151
|
Epsley S, Tadros S, Farid A, Kargilis D, Mehta S, Rajapakse CS. The Effect of Inflammation on Bone. Front Physiol 2021; 11:511799. [PMID: 33584321 PMCID: PMC7874051 DOI: 10.3389/fphys.2020.511799] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/30/2020] [Indexed: 12/21/2022] Open
Abstract
Bone remodeling is the continual process to renew the adult skeleton through the sequential action of osteoblasts and osteoclasts. Nuclear factor RANK, an osteoclast receptor, and its ligand RANKL, expressed on the surface of osteoblasts, result in coordinated control of bone remodeling. Inflammation, a feature of illness and injury, plays a distinct role in skewing this process toward resorption. It does so via the interaction of inflammatory mediators and their related peptides with osteoblasts and osteoclasts, as well as other immune cells, to alter the expression of RANK and RANKL. Such chemical mediators include TNFα, glucocorticoids, histamine, bradykinin, PGE2, systemic RANKL from immune cells, and interleukins 1 and 6. Conditions, such as periodontal disease and alveolar bone erosion, aseptic prosthetic loosening, rheumatoid arthritis, and some sports related injuries are characterized by the result of this process. A thorough understanding of bone response to injury and disease, and ability to detect such biomarkers, as well as imaging to identify early structural and mechanical property changes in bone architecture, is important in improving management and outcomes of bone related pathology. While gut health and vitamin and mineral availability appear vitally important, nutraceuticals also have an impact on bone health. To date most pharmaceutical intervention targets inflammatory cytokines, although strategies to favorably alter inflammation induced bone pathology are currently limited. Further research is required in this field to advance early detection and treatments.
Collapse
Affiliation(s)
- Scott Epsley
- Philadelphia 76ers, Philadelphia, PA, United States
| | - Samuel Tadros
- Department of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Alexander Farid
- Department of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Daniel Kargilis
- Department of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Chamith S. Rajapakse
- Department of Radiology and Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
152
|
Next-generation surgical meshes for drug delivery and tissue engineering applications: materials, design and emerging manufacturing technologies. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00108-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abstract
Surgical meshes have been employed in the management of a variety of pathological conditions including hernia, pelvic floor dysfunctions, periodontal guided bone regeneration, wound healing and more recently for breast plastic surgery after mastectomy. These common pathologies affect a wide portion of the worldwide population; therefore, an effective and enhanced treatment is crucial to ameliorate patients’ living conditions both from medical and aesthetic points of view. At present, non-absorbable synthetic polymers are the most widely used class of biomaterials for the manufacturing of mesh implants for hernia, pelvic floor dysfunctions and guided bone regeneration, with polypropylene and poly tetrafluoroethylene being the most common. Biological prostheses, such as surgical grafts, have been employed mainly for breast plastic surgery and wound healing applications. Despite the advantages of mesh implants to the treatment of these conditions, there are still many drawbacks, mainly related to the arising of a huge number of post-operative complications, among which infections are the most common. Developing a mesh that could appropriately integrate with the native tissue, promote its healing and constructive remodelling, is the key aim of ongoing research in the area of surgical mesh implants. To this end, the adoption of new biomaterials including absorbable and natural polymers, the use of drugs and advanced manufacturing technologies, such as 3D printing and electrospinning, are under investigation to address the previously mentioned challenges and improve the outcomes of future clinical practice. The aim of this work is to review the key advantages and disadvantages related to the use of surgical meshes, the main issues characterizing each clinical procedure and the future directions in terms of both novel manufacturing technologies and latest regulatory considerations.
