151
|
Griffing AH, Gamble T, Cohn MJ, Sanger TJ. Convergent developmental patterns underlie the repeated evolution of adhesive toe pads among lizards. Biol J Linn Soc Lond 2022; 135:518-532. [PMID: 35185322 PMCID: PMC8842688 DOI: 10.1093/biolinnean/blab164] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/07/2023]
Abstract
How developmental modifications produce key innovations, which subsequently allow for rapid diversification of a clade into new adaptive zones, has received much attention. However, few studies have used a robust comparative framework to investigate the influence of evolutionary and developmental constraints on the origin of key innovations, such as the adhesive toe pad of lizards. Adhesive toe pads evolved independently at least 16 times in lizards, allowing us to examine whether the patterns observed are general evolutionary phenomena or unique, lineage-specific events. We performed a high-resolution comparison of plantar scale development in 14 lizard species in Anolis and geckos, encompassing five independent origins of toe pads (one in Anolis, four in geckos). Despite substantial evolutionary divergence between Anolis and geckos, we find that these clades have undergone similar developmental modifications to generate their adhesive toe pads. Relative to the ancestral plantar scale development, in which scale ridges form synchronously along the digit, both padded geckos and Anolis exhibit scansor formation in a distal-to-proximal direction. Both clades have undergone developmental repatterning and, following their origin, modifications in toe pad morphology occurred through relatively minor developmental modifications, suggesting that developmental constraints governed the diversification of the adhesive toe pad in lizards.
Collapse
Affiliation(s)
- Aaron H Griffing
- Department of Biological Sciences, Marquette University, PO Box 1881, Milwaukee, WI 53201, USA,Corresponding author. E-mail:
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, PO Box 1881, Milwaukee, WI 53201, USA,Milwaukee Public Museum, 800 W. Wells St., Milwaukee, WI 53233, USA,Bell Museum of Natural History, University of Minnesota, 2088 Larpenteur Ave. W., St. Paul, MN 55113, USA
| | - Martin J Cohn
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Thomas J Sanger
- Department of Molecular Genetics and Microbiology, UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA,Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| |
Collapse
|
152
|
Caizergues AE, Le Luyer J, Grégoire A, Szulkin M, Senar J, Charmantier A, Perrier C. Epigenetics and the city: Non-parallel DNA methylation modifications across pairs of urban-forest Great tit populations. Evol Appl 2022; 15:149-165. [PMID: 35126653 PMCID: PMC8792475 DOI: 10.1111/eva.13334] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/23/2021] [Accepted: 12/01/2021] [Indexed: 12/18/2022] Open
Abstract
Identifying the molecular mechanisms involved in rapid adaptation to novel environments and determining their predictability are central questions in evolutionary biology and pressing issues due to rapid global changes. Complementary to genetic responses to selection, faster epigenetic variations such as modifications of DNA methylation may play a substantial role in rapid adaptation. In the context of rampant urbanization, joint examinations of genomic and epigenomic mechanisms are still lacking. Here, we investigated genomic (SNP) and epigenomic (CpG methylation) responses to urban life in a passerine bird, the Great tit (Parus major). To test whether urban evolution is predictable (i.e. parallel) or involves mostly nonparallel molecular processes among cities, we analysed both SNP and CpG methylation variations across three distinct pairs of city and forest Great tit populations in Europe. Our analyses reveal a polygenic response to urban life, with both many genes putatively under weak divergent selection and multiple differentially methylated regions (DMRs) between forest and city great tits. DMRs mainly overlapped transcription start sites and promotor regions, suggesting their importance in modulating gene expression. Both genomic and epigenomic outliers were found in genomic regions enriched for genes with biological functions related to the nervous system, immunity, or behavioural, hormonal and stress responses. Interestingly, comparisons across the three pairs of city-forest populations suggested little parallelism in both genetic and epigenetic responses. Our results confirm, at both the genetic and epigenetic levels, hypotheses of polygenic and largely nonparallel mechanisms of rapid adaptation in novel environments such as urbanized areas.
Collapse
Affiliation(s)
| | - Jeremy Le Luyer
- Ifremer, IRD, Institut Louis‐MalardéUniv Polynésie Française, EIOTaravaoFrench Polynesia
| | | | - Marta Szulkin
- Centre of New TechnologiesUniversity of WarsawWarsawPoland
| | | | | | - Charles Perrier
- CBGP, INRAe, CIRAD, IRD, Montpellier SupAgroUniv. MontpellierMontpellierFrance
| |
Collapse
|
153
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
154
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
155
|
Wen H, Luo T, Wang Y, Wang S, Liu T, Xiao N, Zhou J. Molecular phylogeny and historical biogeography of the cave fish genus Sinocyclocheilus (Cypriniformes: Cyprinidae) in southwest China. Integr Zool 2021; 17:311-325. [PMID: 34958525 DOI: 10.1111/1749-4877.12624] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Modern accumulations of genetic data offer unprecedented opportunities for understanding the systematic classification and origins of specific groups of organisms. The genus Sinocyclocheilus is among the most cave abundant genera in Cyprinidae, with 76 recognized species, belonging to four species groups. Recent phylogenetic studies have shown that the classification of species groups within the genus Sinocyclocheilus remains controversial. In this study, we constructed a sequence supermatrix of 26 species from four species groups of the genus Sinocyclocheilus using the mitochondrial genome to reveal phylogenetic relationships, historical biogeography and patterns of species diversification in the genus Sinocyclocheilus. Phylogenetic analysis strongly supports the monophyletic groups of the three species groups (S. jii, S. cyphotergous, and S. tingi groups) except the S. angularis group. Phylogenetic analysis showed that S. anshuiensis and S. microphthalmus, which were recognized as numbers of S. angularis group, formed a strongly supported independent clade. Therefore, we propose a new species group, the S. microphthalmus group, which contains S. anshuiensis and S. microphthalmus. Biogeographic reconstruction suggests that the living Sinocyclocheilus may have originated in north-central Guangxi at the late Eocene and dispersed outward after a vicariance at 32.31 Million years ago (Ma). Early diversification is focused on the late Oligocene (ca. 25 Ma), which is related to the second uplift of the Qinghai-Tibetan Plateau and the lateral extrusion of the Indochina at the Oligocene/Miocene boundary. Our results suggest that two uplifts of the Qinghai-Tibetan Plateau and climate change in the Miocene may have influenced the diversification of the Sinocyclocheilus lineage. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Huamei Wen
- School of Life Sciences, Central China Normal University, Wuhan, China.,School of Karst Sciences, Guizhou Normal University, Guiyang, China
| | - Tao Luo
- School of Karst Sciences, Guizhou Normal University, Guiyang, China
| | - Yali Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Siwei Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Tao Liu
- Liupanshui No. 4 Higth School, Liupanshui, China
| | - Ning Xiao
- Guiyang Nursing Vocational College, Guiyang, China
| | - Jiang Zhou
- School of Karst Sciences, Guizhou Normal University, Guiyang, China
| |
Collapse
|
156
|
Blotto BL, Biju SD, Pereyra MO, Araujo-Vieira K, Faivovich J, Grant T. Hand and foot musculature of Sooglossoidea: synapomorphies, convergences and hind limb digging behaviour in anurans. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
We describe the hand and foot musculature of the fossorial Indian purple frog, Nasikabatrachus sahyadrensis, and compare it to other members of Sooglossoidea: the Seychellean sooglossid genera Sechellophryne and Sooglossus. Due to the key phylogenetic position of Sooglossoidea, we compare its members with the diversity of Anura and define 52 characters from the hand and foot musculature, among which 26 are novel hypotheses of homology. We found several synapomorphies for Sooglossus, Sooglossidae, Nasikabatrachidae and Sooglossoidea. Additionally, we (1) propose synapomorphies for diverse anuran clades at different taxonomic levels, (2) re-evaluate the identity of some conflicting plantar and palmar muscles in the context of Batrachia and (3) discuss putative adaptations to hind limb digging behaviour resulting from morphological convergences. The lack of a clear pattern of convergences among hind limb digging species suggests the occurrence of a phenomenon of many-to-one mapping from form to function.
Collapse
Affiliation(s)
- Boris L Blotto
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’–CONICET, Av. Angel Gallardo, Buenos Aires, Argentina
| | - S D Biju
- Systematics Lab, Department of Environmental Studies, University of Delhi, Delhi, India
| | - Martín O Pereyra
- Laboratorio de Genética Evolutiva ‘Claudio J. Bidau’, Instituto de Biología Subtropical–CONICET, Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, N3300LQF Posadas, Misiones, Argentina
| | - Katyuscia Araujo-Vieira
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’–CONICET, Av. Angel Gallardo, Buenos Aires, Argentina
- Departamento de Biodiversidade and Centro de Aquicultura, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Julián Faivovich
- División Herpetología, Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’–CONICET, Av. Angel Gallardo, Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Taran Grant
- Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
- Coleção de Anfíbios, Museu de Zoologia, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
157
|
Integrative Approach Uncovers New Patterns of Ecomorphological Convergence in Slow Arboreal Xenarthrans. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09590-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractIdentifying ecomorphological convergence examples is a central focus in evolutionary biology. In xenarthrans, slow arboreality independently arose at least three times, in the two genera of ‘tree sloths’, Bradypus and Choloepus, and the silky anteater, Cyclopes. This specialized locomotor ecology is expectedly reflected by distinctive morpho-functional convergences. Cyclopes, although sharing several ecological features with ‘tree sloths’, do not fully mirror the latter in their outstandingly similar suspensory slow arboreal locomotion. We hypothesized that the morphology of Cyclopes is closer to ‘tree sloths’ than to anteaters, but yet distinct, entailing that slow arboreal xenarthrans evolved through ‘incomplete’ convergence. In a multivariate trait space, slow arboreal xenarthrans are hence expected to depart from their sister taxa evolving toward the same area, but not showing extensive phenotypical overlap, due to the distinct position of Cyclopes. Conversely, a pattern of ‘complete’ convergence (i.e., widely overlapping morphologies) is hypothesized for ‘tree sloths’. Through phylogenetic comparative methods, we quantified humeral and femoral convergence in slow arboreal xenarthrans, including a sample of extant and extinct non-slow arboreal xenarthrans. Through 3D geometric morphometrics, cross-sectional properties (CSP) and trabecular architecture, we integratively quantified external shape, diaphyseal anatomy and internal epiphyseal structure. Several traits converged in slow arboreal xenarthrans, especially those pertaining to CSP. Phylomorphospaces and quantitative convergence analyses substantiated the expected patterns of ‘incomplete’ and ‘complete’ convergence for slow arboreal xenarthrans and ‘tree sloths’, respectively. This work, highlighting previously unidentified convergence patterns, emphasizes the value of an integrative multi-pronged quantitative approach to cope with complex mechanisms underlying ecomorphological convergence.
