor (substance P receptor) was found in approximately half of the PNs but not in the INs. Although no strong correlation was found between morphology and electrical membrane properties, there were some differences in electrical properties among the morphologically classified neuron groups, e.g., hyperpolarizing sag was observed in some PNs but not in the Ins; inward rectification was observed in some of the INSSs and INLAs but not in the PNs; the slow ramp depolarization and the slow afterdepolarization were observed in all INSSs examined but not in the PNs or INLAs.
Collapse
Affiliation(s)
- Y Q Li
- Department of Anatomy and K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an 710032, People's Republic of China
| | | | | | | | | | | |
Collapse
|
180
|
Stewart W, Maxwell DJ. Morphological evidence for selective modulation by serotonin of a subpopulation of dorsal horn cells which possess the neurokinin-1 receptor. Eur J Neurosci 2000. [DOI: 10.1046/j.1460-9568.2000.01350.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
181
|
Petruska JC, Cooper BY, Gu JG, Rau KK, Johnson RD. Distribution of P2X1, P2X2, and P2X3 receptor subunits in rat primary afferents: relation to population markers and specific cell types. J Chem Neuroanat 2000; 20:141-62. [PMID: 11118807 DOI: 10.1016/s0891-0618(00)00080-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We determined the co-expression of immunoreactivity (IR) for ATP-receptor subunits (P2X1, P2X2, and P2X3), neuropeptides, neurofilament (NF), and binding of the isolectin B(4) from Griffonia simplicifolia type one (GS-I-B(4)) in adult dorsal root ganglion neurons. P2X1-IR was expressed primarily in small DRG neurons. Most P2X1-IR neurons expressed neuropeptides and/or GS-I-B(4)-binding, but lacked NF-IR. P2X1-IR overlapped with P2X3-IR, though each was also found alone. P2X2-IR was expressed in many P2X3-IR small neurons, as well as a group of medium to large neurons that lacked either P2X3-IR or GS-I-B(4)-binding. A novel visible four-channel fluorescence technique revealed a unique population of P2X2/3-IR neurons that lacked GS-I-B(4)-binding but expressed NF-IR. Co-expression of P2X1, and P2X3 in individual neurons was also demonstrated. We examined P2X subunit-IR on individual recorded neurons that had been classified by current signature in vitro. Types 1, 2, 4 5, and 7 expressed distinct patterns of P2X-IR that corresponded to patterns identified in DRG sections, and had distinct responses to ATP. Types with rapid ATP currents (types 2, 5, and 7) displayed P2X3-IR and/or P2X1-IR. Types with slow ATP currents (types 1 and 4) displayed P2X2/3-IR. Type 1 neurons also displayed P2X1-IR. This study demonstrates that the correlation between physiological responses to ATP and the expression of particular P2X receptor subunits derived from expression systems is also present in native neurons, and also suggests that novel functional subunit combinations likely exist.
Collapse
Affiliation(s)
- J C Petruska
- University of Florida Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
182
|
Petruska JC, Napaporn J, Johnson RD, Gu JG, Cooper BY. Subclassified acutely dissociated cells of rat DRG: histochemistry and patterns of capsaicin-, proton-, and ATP-activated currents. J Neurophysiol 2000; 84:2365-79. [PMID: 11067979 DOI: 10.1152/jn.2000.84.5.2365] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We used a "current signature" method to subclassify acutely dissociated dorsal root ganglion (DRG) cells into nine subgroups. Cells subclassified by current signature had uniform properties. The type 1 cell had moderate capsaicin sensitivity (25.9 pA/pF), powerful, slowly desensitizing (tau = 2,300 ms), ATP-activated current (13.3 pA/pF), and small nondesensitizing responses to acidic solutions (5.6 pA/pF). Type 1 cells expressed calcitonin gene-related peptide immunoreactivity (CGRP-IR), manifested a wide action potential (7.3 ms), long duration afterhyperpolarization (57.0 ms), and were IB4 positive. The type 2 cell exhibited large capsaicin activated currents (134.9 pA/pF) but weak nondesensitizing responses to protons (15.3 pA/pF). Currents activated by ATP and alphabeta-m-ATP (51.7 and 44.6 pA/pF, respectively) had fast desensitization kinetics (tau = 214 ms) that were distinct from all other cell types. Type 2 cells were IB4 positive but did not contain either substance P (SP) or CGRP-IR. Similar to capsaicin-sensitive nociceptors in vivo, the afterhyperpolarization of the type 2 cell was prolonged (54.7 ms). The type 3 cell expressed, amiloride-sensitive, rapidly desensitizing (tau = 683 ms) proton-activated currents (127.0 pA/pF), and was insensitive to ATP or capsaicin. The type 3 cell was IB4 negative and contained neither CGRP nor SP-IR. The afterhyperpolarization (17.5 ms) suggested nonnociceptive function. The type 4 cell had powerful ATP-activated currents (17.4 pA/pF) with slow desensitization kinetics (tau = 2, 813 ms). The afterhyperpolarization was prolonged (46.5 ms), suggesting that this cell type might belong to a capsaicin-insensitive nociceptor population. The type 4 cell did not contain peptides. The type 7 cell manifested amiloride-sensitive, proton-activated currents (45.8 pA/pF) with very fast desensitization kinetics (tau = 255 ms) and was further distinct from the type 3 cell by virtue of a nondesensitizing amiloride-insensitive component (6.0 pA/pF). Capsaicin and ATP sensitivity were relatively weak (4.3 and 2.9 pA/pF, respectively). Type 7 cells were IB4 positive and contained both SP and CGRP-IR. They exhibited an exceptionally long afterhyperpolarization (110 ms) that was suggestive of a silent (mechanically insensitive) nociceptor. We concluded that presorting of DRG cells by current signatures separated them into internally homogenous subpopulations that were distinct from other subclassified cell types.
