151
|
Chevin LM, Collins S, Lefèvre F. Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02043.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luis-Miguel Chevin
- Centre d'Ecologie Fonctionnelle et Evolutive (UMR 5175); 1919 route de Mende; 34293; Montpellier Cedex 5; France
| | - Sinéad Collins
- Institute of Evolutionary Biology, University of Edinburgh; Kings Buildings, Ashworth Laboratories, West Mains Road; Edinburgh; EH9 3JT; UK
| | - François Lefèvre
- INRA, Ecologie des Forêts Méditerranéennes; UR 629, Domaine Saint Paul, Site Agroparc; 84914; Avignon Cedex 9; France
| |
Collapse
|
152
|
Torres-Dowdall J, Handelsman CA, Reznick DN, Ghalambor CK. LOCAL ADAPTATION AND THE EVOLUTION OF PHENOTYPIC PLASTICITY IN TRINIDADIAN GUPPIES (POECILIA RETICULATA). Evolution 2012; 66:3432-43. [DOI: 10.1111/j.1558-5646.2012.01694.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
153
|
STELKENS RIKEB, JAFFUEL GEOFFREY, ESCHER MATTHIAS, WEDEKIND CLAUS. Genetic and phenotypic population divergence on a microgeographic scale in brown trout. Mol Ecol 2012; 21:2896-915. [DOI: 10.1111/j.1365-294x.2012.05581.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
154
|
Wennersten L, Forsman A. Population-level consequences of polymorphism, plasticity and randomized phenotype switching: a review of predictions. Biol Rev Camb Philos Soc 2012; 87:756-67. [DOI: 10.1111/j.1469-185x.2012.00231.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
155
|
HALLSSON LR, BJÖRKLUND M. Selection in a fluctuating environment leads to decreased genetic variation and facilitates the evolution of phenotypic plasticity. J Evol Biol 2012; 25:1275-90. [DOI: 10.1111/j.1420-9101.2012.02512.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
156
|
Scheiner SM, Holt RD. The genetics of phenotypic plasticity. X. Variation versus uncertainty. Ecol Evol 2012; 2:751-67. [PMID: 22837824 PMCID: PMC3399198 DOI: 10.1002/ece3.217] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 01/24/2012] [Indexed: 11/11/2022] Open
Abstract
Despite the apparent advantages of adaptive plasticity, it is not common. We examined the effects of variation and uncertainty on selection for plasticity using an individual-based computer simulation model. In the model, the environment consisted of a linear gradient of 50 demes with dispersal occurring either before or after selection. Individuals consisted of multiple loci whose phenotypic expression either are affected (plastic) or are not affected (nonplastic) by the environment. Typically, evolution occurred first as genetic differentiation, which was then replaced by the evolution of adaptive plasticity, opposite to the evolutionary trend that is often assumed. Increasing dispersal rates selected for plasticity, if selection occurred before dispersal. If selection occurred after dispersal, the highest plasticity was at intermediate dispersal rates. Temporal variation in the environment occurring after development, but before selection, favored the evolution of plasticity. With dispersal before selection, such temporal variation resulted in hyperplasticity, with a reaction norm much steeper than the optimum. This effect was enhanced with negative temporal autocorrelation and can be interpreted as representing a form of bet hedging. As the number of nonplastic loci increased, plasticity was disfavored due to an increase in the uncertainty of the genomic environment. This effect was reversed with temporal variation. Thus, variation and uncertainty affect whether or not plasticity is favored with different sources of variation-arising from the amount and timing of dispersal, from temporal variation, and even from the genetic architecture underlying the phenotype-having contrasting, interacting, and at times unexpected effects.