Graphic abstract
Collapse
|
153
|
Yavagal CM, Matondkar SP, Yavagal PC. Efficacy of Laser Photobiomodulation in Accelerating Orthodontic Tooth Movement in Children: A Systematic Review with Meta-analysis. Int J Clin Pediatr Dent 2021; 14:S94-S100. [PMID: 35082474 DOI: 10.5005/jp-journals-10005-1964'||'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024] Open
Abstract
AIM AND BACKGROUND This systematic review aimed to investigate the efficacy of laser photobiomodulation (PBM) on the acceleration of orthodontic tooth movement (OTM). REVIEW METHODS The study protocol was registered at PROSPERO (CRD42019121465). An extensive electronic search for randomized control trials and clinical control trials via Medline (via PubMed), The Cochrane Controlled Clinical Trials Register, and Scopus up to date 24/02/2019 was done. Hand searching was performed for relevant journals. Reference articles were retrieved and exported to Mendeley Desktop 1.13.3 software. The risk of bias was assessed using the Cochrane risk of the bias assessment tool. Articles were further analyzed using Revman5.3 software. RESULTS A total of 14 articles were considered for systematic review and 9 articles were considered for meta-analysis. The results of the meta-analysis showed a significant difference between the laser group and conventional orthodontic treatment with Forest plots showing more tooth movement in the laser group compared to the control group in 2-3 months (mean difference = 1.73; CI: 0.9-2.57; p = 0.00001; I 2 = 89 %). CONCLUSION Although the analysis of the results shows that laser PBM favors OTM, the results are inconclusive as the heterogeneity across studies was high. CLINICAL SIGNIFICANCE Laser PBM may be considered as novel, safe, and noninvasive adjuvant therapy for the acceleration of OTM in children. HOW TO CITE THIS ARTICLE Yavagal CM, Matondkar SP, Yavagal PC. Efficacy of Laser Photobiomodulation in Accelerating Orthodontic Tooth Movement in Children: A Systematic Review with Meta-analysis. Int J Clin Pediatr Dent 2021;14(S-1):S94-S100.
Collapse
Affiliation(s)
- Chandrashekar M Yavagal
- Department of Pediatric Dentistry, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Sucheta P Matondkar
- Private Practitioner, Happy Teeth Pediatric and Family Dentistry, Belgaum, Karnataka, India
| | - Puja C Yavagal
- Department of Public Health Dentistry, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| |
Collapse
|
154
|
Yavagal CM, Matondkar SP, Yavagal PC. Efficacy of Laser Photobiomodulation in Accelerating Orthodontic Tooth Movement in Children: A Systematic Review with Meta-analysis. Int J Clin Pediatr Dent 2021; 14:S94-S100. [PMID: 35082474 DOI: 10.5005/jp-journals-10005-1964pf1mukiy] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024] Open
Abstract
AIM AND BACKGROUND This systematic review aimed to investigate the efficacy of laser photobiomodulation (PBM) on the acceleration of orthodontic tooth movement (OTM). REVIEW METHODS The study protocol was registered at PROSPERO (CRD42019121465). An extensive electronic search for randomized control trials and clinical control trials via Medline (via PubMed), The Cochrane Controlled Clinical Trials Register, and Scopus up to date 24/02/2019 was done. Hand searching was performed for relevant journals. Reference articles were retrieved and exported to Mendeley Desktop 1.13.3 software. The risk of bias was assessed using the Cochrane risk of the bias assessment tool. Articles were further analyzed using Revman5.3 software. RESULTS A total of 14 articles were considered for systematic review and 9 articles were considered for meta-analysis. The results of the meta-analysis showed a significant difference between the laser group and conventional orthodontic treatment with Forest plots showing more tooth movement in the laser group compared to the control group in 2-3 months (mean difference = 1.73; CI: 0.9-2.57; p = 0.00001; I 2 = 89 %). CONCLUSION Although the analysis of the results shows that laser PBM favors OTM, the results are inconclusive as the heterogeneity across studies was high. CLINICAL SIGNIFICANCE Laser PBM may be considered as novel, safe, and noninvasive adjuvant therapy for the acceleration of OTM in children. HOW TO CITE THIS ARTICLE Yavagal CM, Matondkar SP, Yavagal PC. Efficacy of Laser Photobiomodulation in Accelerating Orthodontic Tooth Movement in Children: A Systematic Review with Meta-analysis. Int J Clin Pediatr Dent 2021;14(S-1):S94-S100.
