151
|
Wolters B, Kyselková M, Krögerrecklenfort E, Kreuzig R, Smalla K. Transferable antibiotic resistance plasmids from biogas plant digestates often belong to the IncP-1ε subgroup. Front Microbiol 2015; 5:765. [PMID: 25653641 PMCID: PMC4301011 DOI: 10.3389/fmicb.2014.00765] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/16/2014] [Indexed: 12/30/2022] Open
Abstract
Manure is known to contain residues of antibiotics administered to farm animals as well as bacteria carrying antibiotic resistance genes (ARGs). These genes are often located on mobile genetic elements. In biogas plants (BGPs), organic substrates such as manure and plant material are mixed and fermented in order to provide energy, and resulting digestates are used for soil fertilization. The fate of plasmid carrying bacteria from manure during the fermentation process is unknown. The present study focused on transferable antibiotic resistance plasmids from digestates of seven BGPs, using manure as a co-substrate, and their phenotypic and genotypic characterization. Plasmids conferring resistance to either tetracycline or sulfadiazine were captured by means of exogenous plasmid isolation from digestates into Pseudomonas putida KT2442 and Escherichia coli CV601 recipients, at transfer frequencies ranging from 10(-5) to 10(-7). Transconjugants (n = 101) were screened by PCR-Southern blot hybridization and real-time PCR for the presence of IncP-1, IncP-1ε, IncW, IncN, IncP-7, IncP-9, LowGC, and IncQ plasmids. While 61 plasmids remained unassigned, 40 plasmids belonged to the IncP-1ε subgroup. All these IncP-1ε plasmids were shown to harbor the genes tet(A), sul1, qacEΔ1, intI1, and integron gene cassette amplicons of different size. Further analysis of 16 representative IncP-1ε plasmids showed that they conferred six different multiple antibiotic resistance patterns and their diversity seemed to be driven by the gene cassette arrays. IncP-1ε plasmids displaying similar restriction and antibiotic resistance patterns were captured from different BGPs, suggesting that they may be typical of this environment. Our study showed that BGP digestates are a potential source of transferable antibiotic resistance plasmids, and in particular the broad host range IncP-1ε plasmids might contribute to the spread of ARGs when digestates are used as fertilizer.
Collapse
Affiliation(s)
- Birgit Wolters
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics Braunschweig, Germany ; Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry Braunschweig, Germany
| | - Martina Kyselková
- Biology Centre of the Academy of Sciences of the Czech Republic, Institute of Soil Biology České Budějovice, Czech Republic
| | - Ellen Krögerrecklenfort
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics Braunschweig, Germany
| | - Robert Kreuzig
- Technische Universität Braunschweig, Institute of Environmental and Sustainable Chemistry Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics Braunschweig, Germany
| |
Collapse
|
152
|
Gao C, Jin X, Ren J, Fang H, Yu Y. Bioaugmentation of DDT-contaminated soil by dissemination of the catabolic plasmid pDOD. J Environ Sci (China) 2015; 27:42-50. [PMID: 25597661 DOI: 10.1016/j.jes.2014.05.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/12/2014] [Accepted: 05/27/2014] [Indexed: 06/04/2023]
Abstract
A plasmid transfer-mediated bioaugmentation method for the enhancement of dichlorodiphenyltrichloroethane (DDT) degradation in soil was developed using the catabolic plasmid pDOD from Sphingobacterium sp. D-6. The pDOD plasmid could be transferred to soil bacteria, such as members of Cellulomonas, to form DDT degraders and thus accelerate DDT degradation. The transfer efficiency of pDOD was affected by the donor, temperature, moisture, and soil type. Approximately 50.7% of the DDT in the contaminated field was removed 210 days after the application of Escherichia coli TG I (pDOD-gfp). The results suggested that seeding pDOD into soil is an effective bioaugmentation method for enhancing the degradation of DDT.
Collapse
Affiliation(s)
- Chunming Gao
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiangxiang Jin
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jingbei Ren
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
153
|
Zhang M, Visser S, Pereira e Silva MC, van Elsas JD. IncP-1 and PromA group plasmids are major providers of horizontal gene transfer capacities across bacteria in the mycosphere of different soil fungi. MICROBIAL ECOLOGY 2015; 69:169-179. [PMID: 25149284 DOI: 10.1007/s00248-014-0482-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/08/2014] [Indexed: 06/03/2023]
Abstract
Plasmids of the IncP-1β group have been found to be important carriers of accessory genes that enhance the ecological fitness of bacteria, whereas plasmids of the PromA group are key agents of horizontal gene transfer in particular soil settings. However, there is still a paucity of knowledge with respect to the diversity, abundance, and involvement in horizontal gene transfer of plasmids of both groups in the mycosphere. Using triparental exogenous isolation based on the IncQ tracer plasmid pSUP104 as well as direct molecular detection, we analyzed the pool of mobilizer and self-transferable plasmids in mycosphere soil. Replicate mushroom types that were related to Russula, Inocybe, Ampulloclitocybe, and Galerina spp. were sampled from a forest soil area, and bulk soil was used as the control. The data showed that the levels of IncP-1β plasmids are significantly raised across several of the mycospheres analyzed, whereas those of PromA group plasmids were similar across the mycospheres and corresponding bulk soil. Moreover, the frequencies of triparental exogenous isolation of mobilizer plasmids into a Pseudomonas fluorescens recipient strain were significantly elevated in communities from several mycospheres as compared with those from bulk soil. Molecular analysis of selected transconjugants, as well as from directly isolated strains, revealed the presence of plasmids of three size groups, i.e., (1) 40-45, (2) 50-60, and (3) ≥60 kb, across all isolations. Replicon typing using IncN, IncW and IncA/C proxies revealed no positive signals. In contrast, a suite of plasmids produced signals with IncP-1β as well as PromA type replicon typing systems. Moreover, a selected subset of plasmids, obtained from the Inocybe and Galerina isolates, was transferred out further, revealing their capacities to transfer and mobilize across a broad host range.
Collapse
Affiliation(s)
- Miaozhi Zhang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies, University of Groningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | | | | | | |
Collapse
|
154
|
Klümper U, Droumpali A, Dechesne A, Smets BF. Novel assay to measure the plasmid mobilizing potential of mixed microbial communities. Front Microbiol 2014; 5:730. [PMID: 25566238 PMCID: PMC4273639 DOI: 10.3389/fmicb.2014.00730] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/04/2014] [Indexed: 01/21/2023] Open
Abstract
Mobilizable plasmids lack necessary genes for complete conjugation and are therefore non-self-transmissible. Instead, they rely on the conjugation system of conjugal plasmids to be horizontally transferred to new recipients. While community permissiveness, the fraction of a mixed microbial community that can receive self-transmissible conjugal plasmids, has been studied, the intrinsic ability of a community to mobilize plasmids that lack conjugation systems is unexplored. Here, we present a novel framework and experimental method to estimate the mobilization potential of mixed communities. We compare the transfer frequency of a mobilizable plasmid to that of a mobilizing and conjugal plasmid measured for a model strain and for the assayed community. With Pseudomonas putida carrying the gfp-tagged mobilizable IncQ plasmid RSF1010 as donor strain, we conducted solid surface mating experiments with either a P. putida strain carrying the mobilizing IncP-1α plasmid RP4 or a model bacterial community that was extracted from the inner walls of a domestic shower conduit. Additionally, we estimated the permissiveness of the same community for RP4 using P. putida as donor strain. The permissiveness of the model community for RP4 [at 1.16 × 10-4 transconjugants per recipient (T/R)] was similar to that previously measured for soil microbial communities. RSF1010 was mobilized by the model community at a frequency of 1.16 × 10-5 T/R, only one order of magnitude lower than its permissiveness to RP4. This mobilization frequency is unexpectedly high considering that (i) mobilization requires the presence of mobilizing conjugal plasmids within the permissive fraction of the recipients; (ii) in pure culture experiments with P. putida retromobilization of RSF1010 through RP4 only took place in approximately half of the donors receiving the conjugal plasmid in the first step. Further work is needed to establish how plasmid mobilization potential varies within and across microbial communities. This method has the potential to provide such insights; in addition it allows for the direct isolation of in situ mobilizing plasmids together with their endogenous hosts.
