151
|
Pandoraea sp. Strain E26: Discovery of Its Quorum-Sensing Properties via Whole-Genome Sequence Analysis. GENOME ANNOUNCEMENTS 2015; 3:3/3/e00565-15. [PMID: 26021935 PMCID: PMC4447920 DOI: 10.1128/genomea.00565-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the draft genome sequence of Pandoraea sp. strain E26 isolated from a former landfill site, sequenced by the Illumina MiSeq platform. This genome sequence will be useful to further understand the quorum-sensing system of this isolate.
Collapse
|
152
|
Van der Berg JP, Velema WA, Szymanski W, Driessen AJM, Feringa BL. Controlling the activity of quorum sensing autoinducers with light. Chem Sci 2015; 6:3593-3598. [PMID: 29511521 PMCID: PMC5659144 DOI: 10.1039/c5sc00215j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/25/2015] [Indexed: 01/19/2023] Open
Abstract
Bacteria use Quorum Sensing (QS) to organize into communities and synchronize gene expression. Here we report on a method to externally interfere with QS system using light.
Bacteria use a communication system, called quorum sensing (QS), to organize into communities and synchronize gene expression to promote virulence and secure survival. Here we report on a proof-of-principle for externally interfering with this bacterial communication system, using light. By employing photoswitchable small molecules, we were able to photocontrol the QS-related bioluminescence in an Escherichia coli reporter strain, and the expression of target QS genes and pyocyanin production in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- J P Van der Berg
- Molecular Microbiology , Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 7, 9747 AG , Groningen , The Netherlands .
| | - W A Velema
- Center for Systems Chemistry , Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4, 9747 AG , Groningen , The Netherlands .
| | - W Szymanski
- Center for Systems Chemistry , Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4, 9747 AG , Groningen , The Netherlands . .,Department of Radiology , University of Groningen , University Medical Centre Groningen , Groningen , The Netherlands
| | - A J M Driessen
- Molecular Microbiology , Groningen Biomolecular Sciences and Biotechnology Institute , University of Groningen , Nijenborgh 7, 9747 AG , Groningen , The Netherlands .
| | - B L Feringa
- Center for Systems Chemistry , Stratingh Institute for Chemistry , University of Groningen , Nijenborgh 4, 9747 AG , Groningen , The Netherlands .
| |
Collapse
|
153
|
Quorum Sensing Is Accompanied by Global Metabolic Changes in the Opportunistic Human Pathogen Pseudomonas aeruginosa. J Bacteriol 2015; 197:2072-82. [PMID: 25868647 DOI: 10.1128/jb.02557-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 04/07/2015] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Pseudomonas aeruginosa uses N-acyl-homoserine lactone (AHL)-dependent quorum sensing (QS) systems to control the expression of secreted effectors. These effectors can be crucial to the ecological fitness of the bacterium, playing roles in nutrient acquisition, microbial competition, and virulence. In this study, we investigated the metabolic consequences of AHL-dependent QS by monitoring the metabolic profile(s) of a lasI rhlI double mutant (unable to make QS signaling molecules) and its wild-type progenitor as they progressed through the growth curve. Analysis of culture supernatants by (1)H-nuclear magnetic resonance ((1)H-NMR) spectroscopy revealed that at the point where AHL concentrations peaked in the wild type, the metabolic footprints (i.e., extracellular metabolites) of the wild-type and lasI rhlI mutant diverged. Subsequent gas chromatography-mass spectrometry (GC-MS)-based analysis of the intracellular metabolome revealed QS-dependent perturbations in around one-third of all identified metabolites, including altered concentrations of tricarboxylic acid (TCA) cycle intermediates, amino acids, and fatty acids. Further targeted fatty acid methyl ester (FAME) GC-MS-based profiling of the cellular total fatty acid pools revealed that QS leads to changes associated with decreased membrane fluidity and higher chemical stability. However, not all of the changes we observed were necessarily a direct consequence of QS; liquid chromatography (LC)-MS analyses revealed that polyamine levels were elevated in the lasI rhlI mutant, perhaps a response to the absence of QS-dependent adaptations. Our data suggest that QS leads to a global readjustment in central metabolism and provide new insight into the metabolic changes associated with QS during stationary-phase adaptation. IMPORTANCE Quorum sensing (QS) is a transcriptional regulatory mechanism that allows bacteria to coordinate their gene expression profile with the population cell density. The opportunistic human pathogen Pseudomonas aeruginosa uses QS to control the production of secreted virulence factors. In this study, we show that QS elicits a global "metabolic rewiring" in P. aeruginosa. This metabolic rerouting of fluxes is consistent with a variety of drivers, ranging from altered QS-dependent transcription of "metabolic genes" through to the effect(s) of global "metabolic readjustment" as a consequence of QS-dependent exoproduct synthesis, as well as a general stress response, among others. To our knowledge, this is the first study of its kind to assess the global impact of QS on the metabolome.
Collapse
|
154
|
Plyuta VA, Popova AA, Koksharova OA, Kuznetsov AE, Khmel IA. The ability of natural ketones to interact with bacterial quorum sensing systems. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2015. [DOI: 10.3103/s0891416814040077] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
155
|
Kim YW, Sung C, Lee S, Kim KJ, Yang YH, Kim BG, Lee YK, Ryu HW, Kim YG. MALDI-MS-Based Quantitative Analysis for Ketone Containing Homoserine Lactones in Pseudomonas aeruginosa. Anal Chem 2015; 87:858-63. [DOI: 10.1021/ac5039362] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yoon-Woo Kim
- Department
of Chemical Engineering, Soongsil University, Seoul 156-743, Korea
| | - Changmin Sung
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| | - Seulee Lee
- Department
of Chemical Engineering, Soongsil University, Seoul 156-743, Korea
| | - Kyoung-Jin Kim
- Department
of Chemical Engineering, Soongsil University, Seoul 156-743, Korea
| | - Yung-Hun Yang
- Department
of Microbial Engineering, College of Engineering, Konkuk University, Seoul 143-701, Korea
| | - Byung-Gee Kim
- School
of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Korea
| | - Yoo Kyung Lee
- Arctic Research
Center, Korea Polar Research Institute, Incheon 406-840, Korea
| | - Hee Wook Ryu
- Department
of Chemical Engineering, Soongsil University, Seoul 156-743, Korea
| | - Yun-Gon Kim
- Department
of Chemical Engineering, Soongsil University, Seoul 156-743, Korea
| |
Collapse
|
156
|
Cyclo(Phe-Pro) produced by the human pathogen Vibrio vulnificus inhibits host innate immune responses through the NF-κB pathway. Infect Immun 2015; 83:1150-61. [PMID: 25561711 DOI: 10.1128/iai.02878-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cyclo(Phe-Pro) (cFP) is a secondary metabolite produced by certain bacteria and fungi. Although recent studies highlight the role of cFP in cell-to-cell communication by bacteria, its role in the context of the host immune response is poorly understood. In this study, we investigated the role of cFP produced by the human pathogen Vibrio vulnificus in the modulation of innate immune responses toward the pathogen. cFP suppressed the production of proinflammatory cytokines, nitric oxide, and reactive oxygen species in a lipopolysaccharide (LPS)-stimulated monocyte/macrophage cell line and in bone marrow-derived macrophages. Specifically, cFP inhibited inhibitory κB (IκB) kinase (IKK) phosphorylation, IκBα degradation, and nuclear factor κB (NF-κB) translocation to the cell nucleus, indicating that cFP affects the NF-κB pathway. We searched for genes that are responsible for cFP production in V. vulnificus and identified VVMO6_03017 as a causative gene. A deletion of VVMO6_03017 diminished cFP production and decreased virulence in subcutaneously inoculated mice. In summary, cFP produced by V. vulnificus actively suppresses the innate immune responses of the host, thereby facilitating its survival and propagation in the host environment.
Collapse
|
157
|
Potrykus M, Golanowska M, Hugouvieux-Cotte-Pattat N, Lojkowska E. Regulators Involved in Dickeya solani Virulence, Genetic Conservation and Functional Variability. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:57-68. [PMID: 27839073 DOI: 10.1094/mpmi-99-99-0003-r.testissue] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacteria from the genus Dickeya (formerly Erwinia chrysanthemi) are plant pathogens causing severe diseases in many economically important crops. A majority of the strains responsible for potato disease in Europe belong to a newly identified Dickeya solani species. Although some ecological and epidemiological studies have been carried out, little is known about the regulation of D. solani virulence. The characterization of four D. solani strains indicates significant differences in their virulence on potato although they are genetically similar based on genomic fingerprinting profiles. A phenotypic examination included an analysis of virulence on potato, growth rate in culture, motility, Fe3+ chelation, and pectate lyase, cellulase, protease, biosurfactant and blue pigment production. Mutants of four D. solani strains were constructed by inactivating the genes coding either for one of the main negative regulators of D. dadantii virulence (kdgR, pecS and pecT) or for the synthesis and perception of signaling molecules (expI and expR). Analysis of these mutants indicated that PecS, PecT and KdgR play a similar role in both species, repressing to different degrees the synthesis of virulence factors. The thermoregulator PecT seems to be a major regulator of D. solani virulence. This work also reveals the role of quorum sensing mediated by ExpI and ExpR in D. solani virulence on potato.