Collapse
Affiliation(s)
- J C Petruska
- Department of Neuroscience, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
183
|
Xu GY, Huang LYM, Zhao ZQ. Activation of silent mechanoreceptive cat C and Adelta sensory neurons and their substance P expression following peripheral inflammation. J Physiol 2000; 528 Pt 2:339-48. [PMID: 11034623 PMCID: PMC2270132 DOI: 10.1111/j.1469-7793.2000.00339.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The effect of inflammation on the excitability and the level of substance P (SP) in cat mechanoreceptive C and Adelta dorsal root ganglion (DRG) neurons were studied in vivo using intracellular recording and immunocytochemical techniques. Following injections of carrageenan (Carg) into the cat hindpaw, the percentage of C neurons exhibiting spontaneous activity increased from 7.2 to 20.7% and the percentage of Adelta neurons increased from 6.9 to 18.6%. In contrast to most cells from normal cats, which fired regularly below 10 Hz, many cells from Carg-treated cats fired at higher frequencies or in bursts. Inflammation (Carg treatment) also depolarized membrane potentials, increased membrane input resistance, caused the disappearance of inward rectifying currents and lowered the mean current thresholds of tibial nerve-evoked responses in DRG neurons. With inflammation, the percentage of C or Adelta neurons responding to low threshold mechanoreceptive stimuli increased (C neurons: normal, 13%; inflamed, 41%; Adelta neurons: normal, 13 %; inflamed, 39 %), while the percentage of C or Adelta neurons responding to high threshold mechanoreceptive stimuli remained unchanged. Some receptive field (RF)-responsive cells were injected with Lucifer Yellow and their SP immunoreactivity was determined. Following Carg treatment, substantially higher percentages of RF-responsive cells were SP positive (C neurons: normal, 35.7%; inflamed, 60%; Adelta neurons: normal, 18.2%; inflamed, 66.7%). These combined increases in the excitability of DRG neurons and SP-containing RF-responsive neurons could lead to sensitization of sensory neurons, thus contributing to the development of hyperalgesia.
Collapse
Affiliation(s)
- Guang-Yin Xu
- Shanghai Brain Research Institute, Chinese Academy of SciencesShanghai 200031, People’s Republic of China
- Marine Biomedical Institute, University of Texas Medical BranchGalveston, TX 77555-1069, USA
| | - Li-Yen Mae Huang
- Marine Biomedical Institute, University of Texas Medical BranchGalveston, TX 77555-1069, USA
- Department of Physiology and Biophysics, University of Texas Medical BranchGalveston, TX 77555-1069, USA
| | - Zhi-Qi Zhao
- Shanghai Brain Research Institute, Chinese Academy of SciencesShanghai 200031, People’s Republic of China
- Shanghai Institute of Physiology, Chinese Academy of SciencesShanghai 200031, People’s Republic of China
| |
Collapse
|
184
|
Cheunsuang O, Morris R. Spinal lamina I neurons that express neurokinin 1 receptors: morphological analysis. Neuroscience 2000; 97:335-45. [PMID: 10799765 DOI: 10.1016/s0306-4522(00)00035-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The morphology of neurons in lamina I of the dorsal horn of the lumbar spinal cord which express neurokinin 1 receptors in the rat has been investigated. On the basis of soma and dendritic measurements, these neurons form two populations. One group consists of large neurons that stain intensely for the neurokinin 1 receptor with the immunochemical methods employed. They have a large soma, typically giving rise to between three and five thick principal dendrites. The dendritic tree, however, is relatively sparse, with the principal dendrites giving rise to small numbers of second- and third-order branches. All these dendrites are almost spine free. The dendritic tree spreads extensively in the rostrocaudal (approximately 550microm) and mediolateral (approximately 30microm) orientations, with few ventrally directed branches. These cells give rise to a single axon from their soma or a principal dendrite that generates a few local branches and also ramifies sparsely in deeper laminae (II-IV). The details of axonal morphology were established from intracellularly labelled material. Ultrastructural analysis of the synaptic input to these neurons reveals that they receive synapses with both clear round, flattened and dense-core vesicles; however, they do not form components of glomerular synapses. The second neuron type stains less intensely and typically has a small fusiform soma, giving rise to dendrites at its rostral and caudal poles. The dendritic tree is long in the rostrocaudal orientation (approximately 350microm), but restricted mediolaterally (approximately 40microm). The primary dendrites of these neurons bifurcate and soon give rise to third-order branches that are spiny. No pattern of organization could be detected for the distribution of either neuron type. These observations are discussed in the light of other recent studies indicating a central role for lamina I neurons expressing neurokinin 1 in the perception of severe pain.