Collapse
|
157
|
Duputié A, Massol F, Chuine I, Kirkpatrick M, Ronce O. How do genetic correlations affect species range shifts in a changing environment? Ecol Lett 2012; 15:251-9. [DOI: 10.1111/j.1461-0248.2011.01734.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
158
|
Thomassen G, Barson NJ, Haugen TO, Vøllestad LA. Contemporary divergence in early life history in grayling (Thymallus thymallus). BMC Evol Biol 2011; 11:360. [PMID: 22166134 PMCID: PMC3252335 DOI: 10.1186/1471-2148-11-360] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 12/13/2011] [Indexed: 12/28/2022] Open
Abstract
Background Following colonization of new habitats and subsequent selection, adaptation to environmental conditions might be expected to be rapid. In a mountain lake in Norway, Lesjaskogsvatnet, more than 20 distinct spawning demes of grayling have been established since the lake was colonized, some 20-25 generations ago. The demes spawn in tributaries consistently exhibiting either colder or warmer temperature conditions during spawning in spring and subsequent early development during early summer. In order to explore the degree of temperature-related divergence in early development, a multi-temperature common-garden experiment was performed on embryos from four different demes experiencing different spring temperatures. Results Early developmental characters were measured to test if individuals from the four demes respond differently to the treatment temperatures. There was clear evidence of among-deme differences (genotype - environment interactions) in larval growth and yolk-to-body-size conversion efficiency. Under the cold treatment regime, larval growth rates were highest for individuals belonging to cold streams. Individuals from warm streams had the highest yolk-consumption rate under cold conditions. As a consequence, yolk-to-body-mass conversion efficiency was highest for cold-deme individuals under cold conditions. As we observed response parallelism between individuals from demes belonging to similar thermal groups for these traits, some of the differentiation seems likely to result from local adaptation Conclusion The observed differences in length at age during early larval development most likely have a genetic component, even though both directional and random processes are likely to have influenced evolutionary change in the demes under study.
Collapse
Affiliation(s)
- Gaute Thomassen
- Centre for Ecological and Evolutionary Synthesis, Department of Biology, University of Oslo, P, O, Box 1066 Blindern, NO-0316 Oslo, Norway
| | | | | | | |
Collapse
|
159
|
Buoro M, Gimenez O, Prévost E. Assessing adaptive phenotypic plasticity by means of conditional strategies from empirical data: the latent environmental threshold model. Evolution 2011; 66:996-1009. [PMID: 22486685 DOI: 10.1111/j.1558-5646.2011.01484.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Conditional strategies are the most common form of discrete phenotypic plasticity. In a conditional strategy, the phenotype expressed by an organism is determined by the difference between an environmental cue and a threshold, both of which may vary among individuals. The environmental threshold model (ETM) has been proposed as a mean to understand the evolution of conditional strategies, but has been surprisingly seldom applied to empirical studies. A hindrance for the application of the ETM is that often, the proximate cue triggering the phenotypic expression and the individual threshold are not measurable, and can only be assessed using a related observable cue. We describe a new statistical model that can be applied in this common situation. The Latent ETM (LETM) allows for a measurement error in the phenotypic expression of the individual environmental cue and a purely genetically determined threshold. We show that coupling our model with quantitative genetic methods allows an evolutionary approach including an estimation of the heritability of conditional strategies. We evaluate the performance of the LETM with a simulation study and illustrate its utility by applying it to empirical data on the size-dependent smolting process for stream-dwelling Atlantic salmon juveniles.
Collapse
Affiliation(s)
- Mathieu Buoro
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175, Montpellier Cedex 5, France.
| | | | | |
Collapse
|
160
|
Jenouvrier S, Visser ME. Climate change, phenological shifts, eco-evolutionary responses and population viability: toward a unifying predictive approach. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2011; 55:905-19. [PMID: 21710282 PMCID: PMC3212686 DOI: 10.1007/s00484-011-0458-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 05/26/2023]
Abstract
The debate on emission targets of greenhouse gasses designed to limit global climate change has to take into account the ecological consequences. One of the clearest ecological consequences is shifts in phenology. Linking these shifts to changes in population viability under various greenhouse gasses emission scenarios requires a unifying framework. We propose a box-in-a-box modeling approach that couples population models to phenological change. This approach unifies population modeling with both ecological responses to climate change as well as evolutionary processes. We advocate a mechanistic embedded correlative approach, where the link from genes to population is established using a periodic matrix population model. This periodic model has several major advantages: (1) it can include complex seasonal behaviors allowing an easy link with phenological shifts; (2) it provides the structure of the population at each phase, including the distribution of genotypes and phenotypes, allowing a link with evolutionary processes; and (3) it can incorporate the effect of climate at different time periods. We believe that the way climatologists have approached the problem, using atmosphere-ocean coupled circulation models in which components are gradually included and linked to each other, can provide a valuable example to ecologists. We hope that ecologists will take up this challenge and that our preliminary modeling framework will stimulate research toward a unifying predictive model of the ecological consequences of climate change.