Collapse
Affiliation(s)
- Marta Potrykus
- 1 Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Małgorzata Golanowska
- 1 Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | | | - Ewa Lojkowska
- 1 Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| |
Collapse
|
158
|
Potrykus M, Golanowska M, Hugouvieux-Cotte-Pattat N, Lojkowska E. Regulators Involved in Dickeya solani Virulence, Genetic Conservation and Functional Variability. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 2015:5-16. [PMID: 27839070 DOI: 10.1094/mpmi-99-99-0004-le.testissue] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Bacteria from the genus Dickeya (formerly Erwinia chrysanthemi) are plant pathogens causing severe diseases in many economically important crops. A majority of the strains responsible for potato disease in Europe belong to a newly identified Dickeya solani species. Although some ecological and epidemiological studies have been carried out, little is known about the regulation of D. solani virulence. The characterization of four D. solani strains indicates significant differences in their virulence on potato although they are genetically similar based on genomic fingerprinting profiles. A phenotypic examination included an analysis of virulence on potato, growth rate in culture, motility, Fe3+ chelation, and pectate lyase, cellulase, protease, biosurfactant and blue pigment production. Mutants of four D. solani strains were constructed by inactivating the genes coding either for one of the main negative regulators of D. dadantii virulence (kdgR, pecS and pecT) or for the synthesis and perception of signaling molecules (expI and expR). Analysis of these mutants indicated that PecS, PecT and KdgR play a similar role in both species, repressing to different degrees the synthesis of virulence factors. The thermoregulator PecT seems to be a major regulator of D. solani virulence. This work also reveals the role of quorum sensing mediated by ExpI and ExpR in D. solani virulence on potato.
Collapse
Affiliation(s)
- Marta Potrykus
- 1 Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Małgorzata Golanowska
- 1 Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | | | - Ewa Lojkowska
- 1 Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| |
Collapse
|
159
|
Chang CY, Krishnan T, Wang H, Chen Y, Yin WF, Chong YM, Tan LY, Chong TM, Chan KG. Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target. Sci Rep 2014; 4:7245. [PMID: 25430794 PMCID: PMC4246208 DOI: 10.1038/srep07245] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 11/11/2014] [Indexed: 01/07/2023] Open
Abstract
N-acylhomoserine lactone (AHL)-based quorum sensing (QS) is important for the regulation of proteobacterial virulence determinants. Thus, the inhibition of AHL synthases offers non-antibiotics-based therapeutic potentials against QS-mediated bacterial infections. In this work, functional AHL synthases of Pseudomonas aeruginosa LasI and RhlI were heterologously expressed in an AHL-negative Escherichia coli followed by assessments on their AHLs production using AHL biosensors and high resolution liquid chromatography–mass spectrometry (LCMS). These AHL-producing E. coli served as tools for screening AHL synthase inhibitors. Based on a campaign of screening synthetic molecules and natural products using our approach, three strongest inhibitors namely are salicylic acid, tannic acid and trans-cinnamaldehyde have been identified. LCMS analysis further confirmed tannic acid and trans-cinnemaldehyde efficiently inhibited AHL production by RhlI. We further demonstrated the application of trans-cinnemaldehyde inhibiting Rhl QS system regulated pyocyanin production in P. aeruginosa up to 42.06%. Molecular docking analysis suggested that trans-cinnemaldehyde binds to the LasI and EsaI with known structures mainly interacting with their substrate binding sites. Our data suggested a new class of QS-inhibiting agents from natural products targeting AHL synthase and provided a potential approach for facilitating the discovery of anti-QS signal synthesis as basis of novel anti-infective approach.
Collapse
Affiliation(s)
- Chien-Yi Chang
- 1] Interdisciplinary Computing and Complex BioSystems (ICOS) research group, School of Computing Science, Claremont Tower, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK [2] The Centre for Bacterial Cell Biology, Medical School, Newcastle University, Richardson Road, Newcastle upon Tyne, NE2 4AX, UK
| | - Thiba Krishnan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Hao Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan, P. R. China
| | - Ye Chen
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yee-Meng Chong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Li Ying Tan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Teik Min Chong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
160
|
Kruczek C, Qaisar U, Colmer-Hamood JA, Hamood AN. Serum influences the expression of Pseudomonas aeruginosa quorum-sensing genes and QS-controlled virulence genes during early and late stages of growth. Microbiologyopen 2014; 3:64-79. [PMID: 24436158 PMCID: PMC3937730 DOI: 10.1002/mbo3.147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 10/28/2013] [Accepted: 11/05/2013] [Indexed: 11/15/2022] Open
Abstract
In response to diverse environmental stimuli at different infection sites, Pseudomonas aeruginosa, a serious nosocomial pathogen, coordinates the production of different virulence factors through a complicated network of the hierarchical quorum-sensing (QS) systems including the las, rhl, and the 2-alkyl-4-quinolone-related QS systems. We recently showed that at early stages of growth serum alters the expression of numerous P. aeruginosa genes. In this study, we utilized transcriptional analysis and enzyme assays to examine the effect of serum on the QS and QS-controlled virulence factors during early and late phases of growth of the P. aeruginosa strain PAO1. At early phase, serum repressed the transcription of lasI, rhlI, and pqsA but not lasR or rhlR. However, at late phase, serum enhanced the expression of all QS genes. Serum produced a similar effect on the synthesis of the autoinducers 3OC12-HSL, C4-HSL, and HHQ/PQS. Additionally, serum repressed the expression of several QS-controlled genes in the early phase, but enhanced them in the late phase. Furthermore, serum influenced the expression of different QS-positive (vqsR, gacA, and vfr) as well as QS-negative (rpoN, qscR, mvaT, and rsmA) regulatory genes at either early or late phases of growth. However, with the exception of PAOΔvfr, we detected comparable levels of lasI/lasR expression in PAO1 and PAO1 mutants defective in these regulatory genes. At late stationary phase, serum failed to enhance lasI/lasR expression in PAOΔvfr. These results suggest that depending on the phase of growth, serum differentially influenced the expression of P. aeruginosa QS and QS-controlled virulence genes. In late phase, serum enhanced the expression of las genes through vfr.
Collapse
Affiliation(s)
| | | | | | - Abdul N Hamood
- Correspondence Abdul N. Hamood, Department of Immunology and Molecular Microbiology, School of Medicine, Texas Tech University Health Sciences Center, 3601 4th Street STOP 6591, Lubbock, TX 79430., Tel: (806)-743-4057; Fax: (806)-743-2334;, E-mail:
| |
Collapse
|
161
|
Martins ML, Pinto UM, Riedel K, Vanetti MCD, Mantovani HC, de Araújo EF. Lack of AHL-based quorum sensing in Pseudomonas fluorescens isolated from milk. Braz J Microbiol 2014; 45:1039-46. [PMID: 25477941 PMCID: PMC4204945 DOI: 10.1590/s1517-83822014000300037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 12/13/2013] [Indexed: 11/22/2022] Open
Abstract
Numerous bacteria coordinate gene expression in response to small signalling molecules in many cases known as acylhomoserine lactones (AHLs), which accumulate as a function of cell density in a process known as quorum sensing. This work aimed to determine if phenotypes that are important to define microbial activity in foods such as biofilm formation, swarming motility and proteolytic activity of two Pseudomonas fluorescens strains, isolated from refrigerated raw milk, are influenced by AHL molecules. The tested P. fluorescens strains did not produce AHL molecules in none of the evaluated media. We found that biofilm formation was dependent on the culture media, but it was not influenced by AHLs. Our results indicate that biofilm formation, swarming motility and proteolytic activity of the tested P. fluorescens strains are not regulated by acyl-homoserine lactones. It is likely that AHL-dependent quorum sensing system is absent from these strains.