Collapse
Affiliation(s)
- Uli Klümper
- Department of Environmental Engineering, Technical University of Denmark Kongens Lyngby, Denmark
| | - Ariadni Droumpali
- Department of Environmental Engineering, Technical University of Denmark Kongens Lyngby, Denmark
| | - Arnaud Dechesne
- Department of Environmental Engineering, Technical University of Denmark Kongens Lyngby, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark Kongens Lyngby, Denmark
| |
Collapse
|
155
|
Nesme J, Simonet P. The soil resistome: a critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environ Microbiol 2014; 17:913-30. [DOI: 10.1111/1462-2920.12631] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Joseph Nesme
- Environmental Microbial Genomics, Bioengineering Departement, Laboratoire Ampère, CNRS UMR5005, Ecole Centrale de Lyon; Université de Lyon; 36 Avenue Guy de Collongue Ecully 69134 France
| | - Pascal Simonet
- Environmental Microbial Genomics, Bioengineering Departement, Laboratoire Ampère, CNRS UMR5005, Ecole Centrale de Lyon; Université de Lyon; 36 Avenue Guy de Collongue Ecully 69134 France
| |
Collapse
|
156
|
Laroche-Ajzenberg E, Flores Ribeiro A, Bodilis J, Riah W, Buquet S, Chaftar N, Pawlak B. Conjugative multiple-antibiotic resistance plasmids in Escherichia coli
isolated from environmental waters contaminated by human faecal wastes. J Appl Microbiol 2014; 118:399-411. [DOI: 10.1111/jam.12691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/14/2014] [Accepted: 11/06/2014] [Indexed: 11/30/2022]
Affiliation(s)
| | - A. Flores Ribeiro
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - J. Bodilis
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - W. Riah
- Agri'Terr Laboratory; ESITPA; Mont Saint Aignan France
| | - S. Buquet
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - N. Chaftar
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - B. Pawlak
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| |
Collapse
|
157
|
Protocol for Evaluating the Permissiveness of Bacterial Communities Toward Conjugal Plasmids by Quantification and Isolation of Transconjugants. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/8623_2014_36] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
158
|
Bengtsson-Palme J, Boulund F, Fick J, Kristiansson E, Larsson DGJ. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front Microbiol 2014; 5:648. [PMID: 25520706 PMCID: PMC4251439 DOI: 10.3389/fmicb.2014.00648] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 11/07/2014] [Indexed: 11/27/2022] Open
Abstract
There is increasing evidence for an environmental origin of many antibiotic resistance genes. Consequently, it is important to identify environments of particular risk for selecting and maintaining such resistance factors. In this study, we described the diversity of antibiotic resistance genes in an Indian lake subjected to industrial pollution with fluoroquinolone antibiotics. We also assessed the genetic context of the identified resistance genes, to try to predict their genetic transferability. The lake harbored a wide range of resistance genes (81 identified gene types) against essentially every major class of antibiotics, as well as genes responsible for mobilization of genetic material. Resistance genes were estimated to be 7000 times more abundant than in a Swedish lake included for comparison, where only eight resistance genes were found. The sul2 and qnrD genes were the most common resistance genes in the Indian lake. Twenty-six known and 21 putative novel plasmids were recovered in the Indian lake metagenome, which, together with the genes found, indicate a large potential for horizontal gene transfer through conjugation. Interestingly, the microbial community of the lake still included a wide range of taxa, suggesting that, across most phyla, bacteria has adapted relatively well to this highly polluted environment. Based on the wide range and high abundance of known resistance factors we have detected, it is plausible that yet unrecognized resistance genes are also present in the lake. Thus, we conclude that environments polluted with waste from antibiotic manufacturing could be important reservoirs for mobile antibiotic resistance genes.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| | - Fredrik Boulund
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg Gothenburg, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University Umeå, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg Gothenburg, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg Gothenburg, Sweden
| |
Collapse
|
159
|
Haq IU, Zhang M, Yang P, van Elsas JD. The interactions of bacteria with fungi in soil: emerging concepts. ADVANCES IN APPLIED MICROBIOLOGY 2014; 89:185-215. [PMID: 25131403 DOI: 10.1016/b978-0-12-800259-9.00005-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this chapter, we review the existing literature on bacterial-fungal interactions in soil, exploring the role fungi may play for soil bacteria as providers of hospitable niches. A focus is placed on the mycosphere, i.e., the narrow zone of influence of fungal hyphae on the external soil milieu, in which hypha-associated bacterial cells dwell. Evidence is brought forward for the contention that the hyphae of both mycorrhizal and saprotrophic fungi serve as providers of ecological opportunities in a grossly carbon-limited soil, as a result of their release of carbonaceous compounds next to the provision of a colonizable surface. Soil bacteria of particular nature are postulated to have adapted to such selection pressures, evolving to the extent that they acquired capabilities that allow them to thrive in the novel habitat created by the emerging fungal hyphae. The mechanisms involved in the interactions and the modes of genetic adaptation of the mycosphere dwellers are discussed, with an emphasis on one key mycosphere-adapted bacterium, Burkholderia terrae BS001. In this discussion, we interrogate the positive interactions between soil fungi and bacteria, and refrain from considering negative interactions.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Miaozhi Zhang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Pu Yang
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
160
|
Dziewit L, Bartosik D. Plasmids of psychrophilic and psychrotolerant bacteria and their role in adaptation to cold environments. Front Microbiol 2014; 5:596. [PMID: 25426110 PMCID: PMC4224046 DOI: 10.3389/fmicb.2014.00596] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/21/2014] [Indexed: 11/24/2022] Open
Abstract
Extremely cold environments are a challenge for all organisms. They are mostly inhabited by psychrophilic and psychrotolerant bacteria, which employ various strategies to cope with the cold. Such harsh environments are often highly vulnerable to the influence of external factors and may undergo frequent dynamic changes. The rapid adjustment of bacteria to changing environmental conditions is crucial for their survival. Such “short-term” evolution is often enabled by plasmids—extrachromosomal replicons that represent major players in horizontal gene transfer. The genomic sequences of thousands of microorganisms, including those of many cold-active bacteria have been obtained over the last decade, but the collected data have yet to be thoroughly analyzed. This report describes the results of a meta-analysis of the NCBI sequence databases to identify and characterize plasmids of psychrophilic and psychrotolerant bacteria. We have performed in-depth analyses of 66 plasmids, almost half of which are cryptic replicons not exceeding 10 kb in size. Our analyses of the larger plasmids revealed the presence of numerous genes, which may increase the phenotypic flexibility of their host strains. These genes encode enzymes possibly involved in (i) protection against cold and ultraviolet radiation, (ii) scavenging of reactive oxygen species, (iii) metabolism of amino acids, carbohydrates, nucleotides and lipids, (iv) energy production and conversion, (v) utilization of toxic organic compounds (e.g., naphthalene), and (vi) resistance to heavy metals, metalloids and antibiotics. Some of the plasmids also contain type II restriction-modification systems, which are involved in both plasmid stabilization and protection against foreign DNA. Moreover, approx. 50% of the analyzed plasmids carry genetic modules responsible for conjugal transfer or mobilization for transfer, which may facilitate the spread of these replicons among various bacteria, including across species boundaries.
Collapse
Affiliation(s)
- Lukasz Dziewit
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw Warsaw, Poland
| |
Collapse
|
161
|
Fate and effects of veterinary antibiotics in soil. Trends Microbiol 2014; 22:536-45. [DOI: 10.1016/j.tim.2014.05.005] [Citation(s) in RCA: 337] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 12/15/2022]
|
162
|
Million-Weaver S, Camps M. Mechanisms of plasmid segregation: have multicopy plasmids been overlooked? Plasmid 2014; 75:27-36. [PMID: 25107339 DOI: 10.1016/j.plasmid.2014.07.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 11/29/2022]
Abstract
Plasmids are self-replicating pieces of DNA typically bearing non-essential genes. Given that plasmids represent a metabolic burden to the host, mechanisms ensuring plasmid transmission to daughter cells are critical for their stable maintenance in the population. Here we review these mechanisms, focusing on two active partition strategies common to low-copy plasmids: par systems type I and type II. Both involve three components: an adaptor protein, a motor protein, and a centromere, which is a sequence area in the plasmid that is recognized by the adaptor protein. The centromere-bound adaptor nucleates polymerization of the motor, leading to filament formation, which can pull plasmids apart (par I) or push them towards opposite poles of the cell (par II). No such active partition mechanisms are known to occur in high copy number plasmids. In this case, vertical transmission is generally considered stochastic, due to the random distribution of plasmids in the cytoplasm. We discuss conceptual and experimental lines of evidence questioning the random distribution model and posit the existence of a mechanism for segregation in high copy number plasmids that moves plasmids to cell poles to facilitate transmission to daughter cells. This mechanism would involve chromosomally-encoded proteins and the plasmid origin of replication. Modulation of this proposed mechanism of segregation could provide new ways to enhance plasmid stability in the context of recombinant gene expression, which is limiting for large-scale protein production and for bioremediation.