Collapse
|
158
|
Castiglione GM, Zhou L, Xu Z, Neiman Z, Hung CF, Duh EJ. Evolutionary pathways to SARS-CoV-2 resistance are opened and closed by epistasis acting on ACE2. PLoS Biol 2021; 19:e3001510. [PMID: 34932561 PMCID: PMC8730403 DOI: 10.1371/journal.pbio.3001510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 01/05/2022] [Accepted: 12/08/2021] [Indexed: 02/06/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infects a broader range of mammalian species than previously predicted, binding a diversity of angiotensin converting enzyme 2 (ACE2) orthologs despite extensive sequence divergence. Within this sequence degeneracy, we identify a rare sequence combination capable of conferring SARS-CoV-2 resistance. We demonstrate that this sequence was likely unattainable during human evolution due to deleterious effects on ACE2 carboxypeptidase activity, which has vasodilatory and cardioprotective functions in vivo. Across the 25 ACE2 sites implicated in viral binding, we identify 6 amino acid substitutions unique to mouse-one of the only known mammalian species resistant to SARS-CoV-2. Substituting human variants at these positions is sufficient to confer binding of the SARS-CoV-2 S protein to mouse ACE2, facilitating cellular infection. Conversely, substituting mouse variants into either human or dog ACE2 abolishes viral binding, diminishing cellular infection. However, these same substitutions decrease human ACE2 activity by 50% and are predicted as pathogenic, consistent with the extreme rarity of human polymorphisms at these sites. This trade-off can be avoided, however, depending on genetic background; if substituted simultaneously, these same mutations have no deleterious effect on dog ACE2 nor that of the rodent ancestor estimated to exist 70 million years ago. This genetic contingency (epistasis) may have therefore opened the road to resistance for some species, while making humans susceptible to viruses that use these ACE2 surfaces for binding, as does SARS-CoV-2.
Collapse
Affiliation(s)
- Gianni M. Castiglione
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Lingli Zhou
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zhenhua Xu
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Zachary Neiman
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Elia J. Duh
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
159
|
Anderson NK, Gururaja KV, Mangiamele LA, Netoskie EC, Smith S, Fuxjager MJ, Preininger D. Insight into the Evolution of Anuran Foot Flag Displays: A Comparative Study of Color and Kinematics. ICHTHYOLOGY & HERPETOLOGY 2021. [DOI: 10.1643/h2020160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Nigel K. Anderson
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island 02912; (NKA) ; and (MJF) . Send reprint requests to NKA
| | - K. V. Gururaja
- Research and Development Center and Science Media Center, Indian Institute of Science Campus, Gubbi Labs, Bengaluru 560012, India;
| | - Lisa A. Mangiamele
- Department of Biological Sciences, Smith College, Northampton, Massachusetts 01063; (LAM) ; and (SS)
| | - Erin C. Netoskie
- Department of Environmental Sciences, Juniata College, Huntingdon, Pennsylvania 16652;
| | - Sarah Smith
- Department of Biological Sciences, Smith College, Northampton, Massachusetts 01063; (LAM) ; and (SS)
| | - Matthew J. Fuxjager
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island 02912; (NKA) ; and (MJF) . Send reprint requests to NKA
| | - Doris Preininger
- Vienna Zoo, 1130 Vienna, Austria; Department of Evolutionary Biology, University Vienna, Austria;
| |
Collapse
|
160
|
Goulding TC, Khalil M, Tan SH, Cumming RA, Dayrat B. Global diversification and evolutionary history of onchidiid slugs (Gastropoda, Pulmonata). Mol Phylogenet Evol 2021; 168:107360. [PMID: 34793980 DOI: 10.1016/j.ympev.2021.107360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/29/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022]
Abstract
Many marine species are specialized to specific parts of a habitat. In a mangrove forest, for instance, species may be restricted to the mud surface, the roots and trunks of mangrove trees, or rotting logs, which can be regarded as distinct microhabitats. Shifts to new microhabitats may be an important driver of sympatric speciation. However, the evolutionary history of these shifts is still poorly understood in most groups of marine organisms, because it requires a well-supported phylogeny with relatively complete taxon sampling. Onchidiid slugs are an ideal case study for the evolutionary history of habitat and microhabitat shifts because onchidiid species are specialized to different tidal zones and microhabitats in mangrove forests and rocky shores, and the taxonomy of the family in the Indo-West Pacific has been recently revised in a series of monographs. Here, DNA sequences for onchidiid species from the North and East Pacific, the Caribbean, and the Atlantic are used to reconstruct phylogenetic relationships among Onchidella species, and are combined with new data for Indo-West Pacific species to reconstruct a global phylogeny of the family. The phylogenetic relationships of onchidiid slugs are reconstructed based on three mitochondrial markers (COI, 12S, 16S) and three nuclear markers (28S, ITS2, H3) and nearly complete taxon sampling (all 13 genera and 62 of the 67 species). The highly-supported phylogeny presented here suggests that ancestral onchidiids most likely lived in the rocky intertidal, and that a lineage restricted to the tropical Indo-West Pacific colonized new habitats, including mudflats, mangrove forests, and high-elevation rainforests. Many onchidiid species in the Indo-West Pacific diverged during the Miocene, around the same time that a high diversity of mangrove plants appears in the fossil record, while divergence among Onchidella species occurred earlier, likely beginning in the Eocene. It is demonstrated that ecological specialization to microhabitats underlies the divergence between onchidiid genera, as well as the diversification through sympatric speciation in the genera Wallaconchis and Platevindex. The geographic distributions of onchidiid species also indicate that allopatric speciation played a key role in the diversification of several genera, especially Onchidella and Peronia. The evolutionary history of several morphological traits (penial gland, rectal gland, dorsal eyes, intestinal loops) is examined in relation to habitat and microhabitat evolutionary transitions and that the rectal gland of onchidiids is an adaptation to high intertidal and terrestrial habitats.
Collapse
Affiliation(s)
- Tricia C Goulding
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Munawar Khalil
- Department of Marine Science, Universitas Malikussaleh, Reuleut Main Campus, Kecamatan Muara Batu, North Aceh, Aceh 24355, Indonesia
| | - Shau Hwai Tan
- Centre for Marine and Coastal Studies, Universiti Sains Malaysia, 11800 Minden Penang, Malaysia; Marine Science Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden Penang, Malaysia
| | - Rebecca A Cumming
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Benoît Dayrat
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
161
|
Macías LG, Flores MG, Adam AC, Rodríguez ME, Querol A, Barrio E, Lopes CA, Pérez-Torrado R. Convergent adaptation of Saccharomyces uvarum to sulfite, an antimicrobial preservative widely used in human-driven fermentations. PLoS Genet 2021; 17:e1009872. [PMID: 34762651 PMCID: PMC8631656 DOI: 10.1371/journal.pgen.1009872] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 11/30/2021] [Accepted: 10/11/2021] [Indexed: 01/01/2023] Open
Abstract
Different species can find convergent solutions to adapt their genome to the same evolutionary constraints, although functional convergence promoted by chromosomal rearrangements in different species has not previously been found. In this work, we discovered that two domesticated yeast species, Saccharomyces cerevisiae, and Saccharomyces uvarum, acquired chromosomal rearrangements to convergently adapt to the presence of sulfite in fermentation environments. We found two new heterologous chromosomal translocations in fermentative strains of S. uvarum at the SSU1 locus, involved in sulfite resistance, an antimicrobial additive widely used in food production. These are convergent events that share similarities with other SSU1 locus chromosomal translocations previously described in domesticated S. cerevisiae strains. In S. uvarum, the newly described VIIXVI and XIXVI chromosomal translocations generate an overexpression of the SSU1 gene and confer increased sulfite resistance. This study highlights the relevance of chromosomal rearrangements to promote the adaptation of yeast to anthropic environments. It is known that genetically distant species can arrive to similar evolutionary solutions during the adaptation to a specific environment, a phenomena known as convergent adaptation, and this frequently occurs after point mutations, gene duplications, or species hybridizations. In this work, we discovered a new example of convergent evolution in the adaptation of two wine fermentation yeast species to the presence of sulfite, an antimicrobial additive widely used in food production. We observed that two species, Saccharomyces cerevisiae and Saccharomyces uvarum, acquired chromosomal rearrangements to convergently adapt to the presence of sulfite in fermentative environments. We describe new chromosomal translocations in S. uvarum strains that generate an overexpression of the SSU1 gene and confer increased sulfite resistance, a similar event that was already described in S. cerevisiae. Overall, this study describes a new case of convergent evolution in which the chromosomal rearrangements have a significant role in the adaptation of yeast to an environment created by humans to produce food.
Collapse
Affiliation(s)
- Laura G. Macías
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
- Departament de Genètica, Universitat de València, Valencia, Spain
| | - Melisa González Flores
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina–Universidad Nacional del Comahue), Neuquén, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Cinco Saltos, Río Negro, Argentina
| | - Ana Cristina Adam
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - María E. Rodríguez
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina–Universidad Nacional del Comahue), Neuquén, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Cipolletti, Río Negro, Argentina
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Eladio Barrio
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
- Departament de Genètica, Universitat de València, Valencia, Spain
| | - Christian Ariel Lopes
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina–Universidad Nacional del Comahue), Neuquén, Argentina
- Facultad de Ciencias Agrarias, Universidad Nacional del Comahue, Cinco Saltos, Río Negro, Argentina
| | - Roberto Pérez-Torrado
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
- * E-mail:
| |
Collapse
|
162
|
Abstract
Although research performed in cities will not uncover new evolutionary mechanisms, it could provide unprecedented opportunities to examine the interplay of evolutionary forces in new ways and new avenues to address classic questions. However, while the variation within and among cities affords many opportunities to advance evolutionary biology research, careful alignment between how cities are used and the research questions being asked is necessary to maximize the insights that can be gained. In this review, we develop a framework to help guide alignment between urban evolution research approaches and questions. Using this framework, we highlight what has been accomplished to date in the field of urban evolution and identify several up-and-coming research directions for further expansion. We conclude that urban environments can be used as evolutionary test beds to tackle both new and long-standing questions in evolutionary biology.