Collapse
Affiliation(s)
- Chandrashekar M Yavagal
- Department of Pediatric Dentistry, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Sucheta P Matondkar
- Private Practitioner, Happy Teeth Pediatric and Family Dentistry, Belgaum, Karnataka, India
| | - Puja C Yavagal
- Department of Public Health Dentistry, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| |
Collapse
|
155
|
Yavagal CM, Matondkar SP, Yavagal PC. Efficacy of Laser Photobiomodulation in Accelerating Orthodontic Tooth Movement in Children: A Systematic Review with Meta-analysis. Int J Clin Pediatr Dent 2021; 14:S94-S100. [PMID: 35082474 DOI: 10.5005/jp-journals-10005-1964����%2527%2522\'\"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024] Open
Abstract
AIM AND BACKGROUND This systematic review aimed to investigate the efficacy of laser photobiomodulation (PBM) on the acceleration of orthodontic tooth movement (OTM). REVIEW METHODS The study protocol was registered at PROSPERO (CRD42019121465). An extensive electronic search for randomized control trials and clinical control trials via Medline (via PubMed), The Cochrane Controlled Clinical Trials Register, and Scopus up to date 24/02/2019 was done. Hand searching was performed for relevant journals. Reference articles were retrieved and exported to Mendeley Desktop 1.13.3 software. The risk of bias was assessed using the Cochrane risk of the bias assessment tool. Articles were further analyzed using Revman5.3 software. RESULTS A total of 14 articles were considered for systematic review and 9 articles were considered for meta-analysis. The results of the meta-analysis showed a significant difference between the laser group and conventional orthodontic treatment with Forest plots showing more tooth movement in the laser group compared to the control group in 2-3 months (mean difference = 1.73; CI: 0.9-2.57; p = 0.00001; I 2 = 89 %). CONCLUSION Although the analysis of the results shows that laser PBM favors OTM, the results are inconclusive as the heterogeneity across studies was high. CLINICAL SIGNIFICANCE Laser PBM may be considered as novel, safe, and noninvasive adjuvant therapy for the acceleration of OTM in children. HOW TO CITE THIS ARTICLE Yavagal CM, Matondkar SP, Yavagal PC. Efficacy of Laser Photobiomodulation in Accelerating Orthodontic Tooth Movement in Children: A Systematic Review with Meta-analysis. Int J Clin Pediatr Dent 2021;14(S-1):S94-S100.
Collapse
Affiliation(s)
- Chandrashekar M Yavagal
- Department of Pediatric Dentistry, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Sucheta P Matondkar
- Private Practitioner, Happy Teeth Pediatric and Family Dentistry, Belgaum, Karnataka, India
| | - Puja C Yavagal
- Department of Public Health Dentistry, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| |
Collapse
|
156
|
Yavagal CM, Matondkar SP, Yavagal PC. Efficacy of Laser Photobiomodulation in Accelerating Orthodontic Tooth Movement in Children: A Systematic Review with Meta-analysis. Int J Clin Pediatr Dent 2021; 14:S94-S100. [PMID: 35082474 DOI: 10.5005/jp-journals-10005-1964' and 2*3*8=6*8 and 'k95b'='k95b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024] Open
Abstract
AIM AND BACKGROUND This systematic review aimed to investigate the efficacy of laser photobiomodulation (PBM) on the acceleration of orthodontic tooth movement (OTM). REVIEW METHODS The study protocol was registered at PROSPERO (CRD42019121465). An extensive electronic search for randomized control trials and clinical control trials via Medline (via PubMed), The Cochrane Controlled Clinical Trials Register, and Scopus up to date 24/02/2019 was done. Hand searching was performed for relevant journals. Reference articles were retrieved and exported to Mendeley Desktop 1.13.3 software. The risk of bias was assessed using the Cochrane risk of the bias assessment tool. Articles were further analyzed using Revman5.3 software. RESULTS A total of 14 articles were considered for systematic review and 9 articles were considered for meta-analysis. The results of the meta-analysis showed a significant difference between the laser group and conventional orthodontic treatment with Forest plots showing more tooth movement in the laser group compared to the control group in 2-3 months (mean difference = 1.73; CI: 0.9-2.57; p = 0.00001; I 2 = 89 %). CONCLUSION Although the analysis of the results shows that laser PBM favors OTM, the results are inconclusive as the heterogeneity across studies was high. CLINICAL SIGNIFICANCE Laser PBM may be considered as novel, safe, and noninvasive adjuvant therapy for the acceleration of OTM in children. HOW TO CITE THIS ARTICLE Yavagal CM, Matondkar SP, Yavagal PC. Efficacy of Laser Photobiomodulation in Accelerating Orthodontic Tooth Movement in Children: A Systematic Review with Meta-analysis. Int J Clin Pediatr Dent 2021;14(S-1):S94-S100.
