151
|
Genomic characterization of novel IncFII-type multidrug resistant plasmids p0716-KPC and p12181-KPC from Klebsiella pneumoniae. Sci Rep 2017; 7:5830. [PMID: 28725038 PMCID: PMC5517477 DOI: 10.1038/s41598-017-06283-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022] Open
Abstract
This study aimed to genetically characterize two fully-sequenced novel IncFII-type multidrug resistant (MDR) plasmids, p0716-KPC and p12181-KPC, recovered from two different clinical Klebsiella pneumoniae isolates. p0716-KPC and p12181-KPC had a very similar genomic content. The backbones of p0716-KPC/p12181-KPC contained two different replicons (belonging to a novel IncFII subtype and the Rep_3 family), the IncFIIK and IncFIIY maintenance regions, and conjugal transfer gene sets from IncFIIK-type plasmids and unknown origins. p0716-KPC and p12181-KPC carried similar three accessory resistance regions, namely ΔTn6209, a MDR region, and the blaKPC-2 region. Resistance genes blaKPC-2, mph(A), strAB, aacC2, qacEΔ1, sul1, sul2, and dfrA25, which are associated with transposons, integrons, and insertion sequence-based mobile units, were located in these accessory regions. p0716-KPC carried two additional resistance genes: aphA1a and blaTEM-1. Together, our analyses showed that p0716-KPC and p12181-KPC belong to a novel IncFII subtype and display a complex chimeric nature, and that the carbapenem resistance gene blaKPC-2 coexists with a lot of additional resistance genes on these two plasmids.
Collapse
|
152
|
Prevalence and drug resistance characteristics of carbapenem-resistant Enterobacteriaceae in Hangzhou, China. Front Med 2017; 12:182-188. [DOI: 10.1007/s11684-017-0529-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/08/2017] [Indexed: 01/21/2023]
|
153
|
Wang W, Baloch Z, Peng Z, Hu Y, Xu J, Fanning S, Li F. Genomic characterization of a large plasmid containing a bla NDM-1 gene carried on Salmonella enterica serovar Indiana C629 isolate from China. BMC Infect Dis 2017; 17:479. [PMID: 28687066 PMCID: PMC5501952 DOI: 10.1186/s12879-017-2515-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The bla NDM-1 gene in Salmonella species is mostly reported in clinical cases, but is rarely isolated from red and white meat in China. METHODS A Salmonella Indiana (S. Indiana) isolate was cultured from a chicken carcass procured from a slaughterhouse in China. Antimicrobial susceptibility was tested against a panel of agents. Whole-genome sequencing of the isolate was carried out and data was analyzed. RESULTS A large plasmid, denoted as plasmid pC629 (210,106 bp), containing a composite cassette, consisting of IS26-bla NDM-1-ble MBL -△trpF-tat-cutA-ISCR1-sul1-qacE△1-aadA2-dfrA12-intI1-IS26 was identified. The latter locus was physically linked with bla OXA-1, bla CTX-M-65, bla TEM-1-encoding genes. A mercury resistance operon merACDEPTR was also identified; it was flanked on the proximal side, among IS26 element and the distally located on the bla NDM-1 gene. Plasmid pC629 also contained 21 other antimicrobial resistance-encoding genes, such as aac(6')-Ib-cr, aac(3)-VI, aadA5, aph(4)-Ia, arr-3, blmS, brp, catB3, dfrA17, floR, fosA, mph(A), mphR, mrx, nimC/nimA, oqxA, oqxB, oqxR, rmtB, sul1, sul2. Two virulence genes were also identified on plasmid pC629. CONCLUSION To the best of our knowledge, this is the first report of bla NDM-1 gene being identified from a plasmid in a S. Indiana isolate cultured from chicken carcass in China.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for food safety Risk Assessment, Beijing, People’s Republic of China
| | - Zulqarnain Baloch
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 People’s Republic of China
| | - Zixin Peng
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for food safety Risk Assessment, Beijing, People’s Republic of China
| | - Yujie Hu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for food safety Risk Assessment, Beijing, People’s Republic of China
| | - Jin Xu
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for food safety Risk Assessment, Beijing, People’s Republic of China
| | - Séamus Fanning
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for food safety Risk Assessment, Beijing, People’s Republic of China
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield D04 N2E5, Dublin, Ireland
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Stranmillis Road, Belfast, BT9 5AG Northern Ireland
| | - Fengqin Li
- Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for food safety Risk Assessment, Beijing, People’s Republic of China
- Microbiology Laboratory, China National Centre for Food Safety Risk Assessment, No.7 Panjiayuan Nanli, Chaoyang District, Beijing, 100021 People’s Republic of China
| |
Collapse
|
154
|
IncX2 and IncX1-X2 Hybrid Plasmids Coexisting in a FosA6-Producing Escherichia coli Strain. Antimicrob Agents Chemother 2017; 61:AAC.00536-17. [PMID: 28438937 DOI: 10.1128/aac.00536-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/19/2017] [Indexed: 12/26/2022] Open
Abstract
IncX plasmids are receiving much attention as vehicles of carbapenem and colistin resistance genes, such as blaNDM, blaKPC, and mcr-1 Among them, IncX2 subgroup plasmids remain rare. Here, we characterized IncX2 and IncX1-X2 hybrid plasmids coexisting in a FosA6-producing Escherichia coli strain that were possibly generated as a consequence of recombination events between an R6K-like IncX2 plasmid and a pLN126_33-like IncX1 plasmid. Variable multidrug resistance mosaic regions were observed in these plasmids, indicating their potential to serve as flexible carriers of resistance genes. The diversity of IncX group plasmid backbones and accessory genes and the evolution of hybrid IncX plasmids pose a challenge in detecting and classifying them.
Collapse
|
155
|
Liang Q, Yin Z, Zhao Y, Liang L, Feng J, Zhan Z, Wang H, Song Y, Tong Y, Wu W, Chen W, Wang J, Jiang L, Zhou D. Sequencing and comparative genomics analysis of the IncHI2 plasmids pT5282-mphA and p112298-catA and the IncHI5 plasmid pYNKP001-dfrA. Int J Antimicrob Agents 2017; 49:709-718. [DOI: 10.1016/j.ijantimicag.2017.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/09/2016] [Accepted: 01/22/2017] [Indexed: 01/16/2023]
|
156
|
Yousfi K, Touati A, Lefebvre B, Fournier É, Côté JC, Soualhine H, Walker M, Bougdour D, Tremblay C, Bekal S. A Novel Plasmid, pSx1, Harboring a New Tn1696 Derivative from Extensively Drug-Resistant Shewanella xiamenensis Encoding OXA-416. Microb Drug Resist 2017; 23:429-436. [DOI: 10.1089/mdr.2016.0025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Khadidja Yousfi
- Laboratoire d'Écologie Microbienne, FSNV, Université A/MIRA de Bejaia, Bejaia, Algérie
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Abdelaziz Touati
- Laboratoire d'Écologie Microbienne, FSNV, Université A/MIRA de Bejaia, Bejaia, Algérie
| | - Brigitte Lefebvre
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Éric Fournier
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Jean-Charles Côté
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Hafid Soualhine
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
| | - Matthew Walker
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Canada
| | - Djamila Bougdour
- Laboratoire d'Écologie Microbienne, FSNV, Université A/MIRA de Bejaia, Bejaia, Algérie
| | - Cécile Tremblay
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Canada
| | - Sadjia Bekal
- Laboratoire de Santé Publique du Québec, Institut National de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Canada
| |
Collapse
|
157
|
Exner M, Bhattacharya S, Christiansen B, Gebel J, Goroncy-Bermes P, Hartemann P, Heeg P, Ilschner C, Kramer A, Larson E, Merkens W, Mielke M, Oltmanns P, Ross B, Rotter M, Schmithausen RM, Sonntag HG, Trautmann M. Antibiotic resistance: What is so special about multidrug-resistant Gram-negative bacteria? GMS HYGIENE AND INFECTION CONTROL 2017; 12:Doc05. [PMID: 28451516 PMCID: PMC5388835 DOI: 10.3205/dgkh000290] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the past years infections caused by multidrug-resistant Gram-negative bacteria have dramatically increased in all parts of the world. This consensus paper is based on presentations, subsequent discussions and an appraisal of current literature by a panel of international experts invited by the Rudolf Schülke Stiftung, Hamburg. It deals with the epidemiology and the inherent properties of Gram-negative bacteria, elucidating the patterns of the spread of antibiotic resistance, highlighting reservoirs as well as transmission pathways and risk factors for infection, mortality, treatment and prevention options as well as the consequences of their prevalence in livestock. Following a global, One Health approach and based on the evaluation of the existing knowledge about these pathogens, this paper gives recommendations for prevention and infection control measures as well as proposals for various target groups to tackle the threats posed by Gram-negative bacteria and prevent the spread and emergence of new antibiotic resistances.
Collapse
Affiliation(s)
- Martin Exner
- Institute of Hygiene and Public Health, Bonn University, Bonn, Germany
| | | | - Bärbel Christiansen
- Department of Internal Hygiene, Schleswig-Holstein University Hospital, Kiel, Germany
| | - Jürgen Gebel
- Institute of Hygiene and Public Health, Bonn University, Bonn, Germany
| | | | - Philippe Hartemann
- Departement Environnement et Santé Publique S.E.R.E.S., Faculté de Médecine, Nancy, France
| | - Peter Heeg
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | - Carola Ilschner
- Institute of Hygiene and Public Health, Bonn University, Bonn, Germany
| | - Axel Kramer
- Institute of Hygiene and Environmental Medicine, University Medicine Greifswald, Germany
| | - Elaine Larson
- School of Nursing, Columbia University, New York, USA.,Mailman School of Public Health, Columbia University, New York, USA
| | | | | | | | - Birgit Ross
- Hospital Hygiene, Essen University Hospital, Essen, Germany
| | | | | | - Hans-Günther Sonntag
- Institute of Hygiene and Medical Microbiology, University of Heidelberg, Germany
| | | |
Collapse
|
158
|
Orlek A, Phan H, Sheppard AE, Doumith M, Ellington M, Peto T, Crook D, Walker AS, Woodford N, Anjum MF, Stoesser N. Ordering the mob: Insights into replicon and MOB typing schemes from analysis of a curated dataset of publicly available plasmids. Plasmid 2017; 91:42-52. [PMID: 28286183 PMCID: PMC5466382 DOI: 10.1016/j.plasmid.2017.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/08/2017] [Indexed: 01/17/2023]
Abstract
Plasmid typing can provide insights into the epidemiology and transmission of plasmid-mediated antibiotic resistance. The principal plasmid typing schemes are replicon typing and MOB typing, which utilize variation in replication loci and relaxase proteins respectively. Previous studies investigating the proportion of plasmids assigned a type by these schemes (‘typeability’) have yielded conflicting results; moreover, thousands of plasmid sequences have been added to NCBI in recent years, without consistent annotation to indicate which sequences represent complete plasmids. Here, a curated dataset of complete Enterobacteriaceae plasmids from NCBI was compiled, and used to assess the typeability and concordance of in silico replicon and MOB typing schemes. Concordance was assessed at hierarchical replicon type resolutions, from replicon family-level to plasmid multilocus sequence type (pMLST)-level, where available. We found that 85% and 65% of the curated plasmids could be replicon and MOB typed, respectively. Overall, plasmid size and the number of resistance genes were significant independent predictors of replicon and MOB typing success. We found some degree of non-concordance between replicon families and MOB types, which was only partly resolved when partitioning plasmids into finer-resolution groups (replicon and pMLST types). In some cases, non-concordance was attributed to ambiguous boundaries between MOBP and MOBQ types; in other cases, backbone mosaicism was considered a more plausible explanation. β-lactamase resistance genes tended not to show fidelity to a particular plasmid type, though some previously reported associations were supported. Overall, replicon and MOB typing schemes are likely to continue playing an important role in plasmid analysis, but their performance is constrained by the diverse and dynamic nature of plasmid genomes. 92% of clinically-relevant plasmids could be replicon typed, compared with reports of 100% typeability in 2014. Replicon and MOB typing were partly concordant; partitioning plasmids into finer-resolution groups increased concordance. Overlap between MOBP and MOBQ relaxase families complicates assignment of MOBP and MOBQ types. Generally, resistance genes showed low fidelity towards particular plasmid backbones. PacBio sequencing has driven increased availability of complete plasmid sequences, but retrieved datasets require curation.