Collapse
Affiliation(s)
- Sarah E. Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA;,
| | - Ryan A. Martin
- Department of Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA;,
| |
Collapse
|
163
|
Xia XM, Yang MQ, Li CL, Huang SX, Jin WT, Shen TT, Wang F, Li XH, Yoichi W, Zhang LH, Zheng YR, Wang XQ. Spatiotemporal evolution of the global species diversity of Rhododendron. Mol Biol Evol 2021; 39:6413646. [PMID: 34718707 PMCID: PMC8760938 DOI: 10.1093/molbev/msab314] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Evolutionary radiation is a widely recognized mode of species diversification, but its underlying mechanisms have not been unambiguously resolved for species-rich cosmopolitan plant genera. In particular, it remains largely unknown how biological and environmental factors have jointly driven its occurrence in specific regions. Here, we use Rhododendron, the largest genus of woody plants in the Northern Hemisphere, to investigate how geographic and climatic factors, as well as functional traits, worked together to trigger plant evolutionary radiations and shape the global patterns of species richness based on a solid species phylogeny. Using 3,437 orthologous nuclear genes, we reconstructed the first highly supported and dated backbone phylogeny of Rhododendron comprising 200 species that represent all subgenera, sections, and nearly all multispecies subsections, and found that most extant species originated by evolutionary radiations when the genus migrated southward from circumboreal areas to tropical/subtropical mountains, showing rapid increases of both net diversification rate and evolutionary rate of environmental factors in the Miocene. We also found that the geographically uneven diversification of Rhododendron led to a much higher diversity in Asia than in other continents, which was mainly driven by two environmental variables, that is, elevation range and annual precipitation, and were further strengthened by the adaptation of leaf functional traits. Our study provides a good example of integrating phylogenomic and ecological analyses in deciphering the mechanisms of plant evolutionary radiations, and sheds new light on how the intensification of the Asian monsoon has driven evolutionary radiations in large plant genera of the Himalaya-Hengduan Mountains.
Collapse
Affiliation(s)
- Xiao-Mei Xia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao-Qin Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Cong-Li Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Xin Huang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Tao Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ting-Ting Shen
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Fei Wang
- West China Subalpine Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Sichuan 611834, China
| | - Xiao-Hua Li
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiangxi 332900, China
| | - Watanabe Yoichi
- Graduate School of Horticulture, Chiba University, Chiba 271-8510, Japan
| | - Le-Hua Zhang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiangxi 332900, China
| | - Yuan-Run Zheng
- West China Subalpine Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Sichuan 611834, China.,State Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiao-Quan Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
164
|
Wollenberg Valero KC, Garcia-Porta J, Irisarri I, Feugere L, Bates A, Kirchhof S, Jovanović Glavaš O, Pafilis P, Samuel SF, Müller J, Vences M, Turner AP, Beltran-Alvarez P, Storey KB. Functional genomics of abiotic environmental adaptation in lacertid lizards and other vertebrates. J Anim Ecol 2021; 91:1163-1179. [PMID: 34695234 DOI: 10.1111/1365-2656.13617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/27/2021] [Indexed: 11/27/2022]
Abstract
Understanding the genomic basis of adaptation to different abiotic environments is important in the context of climate change and resulting short-term environmental fluctuations. Using functional and comparative genomics approaches, we here investigated whether signatures of genomic adaptation to a set of environmental parameters are concentrated in specific subsets of genes and functions in lacertid lizards and other vertebrates. We first identify 200 genes with signatures of positive diversifying selection from transcriptomes of 24 species of lacertid lizards and demonstrate their involvement in physiological and morphological adaptations to climate. To understand how functionally similar these genes are to previously predicted candidate functions for climate adaptation and to compare them with other vertebrate species, we then performed a meta-analysis of 1,100 genes under selection obtained from -omics studies in vertebrate species adapted to different abiotic factors. We found that the vertebrate gene set formed a tightly connected interactome, which was to 23% enriched in previously predicted functions of adaptation to climate, and to a large part (18%) involved in organismal stress response. We found a much higher degree of identical genes being repeatedly selected among different animal groups (43.6%), and of functional similarity and post-translational modifications than expected by chance, and no clear functional division between genes used for ectotherm and endotherm physiological strategies. In total, 171 out of 200 genes of Lacertidae were part of this network. These results highlight an important role of a comparatively small set of genes and their functions in environmental adaptation and narrow the set of candidate pathways and markers to be used in future research on adaptation and stress response related to climate change.
Collapse
Affiliation(s)
| | - Joan Garcia-Porta
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Iker Irisarri
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Göttingen, Göttingen, Germany.,Campus Institut Data Science (CIDAS), Göttingen, Germany
| | - Lauric Feugere
- Department of Biological and Marine Sciences, University of Hull, Kingston-Upon-Hull, UK
| | - Adam Bates
- Department of Biological and Marine Sciences, University of Hull, Kingston-Upon-Hull, UK
| | - Sebastian Kirchhof
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.,New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Panayiotis Pafilis
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sabrina F Samuel
- Department of Biomedical Sciences, University of Hull, Kingston-Upon-Hull, UK
| | - Johannes Müller
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Miguel Vences
- Zoological Institute, Braunschweig University of Technology, Braunschweig, Germany
| | - Alexander P Turner
- Department of Computer Science, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
165
|
James ME, Wilkinson MJ, Bernal DM, Liu H, North HL, Engelstädter J, Ortiz-Barrientos D. Phenotypic and genotypic parallel evolution in parapatric ecotypes of Senecio. Evolution 2021; 75:3115-3131. [PMID: 34687472 PMCID: PMC9299460 DOI: 10.1111/evo.14387] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022]
Abstract
The independent and repeated adaptation of populations to similar environments often results in the evolution of similar forms. This phenomenon creates a strong correlation between phenotype and environment and is referred to as parallel evolution. However, we are still largely unaware of the dynamics of parallel evolution, as well as the interplay between phenotype and genotype within natural systems. Here, we examined phenotypic and genotypic parallel evolution in multiple parapatric Dune‐Headland coastal ecotypes of an Australian wildflower, Senecio lautus. We observed a clear trait‐environment association in the system, with all replicate populations having evolved along the same phenotypic evolutionary trajectory. Similar phenotypes have arisen via mutational changes occurring in different genes, although many share the same biological functions. Our results shed light on how replicated adaptation manifests at the phenotypic and genotypic levels within populations, and highlight S. lautus as one of the most striking cases of phenotypic parallel evolution in nature.
Collapse
Affiliation(s)
- Maddie E James
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Melanie J Wilkinson
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Diana M Bernal
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Current Address: Biousos Neotropicales S.A.S, Bogotá, Colombia
| | - Huanle Liu
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Current Address: Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Henry L North
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Current Address: Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Jan Engelstädter
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, 4072, Australia.,Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
166
|
Baeckens S, Temmerman M, Gorb SN, Neto C, Whiting MJ, Van Damme R. Convergent evolution of skin surface microarchitecture and increased skin hydrophobicity in semi-aquatic anole lizards. J Exp Biol 2021; 224:272432. [PMID: 34642763 PMCID: PMC8541734 DOI: 10.1242/jeb.242939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022]
Abstract
Animals that habitually cross the boundary between water and land face specific challenges with respect to locomotion, respiration, insulation, fouling and waterproofing. Many semi-aquatic invertebrates and plants have developed complex surface microstructures with water-repellent properties to overcome these problems, but equivalent adaptations of the skin have not been reported for vertebrates that encounter similar environmental challenges. Here, we document the first evidence of evolutionary convergence of hydrophobic structured skin in a group of semi-aquatic tetrapods. We show that the skin surface of semi-aquatic species of Anolis lizards is characterized by a more elaborate microstructural architecture (i.e. longer spines and spinules) and a lower wettability relative to closely related terrestrial species. In addition, phylogenetic comparative models reveal repeated independent evolution of enhanced skin hydrophobicity associated with the transition to a semi-aquatic lifestyle, providing evidence of adaptation. Our findings invite a new and exciting line of inquiry into the ecological significance, evolutionary origin and developmental basis of hydrophobic skin surfaces in semi-aquatic lizards, which is essential for understanding why and how the observed skin adaptations evolved in some and not other semi-aquatic tetrapod lineages. Summary: Multiple Anolis lineages independently evolved a similar skin surface microarchitecture with water-repellent properties as an adaptation to a semi-aquatic lifestyle.
Collapse
Affiliation(s)
- Simon Baeckens
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium.,Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.,Laboratory for the Evolution and Optics of Nanostructures, Department of Biology, Ghent University, 9000 Gent,Belgium
| | - Marie Temmerman
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| | - Stanislav N Gorb
- Functional Morphology and Biomechanics, Zoological Institute of the Christian Albrecht Universität zu Kiel, Am Botanischen Garten 9, 24118 Kiel, Germany
| | - Chiara Neto
- School of Chemistry and Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Martin J Whiting
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Raoul Van Damme
- Laboratory for Functional Morphology, Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
167
|
|
168
|
Diversity and Systematics of Limbless Skinks (Anomalopus) from Eastern Australia and the Skeletal Changes that Accompany the Substrate Swimming Body Form. J HERPETOL 2021. [DOI: 10.1670/20-137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
169
|
Hauzman E, Pierotti MER, Bhattacharyya N, Tashiro JH, Yovanovich CAM, Campos PF, Ventura DF, Chang BSW. Simultaneous expression of UV and violet SWS1 opsins expands the visual palette in a group of freshwater snakes. Mol Biol Evol 2021; 38:5225-5240. [PMID: 34562092 PMCID: PMC8662652 DOI: 10.1093/molbev/msab285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Snakes are known to express a rod visual opsin and two cone opsins, only (SWS1, LWS), a reduced palette resulting from their supposedly fossorial origins. Dipsadid snakes in the genus Helicops are highly visual predators that successfully invaded freshwater habitats from ancestral terrestrial-only habitats. Here, we report the first case of multiple SWS1 visual pigments in a vertebrate, simultaneously expressed in different photoreceptors and conferring both UV and violet sensitivity to Helicops snakes. Molecular analysis and in vitro expression confirmed the presence of two functional SWS1 opsins, likely the result of recent gene duplication. Evolutionary analyses indicate that each sws1 variant has undergone different evolutionary paths with strong purifying selection acting on the UV-sensitive copy and dN/dS ∼1 on the violet-sensitive copy. Site-directed mutagenesis points to the functional role of a single amino acid substitution, Phe86Val, in the large spectral shift between UV and violet opsins. In addition, higher densities of photoreceptors and SWS1 cones in the ventral retina suggest improved acuity in the upper visual field possibly correlated with visually guided behaviors. The expanded visual opsin repertoire and specialized retinal architecture are likely to improve photon uptake in underwater and terrestrial environments, and provide the neural substrate for a gain in chromatic discrimination, potentially conferring unique color vision in the UV–violet range. Our findings highlight the innovative solutions undertaken by a highly specialized lineage to tackle the challenges imposed by the invasion of novel photic environments and the extraordinary diversity of evolutionary trajectories taken by visual opsin-based perception in vertebrates.