Collapse
Affiliation(s)
- Samuel Million-Weaver
- Department of Microbiology, University of Washington, Box 357735, Seattle, WA 98195-77352, United States
| | - Manel Camps
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA 95064, United States
| |
Collapse
|
163
|
Petrova M, Kurakov A, Shcherbatova N, Mindlin S. Genetic structure and biological properties of the first ancient multiresistance plasmid pKLH80 isolated from a permafrost bacterium. MICROBIOLOGY-SGM 2014; 160:2253-2263. [PMID: 25063046 DOI: 10.1099/mic.0.079335-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A novel multidrug-resistance plasmid, pKLH80, previously isolated from Psychrobacter maritimus MR29-12 found in ancient permafrost, was completely sequenced and analysed. In our previous studies, we focused on the pKLH80 plasmid region containing streptomycin and tetracycline resistance genes, and their mobilization with an upstream-located ISPpy1 insertion sequence (IS) element. Here, we present the complete sequence of pKLH80 and analysis of its backbone genetic structure, including previously unknown features of the plasmid's accessory region, notably a novel variant of the β-lactamase gene blaRTG-6. Plasmid pKLH80 was found to be a circular 14 835 bp molecule that has an overall G+C content of 40.3 mol% and encodes 20 putative ORFs. There are two distinctive functional modules within the plasmid backbone sequence: (i) the replication module consisting of repB and the oriV region; and (ii) the mobilization module consisting of mobA, mobC and oriT. All of the aforementioned genes share sequence identities with corresponding genes of different species of Psychrobacter. The plasmid accessory region contains antibiotic resistance genes and IS elements (ISPsma1 of the IS982 family, and ISPpy1 and ISAba14 of the IS3 family) found in environmental and clinical bacterial strains of different taxa. We revealed that the sequences flanking blaRTG-6 and closely related genes from clinical bacteria are nearly identical. This fact suggests that blaRTG-6 from the environmental strain of Psychrobacter is a progenitor of blaRTG genes of clinical bacteria. We also showed that pKLH80 can replicate in different strains of Acinetobacter and Psychrobacter genera. The roles of IS elements in the horizontal transfer of antibiotic resistance genes are examined and discussed.
Collapse
Affiliation(s)
- Mayya Petrova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Anton Kurakov
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Natalya Shcherbatova
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| | - Sofia Mindlin
- Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov sq. 2, Moscow 123182, Russia
| |
Collapse
|
164
|
Berg G, Grube M, Schloter M, Smalla K. Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 2014; 5:148. [PMID: 24926286 PMCID: PMC4045152 DOI: 10.3389/fmicb.2014.00148] [Citation(s) in RCA: 260] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 03/20/2014] [Indexed: 11/16/2022] Open
Abstract
Most eukaryotes develop close interactions with microorganisms that are essential for their performance and survival. Thus, eukaryotes and prokaryotes in nature can be considered as meta-organisms or holobionts. Consequently, microorganisms that colonize different plant compartments contain the plant's second genome. In this respect, many studies in the last decades have shown that plant-microbe interactions are not only crucial for better understanding plant growth and health, but also for sustainable crop production in a changing world. This mini-review acting as editorial presents retrospectives and future perspectives for plant microbiome studies as well as information gaps in this emerging research field. In addition, the contribution of this research topic to the solution of various issues is discussed.
Collapse
Affiliation(s)
- Gabriele Berg
- Austrian Centre of Industrial BiotechnologyGraz, Austria
- Institute of Environmental Biotechnology, Graz University of TechnologyGraz, Austria
| | - Martin Grube
- Institute of Plant Sciences, University of GrazGraz, Austria
| | - Michael Schloter
- Environmental Genomics, Helmholtz Zentrum MünchenOberschleissheim, Germany
| | - Kornelia Smalla
- Julius Kühn-Institute (JKI), Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated PlantsBraunschweig, Germany
| |
Collapse
|
165
|
Smalla K, Tiedje JM. Editorial overview: Ecology and industrial microbiology. Curr Opin Microbiol 2014; 19:v-vii. [DOI: 10.1016/j.mib.2014.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
166
|
Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol 2014; 32:271-80. [DOI: 10.1016/j.tibtech.2014.02.008] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 02/12/2014] [Accepted: 02/26/2014] [Indexed: 01/19/2023]
|
167
|
Shifts in abundance and diversity of mobile genetic elements after the introduction of diverse pesticides into an on-farm biopurification system over the course of a year. Appl Environ Microbiol 2014; 80:4012-20. [PMID: 24771027 DOI: 10.1128/aem.04016-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biopurification systems (BPS) are used on farms to control pollution by treating pesticide-contaminated water. It is assumed that mobile genetic elements (MGEs) carrying genes coding for enzymes involved in degradation might contribute to the degradation of pesticides. Therefore, the composition and shifts of MGEs, in particular, of IncP-1 plasmids carried by BPS bacterial communities exposed to various pesticides, were monitored over the course of an agricultural season. PCR amplification of total community DNA using primers targeting genes specific to different plasmid groups combined with Southern blot hybridization indicated a high abundance of plasmids belonging to IncP-1, IncP-7, IncP-9, IncQ, and IncW, while IncU and IncN plasmids were less abundant or not detected. Furthermore, the integrase genes of class 1 and 2 integrons (intI1, intI2) and genes encoding resistance to sulfonamides (sul1, sul2) and streptomycin (aadA) were detected and seasonality was revealed. Amplicon pyrosequencing of the IncP-1 trfA gene coding for the replication initiation protein revealed high IncP-1 plasmid diversity and an increase in the abundance of IncP-1β and a decrease in the abundance of IncP-1ε over time. The data of the chemical analysis showed increasing concentrations of various pesticides over the course of the agricultural season. As an increase in the relative abundances of bacteria carrying IncP-1β plasmids also occurred, this might point to a role of these plasmids in the degradation of many different pesticides.
Collapse
|
168
|
Torres Tejerizo G, Pistorio M, Althabegoiti MJ, Cervantes L, Wibberg D, Schlüter A, Pühler A, Lagares A, Romero D, Brom S. Rhizobial plasmid pLPU83a is able to switch between different transfer machineries depending on its genomic background. FEMS Microbiol Ecol 2014; 88:565-78. [PMID: 24646299 DOI: 10.1111/1574-6941.12325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/20/2014] [Accepted: 03/07/2014] [Indexed: 12/01/2022] Open
Abstract
Plasmids have played a major role in bacterial evolution, mainly by their capacity to perform horizontal gene transfer (HGT). Their conjugative transfer (CT) properties are usually described in terms of the plasmid itself. In this work, we analyzed structural and functional aspects of the CT of pLPU83a, an accessory replicon from Rhizobium sp. LPU83, able to transfer from its parental strain, from Ensifer meliloti, or from Rhizobium etli. pLPU83a contains a complete set of transfer genes, featuring a particular organization, shared with only two other rhizobial plasmids. These plasmids contain a TraR quorum-sensing (QS) transcriptional regulator, but lack an acyl-homoserine lactone (AHL) synthase gene. We also determined that the ability of pLPU83a to transfer from R. etli CFN42 genomic background was mainly achieved through mobilization, employing the machinery of the endogenous plasmid pRetCFN42a, falling under control of the QS regulators from pRetCFN42a. In contrast, from its native or from the E. meliloti background, pLPU83a utilized its own machinery for conjugation, requiring the plasmid-encoded traR. Activation of TraR seemed to be AHL independent. The results obtained indicate that the CT phenotype of a plasmid is dictated not only by the genes it carries, but by their interaction with its genomic context.