Collapse
Affiliation(s)
- Alex Orlek
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK.
| | - Hang Phan
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Anna E Sheppard
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Michel Doumith
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Matthew Ellington
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK; Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Tim Peto
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Derrick Crook
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK; NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK
| | - Neil Woodford
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK; Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - Muna F Anjum
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, University of Oxford, Oxford, UK; Department of Bacteriology, Animal and Plant Health Agency, Addlestone, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
159
|
Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact. Essays Biochem 2017; 61:23-35. [PMID: 28258227 DOI: 10.1042/ebc20160055] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 11/17/2022]
Abstract
Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals.
Collapse
|
160
|
Unlocking Tn3-family transposase activity in vitro unveils an asymetric pathway for transposome assembly. Proc Natl Acad Sci U S A 2017; 114:E669-E678. [PMID: 28096365 DOI: 10.1073/pnas.1611701114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Tn3 family is a widespread group of replicative transposons that are notorious for their contribution to the dissemination of antibiotic resistance and the emergence of multiresistant pathogens worldwide. The TnpA transposase of these elements catalyzes DNA breakage and rejoining reactions required for transposition. It also is responsible for target immunity, a phenomenon that prevents multiple insertions of the transposon into the same genomic region. However, the molecular mechanisms whereby TnpA acts in both processes remain unknown. Here, we have developed sensitive biochemical assays for the TnpA transposase of the Tn3-family transposon Tn4430 and used these assays to characterize previously isolated TnpA mutants that are selectively affected in immunity. Compared with wild-type TnpA, these mutants exhibit deregulated activities. They spontaneously assemble a unique asymmetric synaptic complex in which one TnpA molecule simultaneously binds two transposon ends. In this complex, TnpA is in an activated state competent for DNA cleavage and strand transfer. Wild-type TnpA can form this complex only on precleaved ends mimicking the initial step of transposition. The data suggest that transposition is controlled at an early stage of transpososome assembly, before DNA cleavage, and that mutations affecting immunity have unlocked TnpA by stabilizing the protein in a monomeric activated synaptic configuration. We propose an asymmetric pathway for coupling active transpososome assembly with proper target recruitment and discuss this model with respect to possible immunity mechanisms.
Collapse
|
161
|
Yadav R, Bulitta JB, Nation RL, Landersdorfer CB. Optimization of Synergistic Combination Regimens against Carbapenem- and Aminoglycoside-Resistant Clinical Pseudomonas aeruginosa Isolates via Mechanism-Based Pharmacokinetic/Pharmacodynamic Modeling. Antimicrob Agents Chemother 2017; 61:e01011-16. [PMID: 27821448 PMCID: PMC5192108 DOI: 10.1128/aac.01011-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/30/2016] [Indexed: 12/22/2022] Open
Abstract
Optimizing antibiotic combinations is promising to combat multidrug-resistant Pseudomonas aeruginosa This study aimed to systematically evaluate synergistic bacterial killing and prevention of resistance by carbapenem and aminoglycoside combinations and to rationally optimize combination dosage regimens via a mechanism-based mathematical model (MBM). We studied monotherapies and combinations of imipenem with tobramycin or amikacin against three difficult-to-treat double-resistant clinical P. aeruginosa isolates. Viable-count profiles of total and resistant populations were quantified in 48-h static-concentration time-kill studies (inoculum, 107.5 CFU/ml). We rationally optimized combination dosage regimens via MBM and Monte Carlo simulations against isolate FADDI-PA088 (MIC of imipenem [MICimipenem] of 16 mg/liter and MICtobramycin of 32 mg/liter, i.e., both 98th percentiles according to the EUCAST database). Against this isolate, imipenem (1.5× MIC) combined with 1 to 2 mg/liter tobramycin (MIC, 32 mg/liter) or amikacin (MIC, 4 mg/liter) yielded ≥2-log10 more killing than the most active monotherapy at 48 h and prevented resistance. For all three strains, synergistic killing without resistance was achieved by ≥0.88× MICimipenem in combination with a median of 0.75× MICtobramycin (range, 0.032× to 2.0× MICtobramycin) or 0.50× MICamikacin (range, 0.25× to 0.50× MICamikacin). The MBM indicated that aminoglycosides significantly enhanced the imipenem target site concentration up to 3-fold; achieving 50% of this synergistic effect required aminoglycoside concentrations of 1.34 mg/liter (if the aminoglycoside MIC was 4 mg/liter) and 4.88 mg/liter (for MICs of 8 to 32 mg/liter). An optimized combination regimen (continuous infusion of imipenem at 5 g/day plus a 0.5-h infusion with 7 mg/kg of body weight tobramycin) was predicted to achieve >2.0-log10 killing and prevent regrowth at 48 h in 90.3% of patients (median bacterial killing, >4.0 log10 CFU/ml) against double-resistant isolate FADDI-PA088 and therefore was highly promising.
Collapse
Affiliation(s)
- Rajbharan Yadav
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jürgen B Bulitta
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Roger L Nation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cornelia B Landersdorfer
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
162
|
Adegoke AA, Faleye AC, Singh G, Stenström TA. Antibiotic Resistant Superbugs: Assessment of the Interrelationship of Occurrence in Clinical Settings and Environmental Niches. Molecules 2016; 22:E29. [PMID: 28035988 PMCID: PMC6155606 DOI: 10.3390/molecules22010029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/11/2016] [Accepted: 12/22/2016] [Indexed: 02/06/2023] Open
Abstract
The increasing threat to global health posed by antibiotic resistance remains of serious concern. Human health remains at higher risk due to several reported therapeutic failures to many life threatening drug resistant microbial infections. The resultant effects have been prolonged hospital stay, higher cost of alternative therapy, increased mortality, etc. This opinionated review considers the two main concerns in integrated human health risk assessment (i.e., residual antibiotics and antibiotic resistant genes) in various compartments of human environment, as well as clinical dynamics associated with the development and transfer of antibiotic resistance (AR). Contributions of quorum sensing, biofilms, enzyme production, and small colony variants in bacteria, among other factors in soil, water, animal farm and clinical settings were also considered. Every potential factor in environmental and clinical settings that brings about AR needs to be identified for the summative effects in overall resistance. There is a need to embrace coordinated multi-locational approaches and interrelationships to track the emergence of resistance in different niches in soil and water versus the hospital environment. The further integration with advocacy, legislation, enforcement, technological innovations and further research input and recourse to WHO guidelines on antibiotic policy would be advantageous towards addressing the emergence of antibiotic resistant superbugs.
Collapse
Affiliation(s)
- Anthony Ayodeji Adegoke
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
- Department of Microbiology, University of Uyo, 520211 Uyo, Akwa Ibom State, Nigeria.
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, Eastern Cape, South Africa.
| | - Adekunle Christopher Faleye
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| | - Gulshan Singh
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| | - Thor Axel Stenström
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| |
Collapse
|
163
|
Faecal Carriage of Gram-Negative Multidrug-Resistant Bacteria among Patients Hospitalized in Two Centres in Ulaanbaatar, Mongolia. PLoS One 2016; 11:e0168146. [PMID: 27942042 PMCID: PMC5152906 DOI: 10.1371/journal.pone.0168146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 11/25/2016] [Indexed: 11/19/2022] Open
Abstract
Gram-negative multidrug-resistant organisms (GN-MDRO) producing β-lactamases (ESBL, plasmid-mediated AmpC β-lactamases and carbapenemases) are increasingly reported throughout Asia. The aim of this surveillance study was to determine the rate of bacterial colonization in patients from two hospitals in the Mongolian capital Ulaanbaatar. Rectal swabs were obtained from patients referred to the National Traumatology and Orthopaedics Research Centre (NTORC) or the Burn Treatment Centre (BTC) between July and September 2014, on admission and again after 14 days. Bacteria growing on selective chromogenic media (CHROMagar ESBL/KPC) were identified by MALDI-ToF MS. We performed susceptibility testing by disk diffusion and PCR (blaIMP-1, blaVIM, blaGES, blaNDM, blaKPC, blaOXA-48, blaGIM-1, blaOXA-23, blaOXA-24/40, blaOXA-51, blaOXA-58, blaOXA-143, blaOXA-235, blaCTX-M, blaSHVblaTEM and plasmid-mediated blaAmpC). Carbapenemase-producing isolates were additionally genotyped by PFGE and MLST. During the study period 985 patients in the NTORC and 65 patients in the BTC were screened on admission. The prevalence of GN-MDRO-carriage was 42.4% and 69.2% respectively (p<0.001). Due to the different medical specialities the two study populations differed significantly in age (p<0.029) and gender (p<0.001) with younger and more female patients in the burn centre (BTC). We did not observe a significant difference in colonization rate in the respective age groups in the total study population. In both centres most carriers were colonized with CTX-M-producing E. coli, followed by CTX-M-producing K. pneumoniae and CTX-M-producing E. cloacae. 158 patients from the NTORC were re-screened after 14 days of whom 99 had acquired a new GN-MDRO (p<0.001). Carbapenemases were detected in both centres in four OXA-58-producing A. baumannii isolates (ST642) and six VIM-2-producing P. aeruginosa isolates (ST235). This study shows a high overall prevalence of GN-MDRO in the study population and highlights the importance of routine surveillance, appropriate infection control practice and antibiotic prescribing policies to prevent further spread especially of carbapenemases.
Collapse
|
164
|
Ellington MJ, Ekelund O, Aarestrup FM, Canton R, Doumith M, Giske C, Grundman H, Hasman H, Holden MTG, Hopkins KL, Iredell J, Kahlmeter G, Köser CU, MacGowan A, Mevius D, Mulvey M, Naas T, Peto T, Rolain JM, Samuelsen Ø, Woodford N. The role of whole genome sequencing in antimicrobial susceptibility testing of bacteria: report from the EUCAST Subcommittee. Clin Microbiol Infect 2016; 23:2-22. [PMID: 27890457 DOI: 10.1016/j.cmi.2016.11.012] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/11/2022]
Abstract
Whole genome sequencing (WGS) offers the potential to predict antimicrobial susceptibility from a single assay. The European Committee on Antimicrobial Susceptibility Testing established a subcommittee to review the current development status of WGS for bacterial antimicrobial susceptibility testing (AST). The published evidence for using WGS as a tool to infer antimicrobial susceptibility accurately is currently either poor or non-existent and the evidence / knowledge base requires significant expansion. The primary comparators for assessing genotypic-phenotypic concordance from WGS data should be changed to epidemiological cut-off values in order to improve differentiation of wild-type from non-wild-type isolates (harbouring an acquired resistance). Clinical breakpoints should be a secondary comparator. This assessment will reveal whether genetic predictions could also be used to guide clinical decision making. Internationally agreed principles and quality control (QC) metrics will facilitate early harmonization of analytical approaches and interpretive criteria for WGS-based predictive AST. Only data sets that pass agreed QC metrics should be used in AST predictions. Minimum performance standards should exist and comparative accuracies across different WGS laboratories and processes should be measured. To facilitate comparisons, a single public database of all known resistance loci should be established, regularly updated and strictly curated using minimum standards for the inclusion of resistance loci. For most bacterial species the major limitations to widespread adoption for WGS-based AST in clinical laboratories remain the current high-cost and limited speed of inferring antimicrobial susceptibility from WGS data as well as the dependency on previous culture because analysis directly on specimens remains challenging. For most bacterial species there is currently insufficient evidence to support the use of WGS-inferred AST to guide clinical decision making. WGS-AST should be a funding priority if it is to become a rival to phenotypic AST. This report will be updated as the available evidence increases.