Collapse
Affiliation(s)
- Einat Hauzman
- Department of Experimental Psychology, Psychology Institute, University of São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Michele E R Pierotti
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Nihar Bhattacharyya
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Juliana H Tashiro
- Department of Experimental Psychology, Psychology Institute, University of São Paulo, São Paulo, Brazil
| | - Carola A M Yovanovich
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Pollyanna F Campos
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Dora F Ventura
- Department of Experimental Psychology, Psychology Institute, University of São Paulo, São Paulo, Brazil.,Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Belinda S W Chang
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada.,Department of Ecology & Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
170
|
Anderson NK, Schuppe ER, Gururaja KV, Mangiamele LA, Martinez JCC, Priti H, May RV, Preininger D, Fuxjager MJ. A Common Endocrine Signature Marks the Convergent Evolution of an Elaborate Dance Display in Frogs. Am Nat 2021; 198:522-539. [PMID: 34559606 DOI: 10.1086/716213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractUnrelated species often evolve similar phenotypic solutions to the same environmental problem, a phenomenon known as convergent evolution. But how do these common traits arise? We address this question from a physiological perspective by assessing how convergence of an elaborate gestural display in frogs (foot-flagging) is linked to changes in the androgenic hormone systems that underlie it. We show that the emergence of this rare display in unrelated anuran taxa is marked by a robust increase in the expression of androgen receptor (AR) messenger RNA in the musculature that actuates leg and foot movements, but we find no evidence of changes in the abundance of AR expression in these frogs' central nervous systems. Meanwhile, the magnitude of the evolutionary change in muscular AR and its association with the origin of foot-flagging differ among clades, suggesting that these variables evolve together in a mosaic fashion. Finally, while gestural displays do differ between species, variation in the complexity of a foot-flagging routine does not predict differences in muscular AR. Altogether, these findings suggest that androgen-muscle interactions provide a conduit for convergence in sexual display behavior, potentially providing a path of least resistance for the evolution of motor performance.
Collapse
|
171
|
Gearty W, Carrillo E, Payne JL. Ecological Filtering and Exaptation in the Evolution of Marine Snakes. Am Nat 2021; 198:506-521. [PMID: 34559607 DOI: 10.1086/716015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractConvergent evolution is often attributed to adaptation of form to function, but it can also result from ecological filtering, exaptation, or nonaptation. Testing among these possibilities is critical to understanding how and why morphological similarities emerge independently in multiple lineages. To address this challenge, we combined multiple preexisting phylogenetic methods to jointly estimate the habitats and morphologies of lineages within a phylogeny. We applied this approach to the invasions of snakes into the marine realm. We utilized a data set for 1,243 extant snake species consisting of newly compiled biome occupancy information and preexisting data on reproductive strategy, body mass, and environmental temperature and elevation. We find evidence for marine clades arising from a variety of aquatic and terrestrial habitats. Furthermore, there is strong evidence of ecological filtering for nonmarine ancestors that were already viviparous, had slightly larger-than-average body sizes, and lived in environments with higher-than-average temperatures and lower-than-average elevations. In aggregate, similarities among independent lineages of marine snakes result from a combination of exaptation and strong ecological filtering. Strong barriers to entry of new habitats appear to be more important than common adaptations following invasions for producing similarities among independent lineages invading a shared, novel habitat.
Collapse
|
172
|
Amador LI. Sesamoids and Morphological Variation: a Hypothesis on the Origin of Rod-like Skeletal Elements in Aerial Mammals. J MAMM EVOL 2021. [DOI: 10.1007/s10914-021-09571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
173
|
Catania F, Ujvari B, Roche B, Capp JP, Thomas F. Bridging Tumorigenesis and Therapy Resistance With a Non-Darwinian and Non-Lamarckian Mechanism of Adaptive Evolution. Front Oncol 2021; 11:732081. [PMID: 34568068 PMCID: PMC8462274 DOI: 10.3389/fonc.2021.732081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
Although neo-Darwinian (and less often Lamarckian) dynamics are regularly invoked to interpret cancer's multifarious molecular profiles, they shine little light on how tumorigenesis unfolds and often fail to fully capture the frequency and breadth of resistance mechanisms. This uncertainty frames one of the most problematic gaps between science and practice in modern times. Here, we offer a theory of adaptive cancer evolution, which builds on a molecular mechanism that lies outside neo-Darwinian and Lamarckian schemes. This mechanism coherently integrates non-genetic and genetic changes, ecological and evolutionary time scales, and shifts the spotlight away from positive selection towards purifying selection, genetic drift, and the creative-disruptive power of environmental change. The surprisingly simple use-it or lose-it rationale of the proposed theory can help predict molecular dynamics during tumorigenesis. It also provides simple rules of thumb that should help improve therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Deakin, VIC, Australia
| | - Benjamin Roche
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| | - Jean-Pascal Capp
- Toulouse Biotechnology Institute, University of Toulouse, INSA, CNRS, INRAE, Toulouse, France
| | - Frédéric Thomas
- CREEC/CANECEV, MIVEGEC (CREES), Centre de Recherches Ecologiques et Evolutives sur le Cancer, University of Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
174
|
Wong JM, Eirin-Lopez JM. Evolution of methyltransferase like (METTL) proteins in Metazoa: A complex gene family involved in epitranscriptomic regulation and other epigenetic processes. Mol Biol Evol 2021; 38:5309-5327. [PMID: 34480573 PMCID: PMC8662637 DOI: 10.1093/molbev/msab267] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The methyltransferase-like (METTL) proteins constitute a family of seven-beta-strand methyltransferases with S-adenosyl methionine-binding domains that modify DNA, RNA, and proteins. Methylation by METTL proteins contributes to the epigenetic, and in the case of RNA modifications, epitranscriptomic regulation of a variety of biological processes. Despite their functional importance, most investigations of the substrates and functions of METTLs within metazoans have been restricted to model vertebrate taxa. In the present work, we explore the evolutionary mechanisms driving the diversification and functional differentiation of 33 individual METTL proteins across Metazoa. Our results show that METTLs are nearly ubiquitous across the animal kingdom, with most having arisen early in metazoan evolution (i.e., occur in basal metazoan phyla). Individual METTL lineages each originated from single independent ancestors, constituting monophyletic clades, which suggests that each METTL was subject to strong selective constraints driving its structural and/or functional specialization. Interestingly, a similar process did not extend to the differentiation of nucleoside-modifying and protein-modifying METTLs (i.e., each METTL type did not form a unique monophyletic clade). The members of these two types of METTLs also exhibited differences in their rates of evolution. Overall, we provide evidence that the long-term evolution of METTL family members was driven by strong purifying selection, which in combination with adaptive selection episodes, led to the functional specialization of individual METTL lineages. This work contributes useful information regarding the evolution of a gene family that fulfills a variety of epigenetic functions, and can have profound influences on molecular processes and phenotypic traits.
Collapse
Affiliation(s)
- Juliet M Wong
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| | - Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| |
Collapse
|
175
|
Vieu JC, Koubínová D, Grant JR. The Evolution of Trait Disparity during the Radiation of the Plant Genus Macrocarpaea (Gentianaceae) in the Tropical Andes. BIOLOGY 2021; 10:825. [PMID: 34571702 PMCID: PMC8470149 DOI: 10.3390/biology10090825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
The evolutionary processes responsible for the extraordinary diversity in the middle elevation montane forests of the Tropical Andes (MMF; 1000-3500 m) remain poorly understood. It is not clear whether adaptive divergence, niche conservatism or geographical processes were the main contributors to the radiation of the respective lineages occurring there. We investigated the evolutionary history of plant lineages in the MMF. We used the vascular plant genus Macrocarpaea (Gentianaceae) as a model, as it consists of 118 morphologically diverse species, a majority of which are endemic to the MMF. We used a time-calibrated molecular phylogeny and morphological and climatic data to compare a set of evolutionary scenarios of various levels of complexity in a phylogenetic comparative framework. In this paper, we show that the hypothesis of adaptive radiation for Macrocarpaea in the MMF is unlikely. The genus remained confined to the upper montane forests (UMF > 1800 m) during more than a half of its evolutionary history, possibly due to evolutionary constraints. Later, coinciding with the beginning of the Pleistocene (around 2.58 Ma), a phylogenetically derived (recently branching) clade, here referred to as the M. micrantha clade (25 species), successfully colonized and radiated in the lower montane forests (LMF < 1800 m). This colonization was accompanied by the evolution of a new leaf phenotype that is unique to the species of the M. micrantha clade that likely represents an adaptation to life in this new environment (adaptive zone). Therefore, our results suggest that niche conservatism and geographical processes have dominated most of the diversification history of Macrocarpaea, but that a rare adaptive divergence event allowed a transition into a new adaptive zone and enabled progressive radiation in this zone through geographical processes.
Collapse
Affiliation(s)
| | - Darina Koubínová
- Institute of Biology, University of Neuchâtel, Rue Emile Argand 11, 2000 Neuchâtel, Switzerland; (J.C.V.); (J.R.G.)
| | | |
Collapse
|
176
|
Scott GR, Dalziel AC. Physiological insight into the evolution of complex phenotypes: aerobic performance and the O2 transport pathway of vertebrates. J Exp Biol 2021; 224:271829. [PMID: 34387318 DOI: 10.1242/jeb.210849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Evolutionary physiology strives to understand how the function and integration of physiological systems influence the way in which organisms evolve. Studies of the O2 transport pathway - the integrated physiological system that transports O2 from the environment to mitochondria - are well suited to this endeavour. We consider the mechanistic underpinnings across the O2 pathway for the evolution of aerobic capacity, focusing on studies of artificial selection and naturally selected divergence among wild populations of mammals and fish. We show that evolved changes in aerobic capacity do not require concerted changes across the O2 pathway and can arise quickly from changes in one or a subset of pathway steps. Population divergence in aerobic capacity can be associated with the evolution of plasticity in response to environmental variation or activity. In some cases, initial evolutionary divergence of aerobic capacity arose exclusively from increased capacities for O2 diffusion and/or utilization in active O2-consuming tissues (muscle), which may often constitute first steps in adaptation. However, continued selection leading to greater divergence in aerobic capacity is often associated with increased capacities for circulatory and pulmonary O2 transport. Increases in tissue O2 diffusing capacity may augment the adaptive benefit of increasing circulatory O2 transport owing to their interactive influence on tissue O2 extraction. Theoretical modelling of the O2 pathway suggests that O2 pathway steps with a disproportionately large influence over aerobic capacity have been more likely to evolve, but more work is needed to appreciate the extent to which such physiological principles can predict evolutionary outcomes.