Collapse
Affiliation(s)
- Stéphanie Jenouvrier
- Woods Hole Oceanographic Institution, Woods Hole, 02540 MA USA
- Cooperative Institute for Research in Environmental Sciences, 216 University of Colorado, Boulder, CO 80309-0216 USA
- CNRS CEBC, 79170 Villiers en Bois, France
| | - Marcel E. Visser
- Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
161
|
Holt RD, Barfield M. Theoretical perspectives on the statics and dynamics of species' borders in patchy environments. Am Nat 2011; 178 Suppl 1:S6-25. [PMID: 21956092 PMCID: PMC5014989 DOI: 10.1086/661784] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Understanding range limits is a fundamental problem in ecology and evolutionary biology. In 1963, Mayr argued that "contaminating" gene flow from central populations constrained adaptation in marginal populations, preventing range expansion, while in 1984, Bradshaw suggested that absence of genetic variation prevented species from occurring everywhere. Understanding stability of range boundaries requires unraveling the interplay of demography, gene flow, and evolution of populations in concrete landscape settings. We walk through a set of interrelated spatial scenarios that illustrate interesting complexities of this interplay. To motivate our individual-based model results, we consider a hypothetical zooplankter in a landscape of discrete water bodies coupled by dispersal. We examine how patterns of dispersal influence adaptation in sink habitats where conditions are outside the species' niche. The likelihood of observing niche evolution (and thus range expansion) over any given timescale depends on (1) the degree of initial maladaptation; (2) pattern (pulsed vs. continuous, uni- vs. bidirectional), timing (juvenile vs. adult), and rate of dispersal (and hence population size); (3) mutation rate; (4) sexuality; and (5) the degree of heterogeneity in the occupied range. We also show how the genetic architecture of polygenic adaptation is influenced by the interplay of selection and dispersal in heterogeneous landscapes.
Collapse
Affiliation(s)
- Robert D Holt
- Department of Biology, PO Box 118525, University of Florida, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
162
|
Abstract
In classical evolutionary theory, genetic variation provides the source of heritable phenotypic variation on which natural selection acts. Against this classical view, several theories have emphasized that developmental variability and learning enhance nonheritable phenotypic variation, which in turn can accelerate evolutionary response. In this paper, I show how developmental variability alters evolutionary dynamics by smoothing the landscape that relates genotype to fitness. In a fitness landscape with multiple peaks and valleys, developmental variability can smooth the landscape to provide a directly increasing path of fitness to the highest peak. Developmental variability also allows initial survival of a genotype in response to novel or extreme environmental challenge, providing an opportunity for subsequent adaptation. This initial survival advantage arises from the way in which developmental variability smooths and broadens the fitness landscape. Ultimately, the synergism between developmental processes and genetic variation sets evolutionary rate.
Collapse
Affiliation(s)
- S A Frank
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525, USA.
| |
Collapse
|
163
|
Springate DA, Scarcelli N, Rowntree J, Kover PX. Correlated response in plasticity to selection for early flowering in Arabidopsis thaliana. J Evol Biol 2011; 24:2280-8. [PMID: 21812854 DOI: 10.1111/j.1420-9101.2011.02360.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phenotypic plasticity is an important strategy for coping with changing environments. However, environmental change usually results in strong directional selection, and little is known empirically about how this affects plasticity. If genes affecting a trait value also affect its plasticity, selection on the trait should influence plasticity. Synthetic outbred populations of Arabidopsis thaliana were selected for earlier flowering under simulated spring- and winter-annual conditions to investigate the correlated response of flowering time plasticity and its effect on family-by-environment variance (Vg×e) within each selected line. We found that selection affected plasticity in an environmentally dependent manner: under simulated spring-annual conditions, selection increased the magnitude of plastic response but decreased Vg×e; selection under simulated winter-annual conditions reduced the magnitude of plastic response but did not alter Vg×e significantly. As selection may constrain future response to environmental change, the environment for crop breeding and ex situ conservation programmes should be carefully chosen. Models of species persistence under environmental change should also consider the interaction between selection and plasticity.