Collapse
Affiliation(s)
- O Cheunsuang
- Department of Veterinary Anatomy, Chulalongkorn University, Bangkok, Thailand
| | | |
Collapse
|
185
|
Todd AJ, McGill MM, Shehab SA. Neurokinin 1 receptor expression by neurons in laminae I, III and IV of the rat spinal dorsal horn that project to the brainstem. Eur J Neurosci 2000; 12:689-700. [PMID: 10712649 DOI: 10.1046/j.1460-9568.2000.00950.x] [Citation(s) in RCA: 205] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Large neurons in laminae III and IV of the spinal cord which express the neurokinin 1 receptor and have dendrites that enter the superficial laminae are a major target for substance P (SP)-containing (nociceptive) primary afferents. Although some of these neurons project to the thalamus, we know little about other possible projection targets. The main aim of this study was to determine whether all cells of this type are projection neurons and to provide information about brainstem sites to which they project. Injections of cholera toxin B subunit were made into four brainstem areas that receive input from the spinal cord, and the proportion of cells of this type in the L4 spinal segment that were retrogradely labelled was determined in each case. The results suggest that most of these cells (>90%) project to the contralateral lateral reticular nucleus (or to a nearby region), while many (>60%) send axons to the lateral parabrachial area and some to the dorsal part of the caudal medulla. However, few of these cells project to the periaqueductal grey matter. As lamina I neurons with the neurokinin 1 receptor appear to be important in the generation of hyperalgesia, we also examined projection neurons in this lamina and found that for each injection site the great majority possessed the receptor. These results demonstrate that dorsal horn neurons which express the neurokinin 1 receptor contribute to several ascending pathways that are thought to be important in pain mechanisms.
Collapse
Affiliation(s)
- A J Todd
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ UK.
| | | | | |
Collapse
|
186
|
Segond von Banchet G, Petrow PK, Bräuer R, Schaible HG. Monoarticular antigen-induced arthritis leads to pronounced bilateral upregulation of the expression of neurokinin 1 and bradykinin 2 receptors in dorsal root ganglion neurons of rats. ARTHRITIS RESEARCH 2000; 2:424-7. [PMID: 11056677 PMCID: PMC17819 DOI: 10.1186/ar121] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2000] [Revised: 07/03/2000] [Accepted: 07/07/2000] [Indexed: 11/10/2022]
Abstract
STATEMENT OF FINDINGS: This study describes the upregulation of neurokinin 1 and bradykinin 2 receptors in dorsal root ganglion (DRG) neurons in the course of antigen-induced arthritis (AIA) in the rat knee. In the acute phase of AIA, which was characterized by pronounced hyperalgesia, there was a substantial bilateral increase in the proportion of lumbar DRG neurons that express neurokinin 1 receptors (activated by substance P) and bradykinin 2 receptors. In the chronic phase the upregulation of bradykinin 2 receptors persisted on the side of inflammation. The increase in the receptor expression is relevant for the generation of acute and chronic inflammatory pain.
Collapse
|
187
|
Sakamoto H, Spike RC, Todd AJ. Neurons in laminae III and IV of the rat spinal cord with the neurokinin-1 receptor receive few contacts from unmyelinated primary afferents which do not contain substance P. Neuroscience 1999; 94:903-8. [PMID: 10579582 DOI: 10.1016/s0306-4522(99)00346-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have previously demonstrated that neurons in laminae III and IV of the spinal dorsal horn which possess the neurokinin-1 receptor and have long dorsal dendrites receive a major synaptic input from substance P-containing primary afferents and a more limited input from myelinated afferents. In the present study we have carried out a quantitative analysis of the contacts which cells of this type receive from two other classes of unmyelinated primary afferent: those which contain somatostatin and those without neuropeptides. We found that although boutons belonging to both of these types of afferent do form contacts with neurons of this type, the contacts are far less numerous than those formed by substance P-containing afferents. In laminae I and II, the density of contacts which dendrites of these cells received from somatostatin-containing afferents was 1.2/100 microm and that from non-peptidergic C afferents was 2.0/100 microm, which is far lower than our previous estimate of 18.8/100 microm from substance P-containing fibres in these laminae. These results indicate that although the dendrites of large neurons in laminae III and IV which possess the neurokinin-1 receptor pass through regions of the dorsal horn in which many types of primary afferent terminate, their synaptic input from primary afferents is organized in a highly selective manner.