Collapse
Affiliation(s)
- M J Ellington
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - O Ekelund
- Department of Clinical Microbiology and the EUCAST Development Laboratory, Kronoberg Region, Central Hospital, Växjö, Sweden
| | - F M Aarestrup
- National Food Institute, Research Group for Genomic Epidemiology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - R Canton
- Servicio de Microbiología, Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - M Doumith
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - C Giske
- Department of Laboratory Medicine, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| | - H Grundman
- University Medical Centre Freiburg, Infection Prevention and Hospital Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - H Hasman
- Statens Serum Institute, Department of Microbiology and Infection Control, Copenhagen, Denmark
| | - M T G Holden
- School of Medicine, Medical & Biological Sciences, North Haugh, University of St Andrews, UK
| | - K L Hopkins
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK
| | - J Iredell
- Westmead Institute for Medical Research, University of Sydney and Marie Bashir Institute, Sydney, NSW, Australia
| | - G Kahlmeter
- Department of Clinical Microbiology and the EUCAST Development Laboratory, Kronoberg Region, Central Hospital, Växjö, Sweden
| | - C U Köser
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - A MacGowan
- Department of Medical Microbiology, North Bristol NHS Trust, Southmead Hospital, Bristol, UK
| | - D Mevius
- Central Veterinary Institute (CVI) part of Wageningen University and Research Centre (WUR), Lelystad, The Netherlands; Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - M Mulvey
- National Microbiology Laboratory, Winnipeg, Manitoba, Canada
| | - T Naas
- French National Reference Centre for Antibiotic Resistance, Bacteriology-Hygiene unit, Hôpital Bicêtre, APHP, LabEx LERMIT, University Paris Sud, Le Kremlin-Bicêtre, France
| | - T Peto
- Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - J-M Rolain
- PU-PH des Disciplines Pharmaceutiques, 1-URMITE CNRS IRD UMR 6236, IHU Méditerranée Infection, Valorization and Transfer, Aix Marseille Université, Faculté de Médecine et de Pharmacie, Marseille, France
| | - Ø Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North Norway, Department of Microbiology and Infection Control, Tromsø, Norway
| | - N Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, National Infection Service, Public Health England, London, UK.
| |
Collapse
|
165
|
Leclercq SO, Wang C, Zhu Y, Wu H, Du X, Liu Z, Feng J. Diversity of the Tetracycline Mobilome within a Chinese Pig Manure Sample. Appl Environ Microbiol 2016; 82:6454-6462. [PMID: 27565618 PMCID: PMC5066362 DOI: 10.1128/aem.01754-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/20/2016] [Indexed: 11/20/2022] Open
Abstract
Tetracycline antibiotics are widely used in livestock, and tetracycline resistance genes (TRG) are frequently reported in the manure of farmed animals. However, the diversity of TRG-carrying transposons in manure has still been rarely investigated. Using a culture-free functional metagenomic procedure, combined with large-insert library construction and sequencing, bioinformatic analyses, and functional experiments, we identified 17 distinct TRGs in a single pig manure sample, including two new tet genes: tet(59), encoding a tetracycline efflux pump, and tet(W/N/W), encoding mosaic ribosomal protection. Our study also revealed six new TRG-carrying putative nonconjugative transposons: Tn5706-like transposon Tn6298, IS200/605-related transposon Tn6303, Tn3 family transposon Tn6299, and three ISCR2-related transposons, Tn62300, Tn62301, and Tn62302 IMPORTANCE: Fertilization of agricultural fields with animal manure is believed to play a major role in antibiotic resistance dissemination in the environment. There is growing concern for the possible spread of antibiotic resistance from the environment to humans since genetic resistance determinants may be located in transposons and other mobile genetic elements potentially transferable to pathogens. Among the various antibiotic resistance genes found in manure, tetracycline resistance genes (TRGs) are some of the most common. The present study provides a detailed snapshot of the tetracycline mobilome in a single pig manure sample, revealing an unappreciated diversity of TRGs and potential TRG mobility vectors. Our precise identification of the TRG-carrying units will enable us to investigate in more details their mobility effectiveness.
Collapse
Affiliation(s)
- Sébastien Olivier Leclercq
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hai Wu
- College of Life Sciences, Hebei University, Baoding, China
| | - Xiaochen Du
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhipei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
166
|
Characterization of a Novel IncHI2 Plasmid Carrying Tandem Copies of blaCTX-M-2 in a fosA6-Harboring Escherichia coli Sequence Type 410 Strain. Antimicrob Agents Chemother 2016; 60:6742-6747. [PMID: 27572405 DOI: 10.1128/aac.01173-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/23/2016] [Indexed: 12/23/2022] Open
Abstract
The extended-spectrum β-lactamase gene blaCTX-M-2 is mainly associated with ISCR1 embedded in complex sul1-type integrons, but information on the genetic context of plasmids harboring the ISCR1-blaCTX-M-2 module remains limited. In this study, a blaCTX-M-2-harboring plasmid (pYD786-1) belonging to the sequence type 2 (ST2)-IncHI2 plasmid type and isolated from an Escherichia coli ST410 clinical strain was sequenced and analyzed. pYD786-1 belongs to the APEC-O1-R-type IncHI2 plasmids, which are widely distributed in human, poultry, and livestock strains. It contains a multidrug resistance mosaic region (MRR) consisting of a Tn21::In2 transposon backbone augmented by acquisition of duplicate ISCR1-blaCTX-M-2 modules. Tn2411, a Tn21::In2 precursor, likely played a role in the generation of the MRR in pN13-01290_23, the putative progenitor plasmid of pYD786-1, found in a foodborne Salmonella strain. Tn21/Tn2411::In::ISCR1-blaCTX-M-2 derivatives, including pYD786-1, have been identified in strains from Europe, South America, and the United States, suggesting potential global dissemination of the blaCTX-M-2 modules mediated by this vehicle.
Collapse
|
167
|
Wang L, Liu L, Liu D, Yin Z, Feng J, Zhang D, Fang H, Qiu Y, Chen W, Yang R, Wang J, Fa Y, Zhou D. The First Report of a Fully Sequenced Resistance Plasmid from Shigella boydii. Front Microbiol 2016; 7:1579. [PMID: 27766094 PMCID: PMC5052281 DOI: 10.3389/fmicb.2016.01579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/21/2016] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to characterize mechanisms of plasmid-mediated antimicrobial resistance in Shigella boydii. S. boydii strain 2246 with resistance to ciprofloxacin, ceftriaxone and azithromycin was isolated from a human case of watery diarrhea in a Chinese public hospital. Resistance in strain 2246 to ceftriaxone and azithromycin was attributable to the presence of blaCTX-M-14, and erm(B) and mph(A), respectively, which were co-located on a multidrug-resistant (MDR) plasmid p2246-CTXM. p2246-CTXM represented a novel IncFII-type MDR plasmid with a very complex chimera structure. Its master backbone was genetically closely related to the R100 plasmid, but p2246-CTXM had evolved to integrate additional R100-unrelated backbone regions as well as massive exogenous mobile elements that carried multiple resistance determinants. In p2246-CTXM, erm(B) together with its leading peptide gene erm(C), mph(A) together with its regulatory genes mrx and mphR(A), and blaCTX-M-14 were captured by three different mobile elements Tn6295, the IS26-mph(A)-mrx-mphR(A)-IS6100 unit, and a truncated ISEcp1-blaCTX-M-14-IS903D-iroN transposition unit, respectively, all of which were harbored in a large Tn3-family transposon Tn6285. p2246-CTXM still carried additional resistance determinants mer (mercury resistance), aacA4 (aminoglycoside resistance), cmlA1 (chloramphenicol resistance), and qacED1 (quaternary ammonium compound resistance). This is the first report of identifying a clinical S. boydii strain simultaneously resistant to ciprofloxacin, ceftriaxone, and azithromycin, and determining the complete sequence of a resistance plasmid from S. boydii.
Collapse
Affiliation(s)
- Li Wang
- Department of Clinical Laboratory, the First Hospital Affiliated to Henan UniversityKaifeng, China
| | - Lei Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Dong Liu
- Department of Clinical Laboratory, the First Hospital Affiliated to Henan UniversityKaifeng, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Jiao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Defu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
- College of Food Science and Project Engineering, Bohai UniversityJinzhou, China
| | - Haihong Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yefeng Qiu
- Laboratory Animal Center, Academy of Military Medical SciencesBeijing, China
| | - Weijun Chen
- Beijing Institute of Genomics (CAS)Beijing, China
| | - Ruisheng Yang
- Department of Clinical Laboratory, the First Hospital Affiliated to Henan UniversityKaifeng, China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| | - Yunzhi Fa
- Laboratory Animal Center, Academy of Military Medical SciencesBeijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and EpidemiologyBeijing, China
| |
Collapse
|
168
|
IMP-27, a Unique Metallo-β-Lactamase Identified in Geographically Distinct Isolates of Proteus mirabilis. Antimicrob Agents Chemother 2016; 60:6418-21. [PMID: 27503648 PMCID: PMC5038328 DOI: 10.1128/aac.02945-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/21/2016] [Indexed: 12/23/2022] Open
Abstract
A novel metallo-β-lactamase gene, blaIMP-27, was identified in unrelated Proteus mirabilis isolates from two geographically distinct locations in the United States. Both isolates harbor blaIMP-27 as part of the first gene cassette in a class 2 integron. Antimicrobial susceptibility testing indicated susceptibility to aztreonam, piperacillin-tazobactam, and ceftazidime but resistance to ertapenem. However, hydrolysis assays indicated that ceftazidime was a substrate for IMP-27.
Collapse
|
169
|
Sun F, Zhou D, Sun Q, Luo W, Tong Y, Zhang D, Wang Q, Feng W, Chen W, Fan Y, Xia P. Genetic characterization of two fully sequenced multi-drug resistant plasmids pP10164-2 and pP10164-3 from Leclercia adecarboxylata. Sci Rep 2016; 6:33982. [PMID: 27658354 PMCID: PMC5034289 DOI: 10.1038/srep33982] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/06/2016] [Indexed: 02/04/2023] Open
Abstract
We previously reported the complete sequence of the resistance plasmid pP10164-NDM, harboring blaNDM (conferring carbapenem resistance) and bleMBL (conferring bleomycin resistance), which is recovered from a clinical Leclercia adecarboxylata isolate P10164 from China. This follow-up work disclosed that there were still two multidrug-resistant (MDR) plasmids pP10164-2 and pP10164-3 coexisting in this strain. pP10164-2 and pP10164-3 were completely sequenced and shown to carry a wealth of resistance genes, which encoded the resistance to at least 10 classes of antibiotics (β-lactams. macrolides, quinolones, aminoglycosides, tetracyclines, amphenicols, quaternary ammonium compounds, sulphonamides, trimethoprim, and rifampicin) and 7 kinds of heavy mental (mercury, silver, copper, nickel, chromate, arsenic, and tellurium). All of these antibiotic resistance genes are associated with mobile elements such as transposons, integrons, and insertion sequence-based transposable units, constituting a total of three novel MDR regions, two in pP10164-2 and the other one in pP10164-3. Coexistence of three resistance plasmids pP10164-NDM, pP10164-2 and pP10164-3 makes L. adecarboxylata P10164 tend to become extensively drug-resistant.