Collapse
Affiliation(s)
- D A Springate
- School of Life Sciences, University of Manchester, Manchester, UK IRD Montpellier, Montpellier Cedex, France
| | | | | | | |
Collapse
|
164
|
Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL. Projecting coral reef futures under global warming and ocean acidification. Science 2011; 333:418-22. [PMID: 21778392 DOI: 10.1126/science.1204794] [Citation(s) in RCA: 461] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Many physiological responses in present-day coral reefs to climate change are interpreted as consistent with the imminent disappearance of modern reefs globally because of annual mass bleaching events, carbonate dissolution, and insufficient time for substantial evolutionary responses. Emerging evidence for variability in the coral calcification response to acidification, geographical variation in bleaching susceptibility and recovery, responses to past climate change, and potential rates of adaptation to rapid warming supports an alternative scenario in which reef degradation occurs with greater temporal and spatial heterogeneity than current projections suggest. Reducing uncertainty in projecting coral reef futures requires improved understanding of past responses to rapid climate change; physiological responses to interacting factors, such as temperature, acidification, and nutrients; and the costs and constraints imposed by acclimation and adaptation.
Collapse
Affiliation(s)
- John M Pandolfi
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies, St. Lucia, Queensland 4072, Australia.
| | | | | | | |
Collapse
|
165
|
Kristensen TN, Loeschcke V, Bilde T, Hoffmann AA, Sgró C, Noreikienė K, Ondrésik M, Bechsgaard JS. No inbreeding depression for low temperature developmental acclimation across multiple Drosophila species. Evolution 2011; 65:3195-201. [PMID: 22023585 DOI: 10.1111/j.1558-5646.2011.01359.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Populations are from time to time exposed to stressful temperatures. Their thermal resistance levels are determined by inherent and plastic mechanisms, which are both likely to be under selection in natural populations. Previous studies on Drosophila species have shown that inherent resistance is highly species specific, and differs among ecotypes (e.g., tropical and widespread species). Apart from being exposed to thermal stress many small and fragmented populations face genetic challenges due to, for example, inbreeding. Inbreeding has been shown to reduce inherent resistance levels toward stressful temperatures, but whether adaptation to thermal stress through plastic responses also is affected by inbreeding is so far not clear. In this study, we test inherent cold resistance and the ability to respond plastically to temperature changes through developmental cold acclimation in inbred and outbred lines of five tropical and five widespread Drosophila species. Our results confirm that tropical species have lower cold resistance compared to widespread species, and show that (1) inbreeding reduces inherent cold resistance in both tropical and widespread species, (2) inbreeding does not affect the ability to respond adaptively to temperature acclimation, and (3) tropical species with low basal resistance show stronger adaptive plastic responses to developmental acclimation compared to widespread species.
Collapse
Affiliation(s)
- Torsten N Kristensen
- Department of Genetics and Biotechnology, Aarhus University, Blichers Allé 20, Tjele, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
166
|
CHEVIN LM, LANDE R. Adaptation to marginal habitats by evolution of increased phenotypic plasticity. J Evol Biol 2011; 24:1462-76. [DOI: 10.1111/j.1420-9101.2011.02279.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
167
|
Sih A, Ferrari MCO, Harris DJ. Evolution and behavioural responses to human-induced rapid environmental change. Evol Appl 2011; 4:367-87. [PMID: 25567979 PMCID: PMC3352552 DOI: 10.1111/j.1752-4571.2010.00166.x] [Citation(s) in RCA: 671] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 10/03/2010] [Indexed: 11/30/2022] Open
Abstract
Almost all organisms live in environments that have been altered, to some degree, by human activities. Because behaviour mediates interactions between an individual and its environment, the ability of organisms to behave appropriately under these new conditions is crucial for determining their immediate success or failure in these modified environments. While hundreds of species are suffering dramatically from these environmental changes, others, such as urbanized and pest species, are doing better than ever. Our goal is to provide insights into explaining such variation. We first summarize the responses of some species to novel situations, including novel risks and resources, habitat loss/fragmentation, pollutants and climate change. Using a sensory ecology approach, we present a mechanistic framework for predicting variation in behavioural responses to environmental change, drawing from models of decision-making processes and an understanding of the selective background against which they evolved. Where immediate behavioural responses are inadequate, learning or evolutionary adaptation may prove useful, although these mechanisms are also constrained by evolutionary history. Although predicting the responses of species to environmental change is difficult, we highlight the need for a better understanding of the role of evolutionary history in shaping individuals' responses to their environment and provide suggestion for future work.