Collapse
Affiliation(s)
- Graham R Scott
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4K1, Canada
| | - Anne C Dalziel
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, Nova Scotia, B3H 3C3, Canada
| |
Collapse
|
177
|
Matamba E, Richards LR, Cherry MI, Rambau RV. DNA barcoding of the mesic adapted striped mouse, Rhabdomys dilectus in the Eastern Cape and KwaZulu-Natal provinces of South Africa. VERTEBRATE ZOOLOGY 2021. [DOI: 10.3897/vz.71.e68897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
South African small mammals are under-represented in DNA barcoding efforts, particularly from the eastern forested regions of the country. This study reports DNA barcoding of Rhabdomys taxa from previously unsampled parts of the Eastern Cape and KwaZulu-Natal provinces of South Africa. The complete mitochondrial DNA cytochrome oxidase I (COI) gene was sequenced for 101 Rhabdomys sp. individuals from 16 localities from all three main forest groups (coastal, mistbelt, and scarp forests). Molecular data were supplemented with external morphological measurements, including those deemed potential taxonomically diagnostic characters. Findings indicate the area to be inhabited solely by Rhabdomys dilectus chakae. Haplotypes distributed across the three forest groups were separated by shallow sequence divergences ranging from 0.001–0.015 (Kimura 2-parameter model) and displayed very little population genetic structure (FST= 0.071787). Morphological data revealed some regional metric differences in external morphology, but all the head-and-body to tail (HB: tail) ratios match that of R. d. chakae, and consequently, molecular and morphological data are congruent. These data confirm a range extension of R. d. chakae, supporting the utility of COI barcodes in the identification of small mammalian species.
Collapse
|
178
|
Gimenez S, Seninet I, Orsucci M, Audiot P, Nègre N, Nam K, Streiff R, d'Alençon E. Integrated miRNA and transcriptome profiling to explore the molecular determinism of convergent adaptation to corn in two lepidopteran pests of agriculture. BMC Genomics 2021; 22:606. [PMID: 34372780 PMCID: PMC8351448 DOI: 10.1186/s12864-021-07905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/22/2021] [Indexed: 11/11/2022] Open
Abstract
Background The degree to which adaptation to same environment is determined by similar molecular mechanisms, is a topic of broad interest in evolutionary biology, as an indicator of evolutionary predictability. We wished to address if adaptation to the same host plant in phytophagous insects involved related gene expression patterns. We compared sRNA-Seq and RNA-Seq data between two pairs of taxa of Ostrinia and Spodoptera frugiperda sharing maize as host-plant. For the latter, we had previously carried out a reciprocal transplant experiment by feeding of the larvae of the Corn strain (Sf-C) and the Rice strain (Sf-R) on corn versus rice and characterized the mRNA and miRNA responses. Results First, we predicted the genes encoding miRNA in Ostrinia nubilalis (On) and O. scapulalis (Os). Respectively 67 and 65 known miRNA genes, as well as 196 and 190 novel ones were predicted with Os genome using sncRNAs extracted from whole larvae feeding on corn or mugwort. In On, a read counts analysis showed that 37 (55.22%) known miRNAs and 19 (9.84%) novel miRNAs were differentially expressed (DE) on mugwort compared to corn (in Os, 25 known miRs (38.46%) and 8 novel ones (4.34%)). Between species on corn, 8 (12.5%) known miRNAs and 8 (6.83%) novel ones were DE while only one novel miRNA showed expression variation between species on mugwort. Gene target prediction led to the identification of 2953 unique target genes in On and 2719 in Os, among which 11.6% (344) were DE when comparing species on corn. 1.8% (54) of On miR targets showed expression variation upon a change of host-plant. We found molecular changes matching convergent phenotype, i.e., a set of nine miRNAs that are regulated either according to the host-plant both in On and Sf-C or between them on the same plant, corn. Among DE miR target genes between taxa, 13.7% shared exactly the same annotation between the two pairs of taxa and had function related to insect host-plant interaction. Conclusion There is some similarity in underlying genetic mechanisms of convergent evolution of two distant Lepidopteran species having adopted corn in their host range, highlighting possible adaptation genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07905-7.
Collapse
Affiliation(s)
| | | | - Marion Orsucci
- DGIMI, Univ Montpellier, INRAE, Montpellier, France.,CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France.,Department of Plant Biology, Uppsala BioCenter and Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Philippe Audiot
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | - Kiwoong Nam
- DGIMI, Univ Montpellier, INRAE, Montpellier, France
| | - Réjane Streiff
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | |
Collapse
|
179
|
Treaster S, Daane JM, Harris MP. Refining Convergent Rate Analysis with Topology in Mammalian Longevity and Marine Transitions. Mol Biol Evol 2021; 38:5190-5203. [PMID: 34324001 PMCID: PMC8557430 DOI: 10.1093/molbev/msab226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The quest to map the genetic foundations of phenotypes has been empowered by the modern diversity, quality, and availability of genomic resources. Despite these expanding resources, the abundance of variation within lineages makes it challenging to associate genetic change to specific phenotypes, without an a priori means of isolating the changes from background genomic variation. Evolution provides this means through convergence-i.e., the shared variation that may result from replicate evolutionary experiments across independent trait occurrences. To leverage these opportunities, we developed TRACCER: Topologically Ranked Analysis of Convergence via Comparative Evolutionary Rates. Compared to current methods, this software empowers rate convergence analysis by factoring in topological relationships, because genetic variation between phylogenetically proximate trait changes is more likely to be facilitating the trait. Comparisons are performed not with singular branches, but with the complete paths to the most recent common ancestor for each pair of lineages. This ensures that comparisons represent a single context diverging over the same timeframe while obviating the problematic requirement of assigning ancestral states. We applied TRACCER to two case studies: mammalian transitions to marine environments, an unambiguous collection of traits which have independently evolved three times; and the evolution of mammalian longevity, a less delineated trait but with more instances to compare. By factoring in topology, TRACCER identifies highly significant, convergent genetic signals, with important incongruities and statistical resolution when compared to existing approaches. These improvements in sensitivity and specificity of convergence analysis generates refined targets for downstream validation and identification of genotype-phenotype relationships.
Collapse
Affiliation(s)
- Stephen Treaster
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, 02124, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02124, USA
| | - Jacob M Daane
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, 02124, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02124, USA.,Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA, 01908, USA
| | - Matthew P Harris
- Department of Orthopaedic Research, Boston Children's Hospital, Boston, MA, 02124, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02124, USA
| |
Collapse
|
180
|
Moore MP, Hersch K, Sricharoen C, Lee S, Reice C, Rice P, Kronick S, Medley KA, Fowler-Finn KD. Sex-specific ornament evolution is a consistent feature of climatic adaptation across space and time in dragonflies. Proc Natl Acad Sci U S A 2021; 118:e2101458118. [PMID: 34260398 PMCID: PMC8285952 DOI: 10.1073/pnas.2101458118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Adaptation to different climates fuels the origins and maintenance of biodiversity. Detailing how organisms optimize fitness for their local climates is therefore an essential goal in biology. Although we increasingly understand how survival-related traits evolve as organisms adapt to climatic conditions, it is unclear whether organisms also optimize traits that coordinate mating between the sexes. Here, we show that dragonflies consistently adapt to warmer climates across space and time by evolving less male melanin ornamentation-a mating-related trait that also absorbs solar radiation and heats individuals above ambient temperatures. Continent-wide macroevolutionary analyses reveal that species inhabiting warmer climates evolve less male ornamentation. Community-science observations across 10 species indicate that populations adapt to warmer parts of species' ranges through microevolution of smaller male ornaments. Observations from 2005 to 2019 detail that contemporary selective pressures oppose male ornaments in warmer years; and our climate-warming projections predict further decreases by 2070. Conversely, our analyses show that female ornamentation responds idiosyncratically to temperature across space and time, indicating the sexes evolve in different ways to meet the demands of the local climate. Overall, these macro- and microevolutionary findings demonstrate that organisms predictably optimize their mating-related traits for the climate just as they do their survival-related traits.
Collapse
Affiliation(s)
- Michael P Moore
- Living Earth Collaborative, Washington University, St. Louis, MO 63130;
| | - Kaitlyn Hersch
- Department of Biology, Washington University, St. Louis, MO 63130
| | | | - Sarah Lee
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Caitlin Reice
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Paul Rice
- Department of Biology, Washington University, St. Louis, MO 63130
| | - Sophie Kronick
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130
| | - Kim A Medley
- Living Earth Collaborative, Washington University, St. Louis, MO 63130
- Tyson Research Center, Washington University, Eureka, MO 63025
| | - Kasey D Fowler-Finn
- Living Earth Collaborative, Washington University, St. Louis, MO 63130
- Department of Biology, Saint Louis University, St. Louis, MO 63103
| |
Collapse
|
181
|
Jin L, Liu JJ, Xiao TW, Li QM, Lin LX, Shao XN, Ma CX, Li BH, Mi XC, Ren HB, Qiao XJ, Lian JY, Hao G, Ge XJ. Plastome-based phylogeny improves community phylogenetics of subtropical forests in China. Mol Ecol Resour 2021; 22:319-333. [PMID: 34233085 DOI: 10.1111/1755-0998.13462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
Phylogenetic trees have been extensively used in community ecology. However, how the phylogeny construction affects ecological inferences is poorly understood. In this study, we constructed three different types of phylogenetic trees (a synthetic-tree generated using V.PhyloMaker, a barcode-tree generated using rbcL+matK+trnH-psbA, and a plastome-tree generated from plastid genomes) that represented an increasing level of phylogenetic resolution among 580 woody plant species from six forest dynamic plots in subtropical evergreen broadleaved forests of China. We then evaluated the performance of each phylogeny in estimations of community phylogenetic structure, turnover and phylogenetic signal in functional traits. As expected, the plastome-tree was most resolved and most supported for relationships among species. For local phylogenetic structure, the three trees showed consistent results with Faith's PD and MPD; however, only the synthetic-tree produced significant clustering patterns using MNTD for some plots. For phylogenetic turnover, contrasting results between the molecular trees and the synthetic-tree occurred only with nearest neighbor distance. The barcode-tree agreed more with the plastome-tree than the synthetic-tree for both phylogenetic structure and turnover. For functional traits, both the barcode-tree and plastome-tree detected phylogenetic signal in maximum height, but only the plastome-tree detected signal in leaf width. This is the first study that uses plastid genomes in large-scale community phylogenetics. Our results highlight the improvement of plastome-trees over barcode-trees and synthetic-trees for the analyses studied here. Our results also point to the possibility of type I and II errors in estimation of phylogenetic structure and turnover and detection of phylogenetic signal when using synthetic-trees.
Collapse
Affiliation(s)
- Lu Jin
- College of Life Sciences, South China Agricultural University, Guangzhou, China.,Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Jia-Jia Liu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Tian-Wen Xiao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiao-Ming Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Lu-Xiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China
| | - Xiao-Na Shao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen-Xin Ma
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bu-Hang Li
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiang-Cheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Hai-Bao Ren
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Juan Qiao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Ju-Yu Lian
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Gang Hao
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xue-Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
182
|
Waters JM, McCulloch GA. Reinventing the wheel? Reassessing the roles of gene flow, sorting and convergence in repeated evolution. Mol Ecol 2021; 30:4162-4172. [PMID: 34133810 DOI: 10.1111/mec.16018] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022]
Abstract
Biologists have long been intrigued by apparently predictable and repetitive evolutionary trajectories inferred across a variety of lineages and systems. In recent years, high-throughput sequencing analyses have started to transform our understanding of such repetitive shifts. While researchers have traditionally categorized such shifts as either "convergent" or "parallel," based on relatedness of the lineages involved, emerging genomic insights provide an opportunity to better describe the actual evolutionary mechanisms at play. A synthesis of recent genomic analyses confirms that convergence is the predominant driver of repetitive evolution among species, whereas repeated sorting of standing variation is the major driver of repeated shifts within species. However, emerging data reveal numerous notable exceptions to these expectations, with recent examples of de novo mutations underpinning convergent shifts among even very closely related lineages, while repetitive sorting processes have occurred among even deeply divergent taxa, sometimes via introgression. A number of very recent analyses have found evidence for both processes occurring on different scales within taxa. We suggest that the relative importance of convergent versus sorting processes depends on the interplay between gene flow among populations, and phylogenetic relatedness of the lineages involved.