Collapse
Affiliation(s)
- Gonzalo Torres Tejerizo
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México; Instituto de Biotecnología y Biología Molecular, CCT-La Plata-CONICET, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Musovic S, Klümper U, Dechesne A, Magid J, Smets BF. Long-term manure exposure increases soil bacterial community potential for plasmid uptake. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:125-30. [PMID: 24596284 DOI: 10.1111/1758-2229.12138] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/21/2013] [Accepted: 11/05/2013] [Indexed: 05/26/2023]
Abstract
Microbial communities derived from soils subject to different agronomic treatments were challenged with three broad host range plasmids, RP4, pIPO2tet and pRO101, via solid surface filter matings to assess their permissiveness. Approximately 1 in 10 000 soil bacterial cells could receive and maintain the plasmids. The community permissiveness increased up to 100% in communities derived from manured soil. While the plasmid transfer frequency was significantly influenced by both the type of plasmid and the agronomic treatment, the diversity of the transconjugal pools was purely plasmid dependent and was dominated by β- and γ-Proteobacteria.
Collapse
Affiliation(s)
- Sanin Musovic
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
170
|
Dynamics of soil bacterial communities in response to repeated application of manure containing sulfadiazine. PLoS One 2014; 9:e92958. [PMID: 24671113 PMCID: PMC3966856 DOI: 10.1371/journal.pone.0092958] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 02/27/2014] [Indexed: 11/30/2022] Open
Abstract
Large amounts of manure have been applied to arable soils as fertilizer worldwide. Manure is often contaminated with veterinary antibiotics which enter the soil together with antibiotic resistant bacteria. However, little information is available regarding the main responders of bacterial communities in soil affected by repeated inputs of antibiotics via manure. In this study, a microcosm experiment was performed with two concentrations of the antibiotic sulfadiazine (SDZ) which were applied together with manure at three different time points over a period of 133 days. Samples were taken 3 and 60 days after each manure application. The effects of SDZ on soil bacterial communities were explored by barcoded pyrosequencing of 16S rRNA gene fragments amplified from total community DNA. Samples with high concentration of SDZ were analyzed on day 193 only. Repeated inputs of SDZ, especially at a high concentration, caused pronounced changes in bacterial community compositions. By comparison with the initial soil, we could observe an increase of the disturbance and a decrease of the stability of soil bacterial communities as a result of SDZ manure application compared to the manure treatment without SDZ. The number of taxa significantly affected by the presence of SDZ increased with the times of manure application and was highest during the treatment with high SDZ-concentration. Numerous taxa, known to harbor also human pathogens, such as Devosia, Shinella, Stenotrophomonas, Clostridium, Peptostreptococcus, Leifsonia, Gemmatimonas, were enriched in the soil when SDZ was present while the abundance of bacteria which typically contribute to high soil quality belonging to the genera Pseudomonas and Lysobacter, Hydrogenophaga, and Adhaeribacter decreased in response to the repeated application of manure and SDZ.
Collapse
|
171
|
Morton ER, Platt TG, Fuqua C, Bever JD. Non-additive costs and interactions alter the competitive dynamics of co-occurring ecologically distinct plasmids. Proc Biol Sci 2014; 281:20132173. [PMID: 24500159 PMCID: PMC3924060 DOI: 10.1098/rspb.2013.2173] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 01/07/2014] [Indexed: 11/12/2022] Open
Abstract
Plasmids play an important role in shaping bacterial evolution and adaptation to heterogeneous environments. As modular genetic elements that are often conjugative, the selective pressures that act on plasmid-borne genes are distinct from those that act on the chromosome. Many bacteria are co-infected by multiple plasmids that impart niche-specific phenotypes. Thus, in addition to host-plasmid dynamics, interactions between co-infecting plasmids are likely to be important drivers of plasmid population dynamics, evolution and ecology. Agrobacterium tumefaciens is a facultative plant pathogen that commonly harbours two distinct megaplasmids. Virulence depends on the presence of the tumour-inducing (Ti) plasmid, with benefits that are primarily restricted to the disease environment. Here, we demonstrate that a second megaplasmid, the At plasmid, confers a competitive advantage in the rhizosphere. To assess the individual and interactive costs of these plasmids, we generated four isogenic derivatives: plasmidless, pAt only, pTi only and pAtpTi, and performed pairwise competitions under carbon-limiting conditions. These studies reveal a low cost to the virulence plasmid when outside of the disease environment, and a strikingly high cost to the At plasmid. In addition, the costs of pAt and pTi in the same host were significantly lower than predicted based on single plasmid costs, signifying the first demonstration of non-additivity between naturally occurring co-resident plasmids. Based on these empirically demonstrated costs and benefits, we developed a resource-consumer model to generate predictions about the frequencies of these genotypes in relevant environments, showing that non-additivity between co-residing plasmids allows for their stable coexistence across environments.
Collapse
Affiliation(s)
- Elise R. Morton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
172
|
Norberg P, Bergström M, Hermansson M. Complete nucleotide sequence and analysis of two conjugative broad host range plasmids from a marine microbial biofilm. PLoS One 2014; 9:e92321. [PMID: 24647540 PMCID: PMC3960245 DOI: 10.1371/journal.pone.0092321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/20/2014] [Indexed: 11/26/2022] Open
Abstract
The complete nucleotide sequence of plasmids pMCBF1 and pMCBF6 was determined and analyzed. pMCBF1 and pMCBF6 form a novel clade within the IncP-1 plasmid family designated IncP-1 ς. The plasmids were exogenously isolated earlier from a marine biofilm. pMCBF1 (62 689 base pairs; bp) and pMCBF6 (66 729 bp) have identical backbones, but differ in their mercury resistance transposons. pMCBF1 carries Tn5053 and pMCBF6 carries Tn5058. Both are flanked by 5 bp direct repeats, typical of replicative transposition. Both insertions are in the vicinity of a resolvase gene in the backbone, supporting the idea that both transposons are “res-site hunters” that preferably insert close to and use external resolvase functions. The similarity of the backbones indicates recent insertion of the two transposons and the ongoing dynamics of plasmid evolution in marine biofilms. Both plasmids also carry the insertion sequence ISPst1, albeit without flanking repeats. ISPs1is located in an unusual site within the control region of the plasmid. In contrast to most known IncP-1 plasmids the pMCBF1/pMCBF6 backbone has no insert between the replication initiation gene (trfA) and the vegetative replication origin (oriV). One pMCBF1/pMCBF6 block of about 2.5 kilo bases (kb) has no similarity with known sequences in the databases. Furthermore, insertion of three genes with similarity to the multidrug efflux pump operon mexEF and a gene from the NodT family of the tripartite multi-drug resistance-nodulation-division (RND) system in Pseudomonas aeruginosa was found. They do not seem to confer antibiotic resistance to the hosts of pMCBF1/pMCBF6, but the presence of RND on promiscuous plasmids may have serious implications for the spread of antibiotic multi-resistance.
Collapse
Affiliation(s)
- Peter Norberg
- Department of Infectious Diseases, University of Gothenburg, Göteborg, Sweden
| | - Maria Bergström
- Department of Chemistry and Molecular Biology, Microbiology, University of Gothenburg, Göteborg, Sweden
| | - Malte Hermansson
- Department of Chemistry and Molecular Biology, Microbiology, University of Gothenburg, Göteborg, Sweden
- * E-mail:
| |
Collapse
|
173
|
Dealtry S, Ding GC, Weichelt V, Dunon V, Schlüter A, Martini MC, Papa MFD, Lagares A, Amos GCA, Wellington EMH, Gaze WH, Sipkema D, Sjöling S, Springael D, Heuer H, van Elsas JD, Thomas C, Smalla K. Cultivation-independent screening revealed hot spots of IncP-1, IncP-7 and IncP-9 plasmid occurrence in different environmental habitats. PLoS One 2014; 9:e89922. [PMID: 24587126 PMCID: PMC3933701 DOI: 10.1371/journal.pone.0089922] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 01/25/2014] [Indexed: 11/24/2022] Open
Abstract
IncP-1, IncP-7 and IncP-9 plasmids often carry genes encoding enzymes involved in the degradation of man-made and natural contaminants, thus contributing to bacterial survival in polluted environments. However, the lack of suitable molecular tools often limits the detection of these plasmids in the environment. In this study, PCR followed by Southern blot hybridization detected the presence of plasmid-specific sequences in total community (TC-) DNA or fosmid DNA from samples originating from different environments and geographic regions. A novel primer system targeting IncP-9 plasmids was developed and applied along with established primers for IncP-1 and IncP-7. Screening TC-DNA from biopurification systems (BPS) which are used on farms for the purification of pesticide-contaminated water revealed high abundances of IncP-1 plasmids belonging to different subgroups as well as IncP-7 and IncP-9. The novel IncP-9 primer-system targeting the rep gene of nine IncP-9 subgroups allowed the detection of a high diversity of IncP-9 plasmid specific sequences in environments with different sources of pollution. Thus polluted sites are “hot spots” of plasmids potentially carrying catabolic genes.