Collapse
Affiliation(s)
- Chandrashekar M Yavagal
- Department of Pediatric Dentistry, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Sucheta P Matondkar
- Private Practitioner, Happy Teeth Pediatric and Family Dentistry, Belgaum, Karnataka, India
| | - Puja C Yavagal
- Department of Public Health Dentistry, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| |
Collapse
|
157
|
Yavagal CM, Matondkar SP, Yavagal PC. Efficacy of Laser Photobiomodulation in Accelerating Orthodontic Tooth Movement in Children: A Systematic Review with Meta-analysis. Int J Clin Pediatr Dent 2021; 14:S94-S100. [PMID: 35082474 DOI: 10.5005/jp-journals-10005-1964'"] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024] Open
Abstract
AIM AND BACKGROUND This systematic review aimed to investigate the efficacy of laser photobiomodulation (PBM) on the acceleration of orthodontic tooth movement (OTM). REVIEW METHODS The study protocol was registered at PROSPERO (CRD42019121465). An extensive electronic search for randomized control trials and clinical control trials via Medline (via PubMed), The Cochrane Controlled Clinical Trials Register, and Scopus up to date 24/02/2019 was done. Hand searching was performed for relevant journals. Reference articles were retrieved and exported to Mendeley Desktop 1.13.3 software. The risk of bias was assessed using the Cochrane risk of the bias assessment tool. Articles were further analyzed using Revman5.3 software. RESULTS A total of 14 articles were considered for systematic review and 9 articles were considered for meta-analysis. The results of the meta-analysis showed a significant difference between the laser group and conventional orthodontic treatment with Forest plots showing more tooth movement in the laser group compared to the control group in 2-3 months (mean difference = 1.73; CI: 0.9-2.57; p = 0.00001; I 2 = 89 %). CONCLUSION Although the analysis of the results shows that laser PBM favors OTM, the results are inconclusive as the heterogeneity across studies was high. CLINICAL SIGNIFICANCE Laser PBM may be considered as novel, safe, and noninvasive adjuvant therapy for the acceleration of OTM in children. HOW TO CITE THIS ARTICLE Yavagal CM, Matondkar SP, Yavagal PC. Efficacy of Laser Photobiomodulation in Accelerating Orthodontic Tooth Movement in Children: A Systematic Review with Meta-analysis. Int J Clin Pediatr Dent 2021;14(S-1):S94-S100.
Collapse
Affiliation(s)
- Chandrashekar M Yavagal
- Department of Pediatric Dentistry, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Sucheta P Matondkar
- Private Practitioner, Happy Teeth Pediatric and Family Dentistry, Belgaum, Karnataka, India
| | - Puja C Yavagal
- Department of Public Health Dentistry, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| |
Collapse
|
158
|
Yavagal CM, Matondkar SP, Yavagal PC. Efficacy of Laser Photobiomodulation in Accelerating Orthodontic Tooth Movement in Children: A Systematic Review with Meta-analysis. Int J Clin Pediatr Dent 2021; 14:S94-S100. [PMID: 35082474 DOI: 10.5005/jp-journals-10005-1964" and 2*3*8=6*8 and "bhyr"="bhyr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024] Open
Abstract
AIM AND BACKGROUND This systematic review aimed to investigate the efficacy of laser photobiomodulation (PBM) on the acceleration of orthodontic tooth movement (OTM). REVIEW METHODS The study protocol was registered at PROSPERO (CRD42019121465). An extensive electronic search for randomized control trials and clinical control trials via Medline (via PubMed), The Cochrane Controlled Clinical Trials Register, and Scopus up to date 24/02/2019 was done. Hand searching was performed for relevant journals. Reference articles were retrieved and exported to Mendeley Desktop 1.13.3 software. The risk of bias was assessed using the Cochrane risk of the bias assessment tool. Articles were further analyzed using Revman5.3 software. RESULTS A total of 14 articles were considered for systematic review and 9 articles were considered for meta-analysis. The results of the meta-analysis showed a significant difference between the laser group and conventional orthodontic treatment with Forest plots showing more tooth movement in the laser group compared to the control group in 2-3 months (mean difference = 1.73; CI: 0.9-2.57; p = 0.00001; I 2 = 89 %). CONCLUSION Although the analysis of the results shows that laser PBM favors OTM, the results are inconclusive as the heterogeneity across studies was high. CLINICAL SIGNIFICANCE Laser PBM may be considered as novel, safe, and noninvasive adjuvant therapy for the acceleration of OTM in children. HOW TO CITE THIS ARTICLE Yavagal CM, Matondkar SP, Yavagal PC. Efficacy of Laser Photobiomodulation in Accelerating Orthodontic Tooth Movement in Children: A Systematic Review with Meta-analysis. Int J Clin Pediatr Dent 2021;14(S-1):S94-S100.