Collapse
Affiliation(s)
- Andrew Sih
- Department of Environmental Science and Policy, University of California Davis, CA, USA
| | - Maud C O Ferrari
- Department of Environmental Science and Policy, University of California Davis, CA, USA
| | - David J Harris
- Department of Environmental Science and Policy, University of California Davis, CA, USA
| |
Collapse
|
168
|
Junge C, Vøllestad LA, Barson NJ, Haugen TO, Otero J, Sætre GP, Leder EH, Primmer CR. Strong gene flow and lack of stable population structure in the face of rapid adaptation to local temperature in a spring-spawning salmonid, the European grayling (Thymallus thymallus). Heredity (Edinb) 2011; 106:460-71. [PMID: 21224882 PMCID: PMC3131973 DOI: 10.1038/hdy.2010.160] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 11/19/2010] [Accepted: 11/22/2010] [Indexed: 11/09/2022] Open
Abstract
Gene flow has the potential to both constrain and facilitate adaptation to local environmental conditions. The early stages of population divergence can be unstable because of fluctuating levels of gene flow. Investigating temporal variation in gene flow during the initial stages of population divergence can therefore provide insights to the role of gene flow in adaptive evolution. Since the recent colonization of Lake Lesjaskogsvatnet in Norway by European grayling (Thymallus thymallus), local populations have been established in over 20 tributaries. Multiple founder events appear to have resulted in reduced neutral variation. Nevertheless, there is evidence for local adaptation in early life-history traits to different temperature regimes. In this study, microsatellite data from almost a decade of sampling were assessed to infer population structuring and its temporal stability. Several alternative analyses indicated that spatial variation explained 2-3 times more of the divergence in the system than temporal variation. Over all samples and years, there was a significant correlation between genetic and geographic distance. However, decomposed pairwise regression analysis revealed differing patterns of genetic structure among local populations and indicated that migration outweighs genetic drift in the majority of populations. In addition, isolation by distance was observable in only three of the six years, and signals of population bottlenecks were observed in the majority of samples. Combined, the results suggest that habitat-specific adaptation in this system has preceded the development of consistent population substructuring in the face of high levels of gene flow from divergent environments.
Collapse
Affiliation(s)
- C Junge
- Department of Biology, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Malcom JW. Smaller, scale-free gene networks increase quantitative trait heritability and result in faster population recovery. PLoS One 2011; 6:e14645. [PMID: 21347400 PMCID: PMC3036578 DOI: 10.1371/journal.pone.0014645] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 01/07/2011] [Indexed: 11/18/2022] Open
Abstract
One of the goals of biology is to bridge levels of organization. Recent technological advances are enabling us to span from genetic sequence to traits, and then from traits to ecological dynamics. The quantitative genetics parameter heritability describes how quickly a trait can evolve, and in turn describes how quickly a population can recover from an environmental change. Here I propose that we can link the details of the genetic architecture of a quantitative trait--i.e., the number of underlying genes and their relationships in a network--to population recovery rates by way of heritability. I test this hypothesis using a set of agent-based models in which individuals possess one of two network topologies or a linear genotype-phenotype map, 16-256 genes underlying the trait, and a variety of mutation and recombination rates and degrees of environmental change. I find that the network architectures introduce extensive directional epistasis that systematically hides and reveals additive genetic variance and affects heritability: network size, topology, and recombination explain 81% of the variance in average heritability in a stable environment. Network size and topology, the width of the fitness function, pre-change additive variance, and certain interactions account for ∼75% of the variance in population recovery times after a sudden environmental change. These results suggest that not only the amount of additive variance, but importantly the number of loci across which it is distributed, is important in regulating the rate at which a trait can evolve and populations can recover. Taken in conjunction with previous research focused on differences in degree of network connectivity, these results provide a set of theoretical expectations and testable hypotheses for biologists working to span levels of organization from the genotype to the phenotype, and from the phenotype to the environment.