Collapse
Affiliation(s)
- H Sakamoto
- Laboratory of Human Anatomy, Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | | | |
Collapse
|
188
|
Ziegler EA, Magerl W, Meyer RA, Treede RD. Secondary hyperalgesia to punctate mechanical stimuli. Central sensitization to A-fibre nociceptor input. Brain 1999; 122 ( Pt 12):2245-57. [PMID: 10581220 DOI: 10.1093/brain/122.12.2245] [Citation(s) in RCA: 325] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tissue injury induces enhanced pain sensation to light touch and punctate stimuli in adjacent, uninjured skin (secondary hyperalgesia). Whereas hyperalgesia to light touch (allodynia) is mediated by A-fibre low-threshold mechanoreceptors, hyperalgesia to punctate stimuli may be mediated by A- or C-fibre nociceptors. To disclose the relative contributions of A- and C-fibres to the hyperalgesia to punctate stimuli, the superficial radial nerve was blocked by pressure at the wrist in nine healthy subjects. Secondary hyperalgesia was induced by intradermal injection of 40 microg capsaicin, and pain sensitivity in adjacent skin was tested with 200 micron diameter probes (35-407 mN). The progress of conduction blockade was monitored by touch, cold, warm and first pain detection and by compound sensory nerve action potential. When A-fibre conduction was blocked completely but C-fibre conduction was fully intact, pricking pain to punctate stimuli was reduced by 75%, but burning pain to capsaicin injection remained unchanged. In normal skin without A-fibre blockade, pain ratings to the punctate probes increased significantly by a factor of two after adjacent capsaicin injection. In contrast, pain ratings to the punctate probes were not increased after capsaicin injection when A-fibre conduction was selectively blocked. However, hyperalgesia to punctate stimuli was detectable immediately after block release, when A-fibre conduction returned to normal. In conclusion, the pricking pain to punctate stimuli is predominantly mediated by A-fibre nociceptors. In secondary hyperalgesia, this pathway is heterosynaptically facilitated by conditioning C-fibre input. Thus, secondary hyperalgesia to punctate stimuli is induced by nociceptive C-fibre discharge but mediated by nociceptive A-fibres.
Collapse
Affiliation(s)
- E A Ziegler
- Institute of Physiology and Pathophysiology,Johannes Gutenberg University, Mainz, Germany
| | | | | | | |
Collapse
|
189
|
von Banchet GS, Schaible HG. Localization of the neurokinin 1 receptor on a subset of substance P-positive and isolectin B4-negative dorsal root ganglion neurons of the rat. Neurosci Lett 1999; 274:175-8. [PMID: 10548418 DOI: 10.1016/s0304-3940(99)00719-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dorsal root ganglion (DRG) neurons that express the neurokinin 1 (NK1) receptor were further characterized immunocytochemically using double-labeling techniques. DRG neurons were isolated from adult rats and cultured for 1-4 days. NK1 receptors on the surface of the neurons were labeled with substance P-gold. Non-peptidergic neurons were labeled with the surface marker isolectin B4 from Griffonia simplicifolia (IB4). Substance P-immunoreactivity was determined using an antibody to substance P. NK1 receptors were not identified on non-peptidergic neurons. The vast majority of the neurons with NK1 receptors showed substance P-immunoreactivity suggesting that NK1 receptors are autoreceptors in many dorsal root ganglion neurons.