Collapse
Affiliation(s)
- Maurilio L Martins
- Instituto Federal de Educação Ciência e Tecnologia do Sudeste de Minas Gerais Campus Rio Pomba Belo HorizonteMG Brazil Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Campus Rio Pomba, Belo Horizonte, MG, Brazil
| | - Uelinton M Pinto
- Departamento de Alimentos Universidade Federal de Ouro Preto Ouro PretoMG Brazil Departamento de Alimentos, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Kathrin Riedel
- Institute of Microbiology Ernst-Moritz-Arndt University of Greifswald Germany Institute of Microbiology Ernst-Moritz-Arndt University of Greifswald, Germany
| | - Maria C D Vanetti
- Departamento de Microbiologia Universidade Federal de Viçosa ViçosaMG Brazil Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Hilário C Mantovani
- Departamento de Microbiologia Universidade Federal de Viçosa ViçosaMG Brazil Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Elza F de Araújo
- Departamento de Microbiologia Universidade Federal de Viçosa ViçosaMG Brazil Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|
162
|
Quorum sensing activity of Mesorhizobium sp. F7 isolated from potable water. ScientificWorldJournal 2014; 2014:874764. [PMID: 25177734 PMCID: PMC4142172 DOI: 10.1155/2014/874764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 11/18/2022] Open
Abstract
We isolated a bacterial isolate (F7) from potable water. The strain was identified as Mesorhizobium sp. by 16S rDNA gene phylogenetic analysis and screened for N-acyl homoserine lactone (AHL) production by an AHL biosensor. The AHL profile of the isolate was further analyzed using high resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS) which confirmed the production of multiple AHLs, namely, N-3-oxo-octanoyl-L-homoserine lactone (3-oxo-C8-HSL) and N-3-oxo-decanoyl-L-homoserine lactone (3-oxo-C10-HSL). These findings will open the perspective to study the function of these AHLs in plant-microbe interactions.
Collapse
|
163
|
Pantoea sp. isolated from tropical fresh water exhibiting N-acyl homoserine lactone production. ScientificWorldJournal 2014; 2014:828971. [PMID: 25197715 PMCID: PMC4146356 DOI: 10.1155/2014/828971] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/22/2014] [Indexed: 11/17/2022] Open
Abstract
N-Acyl homoserine lactone (AHL) serves as signaling molecule for quorum sensing (QS) in Gram-negative bacteria to regulate various physiological activities including pathogenicity. With the aim of isolating freshwater-borne bacteria that can cause outbreak of disease in plants and portrayed QS properties, environmental water sampling was conducted. Here we report the preliminary screening of AHL production using Chromobacterium violaceum CV026 and Escherichia coli [pSB401] as AHL biosensors. The 16S rDNA gene sequence of isolate M009 showed the highest sequence similarity to Pantoea stewartii S9-116, which is a plant pathogen. The isolated Pantoea sp. was confirmed to produce N-3-oxohexanoyl-L-HSL (3-oxo-C6-HSL) through analysis of high resolution mass tandem mass spectrometry.
Collapse
|
164
|
Tan PW, Tan WS, Yunos NYM, Mohamad NI, Adrian TGS, Yin WF, Chan KG. Short chain N-acyl homoserine lactone production in tropical marine Vibrio sinaloensis strain T47. SENSORS 2014; 14:12958-67. [PMID: 25046018 PMCID: PMC4168414 DOI: 10.3390/s140712958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/30/2014] [Accepted: 07/11/2014] [Indexed: 11/30/2022]
Abstract
Quorum sensing (QS), acts as one of the gene regulatory systems that allow bacteria to regulate their physiological activities by sensing the population density with synchronization of the signaling molecules that they produce. Here, we report a marine isolate, namely strain T47, and its unique AHL profile. Strain T47 was identified using 16S rRNA sequence analysis confirming that it is a member of Vibrio closely clustered to Vibrio sinaloensis. The isolated V. sinaloensis strain T47 was confirmed to produce N-butanoyl-L-homoserine lactone (C4-HSL) by using high resolution liquid chromatography tandem mass spectrometry. V. sinaloensis strain T47 also formed biofilms and its biofilm formation could be affected by anti-QS compound (cathechin) suggesting this is a QS-regulated trait in V. sinaloensis strain T47. To our knowledge, this is the first documentation of AHL and biofilm production in V. sinaloensis strain T47.
Collapse
Affiliation(s)
- Pui-Wan Tan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wen-Si Tan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Nina Yusrina Muhamad Yunos
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Nur Izzati Mohamad
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Tan-Guan-Sheng Adrian
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
165
|
Cheng HJ, Ee R, Cheong YM, Tan WS, Yin WF, Chan KG. Detection of quorum sensing activity in the multidrug-resistant clinical isolate Pseudomonas aeruginosa strain GB11. SENSORS 2014; 14:12511-22. [PMID: 25019635 PMCID: PMC4168446 DOI: 10.3390/s140712511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/24/2014] [Accepted: 07/08/2014] [Indexed: 11/26/2022]
Abstract
A multidrug-resistant clinical bacteria strain GB11 was isolated from a wound swab on the leg of a patient. Identity of stain GB11 as Pseudomonas aeruginosa was validated by using matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Detection of the production of signaling molecules, N-acylhomoserine lactones (AHLs), was conducted using three different bacterial biosensors. A total of four different AHLs were found to be produced by strain GB11, namely N-butyryl homoserine lactone (C4-HSL), N-hexanoylhomoserine lactone (C6-HSL), N-octanoyl homoserine lactone (C8-HSL) and N-3-oxo-dodecanoylhomoserine lactone (3-oxo-C12-HSL) using high resolution liquid chromatography tandem mass spectrometry (LC-MS/MS). Of these detected AHLs, 3-oxo-C12-HSL was found to be the most abundant AHL produced by P. aeruginosa GB11.
Collapse
Affiliation(s)
- Huey Jia Cheng
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Robson Ee
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Yuet Meng Cheong
- Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 46150 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Wen-Si Tan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
166
|
Tandem mass spectrometry detection of quorum sensing activity in multidrug resistant clinical isolate Acinetobacter baumannii. ScientificWorldJournal 2014; 2014:891041. [PMID: 25101326 PMCID: PMC4101932 DOI: 10.1155/2014/891041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 06/01/2014] [Accepted: 06/02/2014] [Indexed: 01/27/2023] Open
Abstract
Many Proteobacteria communicate via production followed by response of quorum sensing molecules, namely, N-acyl homoserine lactones (AHLs). These molecules consist of a lactone moiety with N-acyl side chain with various chain lengths and degrees of saturation at C-3 position. AHL-dependent QS is often associated with regulation of diverse bacterial phenotypes including the expression of virulence factors. With the use of biosensor and high resolution liquid chromatography tandem mass spectrometry, the AHL production of clinical isolate A. baumannii 4KT was studied. Production of short chain AHL, namely, N-hexanoyl-homoserine lactone (C6-HSL) and N-octanoyl-homoserine lactone (C8-HSL), was detected.
Collapse
|
167
|
Potrykus M, Golanowska M, Hugouvieux-Cotte-Pattat N, Lojkowska E. Regulators involved in Dickeya solani virulence, genetic conservation, and functional variability. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:700-11. [PMID: 24625032 DOI: 10.1094/mpmi-09-13-0270-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bacteria from the genus Dickeya (formerly Erwinia chrysanthemi) are plant pathogens causing severe diseases in many economically important crops. A majority of the strains responsible for potato disease in Europe belong to a newly identified Dickeya solani species. Although some ecological and epidemiological studies have been carried out, little is known about the regulation of D. solani virulence. The characterization of four D. solani strains indicates significant differences in their virulence on potato, although they are genetically similar based on genomic fingerprinting profiles. A phenotypic examination included an analysis of virulence on potato; growth rate in culture; motility; Fe3+ chelation; and pectate lyase, cellulase, protease, biosurfactant, and blue pigment production. Mutants of four D. solani strains were constructed by inactivating the genes coding either for one of the main negative regulators of D. dadantii virulence (kdgR, pecS, and pecT) or for the synthesis and perception of signaling molecules (expI and expR). Analysis of these mutants indicated that PecS, PecT, and KdgR play a similar role in both species, repressing, to different degrees, the synthesis of virulence factors. The thermoregulator PecT seems to be a major regulator of D. solani virulence. This work also reveals the role of quorum sensing mediated by ExpI and ExpR in D. solani virulence on potato.
Collapse
|
168
|
Koch G, Nadal-Jimenez P, Cool RH, Quax WJ. Deinococcus radiodurans can interfere with quorum sensing by producing an AHL-acylase and an AHL-lactonase. FEMS Microbiol Lett 2014; 356:62-70. [PMID: 24863934 DOI: 10.1111/1574-6968.12479] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/13/2014] [Accepted: 05/19/2014] [Indexed: 11/29/2022] Open
Abstract
Bacterial communication via the secretion of small diffusible compounds allows microorganisms to regulate gene expression in a coordinated manner. As many virulence traits are regulated in this fashion, disruption of chemical communication has been proposed as novel antimicrobial therapy. Quorum-quenching enzymes have been a promising discovery in this field as they interfere with the communication of Gram-negative bacteria. AHL-lactonases and AHL-acylases have been described in a variety of bacterial strains; however, usually only one of these two groups of enzymes has been described in a single species. We report here the presence of a member of each group of enzymes in the extremophile bacterium Deinococcus radiodurans. Co-occurrence of both enzymes in a single species increases the chance of inactivating foreign AHL signals under different conditions. We demonstrate that both enzymes are able to degrade the quorum-sensing molecules of various pathogens subsequently affecting virulence gene expression. These studies add the quorum-quenching enzymes of D. radiodurans to the list of potent quorum-quenchers and highlight the idea that quorum quenching could have evolved in some bacteria as a strategy to gain a competitive advantage by altering gene expression in other species.