Collapse
Affiliation(s)
- Simone Dealtry
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Guo-Chun Ding
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Viola Weichelt
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Vincent Dunon
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Institute for Genome Research and Systems Biology, Bielefeld University, Bielefeld, Germany
| | - María Carla Martini
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Florencia Del Papa
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Antonio Lagares
- IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | - William Hugo Gaze
- School of Life Sciences, University of Warwick, Warwick, United Kingdom
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Sara Sjöling
- Södertörns högskola (Sodertorn University), Inst. för Naturvetenskap, Miljö och medieteknik (School of Natural Sciences, Environmental Studies and media tech), Huddinge, Sweden
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| | - Holger Heuer
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | | | - Christopher Thomas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, Warwick, United Kingdom
| | - Kornelia Smalla
- Julius Kühn-Institut – Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
174
|
Hong H, Ko HJ, Choi IG, Park W. Previously undescribed plasmids recovered from activated sludge confer tetracycline resistance and phenotypic changes to Acinetobacter oleivorans DR1. MICROBIAL ECOLOGY 2014; 67:369-379. [PMID: 24337108 DOI: 10.1007/s00248-013-0343-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/02/2013] [Indexed: 06/03/2023]
Abstract
We used culture-dependent and culture-independent methods to extract previously undescribed plasmids harboring tetracycline (TC) resistance genes from activated sludge. The extracted plasmids were transformed into naturally competent Acinetobacter oleivorans DR1 to recover a non-Escherichia coli-based plasmid. The transformed cells showed 80-100-fold higher TC resistance than the wild-type strain. Restriction length polymorphism performed using 30 transformed cells showed four different types of plasmids. Illumina-based whole sequencing of the four plasmids identified three previously unreported plasmids and one previously reported plasmid. All plasmids carried TC resistance-related genes (tetL, tetH), tetracycline transcriptional regulators (tetR), and mobilization-related genes. As per expression analysis, TC resistance genes were functional in the presence of TC. The recovered plasmids showed mosaic gene acquisition through horizontal gene transfer. Membrane fluidity, hydrophobicity, biofilm formation, motility, growth rate, sensitivity to stresses, and quorum sensing signals of the transformed cells were different from those of the wild-type cells. Plasmid-bearing cells seemed to have an energy burden for maintaining and expressing plasmid genes. Our data showed that acquisition of TC resistance through plasmid uptake is related to loss of biological fitness. Thus, cells acquiring antibiotic resistance plasmids can survive in the presence of antibiotics, but must pay ecological costs.
Collapse
Affiliation(s)
- Hyerim Hong
- Department of Environmental Science and Ecological Engineering, Korea University, Anam-Dong 5Ga, Seungbuk-Ku, Seoul, 136-713, Republic of Korea
| | | | | | | |
Collapse
|
175
|
Jechalke S, Schreiter S, Wolters B, Dealtry S, Heuer H, Smalla K. Widespread dissemination of class 1 integron components in soils and related ecosystems as revealed by cultivation-independent analysis. Front Microbiol 2014; 4:420. [PMID: 24478761 PMCID: PMC3894453 DOI: 10.3389/fmicb.2013.00420] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/20/2013] [Indexed: 01/29/2023] Open
Abstract
Class 1 integrons contribute to the emerging problem of antibiotic resistance in human medicine by acquisition, exchange, and expression of resistance genes embedded within gene cassettes. Besides the clinical setting they were recently reported from environmental habitats and often located on plasmids and transposons, facilitating their transfer and spread within bacterial communities. In this study we aimed to provide insights into the occurrence of genes typically associated with the class 1 integrons in previously not studied environments with or without human impact and their association with IncP-1 plasmids. Total community DNA was extracted from manure-treated and untreated soils, lettuce and potato rhizosphere, digestates, and an on-farm biopurification system and screened by PCR with subsequent Southern blot hybridization for the presence of the class 1 integrase gene intI1 as well as qacE and qacEΔ 1 resistance genes. The results revealed a widespread dissemination of class 1 integrons in the environments analyzed, mainly related to the presence of qacEΔ 1 genes. All 28 IncP-1ε plasmids carrying class 1 integrons, which were captured exogenously in a recent study from piggery manure and soils treated with manure, carried qacEΔ 1 genes. Based on the strong hybridization signals in the rhizosphere of lettuce compared to the potato rhizosphere, the abundances of intI1, qacE/qacEΔ 1, and sul1 genes were quantified relative to the 16S rRNA gene abundance by real-time PCR in the rhizosphere of lettuce planted in three different soils and in the corresponding bulk soil. A significant enrichment of intI1 and qacE/qacEΔ 1 genes was confirmed in the rhizosphere of lettuce compared to bulk soil. Additionally, the relative abundance of korB genes specific for IncP-1 plasmids was enriched in the rhizosphere and correlated to the intI1 gene abundance indicating that IncP-1 plasmids might have contributed to the spread of class 1 integrons in the analyzed soils.
Collapse
Affiliation(s)
- Sven Jechalke
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
| | - Susanne Schreiter
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
| | - Birgit Wolters
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
- Institute of Environmental and Sustainable Chemistry, Technische Universität BraunschweigBraunschweig, Germany
| | - Simone Dealtry
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
| | - Holger Heuer
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI)Braunschweig, Germany
| |
Collapse
|
176
|
Gaze WH, Krone SM, Larsson DGJ, Li XZ, Robinson JA, Simonet P, Smalla K, Timinouni M, Topp E, Wellington EM, Wright GD, Zhu YG. Influence of humans on evolution and mobilization of environmental antibiotic resistome. Emerg Infect Dis 2014; 19. [PMID: 23764294 PMCID: PMC3713965 DOI: 10.3201/eid1907.120871] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The clinical failure of antimicrobial drugs that were previously effective in controlling infectious disease is a tragedy of increasing magnitude that gravely affects human health. This resistance by pathogens is often the endpoint of an evolutionary process that began billions of years ago in non–disease-causing microorganisms. This environmental resistome, its mobilization, and the conditions that facilitate its entry into human pathogens are at the heart of the current public health crisis in antibiotic resistance. Understanding the origins, evolution, and mechanisms of transfer of resistance elements is vital to our ability to adequately address this public health issue.
Collapse
|
177
|
Althabegoiti MJ, Ormeño-Orrillo E, Lozano L, Torres Tejerizo G, Rogel MA, Mora J, Martínez-Romero E. Characterization of Rhizobium grahamii extrachromosomal replicons and their transfer among rhizobia. BMC Microbiol 2014; 14:6. [PMID: 24397311 PMCID: PMC3898782 DOI: 10.1186/1471-2180-14-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/29/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Rhizobium grahamii belongs to a new phylogenetic group of rhizobia together with Rhizobium mesoamericanum and other species. R. grahamii has a broad-host-range that includes Leucaena leucocephala and Phaseolus vulgaris, although it is a poor competitor for P. vulgaris nodulation in the presence of Rhizobium etli or Rhizobium phaseoli strains. This work analyzed the genome sequence and transfer properties of R. grahamii plasmids. RESULTS Genome sequence was obtained from R. grahamii CCGE502 type strain isolated from Dalea leporina in Mexico. The CCGE502 genome comprises one chromosome and two extrachromosomal replicons (ERs), pRgrCCGE502a and pRgrCCGE502b. Additionally, a plasmid integrated in the CCGE502 chromosome was found. The genomic comparison of ERs from this group showed that gene content is more variable than average nucleotide identity (ANI). Well conserved nod and nif genes were found in R. grahamii and R. mesoamericanum with some differences. R. phaseoli Ch24-10 genes expressed in bacterial cells in roots were found to be conserved in pRgrCCGE502b. Regarding conjugative transfer we were unable to transfer the R. grahamii CCGE502 symbiotic plasmid and its megaplasmid to other rhizobial hosts but we could transfer the symbiotic plasmid to Agrobacterium tumefaciens with transfer dependent on homoserine lactones. CONCLUSION Variable degrees of nucleotide identity and gene content conservation were found among the different R. grahamii CCGE502 replicons in comparison to R. mesoamericanum genomes. The extrachromosomal replicons from R. grahamii were more similar to those found in phylogenetically related Rhizobium species. However, limited similarities of R. grahamii CCGE502 symbiotic plasmid and megaplasmid were observed in other more distant Rhizobium species. The set of conserved genes in R. grahamii comprises some of those that are highly expressed in R. phaseoli on plant roots, suggesting that they play an important role in root colonization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av, Universidad s/n, Col, Chamilpa, C,P, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
178
|
Weise T, Thürmer A, Brady S, Kai M, Daniel R, Gottschalk G, Piechulla B. VOC emission of various Serratia species and isolates and genome analysis of Serratia plymuthica 4Rx13. FEMS Microbiol Lett 2014; 352:45-53. [PMID: 24341572 DOI: 10.1111/1574-6968.12359] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 11/29/2022] Open
Abstract
Bacteria emit a wealth of volatile organic compounds. Gas chromatography coupled to mass spectrometry analysis of five Serratia strains revealed ketones, dimethyl di- and trisulfide and 2-phenylethanol commonly released in this genus. The polymethylated bicyclic hydrocarbon sodorifen was uniquely released by the rhizobacterium Serratia plymuthica 4Rx13. Of 10 Serratia strains, only S. plymuthica isolates originating from plants grown on fields near Rostock (Germany) released this new and unusual compound. Since the biosynthetic pathway of sodorifen was unknown, the genome sequence of S. plymuthica 4Rx13 was determined and annotated. Genome comparison of S. plymuthica 4Rx13 with sodorifen non-producing Serratia species highlighted 246 unique candidate open reading frames.