Collapse
|
183
|
Santos Dias PH, Vera Candioti F, Sabbag AF, Colaço G, Silva HR, Haddad CFB, Carvalho‐e‐Silva AMPT, Grant T. Life on the edge: Tadpoles of Cycloramphidae (Amphibia; Anura), anatomy, systematics, functional morphology, and comments on the evolution of semiterrestrial tadpoles. J ZOOL SYST EVOL RES 2021. [DOI: 10.1111/jzs.12483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pedro Henrique Santos Dias
- Departamento de Zoologia Instituto de Biociências Universidade de São Paulo São Paulo Brazil
- Departamento de Zoologia Universidade Federal do Paraná Curitiba Brazil
| | | | - Ariadne Fares Sabbag
- Departamento de Biodiversidade and CAUNESP Instituto de Biociências Universidade Estadual Paulista Rio Claro Brazil
| | - Gustavo Colaço
- Departamento de Biologia Animal Universidade Federal Rural do Rio de Janeiro Seropédia Brazil
| | - Hélio Ricardo Silva
- Departamento de Biologia Animal Universidade Federal Rural do Rio de Janeiro Seropédia Brazil
| | - Célio F. Baptista Haddad
- Departamento de Biodiversidade and CAUNESP Instituto de Biociências Universidade Estadual Paulista Rio Claro Brazil
| | | | - Taran Grant
- Departamento de Zoologia Instituto de Biociências Universidade de São Paulo São Paulo Brazil
| |
Collapse
|
184
|
Gendreau KL, Hornsby AD, Hague MTJ, McGlothlin JW. Gene Conversion Facilitates the Adaptive Evolution of Self-Resistance in Highly Toxic Newts. Mol Biol Evol 2021; 38:4077-4094. [PMID: 34129031 PMCID: PMC8476164 DOI: 10.1093/molbev/msab182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Reconstructing the histories of complex adaptations and identifying the evolutionary mechanisms underlying their origins are two of the primary goals of evolutionary biology. Taricha newts, which contain high concentrations of the deadly toxin tetrodotoxin (TTX) as an antipredator defense, have evolved resistance to self-intoxication, which is a complex adaptation requiring changes in six paralogs of the voltage-gated sodium channel (Nav) gene family, the physiological target of TTX. Here, we reconstruct the origins of TTX self-resistance by sequencing the entire Nav gene family in newts and related salamanders. We show that moderate TTX resistance evolved early in the salamander lineage in three of the six Nav paralogs, preceding the proposed appearance of tetrodotoxic newts by ∼100 My. TTX-bearing newts possess additional unique substitutions across the entire Nav gene family that provide physiological TTX resistance. These substitutions coincide with signatures of positive selection and relaxed purifying selection, as well as gene conversion events, that together likely facilitated their evolution. We also identify a novel exon duplication within Nav1.4 encoding an expressed TTX-binding site. Two resistance-conferring changes within newts appear to have spread via nonallelic gene conversion: in one case, one codon was copied between paralogs, and in the second, multiple substitutions were homogenized between the duplicate exons of Nav1.4. Our results demonstrate that gene conversion can accelerate the coordinated evolution of gene families in response to a common selection pressure.
Collapse
Affiliation(s)
- Kerry L Gendreau
- Department of Biological Sciences, Virginia Tech, Blacksburg, United States
| | - Angela D Hornsby
- Department of Biological Sciences, Virginia Tech, Blacksburg, United States.,Philip L. Wright Zoological Museum, Division of Biological Sciences, University of Montana, Missoula, United States
| | - Michael T J Hague
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Joel W McGlothlin
- Department of Biological Sciences, Virginia Tech, Blacksburg, United States
| |
Collapse
|
185
|
Huie JM, Prates I, Bell RC, de Queiroz K. Convergent patterns of adaptive radiation between island and mainland Anolis lizards. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Uncovering convergent and divergent patterns of diversification is a major goal of evolutionary biology. On four Greater Antillean islands, Anolis lizards have convergently evolved sets of species with similar ecologies and morphologies (ecomorphs). However, it is unclear whether closely related anoles from Central and South America exhibit similar patterns of diversification. We generated an extensive morphological data set to test whether mainland Draconura-clade anoles are assignable to the Caribbean ecomorphs. Based on a new classification framework that accounts for different degrees of morphological support, we found morphological evidence for mainland representatives of all six Caribbean ecomorphs and evidence that many ecomorphs have also evolved repeatedly on the mainland. We also found strong evidence that ground-dwelling anoles from both the Caribbean and the mainland constitute a new and distinct ecomorph class. Beyond the ecomorph concept, we show that the island and mainland anole faunas exhibit exceptional morphological convergence, suggesting that they are more similar than previously understood. However, the island and mainland radiations are not identical, indicating that regional differences and historical contingencies can lead to replicate yet variable radiations. More broadly, our findings suggest that replicated radiations occur beyond island settings more often than previously recognized.
Collapse
Affiliation(s)
- Jonathan M Huie
- Department of Biological Sciences, The George Washington University, Washington, DC, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Ivan Prates
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rayna C Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Herpetology Department, California Academy of Sciences, San Francisco, CA, USA
| | - Kevin de Queiroz
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
186
|
Eisen KE, Geber MA, Raguso RA. Emission rates of species-specific volatiles vary across communities of Clarkia species: Evidence for multi-modal character displacement. Am Nat 2021; 199:824-840. [DOI: 10.1086/715501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
187
|
Salmón P, Jacobs A, Ahrén D, Biard C, Dingemanse NJ, Dominoni DM, Helm B, Lundberg M, Senar JC, Sprau P, Visser ME, Isaksson C. Continent-wide genomic signatures of adaptation to urbanisation in a songbird across Europe. Nat Commun 2021; 12:2983. [PMID: 34016968 PMCID: PMC8137928 DOI: 10.1038/s41467-021-23027-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 04/01/2021] [Indexed: 02/03/2023] Open
Abstract
Urbanisation is increasing worldwide, and there is now ample evidence of phenotypic changes in wild organisms in response to this novel environment. Yet, the genetic changes and genomic architecture underlying these adaptations are poorly understood. Here, we genotype 192 great tits (Parus major) from nine European cities, each paired with an adjacent rural site, to address this major knowledge gap in our understanding of wildlife urban adaptation. We find that a combination of polygenic allele frequency shifts and recurrent selective sweeps are associated with the adaptation of great tits to urban environments. While haplotypes under selection are rarely shared across urban populations, selective sweeps occur within the same genes, mostly linked to neural function and development. Collectively, we show that urban adaptation in a widespread songbird occurs through unique and shared selective sweeps in a core-set of behaviour-linked genes.
Collapse
Affiliation(s)
- Pablo Salmón
- Department of Biology, Lund University, Lund, Sweden.
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
| | - Arne Jacobs
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Dag Ahrén
- Department of Biology, Lund University, Lund, Sweden
| | - Clotilde Biard
- Sorbonne Université, UPEC, Paris 7, CNRS, INRA, IRD, Institut d'Écologie et des Sciences de l'Environnement de Paris, iEES Paris, F-75005, Paris, France
| | - Niels J Dingemanse
- Department of Biology, Ludwig Maximilians University Munich, Munich, Germany
| | - Davide M Dominoni
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- GELIFES - Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Max Lundberg
- Department of Biology, Lund University, Lund, Sweden
| | | | - Philipp Sprau
- Department of Biology, Ludwig Maximilians University Munich, Munich, Germany
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | | |
Collapse
|
188
|
Jermy T, Szentesi Á. Why are there not more herbivorous insect species? ACTA ZOOL ACAD SCI H 2021. [DOI: 10.17109/azh.67.2.119.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Insect species richness is estimated to exceed three million species, of which roughly half is herbivorous. Despite the vast number of species and varied life histories, the proportion of herbivorous species among plant-consuming organisms is lower than it could be due to constraints that impose limits to their diversification. These include ecological factors, such as vague interspecific competition; anatomical and physiological limits, such as neural limits and inability of handling a wide range of plant allelochemicals; phylogenetic constraints, like niche conservatism; and most importantly, a low level of concerted genetic variation necessary to a phyletic conversion. It is suggested that diversification ultimately depends on what we call the intrinsic trend of diversification of the insect genome. In support of the above, we survey the major types of host-specificity, the mechanisms and constraints of host specialization, possible pathways of speciation, and hypotheses concerning insect diversification.
Collapse
|
189
|
Collar DC, DiPaolo ECC, Mai SL, Mehta RS. Body shape transformations by alternate anatomical adaptive peak shifts in blenniiform fishes. Evolution 2021; 75:1552-1566. [PMID: 33890296 DOI: 10.1111/evo.14238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 02/24/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022]
Abstract
Extreme body elongation has occurred repeatedly in the evolutionary history of ray-finned fishes. Lengthening of the anterior-posterior body axis relative to depth and width can involve changes in the cranial skeleton and vertebral column, but to what extent is anatomical evolution determined by selective factors and intrinsic constraints that are shared broadly among closely related lineages? In this study, we fit adaptive (Ornstein-Uhlenbeck) evolutionary models to body shape and its anatomical determinants and identified two instances of extreme elongation by divergent anatomical peak shifts in the Blenniiformes, a radiation of small-bodied substrate-associated marine teleost fishes. Species in the genus Xiphasia (hairtail blennies) evolved toward a peak defined by a highly elongated caudal vertebral region but ancestral cranial and precaudal vertebral morphology. In contrast, a clade that includes the genera Chaenopsis and Lucayablennius (pike and arrow blennies) evolved toward a peak with a long slender skull but ancestral axial skeletal anatomy. Neither set of anatomical peak shifts aligns closely with the major axis of anatomical diversification in other blenniiform fishes. These results provide little evidence that ancestral constraints have affected body shape transformation, and instead suggest that extreme elongation arose with distinct shifts in selective factors and development.