Collapse
Affiliation(s)
- Jacob W Malcom
- Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America.
| |
Collapse
|
170
|
Nicotra AB, Atkin OK, Bonser SP, Davidson AM, Finnegan EJ, Mathesius U, Poot P, Purugganan MD, Richards CL, Valladares F, van Kleunen M. Plant phenotypic plasticity in a changing climate. TRENDS IN PLANT SCIENCE 2010; 15:684-92. [PMID: 20970368 DOI: 10.1016/j.tplants.2010.09.008] [Citation(s) in RCA: 937] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 09/21/2010] [Accepted: 09/21/2010] [Indexed: 05/19/2023]
Abstract
Climate change is altering the availability of resources and the conditions that are crucial to plant performance. One way plants will respond to these changes is through environmentally induced shifts in phenotype (phenotypic plasticity). Understanding plastic responses is crucial for predicting and managing the effects of climate change on native species as well as crop plants. Here, we provide a toolbox with definitions of key theoretical elements and a synthesis of the current understanding of the molecular and genetic mechanisms underlying plasticity relevant to climate change. By bringing ecological, evolutionary, physiological and molecular perspectives together, we hope to provide clear directives for future research and stimulate cross-disciplinary dialogue on the relevance of phenotypic plasticity under climate change.
Collapse
Affiliation(s)
- A B Nicotra
- Research School of Biology, The Australian National University, Canberra, ACT, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Dias MP, Granadeiro JP, Phillips RA, Alonso H, Catry P. Breaking the routine: individual Cory's shearwaters shift winter destinations between hemispheres and across ocean basins. Proc Biol Sci 2010; 278:1786-93. [PMID: 21106591 DOI: 10.1098/rspb.2010.2114] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is growing evidence that migratory species are particularly vulnerable to rapid environmental changes arising from human activity. Species are expected to vary in their capacity to respond to these changes: long-distance migrants and those lacking variability in migratory traits are probably at considerable disadvantage. The few studies that have assessed the degree of plasticity in behaviour of marine animals suggest that fidelity to non-breeding destinations is usually high. In the present study, we evaluated individual flexibility in migration strategy of a highly pelagic seabird, the Cory's shearwater Calonectris diomedea. Geolocation data from 72 different migrations, including 14 birds that were tracked for more than one non-breeding season, showed a remarkable capacity to change winter destinations between years. Although some birds exhibited high site fidelity, others shifted from the South to North Atlantic, from the western to eastern South Atlantic, and from the Atlantic to Indian Ocean. Individuals also showed flexibility in stopover behaviour and migratory schedule. Although their K-selected life-history strategy has the disadvantage that the chances of microevolution are slight if circumstances alter rapidly, these results suggest that Cory's shearwaters may be in a better position than many other long-distance migrants to face the consequences of a changing environment.