Collapse
Affiliation(s)
- Gudrun Koch
- Department of Pharmaceutical Biology, University of Groningen, Groningen, the Netherlands
| | | | | | | |
Collapse
|
169
|
Tan WS, Yunos NYM, Tan PW, Mohamad NI, Adrian TGS, Yin WF, Chan KG. Freshwater-borne bacteria isolated from a Malaysian rainforest waterfall exhibiting quorum sensing properties. SENSORS 2014; 14:10527-37. [PMID: 24932870 PMCID: PMC4118381 DOI: 10.3390/s140610527] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/04/2014] [Accepted: 06/11/2014] [Indexed: 11/16/2022]
Abstract
One obvious requirement for concerted action by a bacterial population is for an individual to be aware of and respond to the other individuals of the same species in order to form a response in unison. The term "quorum sensing" (QS) was coined to describe bacterial communication that is able to stimulate expression of a series of genes when the concentration of the signaling molecules has reached a threshold level. Here we report the isolation from aquatic environment of a bacterium that was later identified as Enterobacter sp.. Chromobacterium violaceum CV026 and Escherichia coli [pSB401] were used for preliminary screening of N-acyl homoserine lactone (AHL) production. The Enterobacter sp. isolated was shown to produce two types of AHLs as confirmed by analysis using high resolution tandem mass spectrometry. To the best of our knowledge, this is the first documentation of an Enterobacter sp. that produced both 3-oxo-C6-HSL and 3-oxo-C8-HSL as QS signaling molecules.
Collapse
Affiliation(s)
- Wen-Si Tan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Nina Yusrina Muhamad Yunos
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Pui-Wan Tan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Nur Izzati Mohamad
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Tan-Guan-Sheng Adrian
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
170
|
Ee R, Lim YL, Kin LX, Yin WF, Chan KG. Quorum sensing activity in Pandoraea pnomenusa RB38. SENSORS 2014; 14:10177-86. [PMID: 24919016 PMCID: PMC4118335 DOI: 10.3390/s140610177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/25/2014] [Accepted: 05/28/2014] [Indexed: 11/16/2022]
Abstract
Strain RB38 was recovered from a former dumping area in Malaysia. MALDI-TOF mass spectrometry and genomic analysis identified strain RB-38 as Pandoraea pnomenusa. Various biosensors confirmed its quorum sensing properties. High resolution triple quadrupole liquid chromatography–mass spectrometry analysis was subsequently used to characterize the N-acyl homoserine lactone production profile of P. pnomenusa strain RB38, which validated that this isolate produced N-octanoyl homoserine lactone as a quorum sensing molecule. This is the first report of the production of N-octanoyl homoserine lactone by P. pnomenusa strain RB38.
Collapse
Affiliation(s)
- Robson Ee
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Yan-Lue Lim
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Lin-Xin Kin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
171
|
Florez Escobar AM, Gonzalez A, Pedroza CJ, Correa E, Rueda NJ, Orduz S. Identification, cloning and lactonase activity of recombinant protein of N-acyl homoserine lactonase (AiiA) from Bacillus thuringiensis 147-115-16 strain. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2014. [DOI: 10.15446/rev.colomb.biote.v16n1.40495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
172
|
Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of Pseudomonas aeruginosa. Infect Immun 2014; 82:3312-23. [PMID: 24866798 PMCID: PMC4136229 DOI: 10.1128/iai.01554-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Research into chronic infection by bacterial pathogens, such as Pseudomonas aeruginosa, uses various in vitro and live host models. While these have increased our understanding of pathogen growth, virulence, and evolution, each model has certain limitations. In vitro models cannot recapitulate the complex spatial structure of host organs, while experiments on live hosts are limited in terms of sample size and infection duration for ethical reasons; live mammal models also require specialized facilities which are costly to run. To address this, we have developed an ex vivo pig lung (EVPL) model for quantifying Pseudomonas aeruginosa growth, quorum sensing (QS), virulence factor production, and tissue damage in an environment that mimics a chronically infected cystic fibrosis (CF) lung. In a first test of our model, we show that lasR mutants, which do not respond to 3-oxo-C12-homoserine lactone (HSL)-mediated QS, exhibit reduced virulence factor production in EVPL. We also show that lasR mutants grow as well as or better than a corresponding wild-type strain in EVPL. lasR mutants frequently and repeatedly arise during chronic CF lung infection, but the evolutionary forces governing their appearance and spread are not clear. Our data are not consistent with the hypothesis that lasR mutants act as social “cheats” in the lung; rather, our results support the hypothesis that lasR mutants are more adapted to the lung environment. More generally, this model will facilitate improved studies of microbial disease, especially studies of how cells of the same and different species interact in polymicrobial infections in a spatially structured environment.
Collapse
|
173
|
Ryall B, Carrara M, Zlosnik JEA, Behrends V, Lee X, Wong Z, Lougheed KE, Williams HD. The mucoid switch in Pseudomonas aeruginosa represses quorum sensing systems and leads to complex changes to stationary phase virulence factor regulation. PLoS One 2014; 9:e96166. [PMID: 24852379 PMCID: PMC4031085 DOI: 10.1371/journal.pone.0096166] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/03/2014] [Indexed: 01/04/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa chronically infects the airways of Cystic Fibrosis (CF) patients during which it adapts and undergoes clonal expansion within the lung. It commonly acquires inactivating mutations of the anti-sigma factor MucA leading to a mucoid phenotype, caused by excessive production of the extracellular polysaccharide alginate that is associated with a decline in lung function. Alginate production is believed to be the key benefit of mucA mutations to the bacterium in the CF lung. A phenotypic and gene expression characterisation of the stationary phase physiology of mucA22 mutants demonstrated complex and subtle changes in virulence factor production, including cyanide and pyocyanin, that results in their down-regulation upon entry into stationary phase but, (and in contrast to wildtype strains) continued production in prolonged stationary phase. These findings may have consequences for chronic infection if mucoid P. aeruginosa were to continue to make virulence factors under non-growing conditions during infection. These changes resulted in part from a severe down-regulation of both AHL-and AQ (PQS)-dependent quorum sensing systems. In trans expression of the cAMP-dependent transcription factor Vfr restored both quorum sensing defects and virulence factor production in early stationary phase. Our findings have implications for understanding the evolution of P. aeruginosa during CF lung infection and it demonstrates that mucA22 mutation provides a second mechanism, in addition to the commonly occurring lasR mutations, of down-regulating quorum sensing during chronic infection this may provide a selection pressure for the mucoid switch in the CF lung.
Collapse
Affiliation(s)
- Ben Ryall
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Marta Carrara
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - James E. A. Zlosnik
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Volker Behrends
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Xiaoyun Lee
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Zhen Wong
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Kathryn E. Lougheed
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
| | - Huw D. Williams
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, Sir Alexander Fleming Building, London, United Kingdom
- * E-mail:
| |
Collapse
|
174
|
Goh SY, Tan WS, Khan SA, Chew HP, Abu Kasim NH, Yin WF, Chan KG. Unusual multiple production of N-acylhomoserine lactones a by Burkholderia sp. strain C10B isolated from dentine caries. SENSORS 2014; 14:8940-9. [PMID: 24854358 PMCID: PMC4063041 DOI: 10.3390/s140508940] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/04/2014] [Accepted: 05/13/2014] [Indexed: 01/12/2023]
Abstract
Bacteria realize the ability to communicate by production of quorum sensing (QS) molecules called autoinducers, which regulate the physiological activities in their ecological niches. The oral cavity could be a potential area for the presence of QS bacteria. In this study, we report the isolation of a QS bacterial isolate C10B from dentine caries. Preliminary screening using Chromobacterium violaceum CV026 biosensor showed that isolate C10B was able to produce N-acylhomoserine lactones (AHLs). This bacterium was further identified as a member of Burkholderia, an opportunistic pathogen. The isolated Burkholderia sp. was confirmed to produce N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL), N-decanoyl-L-homoserine lactone (C10-HSL) and N-dodecanoyl-L-homoserine lactone (C12-HSL).
Collapse
Affiliation(s)
- Share Yuan Goh
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Wen-Si Tan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Saad Ahmed Khan
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Hooi Pin Chew
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
175
|
Lade H, Paul D, Kweon JH. Quorum quenching mediated approaches for control of membrane biofouling. Int J Biol Sci 2014; 10:550-65. [PMID: 24910534 PMCID: PMC4046882 DOI: 10.7150/ijbs.9028] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 04/29/2014] [Indexed: 12/24/2022] Open
Abstract
Membrane biofouling is widely acknowledged as the most frequent adverse event in wastewater treatment systems resulting in significant loss of treatment efficiency and economy. Different strategies including physical cleaning and use of antimicrobial chemicals or antibiotics have been tried for reducing membrane biofouling. Such traditional practices are aimed to eradicate biofilms or kill the bacteria involved, but the greater efficacy in membrane performance would be achieved by inhibiting biofouling without interfering with bacterial growth. As a result, the search for environmental friendly non-antibiotic antifouling strategies has received much greater attention among scientific community. The use of quorum quenching natural compounds and enzymes will be a potential approach for control of membrane biofouling. This approach has previously proven useful in diseases and membrane biofouling control by triggering the expression of desired phenotypes. In view of this, the present review is provided to give the updated information on quorum quenching compounds and elucidate the significance of quorum sensing inhibition in control of membrane biofouling.