Collapse
Affiliation(s)
- David C Collar
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, VA, 23606
| | - Emma C C DiPaolo
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, VA, 23606
| | - Sienna L Mai
- Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, VA, 23606
| | - Rita S Mehta
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95060
| |
Collapse
|
190
|
Huang Y, Lack JB, Hoppel GT, Pool JE. Parallel and Population-specific Gene Regulatory Evolution in Cold-Adapted Fly Populations. Genetics 2021; 218:6275754. [PMID: 33989401 PMCID: PMC8864734 DOI: 10.1093/genetics/iyab077] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/10/2021] [Indexed: 11/15/2022] Open
Abstract
Changes in gene regulation at multiple levels may comprise an important share of the molecular changes underlying adaptive evolution in nature. However, few studies have assayed within- and between-population variation in gene regulatory traits at a transcriptomic scale, and therefore inferences about the characteristics of adaptive regulatory changes have been elusive. Here, we assess quantitative trait differentiation in gene expression levels and alternative splicing (intron usage) between three closely related pairs of natural populations of Drosophila melanogaster from contrasting thermal environments that reflect three separate instances of cold tolerance evolution. The cold-adapted populations were known to show population genetic evidence for parallel evolution at the SNP level, and here we find evidence for parallel expression evolution between them, with stronger parallelism at larval and adult stages than for pupae. We also implement a flexible method to estimate cis- vs trans-encoded contributions to expression or splicing differences at the adult stage. The apparent contributions of cis- vs trans-regulation to adaptive evolution vary substantially among population pairs. While two of three population pairs show a greater enrichment of cis-regulatory differences among adaptation candidates, trans-regulatory differences are more likely to be implicated in parallel expression changes between population pairs. Genes with significant cis-effects are enriched for signals of elevated genetic differentiation between cold- and warm-adapted populations, suggesting that they are potential targets of local adaptation. These findings expand our knowledge of adaptive gene regulatory evolution and our ability to make inferences about this important and widespread process.
Collapse
Affiliation(s)
- Yuheng Huang
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Grant T Hoppel
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
191
|
Roycroft E, Achmadi A, Callahan CM, Esselstyn JA, Good JM, Moussalli A, Rowe KC. Molecular Evolution of Ecological Specialisation: Genomic Insights from the Diversification of Murine Rodents. Genome Biol Evol 2021; 13:6275684. [PMID: 33988699 PMCID: PMC8258016 DOI: 10.1093/gbe/evab103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Adaptive radiations are characterized by the diversification and ecological differentiation of species, and replicated cases of this process provide natural experiments for understanding the repeatability and pace of molecular evolution. During adaptive radiation, genes related to ecological specialization may be subject to recurrent positive directional selection. However, it is not clear to what extent patterns of lineage-specific ecological specialization (including phenotypic convergence) are correlated with shared signatures of molecular evolution. To test this, we sequenced whole exomes from a phylogenetically dispersed sample of 38 murine rodent species, a group characterized by multiple, nested adaptive radiations comprising extensive ecological and phenotypic diversity. We found that genes associated with immunity, reproduction, diet, digestion, and taste have been subject to pervasive positive selection during the diversification of murine rodents. We also found a significant correlation between genome-wide positive selection and dietary specialization, with a higher proportion of positively selected codon sites in derived dietary forms (i.e., carnivores and herbivores) than in ancestral forms (i.e., omnivores). Despite striking convergent evolution of skull morphology and dentition in two distantly related worm-eating specialists, we did not detect more genes with shared signatures of positive or relaxed selection than in a nonconvergent species comparison. Although a small number of the genes we detected can be incidentally linked to craniofacial morphology or diet, protein-coding regions are unlikely to be the primary genetic basis of this complex convergent phenotype. Our results suggest a link between positive selection and derived ecological phenotypes, and highlight specific genes and general functional categories that may have played an integral role in the extensive and rapid diversification of murine rodents.
Collapse
Affiliation(s)
- Emily Roycroft
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Sciences Department, Museums Victoria, Melbourne, Victoria, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Australian Capital Territory, Australia
| | - Anang Achmadi
- Museum Zoologicum Bogoriense, Research Center for Biology, Cibinong, Jawa Barat, Indonesia
| | - Colin M Callahan
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Jacob A Esselstyn
- Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, USA.,Department of Biological Sciences, Louisiana State University, Baton Rouge, Los Angeles, USA
| | - Jeffrey M Good
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA.,Wildlife Biology Program, University of Montana, Missoula, Montana, USA
| | - Adnan Moussalli
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Sciences Department, Museums Victoria, Melbourne, Victoria, Australia
| | - Kevin C Rowe
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia.,Sciences Department, Museums Victoria, Melbourne, Victoria, Australia
| |
Collapse
|
192
|
Hodge JR, Song Y, Wightman MA, Milkey A, Tran B, Štajner A, Roberts AS, Hemingson CR, Wainwright PC, Price SA. Constraints on the Ecomorphological Convergence of Zooplanktivorous Butterflyfishes. Integr Org Biol 2021; 3:obab014. [PMID: 34377941 PMCID: PMC8341894 DOI: 10.1093/iob/obab014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Whether distantly related organisms evolve similar strategies to meet the demands of a shared ecological niche depends on their evolutionary history and the nature of form-function relationships. In fishes, the visual identification and consumption of microscopic zooplankters, selective zooplanktivory, is a distinct type of foraging often associated with a suite of morphological specializations. Previous work has identified inconsistencies in the trajectory and magnitude of morphological change following transitions to selective zooplanktivory, alluding to the diversity and importance of ancestral effects. Here we investigate whether transitions to selective zooplanktivory have influenced the morphological evolution of marine butterflyfishes (family Chaetodontidae), a group of small-prey specialists well known for several types of high-precision benthivory. Using Bayesian ancestral state estimation, we inferred the recent evolution of zooplanktivory among benthivorous ancestors that hunted small invertebrates and browsed by picking or scraping coral polyps. Traits related to the capture of prey appear to be functionally versatile, with little morphological distinction between species with benthivorous and planktivorous foraging modes. In contrast, multiple traits related to prey detection or swimming performance are evolving toward novel, zooplanktivore-specific optima. Despite a relatively short evolutionary history, general morphological indistinctiveness, and evidence of constraint on the evolution of body size, convergent evolution has closed a near significant amount of the morphological distance between zooplanktivorous species. Overall, our findings describe the extent to which the functional demands associated with selective zooplanktivory have led to generalizable morphological features among butterflyfishes and highlight the importance of ancestral effects in shaping patterns of morphological convergence.
Collapse
Affiliation(s)
- J R Hodge
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - Y Song
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - M A Wightman
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA
| | - A Milkey
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - B Tran
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - A Štajner
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - A S Roberts
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - C R Hemingson
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - P C Wainwright
- Department of Evolution and Ecology, University of California, Davis, Davis, CA 95616, USA
| | - S A Price
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
193
|
Moreno-Carmona M, Cameron SL, Prada Quiroga CF. How are the mitochondrial genomes reorganized in Hexapoda? Differential evolution and the first report of convergences within Hexapoda. Gene 2021; 791:145719. [PMID: 33991648 DOI: 10.1016/j.gene.2021.145719] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 11/28/2022]
Abstract
The evolution of the Hexapoda mitochondrial genome has been the focus of several genetic and evolutionary studies over the last decades. However, they have concentrated on certain taxonomic orders of economic or health importance. The recent increase of mitochondrial genomes sequencing of diverse taxonomic orders generates an important opportunity to clarify the evolution of this group of organisms. However, there is no comparative study that investigates the evolution of the Hexapoda mitochondrial genome. In order to verify the level of rearrangement and the mitochondrial genome evolution, we performed a comparative genomic analysis of the Hexapoda mitochondrial genome available in the NCBI database. Using a combination of bioinformatics methods to carefully examine the mitochondrial gene rearrangements in 1198 Hexapoda species belonging to 32 taxonomic orders, we determined that there is a great variation in the rate of rearrangement by gene and by taxonomic order. A higher rate of genetic reassortment is observed in Phthiraptera, Thysanoptera, Protura, and Hymenoptera; compared to other taxonomic orders. Twenty-four events of convergence in the genetic order between different taxonomic orders were determined, most of them not previously reported; which proves the great evolutionary dynamics within Hexapoda.
Collapse
Affiliation(s)
- Manuela Moreno-Carmona
- Grupo de investigación de Biología y ecología de artrópodos, Facultad de Ciencias, Universidad del Tolima, Colombia
| | - Stephen L Cameron
- Department of Entomology, Purdue University, 901 West State Street, West Lafayette, IN 47907, USA
| | - Carlos Fernando Prada Quiroga
- Grupo de investigación de Biología y ecología de artrópodos, Facultad de Ciencias, Universidad del Tolima, Colombia.
| |
Collapse
|
194
|
Tamagnini D, Meloro C, Raia P, Maiorano L. Testing the occurrence of convergence in the craniomandibular shape evolution of living carnivorans. Evolution 2021; 75:1738-1752. [PMID: 33844288 PMCID: PMC8359831 DOI: 10.1111/evo.14229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 03/10/2021] [Accepted: 03/28/2021] [Indexed: 12/28/2022]
Abstract
Convergence consists in the independent evolution of similar traits in distantly related species. The mammalian craniomandibular complex constitutes an ideal biological structure to investigate ecomorphological dynamics and the carnivorans, due to their phenotypic variability and ecological flexibility, offer an interesting case study to explore the occurrence of convergent evolution. Here, we applied multiple pattern‐based metrics to test the occurrence of convergence in the craniomandibular shape of extant carnivorans. To this aim, we tested for convergence in many dietary groups and analyzed several cases of carnivoran convergence concerning either ecologically equivalent species or ecologically similar species of different body sizes described in the literature. Our results validate the occurrence of convergence in ecologically equivalent species in a few cases (as well as in the case of giant and red pandas), but almost never support the occurrence of convergent evolution in dietary categories of living carnivorans. Therefore, convergent evolution in this clade appears to be a rare phenomenon. This is probably the consequence of a complex interplay of one‐to‐many, many‐to‐one, and many‐to‐many relationships taking place between ecology, biomechanics, and morphology.