Collapse
Affiliation(s)
- Fengjun Sun
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qiang Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wenbo Luo
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Defu Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.,College of Food Science and Project Engineering, Bohai University, Jinzhou 121013, China
| | - Qian Wang
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Wei Feng
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Weijun Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yahan Fan
- Transfusion Department, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
170
|
Role of phage-antibiotic combination in reducing antibiotic resistance in Staphylococcus aureus. Food Sci Biotechnol 2016; 25:1211-1215. [PMID: 30263396 DOI: 10.1007/s10068-016-0192-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 12/21/2022] Open
Abstract
This study was designed to evaluate the effect of phage-antibiotic synergy in reducing antibiotic resistance. The initial numbers of Staphylococcus aureus treated with ciprofloxacin, phages, and combination were significantly reduced by 3.47, 4.62, and 5.75 log CFU/mL, respectively, at the early 12 h of incubation. The combination treatment most effectively inhibited the growth of S. aureus, showing more than 4 log reduction in 18 h of incubation at 37°C. The significant reduction in biofilm formation by S. aureus was observed at the combination treatment (3.91 log). Ciprofloxacin-treated S. aureus cells became resistant to both ciprofloxacin and phage, showing the mutant frequencies of 27% and 25%, respectively, whereas no antibiotic- and phage-resistant S. aureus cells were observed at the combined treatment of ciprofloxacin and phages. These results provide useful information for reducing the risk of antibiotic resistance in human and food animals.
Collapse
|
171
|
|
172
|
Pan YS, Zong ZY, Yuan L, Du XD, Huang H, Zhong XH, Hu GZ. Complete Sequence of pEC012, a Multidrug-Resistant IncI1 ST71 Plasmid Carrying bla CTX-M-65, rmtB, fosA3, floR, and oqxAB in an Avian Escherichia coli ST117 Strain. Front Microbiol 2016; 7:1117. [PMID: 27486449 PMCID: PMC4947595 DOI: 10.3389/fmicb.2016.01117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/05/2016] [Indexed: 02/05/2023] Open
Abstract
A 139,622-bp IncI1 ST71 conjugative plasmid pEC012 from an avian Escherichia coli D-ST117 strain was sequenced, which carried five IS26-bracketed resistance modules: IS26-fosA3-orf1-orf2-Δorf3-IS26, IS26-fip-ΔISEcp1-blaCTX-M-65-IS903D-iroN-IS26, IS26-ΔtnpR-blaTEM-1-rmtB-IS26, IS26-oqxAB-IS26, and IS26-floR-aac(3)-IV-IS26. The backbone of pEC012 was similar to that of several other IncI1 ST71 plasmids: pV408, pM105, and pC271, but these plasmids had different arrangements of multidrug resistance region. In addition, the novel ISEc57 element was identified, which is in the IS21 family. The stepwise emergence of multi-resistance regions demonstrated the accumulation of different resistance determinants through homologous recombination. To the best of our knowledge, this is the first study to identify a multidrug-resistant IncI1 ST71 plasmid carrying blaCTX-M-65, rmtB, fosA3, floR, and oqxAB in an avian E. coli ST117 strain.
Collapse
Affiliation(s)
- Yu-Shan Pan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, China
| | - Zhi-Yong Zong
- West China Hospital, Sichuan University Chengdu, China
| | - Li Yuan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, China
| | - Xiang-Dang Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, China
| | - Hui Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, China
| | - Xing-Hao Zhong
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, China
| | - Gong-Zheng Hu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, China
| |
Collapse
|
173
|
Leclercq SO, Wang C, Sui Z, Wu H, Zhu B, Deng Y, Feng J. A multiplayer game: species of Clostridium, Acinetobacter, and Pseudomonas are responsible for the persistence of antibiotic resistance genes in manure-treated soils. Environ Microbiol 2016; 18:3494-3508. [PMID: 27120080 DOI: 10.1111/1462-2920.13337] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/28/2016] [Accepted: 04/06/2016] [Indexed: 12/01/2022]
Abstract
Antibiotics are routinely used in modern livestock farming. The manure from medicated animals is used for the fertilization of arable crops, which in turn leads to the accumulation of antibiotic resistance genes (ARGs) in the environment. This is a potentially serious public health issue, yet the identities of the bacterial taxa involved in ARG persistence are as yet undetermined. Using soil-manure microcosm experiments, we investigated the relationship between (i) the persistence of diverse ARGs and (ii) the dynamics of bacterial community members. We were able to identify, for the first time, the bacterial taxa involved in ARG enrichment in manured soils. They were gut-associated Clostridium species, and environmental species of Acinetobacter and Pseudomonas genera, all of them closely related to important nosocomial pathogens. Our data provide new clues on the routes by which ARGs may spread from farms to medical clinics.
Collapse
Affiliation(s)
- Sebastien Olivier Leclercq
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhihai Sui
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Hai Wu
- College of Life Sciences, Hebei University, Baoding, China
| | - Baoli Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ye Deng
- Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
174
|
Mechanisms Involved in Acquisition of blaNDM Genes by IncA/C2 and IncFIIY Plasmids. Antimicrob Agents Chemother 2016; 60:4082-8. [PMID: 27114281 DOI: 10.1128/aac.00368-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/22/2016] [Indexed: 12/11/2022] Open
Abstract
blaNDM genes confer carbapenem resistance and have been identified on transferable plasmids belonging to different incompatibility (Inc) groups. Here we present the complete sequences of four plasmids carrying a blaNDM gene, pKP1-NDM-1, pEC2-NDM-3, pECL3-NDM-1, and pEC4-NDM-6, from four clinical samples originating from four different patients. Different plasmids carry segments that align to different parts of the blaNDM region found on Acinetobacter plasmids. pKP1-NDM-1 and pEC2-NDM-3, from Klebsiella pneumoniae and Escherichia coli, respectively, were identified as type 1 IncA/C2 plasmids with almost identical backbones. Different regions carrying blaNDM are inserted in different locations in the antibiotic resistance island known as ARI-A, and ISCR1 may have been involved in the acquisition of blaNDM-3 by pEC2-NDM-3. pECL3-NDM-1 and pEC4-NDM-6, from Enterobacter cloacae and E. coli, respectively, have similar IncFIIY backbones, but different regions carrying blaNDM are found in different locations. Tn3-derived inverted-repeat transposable elements (TIME) appear to have been involved in the acquisition of blaNDM-6 by pEC4-NDM-6 and the rmtC 16S rRNA methylase gene by IncFIIY plasmids. Characterization of these plasmids further demonstrates that even very closely related plasmids may have acquired blaNDM genes by different mechanisms. These findings also illustrate the complex relationships between antimicrobial resistance genes, transposable elements, and plasmids and provide insights into the possible routes for transmission of blaNDM genes among species of the Enterobacteriaceae family.
Collapse
|
175
|
Harmer CJ, Partridge SR, Hall RM. pDGO100, a type 1 IncC plasmid from 1981 carrying ARI-A and a Tn1696-like transposon in a novel integrating element. Plasmid 2016; 86:38-45. [PMID: 27318267 DOI: 10.1016/j.plasmid.2016.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 10/21/2022]
Abstract
Most A/C plasmids sequenced to date were recovered in the last two decades. To gain insight into the evolution of this group, the IncC plasmid pDGO100, found in a multiply antibiotic-resistant Escherichia coli strain isolated in 1981, was sequenced. pDGO100 belongs to the type 1 lineage and carries an ARI-A antibiotic resistance island but not an ARI-B island. The A/C2 backbone of pDGO100 has a deletion in the rhs1 gene previously found in pRMH760 and differs by only six single base pair substitutions from pRMH760, recovered at the same hospital 16years later. This confirms that the separation of type 1 and type 2 IncC plasmids is long standing. The ARI-A islands are also closely related, but pRMH760 contains Tn4352B in tniA of Tn402, while in pDGO100, Tn4352 has inserted into merA of pDUmer. pDGO100 also carries an additional 46kb insertion that includes a Tn1696-like transposon with the dfrB3 gene cassette. This insertion was identified as a novel integrating element, with an int gene at one end, and also includes the fec iron uptake operon that has been acquired from the E. coli chromosome. Related integrating elements carrying the same int gene were found in A/C2, IncHI1, and IncHI2 plasmids, and in the chromosomes of Enterobacter cloacae, Klebsiella oxytoca, and Cronobacter sakazakii isolates. In the Enterobacteriaceae chromosomes, these integrating elements appear to target a gene encoding a radical SAM superfamily protein. In the A/C2, IncHI1, and IncHI2 plasmids, genes encoding a phosphoadenosine phosphosulfate reductase were interrupted. The extremities of the integrating element are highly conserved, whilst the internal gene content varies. The detection of integrative elements in plasmids demonstrates an increased range of locations into which this type of mobile element can integrate and insertion in plasmids is likely to assist their spread.
Collapse
Affiliation(s)
- Christopher J Harmer
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia.
| | - Sally R Partridge
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Westmead Hospital, The University of Sydney, Sydney, New South Wales, Australia
| | - Ruth M Hall
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
176
|
Nested Russian Doll-Like Genetic Mobility Drives Rapid Dissemination of the Carbapenem Resistance Gene blaKPC. Antimicrob Agents Chemother 2016; 60:3767-78. [PMID: 27067320 PMCID: PMC4879409 DOI: 10.1128/aac.00464-16] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/03/2016] [Indexed: 01/01/2023] Open
Abstract
The recent widespread emergence of carbapenem resistance in Enterobacteriaceae is a major public health concern, as carbapenems are a therapy of last resort against this family of common bacterial pathogens. Resistance genes can mobilize via various mechanisms, including conjugation and transposition; however, the importance of this mobility in short-term evolution, such as within nosocomial outbreaks, is unknown. Using a combination of short- and long-read whole-genome sequencing of 281 blaKPC-positive Enterobacteriaceae isolates from a single hospital over 5 years, we demonstrate rapid dissemination of this carbapenem resistance gene to multiple species, strains, and plasmids. Mobility of blaKPC occurs at multiple nested genetic levels, with transmission of blaKPC strains between individuals, frequent transfer of blaKPC plasmids between strains/species, and frequent transposition of blaKPC transposon Tn4401 between plasmids. We also identify a common insertion site for Tn4401 within various Tn2-like elements, suggesting that homologous recombination between Tn2-like elements has enhanced the spread of Tn4401 between different plasmid vectors. Furthermore, while short-read sequencing has known limitations for plasmid assembly, various studies have attempted to overcome this by the use of reference-based methods. We also demonstrate that, as a consequence of the genetic mobility observed in this study, plasmid structures can be extremely dynamic, and therefore these reference-based methods, as well as traditional partial typing methods, can produce very misleading conclusions. Overall, our findings demonstrate that nonclonal resistance gene dissemination can be extremely rapid, presenting significant challenges for public health surveillance and achieving effective control of antibiotic resistance.
Collapse
|
177
|
Cury J, Jové T, Touchon M, Néron B, Rocha EP. Identification and analysis of integrons and cassette arrays in bacterial genomes. Nucleic Acids Res 2016; 44:4539-50. [PMID: 27130947 PMCID: PMC4889954 DOI: 10.1093/nar/gkw319] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/13/2016] [Indexed: 12/13/2022] Open
Abstract
Integrons recombine gene arrays and favor the spread of antibiotic resistance. Their broader roles in bacterial adaptation remain mysterious, partly due to lack of computational tools. We made a program – IntegronFinder – to identify integrons with high accuracy and sensitivity. IntegronFinder is available as a standalone program and as a web application. It searches for attC sites using covariance models, for integron-integrases using HMM profiles, and for other features (promoters, attI site) using pattern matching. We searched for integrons, integron-integrases lacking attC sites, and clusters of attC sites lacking a neighboring integron-integrase in bacterial genomes. All these elements are especially frequent in genomes of intermediate size. They are missing in some key phyla, such as α-Proteobacteria, which might reflect selection against cell lineages that acquire integrons. The similarity between attC sites is proportional to the number of cassettes in the integron, and is particularly low in clusters of attC sites lacking integron-integrases. The latter are unexpectedly abundant in genomes lacking integron-integrases or their remains, and have a large novel pool of cassettes lacking homologs in the databases. They might represent an evolutionary step between the acquisition of genes within integrons and their stabilization in the new genome.