Collapse
Affiliation(s)
| | - Diby Paul
- Department of Environmental Engineering, Konkuk University, Seoul-143-701, Korea
| | - Ji Hyang Kweon
- Department of Environmental Engineering, Konkuk University, Seoul-143-701, Korea
| |
Collapse
|
176
|
Complete Genome Sequence of Pandoraea pnomenusa 3kgm, a Quorum-Sensing Strain Isolated from a Former Landfill Site. GENOME ANNOUNCEMENTS 2014; 2:2/3/e00427-14. [PMID: 24812228 PMCID: PMC4014696 DOI: 10.1128/genomea.00427-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pandoraea pnomenusa strain 3kgm has been identified as a quorum-sensing strain isolated from soil. Here, we report the complete genome sequence of P. pnomenusa strain 3kgm by using the Pacific Biosciences single-molecule real-time (PacBio RS SMRT) sequencer high-resolution technology.
Collapse
|
177
|
Grosso-Becerra MV, Santos-Medellín C, González-Valdez A, Méndez JL, Delgado G, Morales-Espinosa R, Servín-González L, Alcaraz LD, Soberón-Chávez G. Pseudomonas aeruginosa clinical and environmental isolates constitute a single population with high phenotypic diversity. BMC Genomics 2014; 15:318. [PMID: 24773920 PMCID: PMC4234422 DOI: 10.1186/1471-2164-15-318] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 03/24/2014] [Indexed: 12/28/2022] Open
Abstract
Background Pseudomonas aeruginosa is an opportunistic pathogen with a high incidence of hospital infections that represents a threat to immune compromised patients. Genomic studies have shown that, in contrast to other pathogenic bacteria, clinical and environmental isolates do not show particular genomic differences. In addition, genetic variability of all the P. aeruginosa strains whose genomes have been sequenced is extremely low. This low genomic variability might be explained if clinical strains constitute a subpopulation of this bacterial species present in environments that are close to human populations, which preferentially produce virulence associated traits. Results In this work, we sequenced the genomes and performed phenotypic descriptions for four non-human P. aeruginosa isolates collected from a plant, the ocean, a water-spring, and from dolphin stomach. We show that the four strains are phenotypically diverse and that this is not reflected in genomic variability, since their genomes are almost identical. Furthermore, we performed a detailed comparative genomic analysis of the four strains studied in this work with the thirteen previously reported P. aeruginosa genomes by means of describing their core and pan-genomes. Conclusions Contrary to what has been described for other bacteria we have found that the P. aeruginosa core genome is constituted by a high proportion of genes and that its pan-genome is thus relatively small. Considering the high degree of genomic conservation between isolates of P. aeruginosa from diverse environments, including human tissues, some implications for the treatment of infections are discussed. This work also represents a methodological contribution for the genomic study of P. aeruginosa, since we provide a database of the comparison of all the proteins encoded by the seventeen strains analyzed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gloria Soberón-Chávez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, DF, México.
| |
Collapse
|
178
|
Lim YL, Ee R, Yin WF, Chan KG. Quorum sensing activity of Aeromonas caviae strain YL12, a bacterium isolated from compost. SENSORS 2014; 14:7026-40. [PMID: 24759107 PMCID: PMC4029632 DOI: 10.3390/s140407026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/06/2014] [Accepted: 04/10/2014] [Indexed: 11/26/2022]
Abstract
Quorum sensing is a well-studied cell-to-cell communication method that involves a cell-density dependent regulation of genes expression mediated by signalling molecules. In this study, a bacterium isolated from a plant material compost pile was found to possess quorum sensing activity based on bioassay screening. Isolate YL12 was identified using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry and molecular typing using rpoD gene which identified the isolate as Aeromonas caviae. High resolution tandem mass spectrometry was subsequently employed to identify the N-acyl homoserine lactone profile of Aeromonas caviae YL12 and confirmed that this isolate produced two short chain N-acyl homoserine lactones, namely C4-HSL and C6, and the production was observed to be cell density-dependent. Using the thin layer chromatography (TLC) bioassay, both AHLs were found to activate C. violaceum CV026, whereas only C6-HSL was revealed to induce bioluminescence expression of E. coli [pSB401]. The data presented in this study will be the leading steps in understanding the role of quorum sensing in Aeromonas caviae strain YL12.
Collapse
Affiliation(s)
- Yan-Lue Lim
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Robson Ee
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
179
|
Ee R, Lim YL, Tee KK, Yin WF, Chan KG. Quorum sensing activity of Serratia fonticola strain RB-25 isolated from an ex-landfill site. SENSORS 2014; 14:5136-46. [PMID: 24625739 PMCID: PMC4003984 DOI: 10.3390/s140305136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/17/2014] [Accepted: 02/26/2014] [Indexed: 02/06/2023]
Abstract
Quorum sensing is a unique bacterial communication system which permits bacteria to synchronize their behaviour in accordance with the population density. The operation of this communication network involves the use of diffusible autoinducer molecules, termed N-acylhomoserine lactones (AHLs). Serratia spp. are well known for their use of quorum sensing to regulate the expression of various genes. In this study, we aimed to characterized the AHL production of a bacterium designated as strain RB-25 isolated from a former domestic waste landfill site. It was identified as Serratia fonticola using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis and this was confirmed by 16S ribosomal DNA sequencing. High resolution triple quadrupole liquid chromatography-mass spectrometry analysis of S. fonticola strain RB-25 spent culture supernatant indicated the existence of three AHLs namely: N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL) and N-(3-oxohexanoyl) homoserine-lactone (3-oxo-C6 HSL). This is the first report of the production of these AHLs in S. fonticola.
Collapse
Affiliation(s)
- Robson Ee
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Yan-Lue Lim
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kok-Keng Tee
- Centre of Excellence for Research in AIDS (CERiA), Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
180
|
Blana VA, Nychas GJE. Presence of quorum sensing signal molecules in minced beef stored under various temperature and packaging conditions. Int J Food Microbiol 2014; 173:1-8. [DOI: 10.1016/j.ijfoodmicro.2013.11.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
|
181
|
Yap PSX, Krishnan T, Yiap BC, Hu CP, Chan KG, Lim SHE. Membrane disruption and anti-quorum sensing effects of synergistic interaction between Lavandula angustifolia (lavender oil) in combination with antibiotic against plasmid-conferred multi-drug-resistant Escherichia coli. J Appl Microbiol 2014; 116:1119-28. [PMID: 24779580 DOI: 10.1111/jam.12444] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 12/16/2022]
Abstract
AIM The aim of this study was to investigate the mode of action of the lavender essential oil (LV) on antimicrobial activity against multi-drug-resistant Escherichia coli J53 R1 when used singly and in combination with piperacillin. METHOD AND RESULTS In the time-kill analysis, a complete killing of bacteria was observed based on colony counts within 4 h when LV was combined with piperacillin during exposure at determined FIC concentrations. Analysis of the membrane permeabilizing effects of LV on treated cultures through their stability against sodium dodecyl sulphate revealed that the LV played a role in disrupting the bacterial cell membrane. The finding is further supported by scanning electron microscopy analysis and zeta potential measurement. In addition, reduction in light production expression of E. coli [pSB1075] by the LV showed the presence of potential quorum sensing (QS) inhibitors. CONCLUSIONS These results indicated that the LV has the potential to reverse bacterial resistance to piperacillin in E. coli J53 R1. It may operate via two mechanisms: alteration of outer membrane permeability and inhibition of bacterial QS. SIGNIFICANCE AND IMPACT OF THE STUDY These findings offer a novel approach to develop a new option of phytopharmaceuticals against multi-drug-resistant E. coli.