Collapse
Affiliation(s)
- Teresa Weise
- Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
179
|
de Andrade Júnior MC, Andrade JS. Amazonian Fruits: An Overview of Nutrients, Calories and Use in Metabolic Disorders. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/fns.2014.517182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
180
|
Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. Conjugative type IV secretion systems in Gram-positive bacteria. Plasmid 2013; 70:289-302. [PMID: 24129002 PMCID: PMC3913187 DOI: 10.1016/j.plasmid.2013.09.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 09/21/2013] [Accepted: 09/30/2013] [Indexed: 01/17/2023]
Abstract
The conjugative transfer mechanism of broad-host-range, Enterococcus sex pheromone and Clostridium plasmids is reviewed. Comparisons with Gram-negative type IV secretion systems are presented. The current understanding of the unique Streptomyces double stranded DNA transfer mechanism is reviewed.
Bacterial conjugation presents the most important means to spread antibiotic resistance and virulence factors among closely and distantly related bacteria. Conjugative plasmids are the mobile genetic elements mainly responsible for this task. All the genetic information required for the horizontal transmission is encoded on the conjugative plasmids themselves. Two distinct concepts for horizontal plasmid transfer in Gram-positive bacteria exist, the most prominent one transports single stranded plasmid DNA via a multi-protein complex, termed type IV secretion system, across the Gram-positive cell envelope. Type IV secretion systems have been found in virtually all unicellular Gram-positive bacteria, whereas multicellular Streptomycetes seem to have developed a specialized system more closely related to the machinery involved in bacterial cell division and sporulation, which transports double stranded DNA from donor to recipient cells. This review intends to summarize the state of the art of prototype systems belonging to the two distinct concepts; it focuses on protein key players identified so far and gives future directions for research in this emerging field of promiscuous interbacterial transport.
Collapse
|
181
|
Jechalke S, Kopmann C, Richter M, Moenickes S, Heuer H, Smalla K. Plasmid-mediated fitness advantage ofAcinetobacter baylyiin sulfadiazine-polluted soil. FEMS Microbiol Lett 2013; 348:127-32. [DOI: 10.1111/1574-6968.12284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/28/2013] [Accepted: 09/13/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Sven Jechalke
- Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI); Institute for Epidemiology and Pathogen Diagnostics; Braunschweig Germany
| | - Christoph Kopmann
- Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI); Institute for Epidemiology and Pathogen Diagnostics; Braunschweig Germany
| | - Mona Richter
- Technical University Braunschweig; Institute of Geoecology; Braunschweig Germany
| | - Sylvia Moenickes
- Faculty Life Sciences; Rhine-Waal University of Applied Sciences; Kleve Germany
| | - Holger Heuer
- Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI); Institute for Epidemiology and Pathogen Diagnostics; Braunschweig Germany
| | - Kornelia Smalla
- Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI); Institute for Epidemiology and Pathogen Diagnostics; Braunschweig Germany
| |
Collapse
|
182
|
Diverse broad-host-range plasmids from freshwater carry few accessory genes. Appl Environ Microbiol 2013; 79:7684-95. [PMID: 24096417 DOI: 10.1128/aem.02252-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broad-host-range self-transferable plasmids are known to facilitate bacterial adaptation by spreading genes between phylogenetically distinct hosts. These plasmids typically have a conserved backbone region and a variable accessory region that encodes host-beneficial traits. We do not know, however, how well plasmids that do not encode accessory functions can survive in nature. The goal of this study was to characterize the backbone and accessory gene content of plasmids that were captured from freshwater sources without selecting for a particular phenotype or cultivating their host. To do this, triparental matings were used such that the only required phenotype was the plasmid's ability to mobilize a nonconjugative plasmid. Based on complete genome sequences of 10 plasmids, only 5 carried identifiable accessory gene regions, and none carried antibiotic resistance genes. The plasmids belong to four known incompatibility groups (IncN, IncP-1, IncU, and IncW) and two potentially new groups. Eight of the plasmids were shown to have a broad host range, being able to transfer into alpha-, beta-, and gammaproteobacteria. Because of the absence of antibiotic resistance genes, we resampled one of the sites and compared the proportion of captured plasmids that conferred antibiotic resistance to their hosts with the proportion of such plasmids captured from the effluent of a local wastewater treatment plant. Few of the captured plasmids from either site encoded antibiotic resistance. A high diversity of plasmids that encode no or unknown accessory functions is thus readily found in freshwater habitats. The question remains how the plasmids persist in these microbial communities.
Collapse
|
183
|
Kolton M, Sela N, Elad Y, Cytryn E. Comparative genomic analysis indicates that niche adaptation of terrestrial Flavobacteria is strongly linked to plant glycan metabolism. PLoS One 2013; 8:e76704. [PMID: 24086761 PMCID: PMC3784431 DOI: 10.1371/journal.pone.0076704] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/26/2013] [Indexed: 11/17/2022] Open
Abstract
Flavobacteria are important members of aquatic and terrestrial bacterial communities, displaying extreme variations in lifestyle, geographical distribution and genome size. They are ubiquitous in soil, but are often strongly enriched in the rhizosphere and phyllosphere of plants. In this study, we compared the genome of a root-associated Flavobacterium that we recently isolated, physiologically characterized and sequenced, to 14 additional Flavobacterium genomes, in order to pinpoint characteristics associated with its high abundance in the rhizosphere. Interestingly, flavobacterial genomes vary in size by approximately two-fold, with terrestrial isolates having predominantly larger genomes than those from aquatic environments. Comparative functional gene analysis revealed that terrestrial and aquatic Flavobacteria generally segregated into two distinct clades. Members of the aquatic clade had a higher ratio of peptide and protein utilization genes, whereas members of the terrestrial clade were characterized by a significantly higher abundance and diversity of genes involved in metabolism of carbohydrates such as xylose, arabinose and pectin. Interestingly, genes encoding glycoside hydrolase (GH) families GH78 and GH106, responsible for rhamnogalacturonan utilization (exclusively associated with terrestrial plant hemicelluloses), were only present in terrestrial clade genomes, suggesting adaptation of the terrestrial strains to plant-related carbohydrate metabolism. The Peptidase/GH ratio of aquatic clade Flavobacteria was significantly higher than that of terrestrial strains (1.7±0.7 and 9.7±4.7, respectively), supporting the concept that this relation can be used to infer Flavobacterium lifestyles. Collectively, our research suggests that terrestrial Flavobacteria are highly adapted to plant carbohydrate metabolism, which appears to be a key to their profusion in plant environments.