Collapse
Affiliation(s)
- Jean Cury
- Microbial Evolutionary Genomics, Institut Pasteur, 28, rue Dr Roux, Paris, 75015, France CNRS, UMR3525, 28, rue Dr Roux, Paris, 75015, France
| | - Thomas Jové
- Univ. Limoges, INSERM, CHU Limoges, UMR_S 1092, F-87000 Limoges, France
| | - Marie Touchon
- Microbial Evolutionary Genomics, Institut Pasteur, 28, rue Dr Roux, Paris, 75015, France CNRS, UMR3525, 28, rue Dr Roux, Paris, 75015, France
| | - Bertrand Néron
- Centre d'Informatique pour la Biologie, C3BI, Institut Pasteur, Paris, France
| | - Eduardo Pc Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, 28, rue Dr Roux, Paris, 75015, France CNRS, UMR3525, 28, rue Dr Roux, Paris, 75015, France
| |
Collapse
|
178
|
Abstract
Transposons of the Tn3 family form a widespread and remarkably homogeneous group of bacterial transposable elements in terms of transposition functions and an extremely versatile system for mediating gene reassortment and genomic plasticity owing to their modular organization. They have made major contributions to antimicrobial drug resistance dissemination or to endowing environmental bacteria with novel catabolic capacities. Here, we discuss the dynamic aspects inherent to the diversity and mosaic structure of Tn3-family transposons and their derivatives. We also provide an overview of current knowledge of the replicative transposition mechanism of the family, emphasizing most recent work aimed at understanding this mechanism at the biochemical level. Previous and recent data are put in perspective with those obtained for other transposable elements to build up a tentative model linking the activities of the Tn3-family transposase protein with the cellular process of DNA replication, suggesting new lines for further investigation. Finally, we summarize our current view of the DNA site-specific recombination mechanisms responsible for converting replicative transposition intermediates into final products, comparing paradigm systems using a serine recombinase with more recently characterized systems that use a tyrosine recombinase.
Collapse
|
179
|
Moran RA, Holt KE, Hall RM. pCERC3 from a commensal ST95 Escherichia coli: A ColV virulence-multiresistance plasmid carrying a sul3-associated class 1 integron. Plasmid 2016; 84-85:11-9. [PMID: 26855083 DOI: 10.1016/j.plasmid.2016.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 01/09/2023]
Abstract
The rare sulphonamide resistance gene sul3 was found in the commensal Escherichia coli ST95 strain 22.1-R1 that was isolated in 2010 from the faeces of a healthy Australian adult. The genome of 22.1-R1 was sequenced and a 144,344bp RepFII/FIB plasmid, pCERC3, carrying sul3 was assembled. The sul3 gene is part of a class 1 integron featuring a sul3-containing conserved segment (sul3-CS) that replaced the classic sul1-containing 3'-conserved segment (3'-CS) usually seen in class 1 integrons. The integron contained the cassette array dfrA12-orfF-aadA2-cmlA1-aadA1-qacH, conferring resistance to trimethoprim, streptomycin, spectinomycin, chloramphenicol and quaternary ammonium compound. Two additional antibiotic resistance genes, blaTEM (ampicillin resistance) and tetA(B) (tetracycline) were adjacent to the integron, forming a single resistance region. In pCERC3, the sul3-type class 1 integron was flanked by sequence derived from the tnp and mer modules of Tn21 and was in the same location as In2, the sul1-containing In5-type class 1 integron of Tn21. At one end the sequence extends into Tn2670-derived sequence and then into sequence derived from the plasmid NR1 (R100). Examination of the sequences of eleven more complete sul3-containing plasmids in GenBank confirmed the relationship between sul3-associated integrons and Tn21/Tn2670/NR1. This suggests that the events that formed sul3-associated class 1 integrons occurred within the Tn21/Tn2670 context, most likely in NR1 or a related plasmid. The backbone of pCERC3 is most closely related to the backbones of ColV virulence plasmids and contains a complete ColV operon as well as several virulence associated genes and gene clusters. Hence, pCERC3 is both an antibiotic resistance and virulence plasmid.
Collapse
Affiliation(s)
- Robert A Moran
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology and Centre for Systems Genomics, University of Melbourne, VIC, Australia
| | - Ruth M Hall
- School of Life and Environmental Sciences, The University of Sydney, NSW, Australia.
| |
Collapse
|
180
|
Sun F, Zhou D, Wang Q, Feng J, Feng W, Luo W, Liu Y, Qiu X, Yin Z, Xia P. Genetic characterization of a novel blaDIM-2-carrying megaplasmid p12969-DIM from clinical Pseudomonas putida. J Antimicrob Chemother 2015; 71:909-12. [PMID: 26679251 DOI: 10.1093/jac/dkv426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/10/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To characterize a blaDIM-2-carrying 409 kb megaplasmid p12969-DIM of Pseudomonas putida 12969 from a patient with pneumonia in China. METHODS The complete nucleotide sequence of p12969-DIM was determined with a paired-end library and a mate-pair library using next-generation sequencing technology. RESULTS blaDIM-2, a close blaDIM-1 variant, was identified in p12969-DIM. DIM-2 differs from DIM-1 by two amino acid substitutions Ser119Leu and Ser209Pro. The p12969-DIM backbone is highly similar to pOZ176, but the IncP-2-type stability/replication/conjugal transfer system in the pOZ176 backbone is absent from p12969-DIM. The p12969-DIM accessory regions, a 45.7 kb MDR and a novel insertion sequence, ISPpu23, are almost entirely distinct from pOZ176. The MDR region contains a novel Tn21-subgroup transposon Tn6286 inserted with two class 1 integrons, In1225 and In1226; a Tn5503-family transposon-like element inserted with a strAB locus; and a novel Tn21-subgroup transposon-like element inserted with a class 1 integron, In1224. The three integrons carry blaDIM-2 as well as a number of additional genes conferring resistance to quinolones, aminoglycosides, chloramphenicol, florfenicol, trimethoprim, streptomycin, quaternary ammonium compounds and sulphonamides. p12969-DIM has two distinct replication/stability systems, repA/parAB-parB2 of an unknown incompatibility group in the backbone and repABC/mazFE of the IncQ2 group in the MDR region. CONCLUSIONS The MDR region of p12969-DIM harbours many resistance genes as well as a second replication/stability system. This article is the first report of a fully sequenced blaDIM-carrying plasmid.
Collapse
Affiliation(s)
- Fengjun Sun
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Qian Wang
- Department of Pharmacy, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jiao Feng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wei Feng
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wenbo Luo
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yao Liu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xuewen Qiu
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Peiyuan Xia
- Department of Pharmacy, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| |
Collapse
|
181
|
Abstract
Enterobacteriaceae are responsible for a large proportion of serious, life-threatening infections and resistance to multiple antibiotics in these organisms is an increasing global public health problem. Mutations in chromosomal genes contribute to antibiotic resistance, but Enterobacteriaceae are adapted to sharing genetic material and much important resistance is due to 'mobile' resistance genes. Different mobile genetic elements, which have different characteristics, are responsible for capturing these genes from the chromosomes of a variety of bacterial species and moving them between DNA molecules. If transferred to plasmids, these resistance genes are then able to be transferred 'horizontally' between different bacterial cells, including different species, and well as being transferred 'vertically' during cell division. Carriage of several resistance genes on the same plasmid enables a bacterial cell to acquire multi-resistance in a single step and means that spread of one resistance gene may be co-selected for by use of antibiotics other than those to which it confers resistance. Many different mobile genes conferring resistance to each class of antibiotic have been identified, complicating detection of the factors responsible for a particular resistance phenotype, especially when changes in chromosomal genes may also confer or contribute to resistance. Understanding the mechanisms of antibiotic resistance, and the means by which these mechanisms can evolve and disseminate, is important for developing ways to efficiently track the spread of resistance and to optimise treatment.
Collapse
|
182
|
Anantham S, Harmer CJ, Hall RM. p39R861-4, A Type 2 A/C2 Plasmid Carrying a Segment from the A/C1 Plasmid RA1. Microb Drug Resist 2015; 21:571-6. [DOI: 10.1089/mdr.2015.0133] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
| | | | - Ruth M. Hall
- School of Molecular Bioscience, The University of Sydney, Sydney, Australia
| |
Collapse
|
183
|
Genetic Contexts of blaNDM-1 in Patients Carrying Multiple NDM-Producing Strains. Antimicrob Agents Chemother 2015; 59:7405-10. [PMID: 26392493 DOI: 10.1128/aac.01319-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/04/2015] [Indexed: 11/20/2022] Open
Abstract
The carbapenem resistance determinant blaNDM-1 has been found in various Gram-negative bacteria and upon different plasmid replicon types (Inc). Here, we present four patients within two hospitals in Pakistan harboring between two and four NDM-1-producing Gram-negative bacilli of different species coresident in their stool samples. We characterize the blaNDM-1 genetic contexts of these 11 NDM-1-producing Gram-negative bacilli in addition to other antimicrobial resistance mechanisms, plasmid replicon profiles, and sequence types (STs) in order to understand the underlying acquisition mechanisms of carbapenem resistance within these bacteria. Two common plasmid types (IncN2 and IncA/C) were identified to carry blaNDM-1 among the six different bacterial species isolated from the four patients. Two of these strains were novel Citrobacter freundii ST 20 and ST 21. The same IncN2-type blaNDM-1 genetic context was found in all four patients and within four different species. The IncA/C-type blaNDM-1 genetic context was found in two different species and in two of the four patients. Combining genetic context characterization with other molecular epidemiology methods, we were able to establish the molecular epidemiological links between genetically unrelated bacterial species by linking their acquisition of an IncN2 or IncA/C plasmid carrying blaNDM-1 for carbapenem resistance. By combining plasmid characterization and in-depth genetic context assessment, this analysis highlights the importance of plasmids in antimicrobial resistance. It also provides a novel approach for investigating the underlying mechanisms of blaNDM-1-related spread between bacterial species and genera via plasmids.
Collapse
|
184
|
Smith H, Bossers A, Harders F, Wu G, Woodford N, Schwarz S, Guerra B, Rodríguez I, van Essen-Zandbergen A, Brouwer M, Mevius D. Characterization of epidemic IncI1-Iγ plasmids harboring ambler class A and C genes in Escherichia coli and Salmonella enterica from animals and humans. Antimicrob Agents Chemother 2015; 59:5357-65. [PMID: 26100710 PMCID: PMC4538487 DOI: 10.1128/aac.05006-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 06/10/2015] [Indexed: 11/20/2022] Open
Abstract
The aim of the study was to identify the plasmid-encoded factors contributing to the emergence and spread of epidemic IncI1-Iγ plasmids obtained from Escherichia coli and Salmonella enterica isolates from animal and human reservoirs. For this, 251 IncI1-Iγ plasmids carrying various extended-spectrum β-lactamase (ESBL) or AmpC β-lactamase genes were compared using plasmid multilocus sequence typing (pMLST). Thirty-two of these plasmids belonging to different pMLST types were sequenced using Roche 454 and Illumina platforms. Epidemic IncI1-Iγ plasmids could be assigned to various dominant clades, whereas rarely detected plasmids clustered together as a distinct clade. Similar phylogenetic trees were obtained using only the plasmid backbone sequences, showing that the differences observed between the plasmids belonging to distinct clades resulted mainly from differences between their backbone sequences. Plasmids belonging to the various clades differed particularly in the presence/absence of genes encoding partitioning and addiction systems, which contribute to stable inheritance during cell division and plasmid maintenance. Despite this, plasmids belonging to the various phylogenetic clades also showed marked resistance gene associations, indicating the circulation of successful plasmid-gene combinations. The variation in traY and excA genes found in IncI1-Iγ plasmids is conserved within pMLST sequence types and plays a role in incompatibility, although functional study is needed to elucidate the role of these genes in plasmid epidemiology.