Collapse
Affiliation(s)
- P S X Yap
- School of Postgraduate Studies and Research, International Medical University, Kuala Lumpur, Malaysia
| | | | | | | | | | | |
Collapse
|
182
|
QsrO a novel regulator of quorum-sensing and virulence in Pseudomonas aeruginosa. PLoS One 2014; 9:e87814. [PMID: 24551066 PMCID: PMC3923755 DOI: 10.1371/journal.pone.0087814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/31/2013] [Indexed: 12/11/2022] Open
Abstract
In Pseudomonas aeruginosa, the production of many secreted virulence factors is controlled by a quorum-sensing (QS) circuit, constituted of transcriptional activators (LasR, RhlR, PqsR) and their cognate signaling molecules (3-oxo-C12-HSL, C4-HSL, PQS). QS is a cooperative behavior that is beneficial to a population but can be exploited by “QS-cheaters”, individuals which do not respond to the QS-signal, but can use public goods produced by QS-cooperators. In order to identify QS-deficient clones we designed a genetic screening based on a lasB-lacZ fusion. We isolated one clone (PT1617) deficient in QS-dependent gene expression and virulence factor production despite wild type lasR, rhlR and pqsR alleles. Whole genome sequencing of PT1617 revealed a 3,552 bp deletion encompassing ORFs PA2228-PA2229-PA2230 and the pslA gene. However, complementation of PT1617 by plasmid-encoded copies of these ORFs, did not restore QS. Unexpectedly, gene expression levels of ORFs PA2228, PA2227 (vqsM) and PA2222, located adjacent to the deletion, were 10 to 100 fold higher in mutant PT1617 than in PAO1. When expressed from a constitutive promoter on a plasmid, PA2226, alone was found to be sufficient to confer a QS-negative phenotype on PAO1 as well as on PA14. Co-expression of PA2226 and PA2225 in PAO1 further prevented induction of the type III secretion system. In summary, we have identified a novel genetic locus including ORF2226 termed qsrO (QS-repressing ORF), capable of down-regulating all three known QS-systems in P. aeruginosa.
Collapse
|
183
|
Yap PSX, Yiap BC, Ping HC, Lim SHE. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol J 2014; 8:6-14. [PMID: 24627729 PMCID: PMC3950955 DOI: 10.2174/1874285801408010006] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 10/24/2013] [Accepted: 12/26/2013] [Indexed: 02/01/2023] Open
Abstract
For many years, the battle between humans and the multitudes of infection and disease causing pathogens continues. Emerging at the battlefield as some of the most significant challenges to human health are bacterial resistance and its rapid rise. These have become a major concern in global public health invigorating the need for new antimicrobial compounds. A rational approach to deal with antibiotic resistance problems requires detailed knowledge of the different biological and non-biological factors that affect the rate and extent of resistance development. Combination therapy combining conventional antibiotics and essential oils is currently blooming and represents a potential area for future investigations. This new generation of phytopharmaceuticals may shed light on the development of new pharmacological regimes in combating antibiotic resistance. This review consolidated and described the observed synergistic outcome between essential oils and antibiotics, and highlighted the possibilities of essential oils as the potential resistance modifying agent.
Collapse
Affiliation(s)
- Polly Soo Xi Yap
- School of Postgraduate Studies and Research, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Beow Chin Yiap
- School of Pharmacy, Department of Life Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Hu Cai Ping
- School of Health Sciences, Department of Chinese Medicine, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Swee Hua Erin Lim
- School of Pharmacy, Department of Life Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
184
|
Abbamondi GR, De Rosa S, Iodice C, Tommonaro G. Cyclic Dipeptides Produced by Marine Sponge-Associated Bacteria as Quorum Sensing Signals. Nat Prod Commun 2014. [DOI: 10.1177/1934578x1400900225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Four bacterial strains belonging to the genera Vibrio, Pseudoalteromonas and Photobacterium were isolated from the marine sponges Dysidea avara and Geodia cynodium. A Bacillus strain was isolated from Ircinia variabilis. A screening of molecules involved in quorum sensing (QS) was carried out by TLC-overlay and a new “plate T-streak” test. To analyze quorum quenching (QQ), a plate T-streak was performed with Chromobacterium violaceum. Strains of Vibrio isolated from both marine sponges and a strain of Photobacterium isolated from G. cynodium, activated QS bioreporters. A strain of Pseudoalteromonas isolated from D. avara showed QQ activity. Finally, it is reported that cyclic dipeptides isolated from strains of Vibrio sp. and Bacillus sp. (isolated from D. avara and I. variabilis, respectively) were involved in the QS mechanism. The simultaneous presence of bacteria that showed contrasting responses in bioassays for QS signal molecule synthesis in marine sponges could add an interesting dimension to the signalling interactions which may be happening in sponges.
Collapse
Affiliation(s)
| | - Salvatore De Rosa
- CNR - National Research Council of Italy- Institute of Biomolecular Chemistry, Pozzuoli (NA), Italy
| | - Carmine Iodice
- CNR - National Research Council of Italy- Institute of Biomolecular Chemistry, Pozzuoli (NA), Italy
| | - Giuseppina Tommonaro
- CNR - National Research Council of Italy- Institute of Biomolecular Chemistry, Pozzuoli (NA), Italy
| |
Collapse
|
185
|
Patel HK, Ferrante P, Covaceuszach S, Lamba D, Scortichini M, Venturi V. The kiwifruit emerging pathogen Pseudomonas syringae pv. actinidiae does not produce AHLs but possesses three luxR solos. PLoS One 2014; 9:e87862. [PMID: 24498215 PMCID: PMC3909224 DOI: 10.1371/journal.pone.0087862] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 12/30/2013] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is an emerging phytopathogen causing bacterial canker disease in kiwifruit plants worldwide. Quorum sensing (QS) gene regulation plays important roles in many different bacterial plant pathogens. In this study we analyzed the presence and possible role of N-acyl homoserine lactone (AHL) quorum sensing in Psa. It was established that Psa does not produce AHLs and that a typical complete LuxI/R QS system is absent in Psa strains. Psa however possesses three putative luxR solos designated here as PsaR1, PsaR2 and PsaR3. PsaR2 belongs to the sub-family of LuxR solos present in many plant associated bacteria (PAB) that binds and responds to yet unknown plant signal molecules. PsaR1 and PsaR3 are highly similar to LuxRs which bind AHLs and are part of the canonical LuxI/R AHL QS systems. Mutation in all the three luxR solos of Psa showed reduction of in planta survival and also showed additive effect if more than one solo was inactivated in double mutants. Gene promoter analysis revealed that the three solos are not auto-regulated and investigated their possible role in several bacterial phenotypes.
Collapse
Affiliation(s)
| | - Patrizia Ferrante
- Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy
| | - Sonia Covaceuszach
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, U.O.S di Trieste, Trieste, Italy
| | - Doriano Lamba
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, U.O.S di Trieste, Trieste, Italy
| | - Marco Scortichini
- Research Centre for Fruit Crops, Agricultural Research Council, Roma, Italy
- Research Unit for Fruit Trees, Agricultural Research Council, Caserta, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
186
|
Reducing virulence of the human pathogen Burkholderia by altering the substrate specificity of the quorum-quenching acylase PvdQ. Proc Natl Acad Sci U S A 2014; 111:1568-73. [PMID: 24474783 DOI: 10.1073/pnas.1311263111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The use of enzymes to interfere with quorum sensing represents an attractive strategy to fight bacterial infections. We used PvdQ, an effective quorum-quenching enzyme from Pseudomonas aeruginosa, as a template to generate an acylase able to effectively hydrolyze C8-HSL, the major communication molecule produced by the Burkholderia species. We discovered that the combination of two single mutations leading to variant PvdQ(Lα146W,Fβ24Y) conferred high activity toward C8-HSL. Exogenous addition of PvdQ(Lα146W,Fβ24Y) dramatically decreased the amount of C8-HSL present in Burkholderia cenocepacia cultures and inhibited a quorum sensing-associated phenotype. The efficacy of this PvdQ variant to combat infections in vivo was further confirmed by its ability to rescue Galleria mellonella larvae upon infection, demonstrating its potential as an effective agent toward Burkholderia infections. Kinetic analysis of the enzymatic activities toward 3-oxo-C12-L-HSL and C8-L-HSL corroborated a substrate switch. This work demonstrates the effectiveness of quorum-quenching acylases as potential novel antimicrobial drugs. In addition, we demonstrate that their substrate range can be easily switched, thereby paving the way to selectively target only specific bacterial species inside a complex microbial community.
Collapse
|
187
|
Fletcher M, Cámara M, Barrett DA, Williams P. Biosensors for qualitative and semiquantitative analysis of quorum sensing signal molecules. Methods Mol Biol 2014; 1149:245-254. [PMID: 24818910 DOI: 10.1007/978-1-4939-0473-0_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biosensors are biological tools that can be used to assay bacterial cultures for quorum sensing signal molecules (QSSMs) both qualitatively and semiquantitatively. QSSMs can be extracted from Pseudomonas aeruginosa cultures using organic solvents and tentatively identified via thin layer chromatography in combination with biosensor overlays. Alternatively, QSSMs can be quantified in spent culture supernatants or solvent extracts using biosensor-based spectrophotometric, luminescence, or fluorescence assays.