Collapse
Affiliation(s)
- Maria P Dias
- Eco-Ethology Research Unit, ISPA, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal
| | | | | | | | | |
Collapse
|
172
|
Karlsson K, Eroukhmanoff F, Svensson EI. Phenotypic plasticity in response to the social environment: effects of density and sex ratio on mating behaviour following ecotype divergence. PLoS One 2010; 5:e12755. [PMID: 20862332 PMCID: PMC2940798 DOI: 10.1371/journal.pone.0012755] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 08/04/2010] [Indexed: 11/19/2022] Open
Abstract
The ability to express phenotypically plastic responses to environmental cues might be adaptive in changing environments. We studied phenotypic plasticity in mating behaviour as a response to population density and adult sex ratio in a freshwater isopod (Asellus aquaticus). A. aquaticus has recently diverged into two distinct ecotypes, inhabiting different lake habitats (reed Phragmites australis and stonewort Chara tomentosa, respectively). In field surveys, we found that these habitats differ markedly in isopod population densities and adult sex ratios. These spatially and temporally demographic differences are likely to affect mating behaviour. We performed behavioural experiments using animals from both the ancestral ecotype ("reed" isopods) and from the novel ecotype ("stonewort" isopods) population. We found that neither ecotype adjusted their behaviour in response to population density. However, the reed ecotype had a higher intrinsic mating propensity across densities. In contrast to the effects of density, we found ecotype differences in plasticity in response to sex ratio. The stonewort ecotype show pronounced phenotypic plasticity in mating propensity to adult sex ratio, whereas the reed ecotype showed a more canalised behaviour with respect to this demographic factor. We suggest that the lower overall mating propensity and the phenotypic plasticity in response to sex ratio have evolved in the novel stonewort ecotype following invasion of the novel habitat. Plasticity in mating behaviour may in turn have effects on the direction and intensity of sexual selection in the stonewort habitat, which may fuel further ecotype divergence.
Collapse
Affiliation(s)
- Kristina Karlsson
- Section for Animal Ecology, Department of Biology, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
173
|
Reed TE, Waples RS, Schindler DE, Hard JJ, Kinnison MT. Phenotypic plasticity and population viability: the importance of environmental predictability. Proc Biol Sci 2010; 277:3391-400. [PMID: 20554553 DOI: 10.1098/rspb.2010.0771] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phenotypic plasticity plays a key role in modulating how environmental variation influences population dynamics, but we have only rudimentary understanding of how plasticity interacts with the magnitude and predictability of environmental variation to affect population dynamics and persistence. We developed a stochastic individual-based model, in which phenotypes could respond to a temporally fluctuating environmental cue and fitness depended on the match between the phenotype and a randomly fluctuating trait optimum, to assess the absolute fitness and population dynamic consequences of plasticity under different levels of environmental stochasticity and cue reliability. When cue and optimum were tightly correlated, plasticity buffered absolute fitness from environmental variability, and population size remained high and relatively invariant. In contrast, when this correlation weakened and environmental variability was high, strong plasticity reduced population size, and populations with excessively strong plasticity had substantially greater extinction probability. Given that environments might become more variable and unpredictable in the future owing to anthropogenic influences, reaction norms that evolved under historic selective regimes could imperil populations in novel or changing environmental contexts. We suggest that demographic models (e.g. population viability analyses) would benefit from a more explicit consideration of how phenotypic plasticity influences population responses to environmental change.
Collapse
Affiliation(s)
- Thomas E Reed
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA.
| | | | | | | | | |
Collapse
|
174
|
Chevin LM, Lande R, Mace GM. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 2010; 8:e1000357. [PMID: 20463950 PMCID: PMC2864732 DOI: 10.1371/journal.pbio.1000357] [Citation(s) in RCA: 1095] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Many species are experiencing sustained environmental change mainly due to human activities. The unusual rate and extent of anthropogenic alterations of the environment may exceed the capacity of developmental, genetic, and demographic mechanisms that populations have evolved to deal with environmental change. To begin to understand the limits to population persistence, we present a simple evolutionary model for the critical rate of environmental change beyond which a population must decline and go extinct. We use this model to highlight the major determinants of extinction risk in a changing environment, and identify research needs for improved predictions based on projected changes in environmental variables. Two key parameters relating the environment to population biology have not yet received sufficient attention. Phenotypic plasticity, the direct influence of environment on the development of individual phenotypes, is increasingly considered an important component of phenotypic change in the wild and should be incorporated in models of population persistence. Environmental sensitivity of selection, the change in the optimum phenotype with the environment, still crucially needs empirical assessment. We use environmental tolerance curves and other examples of ecological and evolutionary responses to climate change to illustrate how these mechanistic approaches can be developed for predictive purposes.
Collapse
Affiliation(s)
- Luis-Miguel Chevin
- Division of Biology, Imperial College London, Silwood Park, United Kingdom.
| | | | | |
Collapse
|