Collapse
Affiliation(s)
- Hilde Smith
- Central Veterinary Institute (CVI) part of Wageningen University and Research Centre (WUR), Lelystad, The Netherlands
| | - Alex Bossers
- Central Veterinary Institute (CVI) part of Wageningen University and Research Centre (WUR), Lelystad, The Netherlands
| | - Frank Harders
- Central Veterinary Institute (CVI) part of Wageningen University and Research Centre (WUR), Lelystad, The Netherlands
| | - Guanghui Wu
- Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Neil Woodford
- Antimicrobial Resistance and Healthcare Associated Infections (AMRHAI) Reference Unit, Public Health England, Colindale, London, United Kingdom
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Neustadt-Mariensee, Germany
| | | | - Irene Rodríguez
- Federal Institute for Risk Assessment, Berlin, Germany Microbiology Department, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Alieda van Essen-Zandbergen
- Central Veterinary Institute (CVI) part of Wageningen University and Research Centre (WUR), Lelystad, The Netherlands
| | - Michael Brouwer
- Central Veterinary Institute (CVI) part of Wageningen University and Research Centre (WUR), Lelystad, The Netherlands
| | - Dik Mevius
- Central Veterinary Institute (CVI) part of Wageningen University and Research Centre (WUR), Lelystad, The Netherlands Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
185
|
Campos M, Llorens C, Sempere JM, Futami R, Rodriguez I, Carrasco P, Capilla R, Latorre A, Coque TM, Moya A, Baquero F. A membrane computing simulator of trans-hierarchical antibiotic resistance evolution dynamics in nested ecological compartments (ARES). Biol Direct 2015; 10:41. [PMID: 26243297 PMCID: PMC4526193 DOI: 10.1186/s13062-015-0070-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Antibiotic resistance is a major biomedical problem upon which public health systems demand solutions to construe the dynamics and epidemiological risk of resistant bacteria in anthropogenically-altered environments. The implementation of computable models with reciprocity within and between levels of biological organization (i.e. essential nesting) is central for studying antibiotic resistances. Antibiotic resistance is not just the result of antibiotic-driven selection but more properly the consequence of a complex hierarchy of processes shaping the ecology and evolution of the distinct subcellular, cellular and supra-cellular vehicles involved in the dissemination of resistance genes. Such a complex background motivated us to explore the P-system standards of membrane computing an innovative natural computing formalism that abstracts the notion of movement across membranes to simulate antibiotic resistance evolution processes across nested levels of micro- and macro-environmental organization in a given ecosystem. RESULTS In this article, we introduce ARES (Antibiotic Resistance Evolution Simulator) a software device that simulates P-system model scenarios with five types of nested computing membranes oriented to emulate a hierarchy of eco-biological compartments, i.e. a) peripheral ecosystem; b) local environment; c) reservoir of supplies; d) animal host; and e) host's associated bacterial organisms (microbiome). Computational objects emulating molecular entities such as plasmids, antibiotic resistance genes, antimicrobials, and/or other substances can be introduced into this framework and may interact and evolve together with the membranes, according to a set of pre-established rules and specifications. ARES has been implemented as an online server and offers additional tools for storage and model editing and downstream analysis. CONCLUSIONS The stochastic nature of the P-system model implemented in ARES explicitly links within and between host dynamics into a simulation, with feedback reciprocity among the different units of selection influenced by antibiotic exposure at various ecological levels. ARES offers the possibility of modeling predictive multilevel scenarios of antibiotic resistance evolution that can be interrogated, edited and re-simulated if necessary, with different parameters, until a correct model description of the process in the real world is convincingly approached. ARES can be accessed at http://gydb.org/ares.
Collapse
Affiliation(s)
- Marcelino Campos
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Carretera de Colmenar Viejo, km. 9,100, 28034, Madrid, Spain.
- Department of Information Systems and Computation (DSIC), Polytechnic University of Valencia, Camino de Vera, 46022, Valencia, Spain.
| | - Carlos Llorens
- Biotechvana, Valencia, CEEI Building, Benjamin Franklin Av. 12, Valencia Technological Park, 46980, Paterna, Spain.
| | - José M Sempere
- Department of Information Systems and Computation (DSIC), Polytechnic University of Valencia, Camino de Vera, 46022, Valencia, Spain.
| | - Ricardo Futami
- Biotechvana, Valencia, CEEI Building, Benjamin Franklin Av. 12, Valencia Technological Park, 46980, Paterna, Spain.
| | - Irene Rodriguez
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Carretera de Colmenar Viejo, km. 9,100, 28034, Madrid, Spain.
- Antibiotic Resistance and Bacterial Virulence Unit (HRYC-CSIC), associated to the Superior Council of Scientific Investigations (CSIC), Madrid, Spain.
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain.
| | - Purificación Carrasco
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/ Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| | - Rafael Capilla
- Biotechvana, Valencia, CEEI Building, Benjamin Franklin Av. 12, Valencia Technological Park, 46980, Paterna, Spain.
| | - Amparo Latorre
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain.
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/ Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO) - Public Health, Avenida de Cataluña 21, 46020, Valencia, Spain.
| | - Teresa M Coque
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Carretera de Colmenar Viejo, km. 9,100, 28034, Madrid, Spain.
- Antibiotic Resistance and Bacterial Virulence Unit (HRYC-CSIC), associated to the Superior Council of Scientific Investigations (CSIC), Madrid, Spain.
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain.
| | - Andres Moya
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain.
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/ Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Community (FISABIO) - Public Health, Avenida de Cataluña 21, 46020, Valencia, Spain.
| | - Fernando Baquero
- Department of Microbiology, Ramón y Cajal University Hospital, IRYCIS, Carretera de Colmenar Viejo, km. 9,100, 28034, Madrid, Spain.
- Antibiotic Resistance and Bacterial Virulence Unit (HRYC-CSIC), associated to the Superior Council of Scientific Investigations (CSIC), Madrid, Spain.
- Network Research Center for Epidemiology and Public Health (CIBER-ESP), Madrid, Spain.
| |
Collapse
|
186
|
Al-Marzooq F, Mohd Yusof MY, Tay ST. Molecular Analysis of Antibiotic Resistance Determinants and Plasmids in Malaysian Isolates of Multidrug Resistant Klebsiella pneumoniae. PLoS One 2015. [PMID: 26203651 PMCID: PMC4512681 DOI: 10.1371/journal.pone.0133654] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infections caused by multidrug resistant Klebsiella pneumoniae have been increasingly reported in many parts of the world. A total of 93 Malaysian multidrug resistant K. pneumoniae isolated from patients attending to University of Malaya Medical Center, Kuala Lumpur, Malaysia from 2010-2012 were investigated for antibiotic resistance determinants including extended-spectrum beta-lactamases (ESBLs), aminoglycoside and trimethoprim/sulfamethoxazole resistance genes and plasmid replicons. CTX-M-15 (91.3%) was the predominant ESBL gene detected in this study. aacC2 gene (67.7%) was the most common gene detected in aminoglycoside-resistant isolates. Trimethoprim/sulfamethoxazole resistance (90.3%) was attributed to the presence of sul1 (53.8%) and dfrA (59.1%) genes in the isolates. Multiple plasmid replicons (1-4) were detected in 95.7% of the isolates. FIIK was the dominant replicon detected together with 13 other types of plasmid replicons. Conjugative plasmids (1-3 plasmids of ~3-100 kb) were obtained from 27 of 43 K. pneumoniae isolates. An ESBL gene (either CTX-M-15, CTX-M-3 or SHV-12) was detected from each transconjugant. Co-detection with at least one of other antibiotic resistance determinants [sul1, dfrA, aacC2, aac(6ˊ)-Ib, aac(6ˊ)-Ib-cr and qnrB] was noted in most conjugative plasmids. The transconjugants were resistant to multiple antibiotics including β-lactams, gentamicin and cotrimoxazole, but not ciprofloxacin. This is the first study describing the characterization of plasmids circulating in Malaysian multidrug resistant K. pneumoniae isolates. The results of this study suggest the diffusion of highly diverse plasmids with multiple antibiotic resistance determinants among the Malaysian isolates. Effective infection control measures and antibiotic stewardship programs should be adopted to limit the spread of the multidrug resistant bacteria in healthcare settings.
Collapse
Affiliation(s)
- Farah Al-Marzooq
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Yasim Mohd Yusof
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
187
|
Bi D, Jiang X, Sheng ZK, Ngmenterebo D, Tai C, Wang M, Deng Z, Rajakumar K, Ou HY. Mapping the resistance-associated mobilome of a carbapenem-resistant Klebsiella pneumoniae strain reveals insights into factors shaping these regions and facilitates generation of a 'resistance-disarmed' model organism. J Antimicrob Chemother 2015; 70:2770-4. [PMID: 26169555 DOI: 10.1093/jac/dkv204] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/17/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES This study aims to investigate the landscape of the mobile genome, with a focus on antibiotic resistance-associated factors in carbapenem-resistant Klebsiella pneumoniae. METHODS The mobile genome of the completely sequenced K. pneumoniae HS11286 strain (an ST11, carbapenem-resistant, near-pan-resistant, clinical isolate) was annotated in fine detail. The identified mobile genetic elements were mapped to the genetic contexts of resistance genes. The blaKPC-2 gene and a 26 kb region containing 12 clustered antibiotic resistance genes and one biocide resistance gene were deleted, and the MICs were determined again to ensure that antibiotic resistance had been lost. RESULTS HS11286 contains six plasmids, 49 ISs, nine transposons, two separate In2-related integron remnants, two integrative and conjugative elements (ICEs) and seven prophages. Sixteen plasmid-borne resistance genes were identified, 14 of which were found to be directly associated with Tn1721-, Tn3-, Tn5393-, In2-, ISCR2- and ISCR3-derived elements. IS26 appears to have actively moulded several of these genetic regions. The deletion of blaKPC-2, followed by the deletion of a 26 kb region containing 12 clustered antibiotic resistance genes, progressively decreased the spectrum and level of resistance exhibited by the resultant mutant strains. CONCLUSIONS This study has reiterated the role of plasmids as bearers of the vast majority of resistance genes in this species and has provided valuable insights into the vital role played by ISs, transposons and integrons in shaping the resistance-coding regions in this important strain. The 'resistance-disarmed' K. pneumoniae ST11 strain generated in this study will offer a more benign and readily genetically modifiable model organism for future extensive functional studies.