Collapse
Affiliation(s)
- Matthew Fletcher
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | | | | |
Collapse
|
188
|
Structural effects on persister control by brominated furanones. Bioorg Med Chem Lett 2013; 23:6559-62. [DOI: 10.1016/j.bmcl.2013.10.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 11/18/2022]
|
189
|
Emergence of the P2 phenotype in Pseudomonas aeruginosa PAO1 strains involves various mutations in mexT or mexF. J Bacteriol 2013; 196:504-13. [PMID: 24244000 DOI: 10.1128/jb.01050-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently demonstrated that Pseudomonas aeruginosa PAO1 undergoes a pronounced phenotypic change when introduced into the intestines of rats during surgical injury. Recovered strains displayed a specific phenotype (termed the P2 phenotype) characterized by altered pyocyanin production, high collagenase activity, high swarming motility, low resistance to chloramphenicol, and increased killing of Caenorhabditis elegans compared to the inoculating strain (termed the P1 phenotype). The aims of this study were to characterize the differences between the P. aeruginosa P1 and P2 phenotypes in quorum sensing and competitiveness. We then determined the presence of the P2 phenotype among PAO1 strains from various laboratories. Results demonstrated that P2 cells display accelerated growth during early exponential phase and early activation of quorum-sensing systems and overcome the growth of P1 cells in a mixed population. Among eight PAO1 strains obtained from different laboratories, four exhibited the P2 phenotype. Of 27 mutants analyzed from the P. aeruginosa MPAO1 transposon library, 25 displayed P2 phenotypes. The P2 phenotype in both cases correlated with a lack of expression of mexE or mexF due to mutations in mexT and mexF genes. In summary, strains possessing the P2 phenotype are distributed among PAO1 strains commonly used across a variety of research laboratories. Genetically, they are characterized by various mutations in mexT or mexF.
Collapse
|
190
|
Lui LT, Xue X, Sui C, Brown A, Pritchard DI, Halliday N, Winzer K, Howdle SM, Fernandez-Trillo F, Krasnogor N, Alexander C. Bacteria clustering by polymers induces the expression of quorum-sensing-controlled phenotypes. Nat Chem 2013; 5:1058-65. [PMID: 24256871 DOI: 10.1038/nchem.1793] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 10/04/2013] [Indexed: 12/28/2022]
Abstract
Bacteria deploy a range of chemistries to regulate their behaviour and respond to their environment. Quorum sensing is one method by which bacteria use chemical reactions to modulate pre-infection behaviour such as surface attachment. Polymers that can interfere with bacterial adhesion or the chemical reactions used for quorum sensing are therefore a potential means to control bacterial population responses. Here, we report how polymeric 'bacteria sequestrants', designed to bind to bacteria through electrostatic interactions and therefore inhibit bacterial adhesion to surfaces, induce the expression of quorum-sensing-controlled phenotypes as a consequence of cell clustering. A combination of polymer and analytical chemistry, biological assays and computational modelling has been used to characterize the feedback between bacteria clustering and quorum sensing signalling. We have also derived design principles and chemical strategies for controlling bacterial behaviour at the population level.
Collapse
Affiliation(s)
- Leong T Lui
- School of Computer Science, The University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Anti-quorum sensing activity of the traditional Chinese herb, Phyllanthus amarus. SENSORS 2013; 13:14558-69. [PMID: 24169540 PMCID: PMC3871092 DOI: 10.3390/s131114558] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/02/2022]
Abstract
The discovery of quorum sensing in Proteobacteria and its function in regulating virulence determinants makes it an attractive alternative towards attenuation of bacterial pathogens. In this study, crude extracts of Phyllanthus amarus Schumach. & Thonn, a traditional Chinese herb, were screened for their anti-quorum sensing properties through a series of bioassays. Only the methanolic extract of P. amarus exhibited anti-quorum sensing activity, whereby it interrupted the ability of Chromobacterium violaceum CVO26 to response towards exogenously supplied N-hexanoylhomoserine lactone and the extract reduced bioluminescence in E. coli [pSB401] and E. coli [pSB1075]. In addition to this, methanolic extract of P. amarus significantly inhibited selected quorum sensing-regulated virulence determinants of Pseudomonas aeruginosa PA01. Increasing concentrations of the methanolic extracts of P. amarus reduced swarming motility, pyocyanin production and P. aeruginosa PA01 lecA∷lux expression. Our data suggest that P. amarus could be useful for attenuating pathogens and hence, more local traditional herbs should be screened for its anti-quorum sensing properties as their active compounds may serve as promising anti-pathogenic drugs.
Collapse
|
192
|
Whiley RA, Sheikh NP, Mushtaq N, Hagi-Pavli E, Personne Y, Javaid D, Waite RD. Differential Potentiation of the Virulence of the Pseudomonas aeruginosa Cystic Fibrosis Liverpool Epidemic Strain by Oral Commensal Streptococci. J Infect Dis 2013; 209:769-80. [DOI: 10.1093/infdis/jit568] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
193
|
Lau YY, Sulaiman J, Chen JW, Yin WF, Chan KG. Quorum sensing activity of Enterobacter asburiae isolated from lettuce leaves. SENSORS (BASEL, SWITZERLAND) 2013; 13:14189-99. [PMID: 24152877 PMCID: PMC3859116 DOI: 10.3390/s131014189] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/26/2013] [Accepted: 09/30/2013] [Indexed: 02/02/2023]
Abstract
Bacterial communication or quorum sensing (QS) is achieved via sensing of QS signaling molecules consisting of oligopeptides in Gram-positive bacteria and N-acyl homoserine lactones (AHL) in most Gram-negative bacteria. In this study, Enterobacteriaceae isolates from Batavia lettuce were screened for AHL production. Enterobacter asburiae, identified by matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS) was found to produce short chain AHLs. High resolution triple quadrupole liquid chromatography mass spectrometry (LC/MS) analysis of the E. asburiae spent supernatant confirmed the production of N-butanoyl homoserine lactone (C4-HSL) and N-hexanoyl homoserine lactone (C6-HSL). To the best of our knowledge, this is the first report of AHL production by E. asburiae.
Collapse
Affiliation(s)
- Yin Yin Lau
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (Y.Y.L.); (J.S.); (J.W.C.); (W.-F.Y.)
| | - Joanita Sulaiman
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (Y.Y.L.); (J.S.); (J.W.C.); (W.-F.Y.)
| | - Jian Woon Chen
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (Y.Y.L.); (J.S.); (J.W.C.); (W.-F.Y.)
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (Y.Y.L.); (J.S.); (J.W.C.); (W.-F.Y.)
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (Y.Y.L.); (J.S.); (J.W.C.); (W.-F.Y.)
| |
Collapse
|
194
|
Han-Jen RE, Wai-Fong Y, Kok-Gan C. Pandoraea sp. RB-44, a novel quorum sensing soil bacterium. SENSORS 2013; 13:14121-32. [PMID: 24145919 PMCID: PMC3859112 DOI: 10.3390/s131014121] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/20/2013] [Accepted: 09/30/2013] [Indexed: 11/16/2022]
Abstract
Proteobacteria are known to communicate via signaling molecules and this process is known as quorum sensing. The most commonly studied quorum sensing molecules are N-acylhomoserine lactones (AHLs) that consists of a homoserine lactone moiety and an N-acyl side chain with various chain lengths and degrees of saturation at the C-3 position. We have isolated a bacterium, RB-44, from a site which was formally a landfill dumping ground. Using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry analysis, this isolate was identified as a Pandoraea sp.which was then screened for AHL production using biosensors which indicated its quorum sensing properties. To identify the AHL profile of Pandoraea sp. RB-44, we used high resolution tandem mass spectrometry confirming that this isolate produced N-octanoylhomoserine lactone (C8-HSL). To the best of our knowledge, this is the first report that showed quorum sensing activity exhibited by Pandoraea sp. Our data add Pandoraea sp. to the growing number of bacteria that possess QS systems.
Collapse
Affiliation(s)
- Robson Ee Han-Jen
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | | | | |
Collapse
|
195
|
Chan KG. Expression ofKlebsiellasp. lactonaseahlKgene is growth-phase, cell-population density andN-acylhomoserine lactone independent. FRONTIERS IN LIFE SCIENCE 2013. [DOI: 10.1080/21553769.2013.833141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
196
|
Bowden SD, Eyres A, Chung JCS, Monson RE, Thompson A, Salmond GPC, Spring DR, Welch M. Virulence in Pectobacterium atrosepticum is regulated by a coincidence circuit involving quorum sensing and the stress alarmone, (p)ppGpp. Mol Microbiol 2013; 90:457-71. [PMID: 23957692 DOI: 10.1111/mmi.12369] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2013] [Indexed: 12/19/2022]
Abstract
Pectobacterium atrosepticum (Pca) is a Gram-negative phytopathogen which causes disease by secreting plant cell wall degrading exoenzymes (PCWDEs). Previous studies have shown that PCWDE production is regulated by (i) the intercellular quorum sensing (QS) signal molecule, 3-oxo-hexanoyl-l-homoserine lactone (OHHL), and (ii) the intracellular 'alarmone', (p)ppGpp, which reports on nutrient limitation. Here we show that these two signals form an integrated coincidence circuit which ensures that metabolically costly PCWDE synthesis does not occur unless the population is simultaneously quorate and nutrient limited. A (p)ppGpp null ΔrelAΔspoT mutant was defective in both OHHL and PCWDE production, and nutritional supplementation of wild type cultures (which suppresses (p)ppGpp production) also suppressed OHHL and PCWDE production. There was a substantial overlap in the transcriptome of a (p)ppGpp deficient relA mutant and of a QS defective expI (OHHL synthase) mutant, especially with regards to virulence-associated genes. Random transposon mutagenesis revealed that disruption of rsmA was sufficient to restore PCWDE production in the (p)ppGpp null strain. We found that the ratio of RsmA protein to its RNA antagonist, rsmB, was modulated independently by (p)ppGpp and QS. While QS predominantly controlled virulence by modulating RsmA levels, (p)ppGpp exerted regulation through the modulation of the RsmA antagonist, rsmB.