Collapse
Affiliation(s)
- Max Kolton
- Institute of Soil, Water and Environmental Sciences, the Volcani Center, Agricultural Research Organization, Bet Dagan, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Noa Sela
- Department of Plant Pathology and Weed Research, the Volcani Center, Agricultural Research Organization, Bet Dagan, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, the Volcani Center, Agricultural Research Organization, Bet Dagan, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, the Volcani Center, Agricultural Research Organization, Bet Dagan, Israel
| |
Collapse
|
184
|
Yano H, Rogers LM, Knox MG, Heuer H, Smalla K, Brown CJ, Top EM. Host range diversification within the IncP-1 plasmid group. MICROBIOLOGY-SGM 2013; 159:2303-2315. [PMID: 24002747 DOI: 10.1099/mic.0.068387-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Broad-host-range plasmids play a critical role in the spread of antibiotic resistance and other traits. In spite of increasing information about the genomic diversity of closely related plasmids, the relationship between sequence divergence and host range remains unclear. IncP-1 plasmids are currently classified into six subgroups based on the genetic distance of backbone genes. We investigated whether plasmids from two subgroups exhibit a different host range, using two IncP-1γ plasmids, an IncP-1β plasmid and their minireplicons. Efficiencies of plasmid establishment and maintenance were compared using five species that belong to the Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. The IncP-1β plasmid replicated and persisted in all five hosts in the absence of selection. Of the two IncP-1γ plasmids, both were unable to replicate in alphaproteobacterial host Sphingobium japonicum, and one established itself in Agrobacterium tumefaciens but was very unstable. In contrast, both IncP-1γ minireplicons, which produced higher levels of replication initiation protein than the wild-type plasmids, replicated in all strains, suggesting that poor establishment of the native plasmids is in part due to suboptimal replication initiation gene regulation. The findings suggest that host ranges of distinct IncP-1 plasmids only partially overlap, which may limit plasmid recombination and thus result in further genome divergence.
Collapse
Affiliation(s)
- Hirokazu Yano
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Linda M Rogers
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Molly G Knox
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Holger Heuer
- Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Celeste J Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| | - Eva M Top
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
- Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
185
|
Dunon V, Sniegowski K, Bers K, Lavigne R, Smalla K, Springael D. High prevalence of IncP-1 plasmids and IS1071 insertion sequences in on-farm biopurification systems and other pesticide-polluted environments. FEMS Microbiol Ecol 2013; 86:415-31. [PMID: 23802695 DOI: 10.1111/1574-6941.12173] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/22/2013] [Accepted: 06/18/2013] [Indexed: 11/26/2022] Open
Abstract
Mobile genetic elements (MGEs) are considered as key players in the adaptation of bacteria to degrade organic xenobiotic recalcitrant compounds such as pesticides. We examined the prevalence and abundance of IncP-1 plasmids and IS1071, two MGEs that are frequently linked with organic xenobiotic degradation, in laboratory and field ecosystems with and without pesticide pollution history. The ecosystems included on-farm biopurification systems (BPS) processing pesticide-contaminated wastewater and soil. Comparison of IncP-1/IS1071 prevalence between pesticide-treated and nontreated soil and BPS microcosms suggested that both IncP-1 and IS1071 proliferated as a response to pesticide treatment. The increased prevalence of IncP-1 plasmids and IS1071-specific sequences in treated systems was accompanied by an increase in the capacity to mineralize the applied pesticides. Both elements were also encountered in high abundance in field BPS ecosystems that were in operation at farmyards and that showed the capacity to degrade/mineralize a wide range of chlorinated aromatics and pesticides. In contrast, IS1071 and especially IncP-1, MGE were less abundant in field ecosystems without pesticide history although some of them still showed a high IS1071 abundance. Our data suggest that MGE-containing organisms were enriched in pesticide-contaminated environments like BPS where they might contribute to spreading of catabolic genes and to pathway assembly.
Collapse
Affiliation(s)
- Vincent Dunon
- Division of Soil and Water Management, KU Leuven, Heverlee, Belgium
| | | | | | | | | | | |
Collapse
|
186
|
Oliveira CS, Moura A, Henriques I, Brown CJ, Rogers LM, Top EM, Correia A. Comparative genomics of IncP-1ε plasmids from water environments reveals diverse and unique accessory genetic elements. Plasmid 2013; 70:412-9. [PMID: 23831558 DOI: 10.1016/j.plasmid.2013.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022]
Abstract
The goal of this study was to determine and compare the complete genome sequences of three new broad-host-range conjugative plasmids. Plasmids pMLUA1, pMLUA3 and pMLUA4 were previously recovered from estuarine water by exogenous plasmid isolation and ranged in size from ∼55 to 59 kb. Comparative genomics showed that their backbone region was identical to the prototype pKJK5 and other IncP1-ε plasmids captured from soils. The accessory region was inserted between the tra region and parA, and presented the typical IncP-1ε ISPa17 and Tn402-like transposon modules. Nevertheless, new class 1 integrons were identified (In794, carrying aadA5 and In795, carrying qacF5-aadA5), as well as a composite transposon IS26-msr(E)-mph(E)-IS26 carrying genes that confer resistance to macrolides. A new insertion sequence, termed ISUnCu17, was also identified on pMLUA3. The architecture of the accessory regions implies the occurrence of multiple insertions and deletions. These data support the notion that IncP-1 plasmids from the ε subgroup are proficient in the capture of diverse genetic elements, including antibiotic resistance genes, and thus may contribute to the co-selection of several resistance determinants. This study constitutes the first report of completely sequenced IncP-1ε plasmids from water environments, and enhances our understanding of the geographic distribution and genetic diversity of these replicons.
Collapse
Affiliation(s)
- Cláudia S Oliveira
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | | | | | | | | | | | | |
Collapse
|
187
|
Baquero F, Tedim AP, Coque TM. Antibiotic resistance shaping multi-level population biology of bacteria. Front Microbiol 2013; 4:15. [PMID: 23508522 PMCID: PMC3589745 DOI: 10.3389/fmicb.2013.00015] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/22/2013] [Indexed: 12/21/2022] Open
Abstract
Antibiotics have natural functions, mostly involving cell-to-cell signaling networks. The anthropogenic production of antibiotics, and its release in the microbiosphere results in a disturbance of these networks, antibiotic resistance tending to preserve its integrity. The cost of such adaptation is the emergence and dissemination of antibiotic resistance genes, and of all genetic and cellular vehicles in which these genes are located. Selection of the combinations of the different evolutionary units (genes, integrons, transposons, plasmids, cells, communities and microbiomes, hosts) is highly asymmetrical. Each unit of selection is a self-interested entity, exploiting the higher hierarchical unit for its own benefit, but in doing so the higher hierarchical unit might acquire critical traits for its spread because of the exploitation of the lower hierarchical unit. This interactive trade-off shapes the population biology of antibiotic resistance, a composed-complex array of the independent "population biologies." Antibiotics modify the abundance and the interactive field of each of these units. Antibiotics increase the number and evolvability of "clinical" antibiotic resistance genes, but probably also many other genes with different primary functions but with a resistance phenotype present in the environmental resistome. Antibiotics influence the abundance, modularity, and spread of integrons, transposons, and plasmids, mostly acting on structures present before the antibiotic era. Antibiotics enrich particular bacterial lineages and clones and contribute to local clonalization processes. Antibiotics amplify particular genetic exchange communities sharing antibiotic resistance genes and platforms within microbiomes. In particular human or animal hosts, the microbiomic composition might facilitate the interactions between evolutionary units involved in antibiotic resistance. The understanding of antibiotic resistance implies expanding our knowledge on multi-level population biology of bacteria.
Collapse
Affiliation(s)
- Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Ana P. Tedim
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
| | - Teresa M. Coque
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación SanitariaMadrid, Spain
- Centros de Investigación Biomédica en Red de Epidemiología y Salud PúblicaMadrid, Spain
- Unidad de Resistencia a Antibióticos y Virulencia Bacteriana asociada al Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
188
|
Jechalke S, Kopmann C, Rosendahl I, Groeneweg J, Weichelt V, Krögerrecklenfort E, Brandes N, Nordwig M, Ding GC, Siemens J, Heuer H, Smalla K. Increased abundance and transferability of resistance genes after field application of manure from sulfadiazine-treated pigs. Appl Environ Microbiol 2013; 79:1704-11. [PMID: 23315733 PMCID: PMC3591935 DOI: 10.1128/aem.03172-12] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/02/2013] [Indexed: 11/20/2022] Open
Abstract
Spreading manure containing antibiotics in agriculture is assumed to stimulate the dissemination of antibiotic resistance in soil bacterial populations. Plant roots influencing the soil environment and its microflora by exudation of growth substrates might considerably increase this effect. In this study, the effects of manure from pigs treated with sulfadiazine (SDZ), here called SDZ manure, on the abundance and transferability of sulfonamide resistance genes sul1 and sul2 in the rhizosphere of maize and grass were compared to the effects in bulk soil in a field experiment. In plots that repeatedly received SDZ manure, a significantly higher abundance of both sul genes was detected compared to that in plots where manure from untreated pigs was applied. Significantly lower abundances of sul genes relative to bacterial ribosomal genes were encountered in the rhizosphere than in bulk soil. However, in contrast to results for bulk soil, the sul gene abundance in the SDZ manure-treated rhizosphere constantly deviated from control treatments over a period of 6 weeks after manuring, suggesting ongoing antibiotic selection over this period. Transferability of sulfonamide resistance was analyzed by capturing resistance plasmids from soil communities into Escherichia coli. Increased rates of plasmid capture were observed in samples from SDZ manure-treated bulk soil and the rhizosphere of maize and grass. More than 97% of the captured plasmids belonged to the LowGC type (having low G+C content), giving further evidence for their important contribution to the environmental spread of antibiotic resistance. In conclusion, differences between bulk soil and rhizosphere need to be considered when assessing the risks associated with the spreading of antibiotic resistance.