Collapse
|
190
|
Djouhri L, Lawson SN. Changes in somatic action potential shape in guinea-pig nociceptive primary afferent neurones during inflammation in vivo. J Physiol 1999; 520 Pt 2:565-76. [PMID: 10523423 PMCID: PMC2269587 DOI: 10.1111/j.1469-7793.1999.t01-1-00565.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We have examined whether there are changes during inflammation in the membrane properties of nociceptive primary afferent neurones in the guinea-pig that might contribute to hyperalgesia. Inflammation was induced by intradermal injections of complete Freund's adjuvant (CFA) in the left leg. Intracellular voltage recordings were made from the somata of ipsilateral L6 and S1 dorsal root ganglion neurones in anaesthetised untreated guinea-pigs at 2 or 4 days after CFA treatment. 2. Units were classified as C, Adelta or Aalpha/beta on the basis of their dorsal root conduction velocities (CVs). Units with receptive fields on the left leg were characterized as nociceptive, low- threshold mechanoreceptive (LTM) or unresponsive according to their responses to mechanical and thermal stimuli. The shapes of their somatic action potentials (APs) evoked by dorsal root stimulation were recorded. 3. Comparisons of data from nociceptive neurones recorded in CFA treated animals after 2 and 4 days with data from CFA untreated (control) animals showed the following significant changes: in C-fibre nociceptors, decreased AP duration at base, AP rise time and AP fall time, and increased maximum rates of AP rise and fall with no change in afterhyperpolarization measured to 80 % recovery (AHP80); in Adelta-fibre nociceptors, decreased AP duration at base, AP fall time and a reduction in AHP80; and in Aalpha/beta-fibre nociceptors, a decreased AHP80 but no change in AP duration. Apart from a more negative membrane potential and AHP depth below 0 mV in Aalpha/beta nociceptors at 4 days compared with 2 days post-CFA, none of the above variables differed significantly between units recorded 2 or 4 days after CFA. Therefore the two groups were pooled and called CFA2 + 4d. 4. The reduction in AP duration in C-fibre nociceptors was apparent both in high threshold mechanoreceptor and polymodal nociceptors and also in units with either cutaneous or subcutaneous receptive fields. 5. No significant changes in AP duration at base or AHP80 were seen 2 or 4 days after CFA compared with control in either LTM or unresponsive neurones, although some of the latter may have become classified as nociceptors after CFA treatment. 6. The alterations in membrane properties of nociceptors should permit higher discharge frequencies, thus contributing to inflammatory hyperalgesia. They suggest active changes in the expression or activation of cation channels during peripheral inflammation.
Collapse
Affiliation(s)
- L Djouhri
- Department of Physiology, University of Bristol Medical School, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
191
|
Kressel M, Radespiel-Tröger M. Anterograde tracing and immunohistochemical characterization of potentially mechanosensitive vagal afferents in the esophagus. J Comp Neurol 1999; 412:161-72. [PMID: 10440717 DOI: 10.1002/(sici)1096-9861(19990913)412:1<161::aid-cne12>3.0.co;2-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vagal mechanosensitive afferents with an important functional role in esophageal peristalsis are well known from physiological studies. It is not known whether these fibers represent a separate subpopulation among all vagal afferents projecting to the esophageal wall. A morphological and immunohistochemical description of vagal afferents was undertaken to define their possible homo- or heterogeneity. The peripheral projections of vagal afferents were anterogradely labeled by injection of wheatgerm agglutinin conjugated to horseradish peroxidase into the nodose ganglion of rats. The anterogradely transported tracer was detected by tyramide amplification in conjunction with immunohistochemistry for Ca(2+)-binding proteins recently identified in different types of mechanosensory endings. It was found that vagal afferents represented a morphologically and structurally homogeneous population projecting to the myenteric ganglia of the esophagus, where they terminated as highly branched endings. Vagal afferent terminals, however, were different in their staining intensity for calretinin and calbindin, which ranged from intense to no detectable immunofluorescence. The fluorescence intensity of Ca(2+)-binding proteins within the vagal terminating branches was graded and the average staining intensity determined of all terminating branches in the upper, middle, and lower thirds of the esophagus. The average staining intensity was highest in the upper third of the esophagus and then declined in a statistically significant manner in the middle and lower thirds. This result suggests different requirements for intracellular Ca(2+)-buffering capacities in vagal afferents depending on their position along the esophageal axis and corroborates studies reporting a segmental organization of esophageal motility. Immunohistochemical evidence of substance P (SP) in a subset of vagal terminals was demonstrated. Hence, an effector role of vagal afferents on esophageal peristalsis by the release of SP, as has been proposed by physiological studies, is also supported by immunohistochemical data.
Collapse
Affiliation(s)
- M Kressel
- Institute of Anatomy, Friedrich-Alexander University of Erlangen, D-91054 Erlangen, Germany.
| | | |
Collapse
|
192
|
Abstract
To address the neurochemistry of the mechanisms that underlie the development of acute and persistent pain, our laboratory has been studying mice with deletions of gene products that have been implicated in nociceptive processing. We have recently raised mice with a deletion of the preprotachykinin-A gene, which encodes the peptides substance P (SP) and neurokinin A (NKA). These studies have identified a specific behavioral phenotype in which the animals do not detect a window of "pain" intensities; this window cuts across thermal, mechanical, and chemical modalities. The lowered thermal and mechanical withdrawal thresholds that are produced by tissue or nerve injury, however, were still present in the mutant mice. Thus, the behavioral manifestations of threshold changes in nociceptive processing in the setting of injury do not appear to require SP or NKA. To identify relevant neurochemical factors downstream of the primary afferent, we are also studying the dorsal horn second messenger systems that underlie the development of tissue and nerve injury-induced persistent pain states. We have recently implicated the gamma isoform of protein kinase C (PKCgamma) in the development of nerve injury-induced neuropathic pain. Acute pain processing, by contrast, is intact in the PKCgamma-null mice. Taken together, these studies emphasize that there is a distinct neurochemistry of acute and persistent pain. Persistent pain should be considered a disease state of the nervous system, not merely a prolonged acute pain symptom of some other disease conditions.