Collapse
Affiliation(s)
- Dexi Bi
- State Key Laboratory for Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, China
| | - Xiaofei Jiang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Zi-Ke Sheng
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - David Ngmenterebo
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Cui Tai
- State Key Laboratory for Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Zixin Deng
- State Key Laboratory for Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, China
| | - Kumar Rajakumar
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | - Hong-Yu Ou
- State Key Laboratory for Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiaotong University, Shanghai 200030, China Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
188
|
Harmer CJ, Hall RM. The A to Z of A/C plasmids. Plasmid 2015; 80:63-82. [DOI: 10.1016/j.plasmid.2015.04.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 04/03/2015] [Accepted: 04/14/2015] [Indexed: 10/23/2022]
|
189
|
Mshana SE, Fritzenwanker M, Falgenhauer L, Domann E, Hain T, Chakraborty T, Imirzalioglu C. Molecular epidemiology and characterization of an outbreak causing Klebsiella pneumoniae clone carrying chromosomally located bla(CTX-M-15) at a German University-Hospital. BMC Microbiol 2015; 15:122. [PMID: 26077154 PMCID: PMC4469578 DOI: 10.1186/s12866-015-0460-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multi-drug resistant Klebsiella pneumoniae strains are a common cause of health care associated infections worldwide. Clonal spread of Klebsiella pneumoniae isolates carrying plasmid mediated CTX-M-15 have been commonly reported. Limited data is available regarding dissemination of chromosomally encoded CTX-M-15 in Klebsiella pneumoniae worldwide. RESULTS We examined 23 non-repetitive ESBL-producing Klebsiella pneumoniae strains isolated from clinical specimens over a period of 4 months in a German University Hospital. All isolates were characterized to determine their genetic relatedness using Pulsed-Field Gel Electrophoresis (PFGE) and Multi Locus Sequence Typing (MLST). PFGE revealed three clusters (B1, B2, and B3) with a sub-cluster (A3) comprising of 10 isolates with an identical PFGE pattern. All strains of the cluster B3 with similar PFGE patterns were typed as ST101, indicating an outbreak situation. The ESBL allele bla CTX-M-15 was identified in 16 (69.6 %) of all isolates, including all of the outbreak strains. Within the A3 sub-cluster, the CTX-M-15 allele could not be transferred by conjugation. DNA hybridization studies suggested a chromosomal location of bla CTX-M-15. Whole genome sequencing located CTX-M-15 within a complete ISEcp-1 transposition unit inserted into an ORF encoding for a putative membrane protein. PCR-based analysis of the flanking regions demonstrated that insertion into this region is unique and present in all outbreak isolates. CONCLUSION This is the first characterization of a chromosomal insertion of bla CTX-M-15 in Klebsiella pneumonia ST101, a finding suggesting that in Enterobacteriaceae, chromosomal locations may also act as reservoirs for the spread of bla CTX-M-15 encoding transposition units.
Collapse
Affiliation(s)
- Stephen E Mshana
- Catholic University of Health and Allied Sciences, Weill Bugando School of Medicine Box, 1464, Mwanza, Tanzania.
| | - Moritz Fritzenwanker
- Institute of Medical Microbiology, Justus-Liebig University, , Schubertstrasse 81, 35392, Giessen, Germany. .,German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| | - Linda Falgenhauer
- Institute of Medical Microbiology, Justus-Liebig University, , Schubertstrasse 81, 35392, Giessen, Germany. .,German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| | - Eugen Domann
- Institute of Medical Microbiology, Justus-Liebig University, , Schubertstrasse 81, 35392, Giessen, Germany. .,German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| | - Torsten Hain
- Institute of Medical Microbiology, Justus-Liebig University, , Schubertstrasse 81, 35392, Giessen, Germany. .,German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus-Liebig University, , Schubertstrasse 81, 35392, Giessen, Germany. .,German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| | - Can Imirzalioglu
- Institute of Medical Microbiology, Justus-Liebig University, , Schubertstrasse 81, 35392, Giessen, Germany. .,German Center for Infection Research (DZIF), Partner site Giessen-Marburg-Langen, Campus Giessen, Schubertstrasse 81, 35392, Giessen, Germany.
| |
Collapse
|
190
|
Meradji S, Barguigua A, Zerouali K, Mazouz D, Chettibi H, Elmdaghri N, Timinouni M. Epidemiology of carbapenem non-susceptible Pseudomonas aeruginosa isolates in Eastern Algeria. Antimicrob Resist Infect Control 2015; 4:27. [PMID: 26075066 PMCID: PMC4465145 DOI: 10.1186/s13756-015-0067-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/04/2015] [Indexed: 01/19/2023] Open
Abstract
Background Carbapenem resistance among Pseudomonas aeruginosa has become a serious life-threatening problem due to the limited therapeutic options. In this study, we investigated the prevalence and the molecular epidemiology of carbapenem resistant Pseudomonas aeruginosa (CRPA) isolated from three hospitals in Annaba city, Algeria. Methods During the study period (January, 2012 to December, 2013), all patients infected by P. aeruginosa were considered as the potential study population. Antibiotic susceptibility testing was performed as recommended by the CLSI. Screening of carbapenemase producer isolates was performed by using imipenem-EDTA double-disk synergy test and modified Hodge test. CRPA isolates were tested for the presence of genes encoding β-lactamases, plasmid mediated quinolone resistance, aminoglycoside resistance and class 1 integrons were investigated by PCR and sequencing. The clonal relatedness among CRPA isolates was analyzed by pulsed-field gel electrophoresis method. The clinical data were collected to identify risk factors for CRPA carriage of P. aeruginosa infection. Results The overall prevalence of CRPA was 18.75 %. The risk factors for carrying CRPA were the length of hospital stay (p = 0.04), co-infections with Staphylococcus aureus (p = 0.01), and the use of urinary catheter (p = 0.03). The in-hospital mortality rate among case patients was 13.33 % compared with 1.53 % for control patients (p = 0.09). All CRPA isolates were multidrug resistance and the most effective antibiotic against CRPA isolates was amikacin and colistin. PFGE revealed an epidemic clonal dissemination of CRPA isolates. None of CRPA isolated were found to be carbapenemase-producers. The blaPSE-1 and aac(3)-II gene was detected in two and five strains respectively. The class1 integrons were detected in 2 isolates with the presence of aadA7 gene cassette in these integrons. Conclusion The endemic clonal dissemination and multi-drug resistance of CRPA isolates in our institution is highly alarming. Strict measure will be required to control the further spread of these pathogens in hospital setting.
Collapse
Affiliation(s)
- Samah Meradji
- Department of Biology, Biochemstry and Applied Microbiology Laboratory, Badji Mokhtar Faculty of sciences, Annaba University, Box 12, Sidi Amar, 23000 Annaba, Algeria
| | - Abouddihaj Barguigua
- Molecular Bacteriology Laboratory, Pasteur Institute of Morocco, 1, Place Louis Pasteur, 20360 Casablanca,, Morocco ; Microbiology Laboratory, Faculty of Medicine and Pharmacy, 1 Street Hospital, 20360 Casablanca, Morocco
| | - Khalid Zerouali
- Microbiology Laboratory, Faculty of Medicine and Pharmacy, 1 Street Hospital, 20360 Casablanca, Morocco
| | - Dekhil Mazouz
- Microbiology Laboratory, University Hospital Ibn Rochd, 23000 Annaba, Algeria
| | - Houria Chettibi
- Department of Biology, Biochemstry and Applied Microbiology Laboratory, Badji Mokhtar Faculty of sciences, Annaba University, Box 12, Sidi Amar, 23000 Annaba, Algeria
| | - Naima Elmdaghri
- Molecular Bacteriology Laboratory, Pasteur Institute of Morocco, 1, Place Louis Pasteur, 20360 Casablanca,, Morocco
| | - Mohammed Timinouni
- Molecular Bacteriology Laboratory, Pasteur Institute of Morocco, 1, Place Louis Pasteur, 20360 Casablanca,, Morocco
| |
Collapse
|
191
|
Relative Strengths of Promoters Provided by Common Mobile Genetic Elements Associated with Resistance Gene Expression in Gram-Negative Bacteria. Antimicrob Agents Chemother 2015; 59:5088-91. [PMID: 26055385 DOI: 10.1128/aac.00420-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 06/05/2015] [Indexed: 01/01/2023] Open
Abstract
Comparison of green fluorescent protein expression from outward-facing promoters (POUT) of ISAba1, ISEcp1, and ISAba125 revealed approximate equivalence in strength, intermediate between PCS (strong) and PCWTGN-10 (weak) class 1 integron promoter variants, >30-fold stronger than POUT of ISCR1, and >5 times stronger than Ptac. Consistent with its usual role, PCWTGN-10 produces more mRNA from a "downstream" gfp gene transcriptionally linked to a "usual" PCWTGN-10-associated gene cassette than does POUT of ISAba1.
Collapse
|
192
|
Brouwer MSM, Tagg KA, Mevius DJ, Iredell JR, Bossers A, Smith HE, Partridge SR. IncI shufflons: Assembly issues in the next-generation sequencing era. Plasmid 2015; 80:111-7. [PMID: 25952328 DOI: 10.1016/j.plasmid.2015.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 11/18/2022]
Abstract
The shufflon is a site-specific recombination system first identified in the IncI1 plasmid R64. The R64 shufflon consists of four segments, separated by short repeats, which are rearranged and inverted by the recombinase protein Rci, generating diversity in the C-terminal end of the PilV protein. PilV is the tip adhesin of the thin pilus structure involved in bacterial conjugation and may play a role in determining recipient cell specificity during liquid mating. The variable arrangements of the shufflon region would be expected to make plasmid assembly difficult, particularly with short-read sequencing technology, but this is not usually mentioned in recent publications reporting IncI plasmid sequences. Here we discuss the issues we encountered with assembly of IncI1 sequence data obtained from the Roche-454 and Illumina platforms and make some suggestions for assembly of the shufflon region. Comparison of shufflon segments from a collection of IncI1 plasmids from The Netherlands and Australia, together with sequences available in GenBank, suggests that the number of shufflon segments present is conserved among plasmids grouped together by plasmid multi-locus sequencing typing but the different reported arrangements of shufflon segments may not be meaningful. This analysis also indicated that the sequences of the shufflon segments are highly conserved, with very few nucleotide changes.
Collapse
Affiliation(s)
- Michael S M Brouwer
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands.
| | - Kaitlin A Tagg
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Dik J Mevius
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Alex Bossers
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - Hilde E Smith
- Central Veterinary Institute of Wageningen UR, PO Box 65, 8200 AB Lelystad, The Netherlands
| | - Sally R Partridge
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
193
|
Xu Y, Gu B, Huang M, Liu H, Xu T, Xia W, Wang T. Epidemiology of carbapenem resistant Enterobacteriaceae (CRE) during 2000-2012 in Asia. J Thorac Dis 2015; 7:376-85. [PMID: 25922715 DOI: 10.3978/j.issn.2072-1439.2014.12.33] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/13/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Over the past decade, the worldwide emergence of carbapenem resistance in Enterobacteriaceae has become a severe public health issue. This meta-analysis aims to describe the epidemiology of carbapenem resistant Enterobacteriaceae (CRE) during the years of 2000-2012 in Asian area. METHODS PubMed and Embase databases were searched to identify the qualified papers. Random or fixed-effect model was used to deal with the data. RESULTS Over all the 49 Asian countries (or regions), only 37.5% [19] of them contributed epidemiology data of CRE, and the rest ones provided either only case reports or no information at all. In Asia, the prevalence of CRE was still low during the study period with average resistance rates of 0.6% (95% CI, 0.6-0.8%, imipenem) and 0.9% (95% CI, 0.7-1.2%, meropenem). Resistance rates to imipenem and meropenem in Enterobacteriaceae exhibited stably escalating trend. Similar trend can also be observed among each Enterobacteriaceae genus, such as E. coli, Klebsiella spp. and Enterobacer spp. Klebsiella spp. accounted for the largest proportion among the isolates resistant to imipenem, and then followed by E. coli and Serratia. The rank order of resistance rates to imipenem among Enterobacteriaceae genus during the period of 2000-2012 was as follows: Serratia spp. (1.8%) > Proteus spp. (1.6%) > Klebsiella spp. (0.8%) = Citrobacter spp. (0.8%) > Enterobacer spp. (0.7%) > E. coli (0.2%). CONCLUSIONS Given the fact that the prevalence of CRE was increasing during the past decade, it is urgent for us to establish regional surveillance worldwide, carry out more effective antibiotic stewardship and infection control measures to prevent further spread of carbapenem resistance in Enterobacteriaceae.