Collapse
Affiliation(s)
- Sven Jechalke
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Christoph Kopmann
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Ingrid Rosendahl
- Institute of Crop Science and Resource Conservation, Soil Science and Ecology, University of Bonn, Bonn, Germany
| | - Joost Groeneweg
- Institute of Bio- and Geosciences 3, Agrosphere, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Viola Weichelt
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Ellen Krögerrecklenfort
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Nikola Brandes
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Mathias Nordwig
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Guo-Chun Ding
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Jan Siemens
- Institute of Crop Science and Resource Conservation, Soil Science and Ecology, University of Bonn, Bonn, Germany
| | - Holger Heuer
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut—Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
189
|
Deangelis KM, D'Haeseleer P, Chivian D, Simmons B, Arkin AP, Mavromatis K, Malfatti S, Tringe S, Hazen TC. Metagenomes of tropical soil-derived anaerobic switchgrass-adapted consortia with and without iron. Stand Genomic Sci 2013; 7:382-98. [PMID: 24019987 PMCID: PMC3764933 DOI: 10.4056/sigs.3377516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tropical forest soils decompose litter rapidly with frequent episodes of anoxia, making it likely that bacteria using alternate terminal electron acceptors (TEAs) such as iron play a large role in supporting decomposition under these conditions. The prevalence of many types of metabolism in litter deconstruction makes these soils useful templates for improving biofuel production. To investigate how iron availability affects decomposition, we cultivated feedstock-adapted consortia (FACs) derived from iron-rich tropical forest soils accustomed to experiencing frequent episodes of anaerobic conditions and frequently fluctuating redox. One consortium was propagated under fermenting conditions, with switchgrass as the sole carbon source in minimal media (SG only FACs), and the other consortium was treated the same way but received poorly crystalline iron as an additional terminal electron acceptor (SG + Fe FACs). We sequenced the metagenomes of both consortia to a depth of about 150 Mb each, resulting in a coverage of 26× for the more diverse SG + Fe FACs, and 81× for the relatively less diverse SG only FACs. Both consortia were able to quickly grow on switchgrass, and the iron-amended consortium exhibited significantly higher microbial diversity than the unamended consortium. We found evidence of higher stress in the unamended FACs and increased sugar transport and utilization in the iron-amended FACs. This work provides metagenomic evidence that supplementation of alternative TEAs may improve feedstock deconstruction in biofuel production.
Collapse
Affiliation(s)
- Kristen M Deangelis
- Microbiology Department, University of Massachusetts, Amherst MA USA ; Microbial Communities Group, Deconstruction Division, Joint BioEnergy Institute, Emeryville CA USA
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Walsh F. Investigating antibiotic resistance in non-clinical environments. Front Microbiol 2013; 4:19. [PMID: 23423602 PMCID: PMC3573686 DOI: 10.3389/fmicb.2013.00019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/27/2013] [Indexed: 01/11/2023] Open
Abstract
There have been many calls for more information about the natural resistome and these have also highlighted the importance of understanding the soil resistome in the preservation of antibiotics for the treatment of infections. However, to date there have been few studies which have investigated the culturable soil resistome, which highlights the difficulties faced by microbiologists in designing these experiments to produce meaningful data. The World Health Organization definition of resistance is the most fitting to non-clinical environmental studies: antimicrobial resistance is resistance of a microorganism to an antimicrobial medicine to which it was previously sensitive. The ideal investigation of non-clinical environments for antibiotic resistance of clinical relevance would be using standardized guidelines and breakpoints. This review outlines different definitions and methodologies used to understand antibiotic resistance and suggests how this can be performed outside of the clinical environment.
Collapse
Affiliation(s)
- Fiona Walsh
- Department of Bacteriology, Federal Department of Economic Affairs, Forschungsanstalt Agroscope Changins-WädenswilWädenswil, Switzerland
| |
Collapse
|
191
|
Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci U S A 2013; 110:3435-40. [PMID: 23401528 DOI: 10.1073/pnas.1222743110] [Citation(s) in RCA: 1578] [Impact Index Per Article: 131.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antibiotic resistance genes (ARGs) are emerging contaminants posing a potential worldwide human health risk. Intensive animal husbandry is believed to be a major contributor to the increased environmental burden of ARGs. Despite the volume of antibiotics used in China, little information is available regarding the corresponding ARGs associated with animal farms. We assessed type and concentrations of ARGs at three stages of manure processing to land disposal at three large-scale (10,000 animals per year) commercial swine farms in China. In-feed or therapeutic antibiotics used on these farms include all major classes of antibiotics except vancomycins. High-capacity quantitative PCR arrays detected 149 unique resistance genes among all of the farm samples, the top 63 ARGs being enriched 192-fold (median) up to 28,000-fold (maximum) compared with their respective antibiotic-free manure or soil controls. Antibiotics and heavy metals used as feed supplements were elevated in the manures, suggesting the potential for coselection of resistance traits. The potential for horizontal transfer of ARGs because of transposon-specific ARGs is implicated by the enrichment of transposases--the top six alleles being enriched 189-fold (median) up to 90,000-fold in manure--as well as the high correlation (r(2) = 0.96) between ARG and transposase abundance. In addition, abundance of ARGs correlated directly with antibiotic and metal concentrations, indicating their importance in selection of resistance genes. Diverse, abundant, and potentially mobile ARGs in farm samples suggest that unmonitored use of antibiotics and metals is causing the emergence and release of ARGs to the environment.
Collapse
|
192
|
Quantification of IncP-1 plasmid prevalence in environmental samples. Appl Environ Microbiol 2012; 79:1410-3. [PMID: 23241977 DOI: 10.1128/aem.03728-12] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To study the role of broad-host-range IncP-1 plasmids in bacterial adaptability to irregular environmental challenges, a quantitative real-time PCR assay was developed that specifically detects the korB gene, which is conserved in all IncP-1 plasmids, in environmental samples. IncP-1 plasmid dynamics in a biopurification system for pesticide wastes were analyzed.
Collapse
|
193
|
Kopmann C, Jechalke S, Rosendahl I, Groeneweg J, Krögerrecklenfort E, Zimmerling U, Weichelt V, Siemens J, Amelung W, Heuer H, Smalla K. Abundance and transferability of antibiotic resistance as related to the fate of sulfadiazine in maize rhizosphere and bulk soil. FEMS Microbiol Ecol 2012; 83:125-34. [DOI: 10.1111/j.1574-6941.2012.01458.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 07/13/2012] [Accepted: 07/13/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- Christoph Kopmann
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI); Braunschweig; Germany
| | - Sven Jechalke
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI); Braunschweig; Germany
| | - Ingrid Rosendahl
- Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, University of Bonn; Bonn; Germany
| | - Joost Groeneweg
- Agrosphere Institute (IBG-3), Forschungszentrum Jülich GmbH; Jülich; Germany
| | - Ellen Krögerrecklenfort
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI); Braunschweig; Germany
| | - Ute Zimmerling
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI); Braunschweig; Germany
| | - Viola Weichelt
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI); Braunschweig; Germany
| | - Jan Siemens
- Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, University of Bonn; Bonn; Germany
| | | | - Holger Heuer
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI); Braunschweig; Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut - Federal Research Centre for Cultivated Plants (JKI); Braunschweig; Germany
| |
Collapse
|
194
|
Volatile Mediated Interactions Between Bacteria and Fungi in the Soil. J Chem Ecol 2012; 38:665-703. [DOI: 10.1007/s10886-012-0135-5] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/30/2012] [Accepted: 05/04/2012] [Indexed: 01/18/2023]
|