Collapse
Affiliation(s)
- A I Basbaum
- Departments of Anatomy and Physiology and W. M. Keck Foundation Center for Integrative Neuroscience, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
193
|
NK-1 receptor immunoreactivity in distinct morphological types of lamina I neurons of the primate spinal cord. J Neurosci 1999. [PMID: 10212314 DOI: 10.1523/jneurosci.19-09-03545.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In cat and monkey, lamina I cells can be classified into three basic morphological types (fusiform, pyramidal, and multipolar), and recent intracellular labeling evidence in the cat indicates that fusiform and multipolar lamina I cells are two different types of nociceptive cells, whereas pyramidal cells are innocuous thermoreceptive-specific. Because earlier observations indicated that only nociceptive dorsal horn neurons respond to substance P (SP), we examined which morphological types of lamina I neurons express receptors for SP (NK-1r). We categorized NK-1r-immunoreactive (IR) lamina I neurons in serial horizontal sections from the cervical and lumbar enlargements of four monkeys. Consistent results were obtained by two independent teams of observers. Nearly all NK-1r-IR cells were fusiform (42%) or multipolar (43%), but only 6% were pyramidal (with 9% unclassified). We obtained similar findings in three monkeys in which we used double-labeling immunocytochemistry to identify NK-1r-IR and spinothalamic lamina I neurons retrogradely labeled with cholera toxin subunit b from the thalamus; most NK-1r-IR lamina I spinothalamic neurons were fusiform (48%) or multipolar (33%), and only 10% were pyramidal. In contrast, most (approximately 75%) pyramidal and some (approximately 25%) fusiform and multipolar lamina I spinothalamic neurons did not display NK-1r immunoreactivity. These data indicate that most fusiform and multipolar lamina I neurons in the monkey can express NK-1r, consistent with the idea that both types are nociceptive, whereas only a small proportion of lamina I pyramidal cells express this receptor, consistent with the previous finding that they are non-nociceptive. However, these findings also indicate that not all nociceptive lamina I neurons express receptors for SP.
Collapse
|
194
|
Yu XH, Zhang ET, Craig AD, Shigemoto R, Ribeiro-da-Silva A, De Koninck Y. NK-1 receptor immunoreactivity in distinct morphological types of lamina I neurons of the primate spinal cord. J Neurosci 1999; 19:3545-55. [PMID: 10212314 PMCID: PMC6782224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
In cat and monkey, lamina I cells can be classified into three basic morphological types (fusiform, pyramidal, and multipolar), and recent intracellular labeling evidence in the cat indicates that fusiform and multipolar lamina I cells are two different types of nociceptive cells, whereas pyramidal cells are innocuous thermoreceptive-specific. Because earlier observations indicated that only nociceptive dorsal horn neurons respond to substance P (SP), we examined which morphological types of lamina I neurons express receptors for SP (NK-1r). We categorized NK-1r-immunoreactive (IR) lamina I neurons in serial horizontal sections from the cervical and lumbar enlargements of four monkeys. Consistent results were obtained by two independent teams of observers. Nearly all NK-1r-IR cells were fusiform (42%) or multipolar (43%), but only 6% were pyramidal (with 9% unclassified). We obtained similar findings in three monkeys in which we used double-labeling immunocytochemistry to identify NK-1r-IR and spinothalamic lamina I neurons retrogradely labeled with cholera toxin subunit b from the thalamus; most NK-1r-IR lamina I spinothalamic neurons were fusiform (48%) or multipolar (33%), and only 10% were pyramidal. In contrast, most (approximately 75%) pyramidal and some (approximately 25%) fusiform and multipolar lamina I spinothalamic neurons did not display NK-1r immunoreactivity. These data indicate that most fusiform and multipolar lamina I neurons in the monkey can express NK-1r, consistent with the idea that both types are nociceptive, whereas only a small proportion of lamina I pyramidal cells express this receptor, consistent with the previous finding that they are non-nociceptive. However, these findings also indicate that not all nociceptive lamina I neurons express receptors for SP.