Collapse
Affiliation(s)
- Yanling Xu
- 1 Department of General Medicine, 2 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Bing Gu
- 1 Department of General Medicine, 2 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Mao Huang
- 1 Department of General Medicine, 2 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Haiyan Liu
- 1 Department of General Medicine, 2 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Ting Xu
- 1 Department of General Medicine, 2 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Wenying Xia
- 1 Department of General Medicine, 2 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| | - Tong Wang
- 1 Department of General Medicine, 2 Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China ; 3 National Key Clinical Department of Laboratory Medicine, Nanjing 210029, China
| |
Collapse
|
194
|
Zong Z, Ginn AN, Dobiasova H, Iredell JR, Partridge SR. Different IncI1 plasmids from Escherichia coli carry ISEcp1-blaCTX-M-15 associated with different Tn2-derived elements. Plasmid 2015; 80:118-26. [PMID: 25929173 DOI: 10.1016/j.plasmid.2015.04.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/20/2015] [Accepted: 04/22/2015] [Indexed: 02/05/2023]
Abstract
The bla(CTX-M-15) gene, encoding the globally dominant CTX-M-15 extended-spectrum β-lactamase, has generally been found in a 2.971-kb ISEcp1-bla(CTX-M-15)-orf477Δ transposition unit, with ISEcp1 providing a promoter. In available IncF plasmid sequences from Escherichia coli, this transposition unit interrupts a truncated copy of transposon Tn2 that lies within larger multiresistance regions. In E. coli, bla(CTX-M-15) is also commonly associated with IncI1 plasmids and here three such plasmids from E. coli clinical isolates from western Sydney 2006-2007 have been sequenced. The plasmid backbones are organised similarly to those of other IncI1 plasmids, but have insertions and/or deletions and sequence differences. Each plasmid also has a different insertion carrying bla(CTX-M-15). pJIE113 (IncI1 sequence type ST31) is almost identical to plasmids isolated from the 2011 E. coli O104:H4 outbreak in Europe, where the typical bla(CTX-M-15) transposition unit interrupts a complete Tn2 inserted directly in the plasmid backbone. In the novel plasmid pJIE139 (ST88), ISEcp1-blaC(TX-M-15)-orf477Δ lies within a Tn2/3 hybrid transposon. Homologous recombination could explain movement of ISEcp1-bla(CTX-M-15)-orf477Δ between copies of Tn2 on IncF and IncI1 plasmids and generation of the Tn2/3 hybrid. pJIE174 (ST37) is almost identical to pESBL-12 from the Netherlands and in these plasmids bla(CTX-M-15) is flanked by two copies of IS26 that truncate the transposition unit within a larger region bounded by the ends of Tn2. bla(CTX-M-15) and the associated ISEcp1-derived promoter may be able to move from this structure by the actions of IS26, independently of both ISEcp1 and Tn2.
Collapse
Affiliation(s)
- Zhiyong Zong
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia; Department of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Andrew N Ginn
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Hana Dobiasova
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia; Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic; CEITEC VFU, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Sally R Partridge
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
195
|
Abstract
Integrons are versatile gene acquisition systems commonly found in bacterial genomes. They are ancient elements that are a hot spot for genomic complexity, generating phenotypic diversity and shaping adaptive responses. In recent times, they have had a major role in the acquisition, expression, and dissemination of antibiotic resistance genes. Assessing the ongoing threats posed by integrons requires an understanding of their origins and evolutionary history. This review examines the functions and activities of integrons before the antibiotic era. It shows how antibiotic use selected particular integrons from among the environmental pool of these elements, such that integrons carrying resistance genes are now present in the majority of Gram-negative pathogens. Finally, it examines the potential consequences of widespread pollution with the novel integrons that have been assembled via the agency of human antibiotic use and speculates on the potential uses of integrons as platforms for biotechnology.
Collapse
|
196
|
Shintani M, Sanchez ZK, Kimbara K. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front Microbiol 2015; 6:242. [PMID: 25873913 PMCID: PMC4379921 DOI: 10.3389/fmicb.2015.00242] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 03/12/2015] [Indexed: 12/21/2022] Open
Abstract
Plasmids are important "vehicles" for the communication of genetic information between bacteria. The exchange of plasmids transmits pathogenically and environmentally relevant traits to the host bacteria, promoting their rapid evolution and adaptation to various environments. Over the past six decades, a large number of plasmids have been identified and isolated from different microbes. With the revolution of sequencing technology, more than 4600 complete sequences of plasmids found in bacteria, archaea, and eukaryotes have been determined. The classification of a wide variety of plasmids is not only important to understand their features, host ranges, and microbial evolution but is also necessary to effectively use them as genetic tools for microbial engineering. This review summarizes the current situation of the classification of fully sequenced plasmids based on their host taxonomy and their features of replication and conjugative transfer. The majority of the fully sequenced plasmids are found in bacteria in the Proteobacteria, Firmicutes, Spirochaetes, Actinobacteria, Cyanobacteria and Euryarcheota phyla, and key features of each phylum are included. Recent advances in the identification of novel types of plasmids and plasmid transfer by culture-independent methods using samples from natural environments are also discussed.
Collapse
Affiliation(s)
- Masaki Shintani
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Shizuoka, Japan ; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University Shizuoka, Japan
| | - Zoe K Sanchez
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Shizuoka, Japan
| | - Kazuhide Kimbara
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Shizuoka, Japan
| |
Collapse
|
197
|
Complete nucleotide sequences of bla(CTX-M)-harboring IncF plasmids from community-associated Escherichia coli strains in the United States. Antimicrob Agents Chemother 2015; 59:3002-7. [PMID: 25753630 DOI: 10.1128/aac.04772-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 03/01/2015] [Indexed: 01/20/2023] Open
Abstract
Community-associated infections due to Escherichia coli producing CTX-M-type extended-spectrum β-lactamases are increasingly recognized in the United States. The bla(CTX-M) genes are frequently carried on IncF group plasmids. In this study, bla(CTX-M-15)-harboring plasmids pCA14 (sequence type 131 [ST131]) and pCA28 (ST44) and bla(CTX-M-14)-harboring plasmid pCA08 (ST131) were sequenced and characterized. The three plasmids were closely related to other IncFII plasmids from continents outside the United States in the conserved backbone region and multiresistance regions (MRRs). Each of the bla(CTX-M-15)-carrying plasmids pCA14 and pCA28 belonged to F31:A4:B1 (FAB [FII, FIA, FIB] formula) and showed a high level of similarity (92% coverage of pCA14 and 99% to 100% nucleotide identity), suggesting a possible common origin. The blaC(TX-M-14)-carrying plasmid pCA08 belonged to F2:A2:B20 and was highly similar to pKF3-140 from China (88% coverage of pCA08 and 99% to 100% nucleotide identity). All three plasmids carried multiple antimicrobial resistance genes and modules associated with virulence and biochemical pathways, which likely confer selective advantages for their host strains. The bla(CTX-M)-carrying IncFII-IA-IB plasmids implicated in community-associated infections in the United States shared key structural features with those identified from other continents, underscoring the global nature of this plasmid epidemic.
Collapse
|
198
|
Tn6249, a new Tn6162 transposon derivative carrying a double-integron platform and involved with acquisition of the blaVIM-1 metallo-β-lactamase gene in Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014; 59:1583-7. [PMID: 25547348 DOI: 10.1128/aac.04047-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The In70.2 integron platform appears to be a conserved structure involved in the dissemination of the blaVIM-1 metallo-β-lactamase gene in Pseudomonas aeruginosa. The genetic context of the In70.2 integron platform from P. aeruginosa VR-143/97, the VIM-1-producing index strain isolated in Italy in 1997, was fully characterized by a next-generation sequencing approach refined by conventional sequencing. The In70.2 integron platform from VR-143/97 was found to be associated with a defective Tn402-like transposon inserted into the urf2 gene of a Tn3 family transposon of an original structure, named Tn6249, which also carried a partially deleted mer operon and an In90 integron platform in a tail-to-tail orientation. Tn6249 was inserted into a PACS171b-like genomic island, which was in turn inserted into the endA gene of the Pseudomonas chromosomal backbone. Tn6249 showed a similar structure and a conserved location with respect to that of Tn6060, a Tn3 family transposon associated with In70.2 and carrying a double-integron platform, which was detected in a VIM-1-producing P. aeruginosa strain isolated in Australia in 2008. Both Tn6249 and Tn6060 are apparently derived from Tn6162, a mercury resistance transposon carrying an integron platform, which was found in P. aeruginosa isolates from different geographic locations. The conservation of the genetic context of Tn6249 and Tn6060 suggests an in situ evolution of these elements after the insertion of a Tn6162-like ancestor into the PACS171b-like genomic island (GI) present in the genome of a successful widespread P. aeruginosa clonal lineage.
Collapse
|
199
|
Baquero F, Lanza VF, Cantón R, Coque TM. Public health evolutionary biology of antimicrobial resistance: priorities for intervention. Evol Appl 2014; 8:223-39. [PMID: 25861381 PMCID: PMC4380917 DOI: 10.1111/eva.12235] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/12/2014] [Indexed: 12/19/2022] Open
Abstract
The three main processes shaping the evolutionary ecology of antibiotic resistance (AbR) involve the emergence, invasion and occupation by antibiotic-resistant genes of significant environments for human health. The process of emergence in complex bacterial populations is a high-frequency, continuous swarming of ephemeral combinatory genetic and epigenetic explorations inside cells and among cells, populations and communities, expanding in different environments (migration), creating the stochastic variation required for evolutionary progress. Invasion refers to the process by which AbR significantly increases in frequency in a given (invaded) environment, led by external invaders local multiplication and spread, or by endogenous conversion. Conversion occurs because of the spread of AbR genes from an exogenous resistant clone into an established (endogenous) bacterial clone(s) colonizing the environment; and/or because of dissemination of particular resistant genetic variants that emerged within an endogenous clonal population. Occupation of a given environment by a resistant variant means a permanent establishment of this organism in this environment, even in the absence of antibiotic selection. Specific interventions on emergence influence invasion, those acting on invasion also influence occupation and interventions on occupation determine emergence. Such interventions should be simultaneously applied, as they are not simple solutions to the complex problem of AbR.
Collapse
Affiliation(s)
- Fernando Baquero
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| | - Val F Lanza
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| | - Rafael Cantón
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III Madrid, Spain
| | - Teresa M Coque
- Departamento de Microbiología, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid, Spain ; Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones Científicas (CSIC) Madrid, Spain ; CIBER Epidemiología y Salud Pública (CIBERESP) Madrid, Spain
| |
Collapse
|
200
|
Laroche-Ajzenberg E, Flores Ribeiro A, Bodilis J, Riah W, Buquet S, Chaftar N, Pawlak B. Conjugative multiple-antibiotic resistance plasmids in Escherichia coli
isolated from environmental waters contaminated by human faecal wastes. J Appl Microbiol 2014; 118:399-411. [DOI: 10.1111/jam.12691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/14/2014] [Accepted: 11/06/2014] [Indexed: 11/30/2022]
Affiliation(s)
| | - A. Flores Ribeiro
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - J. Bodilis
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - W. Riah
- Agri'Terr Laboratory; ESITPA; Mont Saint Aignan France
| | - S. Buquet
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - N. Chaftar
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - B. Pawlak
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| |
Collapse
|