Collapse
Affiliation(s)
- Steven D Bowden
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge, CB2 1QW, UK
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Chen JW, Chin S, Tee KK, Yin WF, Choo YM, Chan KG. N-acyl homoserine lactone-producing Pseudomonas putida strain T2-2 from human tongue surface. SENSORS 2013; 13:13192-203. [PMID: 24084113 PMCID: PMC3859058 DOI: 10.3390/s131013192] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 08/28/2013] [Accepted: 09/22/2013] [Indexed: 01/30/2023]
Abstract
Bacterial cell-to-cell communication (quorum sensing) refers to the regulation of bacterial gene expression in response to changes in microbial population density. Quorum sensing bacteria produce, release and respond to chemical signal molecules called autoinducers. Bacteria use two types of autoinducers, namely autoinducer-1 (AI-1) and autoinducer-2 (AI-2) where the former are N-acylhomoserine lactones and the latter is a product of the luxS gene. Most of the reported literatures show that the majority of oral bacteria use AI-2 for quorum sensing but rarely the AI-1 system. Here we report the isolation of Pseudomonas putida strain T2-2 from the oral cavity. Using high resolution mass spectrometry, it is shown that this isolate produced N-octanoylhomoserine lactone (C8-HSL) and N-dodecanoylhomoserine lactone (C12-HSL) molecules. This is the first report of the finding of quorum sensing of P. putida strain T2-2 isolated from the human tongue surface and their quorum sensing molecules were identified.
Collapse
Affiliation(s)
- Jian-Woon Chen
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (J.-W.C.); (S.C.); (W.-F.Y.)
| | - Shenyang Chin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (J.-W.C.); (S.C.); (W.-F.Y.)
| | - Kok Keng Tee
- Centre of Excellence for Research in AIDS (CERiA), Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mail:
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (J.-W.C.); (S.C.); (W.-F.Y.)
| | - Yeun Mun Choo
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mail:
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (J.-W.C.); (S.C.); (W.-F.Y.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +603-7967-5162; Fax: +603-7967-4509
| |
Collapse
|
198
|
Short chain N-acyl homoserine lactone production by soil isolate Burkholderia sp. strain A9. SENSORS 2013; 13:13217-27. [PMID: 24084115 PMCID: PMC3859060 DOI: 10.3390/s131013217] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/09/2013] [Accepted: 09/22/2013] [Indexed: 11/26/2022]
Abstract
In the bacteria kingdom, quorum sensing (QS) is a cell-to-cell communication that relies on the production of and response to specific signaling molecules. In proteobacteria, N-acylhomoserine lactones (AHLs) are the well-studied signaling molecules. The present study aimed to characterize the production of AHL of a bacterial strain A9 isolated from a Malaysian tropical soil. Strain A9 was identified as Burkholderia sp. using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rDNA nucleotide sequence analysis. AHL production by A9 was detected with two biosensors, namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Thin layer chromatography results showed N–hexanoylhomoserine lactone (C6-HSL) and N–octanoylhomoserine lactone (C8-HSL) production. Unequivocal identification of C6-HSL and C8-HSL was achieved by high resolution triple quadrupole liquid chromatography-mass spectrometry analysis. We have demonstrated that Burkholderia sp. strain A9 produces AHLs that are known to be produced by other Burkholderia spp. with CepI/CepR homologs.
Collapse
|
199
|
Wong CS, Koh CL, Sam CK, Chen JW, Chong YM, Yin WF, Chan KG. Degradation of bacterial quorum sensing signaling molecules by the microscopic yeast Trichosporon loubieri isolated from tropical wetland waters. SENSORS 2013; 13:12943-57. [PMID: 24072030 PMCID: PMC3859043 DOI: 10.3390/s131012943] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/08/2013] [Accepted: 09/12/2013] [Indexed: 11/16/2022]
Abstract
Proteobacteria produce N-acylhomoserine lactones as signaling molecules, which will bind to their cognate receptor and activate quorum sensing-mediated phenotypes in a population-dependent manner. Although quorum sensing signaling molecules can be degraded by bacteria or fungi, there is no reported work on the degradation of such molecules by basidiomycetous yeast. By using a minimal growth medium containing N-3-oxohexanoylhomoserine lactone as the sole source of carbon, a wetland water sample from Malaysia was enriched for microbial strains that can degrade N-acylhomoserine lactones, and consequently, a basidiomycetous yeast strain WW1C was isolated. Morphological phenotype and molecular analyses confirmed that WW1C was a strain of Trichosporon loubieri. We showed that WW1C degraded AHLs with N-acyl side chains ranging from 4 to 10 carbons in length, with or without oxo group substitutions at the C3 position. Re-lactonisation bioassays revealed that WW1C degraded AHLs via a lactonase activity. To the best of our knowledge, this is the first report of degradation of N-acyl-homoserine lactones and utilization of N-3-oxohexanoylhomoserine as carbon and nitrogen source for growth by basidiomycetous yeast from tropical wetland water; and the degradation of bacterial quorum sensing molecules by an eukaryotic yeast.
Collapse
Affiliation(s)
- Cheng-Siang Wong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (C.-S.W.); (J.W.C.); (Y.M.C.); (W.-F.Y.)
| | - Chong-Lek Koh
- Natural Sciences and Science Education AG, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; E-Mails: (C.-L.K.); (C.-K.S.)
| | - Choon-Kook Sam
- Natural Sciences and Science Education AG, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Singapore; E-Mails: (C.-L.K.); (C.-K.S.)
| | - Jian Woon Chen
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (C.-S.W.); (J.W.C.); (Y.M.C.); (W.-F.Y.)
| | - Yee Meng Chong
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (C.-S.W.); (J.W.C.); (Y.M.C.); (W.-F.Y.)
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (C.-S.W.); (J.W.C.); (Y.M.C.); (W.-F.Y.)
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; E-Mails: (C.-S.W.); (J.W.C.); (Y.M.C.); (W.-F.Y.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +603-7967-5162; Fax: +603-7967-4509
| |
Collapse
|
200
|
Panijel M, Chalupowicz L, Sessa G, Manulis-Sasson S, Barash I. Global regulatory networks control the hrp regulon of the gall-forming bacterium Pantoea agglomerans pv. gypsophilae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1031-1043. [PMID: 23745675 DOI: 10.1094/mpmi-04-13-0097-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Gall formation by Pantoea agglomerans pv. gypsophilae is dependent on the hypersensitive response and pathogenicity (hrp) system. Previous studies demonstrated that PagR and PagI, regulators of the quorum-sensing system, induce expression of the hrp regulatory cascade (i.e., hrpXY, hrpS, and hrpL) that activates the HrpL regulon. Here, we isolated the genes of the Gac/Rsm global regulatory pathway (i.e., gacS, gacA, rsmB, and csrD) and of the post-transcriptional regulator rsmA. Our results demonstrate that PagR and PagI also upregulate expression of the Gac/Rsm pathway. PagR acts as a transcriptional activator of each of the hrp regulatory genes and gacA in a N-butanoyl-L-homoserine lactone-dependent manner as shown by gel shift experiments. Mutants of the Gac/Rsm genes or overexpression of rsmA significantly reduced Pantoea agglomerans virulence and colonization of gypsophila. Overexpression of rsmB sRNA abolished gall formation, colonization, and hypersensitive reaction on nonhost plants and prevented transcription of the hrp regulatory cascade, indicating a lack of functional type III secretion system. Expression of rsmB sRNA in the background of the csrD null mutant suggests that CsrD may act as a safeguard for preventing excessive production of rsmB sRNA. Results presented indicate that the hrp regulatory cascade is controlled directly by PagR and indirectly by RsmA, whereas deficiency in RsmA activity is epistatic to PagR induction.
Collapse
Affiliation(s)
- Mary Panijel
- Department of Molecular Biology and Ecology of Plants, Tel-Aviv University, Tel-Aviv, Israel
| | | | | | | | | |
Collapse
|