Collapse
Affiliation(s)
- X H Yu
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec, H3G 1Y6 Canada
| | | | | | | | | | | |
Collapse
|
195
|
GABAergic neurons that contain neuropeptide Y selectively target cells with the neurokinin 1 receptor in laminae III and IV of the rat spinal cord. J Neurosci 1999. [PMID: 10087077 DOI: 10.1523/jneurosci.19-07-02637.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuropeptide Y (NPY) is contained in a population of GABAergic interneurons in the spinal dorsal horn and, when administered intrathecally, can produce analgesia. We previously identified a strong monosynaptic link between substance P-containing primary afferents and cells in lamina III or IV with the neurokinin 1 (NK1) receptor. Because some of these cells belong to the spinothalamic tract, they are likely to have an important role in pain mechanisms. In this study, we used confocal microscopy to examine the input to lamina III/IV NK1 receptor-immunoreactive neurons from NPY-containing axons. All of the cells studied received a dense innervation from NPY-immunoreactive axons, and electron microscopy revealed that synapses were often present at points of contact. Most NPY-immunoreactive boutons were also GABAergic, which supports the suggestion that they are derived from local neurons. The association between NPY-containing axons and NK1 receptor-immunoreactive neurons was specific, because postsynaptic dorsal column neurons (which were located in laminae III-V but did not possess NK1 receptors) and lamina I neurons with the NK1 receptor received significantly fewer contacts from NPY-immunoreactive axons. In addition, the NK1 receptor-immunoreactive lamina III/IV cells received few contacts from nitric oxide synthase-containing axons (which belong to a different population of GABAergic dorsal horn neurons). The NPY-containing axons appeared to be targeted to the NK1 receptor-immunoreactive neurons themselves rather than to their associated substance P-immunoreactive inputs. The dense innervation of these cells by NPY-containing axons suggests that they may possess receptors for NPY and that activation of these receptors may contribute to NPY-mediated analgesia.
Collapse
|
196
|
Polgár E, Shehab SA, Watt C, Todd AJ. GABAergic neurons that contain neuropeptide Y selectively target cells with the neurokinin 1 receptor in laminae III and IV of the rat spinal cord. J Neurosci 1999; 19:2637-46. [PMID: 10087077 PMCID: PMC6786068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Neuropeptide Y (NPY) is contained in a population of GABAergic interneurons in the spinal dorsal horn and, when administered intrathecally, can produce analgesia. We previously identified a strong monosynaptic link between substance P-containing primary afferents and cells in lamina III or IV with the neurokinin 1 (NK1) receptor. Because some of these cells belong to the spinothalamic tract, they are likely to have an important role in pain mechanisms. In this study, we used confocal microscopy to examine the input to lamina III/IV NK1 receptor-immunoreactive neurons from NPY-containing axons. All of the cells studied received a dense innervation from NPY-immunoreactive axons, and electron microscopy revealed that synapses were often present at points of contact. Most NPY-immunoreactive boutons were also GABAergic, which supports the suggestion that they are derived from local neurons. The association between NPY-containing axons and NK1 receptor-immunoreactive neurons was specific, because postsynaptic dorsal column neurons (which were located in laminae III-V but did not possess NK1 receptors) and lamina I neurons with the NK1 receptor received significantly fewer contacts from NPY-immunoreactive axons. In addition, the NK1 receptor-immunoreactive lamina III/IV cells received few contacts from nitric oxide synthase-containing axons (which belong to a different population of GABAergic dorsal horn neurons). The NPY-containing axons appeared to be targeted to the NK1 receptor-immunoreactive neurons themselves rather than to their associated substance P-immunoreactive inputs. The dense innervation of these cells by NPY-containing axons suggests that they may possess receptors for NPY and that activation of these receptors may contribute to NPY-mediated analgesia.
Collapse
Affiliation(s)
- E Polgár
- Laboratory of Human Anatomy, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | | | | | |
Collapse
|
197
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|
198
|
Djouhri L, Bleazard L, Lawson SN. Association of somatic action potential shape with sensory receptive properties in guinea-pig dorsal root ganglion neurones. J Physiol 1998; 513 ( Pt 3):857-72. [PMID: 9824723 PMCID: PMC2231320 DOI: 10.1111/j.1469-7793.1998.857ba.x] [Citation(s) in RCA: 154] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. Intracellular voltage recordings were made from the somata of L6 and S1 dorsal root ganglion (DRG) neurones at 28.5-31 C in young guinea-pigs (150-300 g) anaesthetized with sodium pentobarbitone. Action potentials (APs) evoked by dorsal root stimulation were used to classify conduction velocities (CVs) as C, Adelta or Aalpha/beta. Units with overshooting APs and membrane potentials (Vm) more negative than -40 mV were analysed: 40 C-, 45 Adelta- and 94 Aalpha/beta-fibre units. 