Collapse
Affiliation(s)
- Davide Tamagnini
- Department of Biology and Biotechnologies "Charles Darwin,", University of Rome "La Sapienza,", Rome, 00185, Italy.,Museum of Zoology, Sapienza Museum Centre, University of Rome "La Sapienza,", Rome, 00185, Italy
| | - Carlo Meloro
- Research Centre in Evolutionary Anthropology and Palaeoecology, School of Natural Sciences and Psychology, Liverpool John Moores University, Liverpool, L3 3AF, United Kingdom
| | - Pasquale Raia
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, University of Naples Federico II, Napoli, 80126, Italy
| | - Luigi Maiorano
- Department of Biology and Biotechnologies "Charles Darwin,", University of Rome "La Sapienza,", Rome, 00185, Italy.,Museum of Zoology, Sapienza Museum Centre, University of Rome "La Sapienza,", Rome, 00185, Italy
| |
Collapse
|
195
|
Burress ED, Muñoz MM. Ecological Opportunity from Innovation, not Islands, Drove the Anole Lizard Adaptive Radiation. Syst Biol 2021; 71:93-104. [PMID: 33956152 DOI: 10.1093/sysbio/syab031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
Islands are thought to facilitate adaptive radiation by providing release from competition and predation. Anole lizards are considered a classic example of this phenomenon: different ecological specialists ('ecomorphs') evolved in the Caribbean Greater Antilles (Cuba, Hispaniola, Jamaica, and Puerto Rico), resulting in convergent assemblages that are not observed in mainland Latin America. Yet, the role of islands in facilitating adaptive radiation is more often implied than directly tested, leaving uncertain the role of biogeography in stimulating diversification. Here, we assess the proposed "island effect" on anole diversification using Bayesian phylogenetic comparative methods that explicitly incorporate rate heterogeneity across the tree and demonstrate two cases of would-be false positives. We discovered that rates of speciation and morphological evolution of island and mainland anoles are equivalent, implying that islands provide no special context for exceptionally rapid diversification. Likewise, rates of evolution were equivalent between island anoles that arose via in situ versus dispersal-based mechanisms, and we found no evidence for island-specific rates of speciation or morphological evolution. Nonetheless, the origin of Anolis is characterized by a speciation pulse that slowed over time - a classic signature of waning ecological opportunity. Our findings cast doubt on the notion that islands catalyzed the anole adaptive radiation and instead point to a key innovation, adhesive toe pads, which facilitated the exploitation of many arboreal niches sparsely utilized by other iguanian lizards. The selective pressures responsible for arboreal niche diversification differ between islands and the mainland, but the tempo of diversification driven by these discordant processes is indistinguishable.
Collapse
Affiliation(s)
- Edward D Burress
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
196
|
Whiting JR, Paris JR, van der Zee MJ, Parsons PJ, Weigel D, Fraser BA. Drainage-structuring of ancestral variation and a common functional pathway shape limited genomic convergence in natural high- and low-predation guppies. PLoS Genet 2021; 17:e1009566. [PMID: 34029313 PMCID: PMC8177651 DOI: 10.1371/journal.pgen.1009566] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/04/2021] [Accepted: 04/27/2021] [Indexed: 01/21/2023] Open
Abstract
Studies of convergence in wild populations have been instrumental in understanding adaptation by providing strong evidence for natural selection. At the genetic level, we are beginning to appreciate that the re-use of the same genes in adaptation occurs through different mechanisms and can be constrained by underlying trait architectures and demographic characteristics of natural populations. Here, we explore these processes in naturally adapted high- (HP) and low-predation (LP) populations of the Trinidadian guppy, Poecilia reticulata. As a model for phenotypic change this system provided some of the earliest evidence of rapid and repeatable evolution in vertebrates; the genetic basis of which has yet to be studied at the whole-genome level. We collected whole-genome sequencing data from ten populations (176 individuals) representing five independent HP-LP river pairs across the three main drainages in Northern Trinidad. We evaluate population structure, uncovering several LP bottlenecks and variable between-river introgression that can lead to constraints on the sharing of adaptive variation between populations. Consequently, we found limited selection on common genes or loci across all drainages. Using a pathway type analysis, however, we find evidence of repeated selection on different genes involved in cadherin signaling. Finally, we found a large repeatedly selected haplotype on chromosome 20 in three rivers from the same drainage. Taken together, despite limited sharing of adaptive variation among rivers, we found evidence of convergent evolution associated with HP-LP environments in pathways across divergent drainages and at a previously unreported candidate haplotype within a drainage.
Collapse
Affiliation(s)
- James R. Whiting
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| | | | | | - Paul J. Parsons
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Bonnie A. Fraser
- Department of Biosciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
197
|
Huang J, Morgan B. Evolution of adult male horn developmental phenotypes and character displacement in Xylotrupes beetles (Scarabaeidae). Ecol Evol 2021; 11:5503-5510. [PMID: 34026024 PMCID: PMC8131760 DOI: 10.1002/ece3.7448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/01/2021] [Accepted: 03/03/2021] [Indexed: 11/06/2022] Open
Abstract
Character displacement that leads to divergent phenotypes between sympatric species has been hypothesized to facilitate coexistence and promote the accumulation of biodiversity. However, there are alternative evolutionary mechanisms that may also lead to the evolution of phenotypic divergence between sympatric species; one of the mechanisms is evolutionary contingency. We studied the evolution of the presence and absence of a major male horn phenotype, which may have ecological implications for promoting coexistence between sympatric beetles, across geographic populations from different Xylotrupes beetles. By using a previously published phylogeny with 80 Xylotrupes taxa, we estimated the transition rates between the two phenotypic states (i.e., presence vs. absence of a major male phenotype). Based on the estimated transition rates, we then simulated possible phenotypic outcomes between sympatric species. We found that sympatric species were equally likely to evolve the same versus distinct phenotypic states based on the estimated transition rates given the phylogeny. The empirically observed number of sympatric species showing different phenotypic states can be explained by evolutionary contingency alone. We discussed the importance of applying phylogenetic comparative methods when studying phenotypic evolution and more generally to investigate the effect of stochastic processes before making deterministic inferences.
Collapse
Affiliation(s)
- Jen‐Pan Huang
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
| | - Brett Morgan
- Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
| |
Collapse
|
198
|
Abstract
Abstract
Convergent evolution, the evolution of similar phenotypes among distantly related lineages, is often attributed to adaptation in response to similar selective pressures. Here, we assess the prevalence and degree of convergence in functional traits of stream fishes at the microhabitat scale in five zoogeographical regions across the world. We categorized species by microhabitat, water velocity and preference for substrate complexity and calculated the prevalence of convergence, degree of convergence and functional diversity for each category. Among species occupying similar microhabitats of small, low-gradient streams, 34% had combinations of convergent traits. Convergence occurred at higher rates than expected by chance alone, implying that adaptation to similar environmental conditions often resulted in similar evolutionary patterns along multiple niche dimensions. Two of the microhabitat groupings had significantly convergent species represented in all zoogeographical regions. Fishes occupying microhabitats with high water velocity and low structural complexity generally occupied a restricted morphospace and exhibited greater prevalence and higher degrees of convergence. This suggests that water velocity and habitat structural complexity interact, selecting a restricted distribution of trait distributions and higher degrees of convergence in stream fish assemblages. Furthermore, these results suggest that microhabitat features in streams select for fish trait distributions in a fairly predictable and deterministic manner worldwide.
Collapse
Affiliation(s)
- Luke M Bower
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634, USA
| | - David E Saenz
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA
| | - Kirk O Winemiller
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
199
|
Hager ER, Hoekstra HE. Tail Length Evolution in Deer Mice: Linking Morphology, Behavior, and Function. Integr Comp Biol 2021; 61:385-397. [PMID: 33871633 DOI: 10.1093/icb/icab030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Determining how variation in morphology affects animal performance (and ultimately fitness) is key to understanding the complete process of evolutionary adaptation. Long tails have evolved many times in arboreal and semi-arboreal rodents; in deer mice, long tails have evolved repeatedly in populations occupying forested habitat even within a single species (Peromyscus maniculatus). Here, we use a combination of functional modeling, laboratory studies, and museum records to test hypotheses about the function of tail-length variation in deer mice. First, we use computational models, informed by museum records documenting natural variation in tail length, to test whether differences in tail morphology between forest and prairie subspecies can influence performance in behavioral contexts relevant for tail use. We find that the deer- mouse tail plays little role in statically adjusting center of mass or in correcting body pitch and yaw, but rather it can affect body roll during arboreal locomotion. In this context, we find that even intraspecific tail-length variation could result in substantial differences in how much body rotation results from equivalent tail motions (i.e., tail effectiveness), but the relationship between commonly-used metrics of tail-length variation and effectiveness is non-linear. We further test whether caudal vertebra length, number, and shape are associated with differences in how much the tail can bend to curve around narrow substrates (i.e., tail curvature) and find that, as predicted, the shape of the caudal vertebrae is associated with intervertebral bending angle across taxa. However, although forest and prairie mice typically differ in both the length and number of caudal vertebrae, we do not find evidence that this pattern is the result of a functional trade-off related to tail curvature. Together, these results highlight how even simple models can both generate and exclude hypotheses about the functional consequences of trait variation for organismal-level performance.
Collapse
Affiliation(s)
- Emily R Hager
- Departments of Molecular and Cellular Biology, and Organismic and Evolutionary Biology, Museum of Comparative Zoology, Howard Hughes Medical Institute, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Hopi E Hoekstra
- Departments of Molecular and Cellular Biology, and Organismic and Evolutionary Biology, Museum of Comparative Zoology, Howard Hughes Medical Institute, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|
200
|
Nečas T, Badjedjea G, Vopálenský M, Gvoždík V. Congolius, a new genus of African reed frog endemic to the central Congo: A potential case of convergent evolution. Sci Rep 2021; 11:8338. [PMID: 33863953 PMCID: PMC8052363 DOI: 10.1038/s41598-021-87495-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
The reed frog genus Hyperolius (Afrobatrachia, Hyperoliidae) is a speciose genus containing over 140 species of mostly small to medium-sized frogs distributed in sub-Saharan Africa. Its high level of colour polymorphism, together with in anurans relatively rare sexual dichromatism, make systematic studies more difficult. As a result, the knowledge of the diversity and taxonomy of this genus is still limited. Hyperolius robustus known only from a handful of localities in rain forests of the central Congo Basin is one of the least known species. Here, we have used molecular methods for the first time to study the phylogenetic position of this taxon, accompanied by an analysis of phenotype based on external (morphometric) and internal (osteological) morphological characters. Our phylogenetic results undoubtedly placed H. robustus out of Hyperolius into a common clade with sympatric Cryptothylax and West African Morerella. To prevent the uncovered paraphyly, we place H. robustus into a new genus, Congolius. The review of all available data suggests that the new genus is endemic to the central Congolian lowland rain forests. The analysis of phenotype underlined morphological similarity of the new genus to some Hyperolius species. This uniformity of body shape (including cranial shape) indicates that the two genera have either retained ancestral morphology or evolved through convergent evolution under similar ecological pressures in the African rain forests.
Collapse
Affiliation(s)
- Tadeáš Nečas
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65, Brno, Czech Republic.
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Gabriel Badjedjea
- Biodiversity Monitoring Centre, Department of Ecology and Biodiversity of Aquatic Resources, University of Kisangani, Avenue Munyororo 550, Kisangani, Democratic Republic of the Congo
| | - Michal Vopálenský
- Czech Academy of Sciences, Institute of Theoretical and Applied Mechanics, Prosecká 76, 190 00, Prague, Czech Republic
| | - Václav Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 603 65, Brno, Czech Republic.
- Department of Zoology, National Museum, Cirkusová 1740, 193 00, Prague, Czech Republic.
| |
Collapse
|