2. Sensory receptive properties were characterized as: (a) low-threshold mechanoreceptive (LTM) units (5 C-, 10 Adelta- and 57 Aalpha/beta-fibre units); (b) nociceptive units, responding to noxious mechanical stimuli, some also to noxious heat (40 C-, 27 Adelta- and 27 Aalpha/beta-fibre units); (c) unresponsive units that failed to respond to a variety of tests; and (d) C-fibre cooling-sensitive units (n = 4). LTM units made up about 8 % of identified C-fibre units, 36 % of identified Adelta-fibre units and > 73 % of identified Aalpha/beta-fibre units. Compared with LTM units, the nociceptive units had APs that were longer on average by 3 times (C-fibre units), 1.7 times (Adelta-fibre units) and 1.4 times (Aalpha/beta-fibre units). They also had significantly longer rise times (RTs) and fall times (FTs) in all CV ranges. Between Aalpha/beta-nociceptors and Aalpha/beta-LTMs there was a proportionately greater difference in RT than in FT. The duration of the afterhyperpolarization measured to 80 % recovery (AHP80) was also significantly longer in nociceptive than LTM neurones in all CV ranges: by 3 times (C-fibre units), 6.3 times (Adelta-fibre units) and 3.6 times (Aalpha/beta-fibre units). The mean values of these variables in unresponsive units were similar to those of nociceptive units in each CV range; in C- and Adelta-fibre groups their mean AHP duration was even longer than in nociceptive units. 3. A-fibre LTM neurones were divided into Adelta- (D hair units, n = 8), and Aalpha/beta- (G hair/field units, n = 22; T (tylotrich) hair units, n = 6; rapidly adapting (RA) glabrous units, n = 6; slowly adapting (SA) hairy and glabrous units, n = 2; and muscle spindle (MS) units n = 17). MS and SA units had the shortest duration APs, FTs and AHP80s of all these groups. The mean RT in D hair units was significantly longer than in all Aalpha/beta LTM units combined. T hair units had the longest mean FT and AHP of all the A-LTM groups. The mean AHP was about 10 times longer in T hair units than in all other A-LTM units combined (significant), and was similar to that of A-fibre nociceptive neurones. 4. These differences in somatic AP shape may aid in distinguishing between LTM and nociceptive or unresponsive C- and Adelta-fibre units but probably not between nociceptive and unresponsive units. The differences seen may reflect differences in expression or activation of different types of ion channel.
Collapse
Affiliation(s)
- L Djouhri
- Department of Physiology, Medical School, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
199
|
Hoheisel U, Kaske A, Mense S. Relationship between neuronal activity and substance P-immunoreactivity in the rat spinal cord during acute and persistent myositis. Neurosci Lett 1998; 257:21-4. [PMID: 9857956 DOI: 10.1016/s0304-3940(98)00792-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The spinal level of substance P (SP) is assumed to be an important determinant of neuronal activity under pathophysiological conditions. In rat dorsal horn neurones, impulse activity was studied during a carrageenan-induced acute (2-8 h) and a Freund's adjuvant-induced persistent (12 days) myositis and compared with the spinal substance P-immunoreactivity (SP-IR) of the same animals. Myositis-induced changes in responsiveness of the neurones reached a maximum within 2-8 h, whereas background activity of the neurones was highest after 12 days of myositis. The area of SP-IR in the superficial dorsal horn decreased during acute and persistent myositis and the integrated density of the staining was largely unchanged. The difference in time-course between neuronal activity and SP-IR suggest that during persistent myositis factors other than SP gain more influence on the behaviour of the neurones.
Collapse
Affiliation(s)
- U Hoheisel
- Institut für Anatomie und Zellbiologie, Universität Heidelberg, Germany
| | | | | |
Collapse
|
200
|
Naim MM, Shehab SA, Todd AJ. Cells in laminae III and IV of the rat spinal cord which possess the neurokinin-1 receptor receive monosynaptic input from myelinated primary afferents. Eur J Neurosci 1998; 10:3012-9. [PMID: 9758171 DOI: 10.1111/j.1460-9568.1998.00335.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously demonstrated that neurons which have cell bodies in laminae III or IV of the rat spinal cord, dendrites that enter the superficial laminae and which possess the neurokinin-1 receptor receive a major synaptic input from substance P-containing primary afferent axons. In this study we set out to determine whether these cells also receive monosynaptic input from myelinated primary afferents by using transganglionic transport of the B subunit of cholera toxin to identify the central terminals of myelinated afferents from the sciatic nerve. Dual-immunofluorescence and confocal microscopy revealed apparent contacts between labelled primary afferent terminals and all of the neurokinin-1 receptor-immunoreactive cells examined, although these contacts were much less numerous than those which the cells receive from substance P-containing primary afferents. By using a combined confocal and electron microscopic technique we were able to confirm that synapses were present at some of the contacts between primary afferents and neurokinin-1 receptor-immunoreactive neurons. These results suggest that cells of this type will have wide-dynamic range receptive fields, but with a relatively strong input from nociceptors.
Collapse
Affiliation(s)
- M M Naim
- Laboratory of Human Anatomy, Institute of Biomedical and Life Sciences, University of Glasgow, UK
| | | | | |
Collapse
|