Collapse
Affiliation(s)
- Chandrashekar M Yavagal
- Department of Pediatric Dentistry, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Sucheta P Matondkar
- Private Practitioner, Happy Teeth Pediatric and Family Dentistry, Belgaum, Karnataka, India
| | - Puja C Yavagal
- Department of Public Health Dentistry, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| |
Collapse
|
159
|
Yavagal CM, Matondkar SP, Yavagal PC. Efficacy of Laser Photobiomodulation in Accelerating Orthodontic Tooth Movement in Children: A Systematic Review with Meta-analysis. Int J Clin Pediatr Dent 2021; 14:S94-S100. [PMID: 35082474 DOI: 10.5005/jp-journals-10005-1964%' and 2*3*8=6*8 and 'vowf'!='vowf%] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024] Open
Abstract
AIM AND BACKGROUND This systematic review aimed to investigate the efficacy of laser photobiomodulation (PBM) on the acceleration of orthodontic tooth movement (OTM). REVIEW METHODS The study protocol was registered at PROSPERO (CRD42019121465). An extensive electronic search for randomized control trials and clinical control trials via Medline (via PubMed), The Cochrane Controlled Clinical Trials Register, and Scopus up to date 24/02/2019 was done. Hand searching was performed for relevant journals. Reference articles were retrieved and exported to Mendeley Desktop 1.13.3 software. The risk of bias was assessed using the Cochrane risk of the bias assessment tool. Articles were further analyzed using Revman5.3 software. RESULTS A total of 14 articles were considered for systematic review and 9 articles were considered for meta-analysis. The results of the meta-analysis showed a significant difference between the laser group and conventional orthodontic treatment with Forest plots showing more tooth movement in the laser group compared to the control group in 2-3 months (mean difference = 1.73; CI: 0.9-2.57; p = 0.00001; I 2 = 89 %). CONCLUSION Although the analysis of the results shows that laser PBM favors OTM, the results are inconclusive as the heterogeneity across studies was high. CLINICAL SIGNIFICANCE Laser PBM may be considered as novel, safe, and noninvasive adjuvant therapy for the acceleration of OTM in children. HOW TO CITE THIS ARTICLE Yavagal CM, Matondkar SP, Yavagal PC. Efficacy of Laser Photobiomodulation in Accelerating Orthodontic Tooth Movement in Children: A Systematic Review with Meta-analysis. Int J Clin Pediatr Dent 2021;14(S-1):S94-S100.
Collapse
Affiliation(s)
- Chandrashekar M Yavagal
- Department of Pediatric Dentistry, Maratha Mandal's Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belgaum, Karnataka, India
| | - Sucheta P Matondkar
- Private Practitioner, Happy Teeth Pediatric and Family Dentistry, Belgaum, Karnataka, India
| | - Puja C Yavagal
- Department of Public Health Dentistry, Bapuji Dental College and Hospital, Davangere, Karnataka, India
| |
Collapse
|
160
|
Yong J, von Bremen J, Ruiz-Heiland G, Ruf S. Adiponectin Interacts In-Vitro With Cementoblasts Influencing Cell Migration, Proliferation and Cementogenesis Partly Through the MAPK Signaling Pathway. Front Pharmacol 2020; 11:585346. [PMID: 33414717 PMCID: PMC7783624 DOI: 10.3389/fphar.2020.585346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Current clinical evidences suggest that circulating Adipokines such as Adiponectin can influence the ratio of orthodontic tooth movement. We aimed to investigate the effect that Adiponectin has on cementoblasts (OCCM-30) and on the intracellular signaling molecules of Mitogen-activated protein kinase (MAPK). We demonstrated that OCCM-30 cells express AdipoR1 and AdipoR2. Alizarin Red S staining revealed that Adiponectin increases mineralized nodule formation and quantitative AP activity in a dose-dependent manner. Adiponectin up-regulates the mRNA levels of AP, BSP, OCN, OPG, Runx-2 as well as F-Spondin. Adiponectin also increases the migration and proliferation of OCCM-30 cells. Moreover, Adiponectin induces a transient activation of JNK, P38, ERK1/2 and promotes the phosphorylation of STAT1 and STAT3. The activation of Adiponectin-mediated migration and proliferation was attenuated after pharmacological inhibition of P38, ERK1/2 and JNK in different degrees, whereas mineralization was facilitated by MAPK inhibition in varying degrees. Based on our results, Adiponectin favorably affect OCCM-30 cell migration, proliferation as well as cementogenesis. One of the underlying mechanisms is the activation of MAPK signaling pathway.
Collapse
Affiliation(s)
- Jiawen Yong
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Julia von Bremen
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Gisela Ruiz-Heiland
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Sabine Ruf
- Department of Orthodontics, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
161
|
Dent SC, Berger SM, Griffin JS. Biocultural pathways linking periodontal disease expression to food insecurity, immune dysregulation, and nutrition. Am J Hum Biol 2020; 33:e23549. [PMID: 33300640 DOI: 10.1002/ajhb.23549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES In this article, we test theoretical pathways leading to and resulting from periodontal disease to better understand how periodontal disease, which is measurable in both past and present populations, integrates biocultural context and affects whole-body physiology. METHODS We use data from the National Health and Nutrition Examination Survey (NHANES) 2003-2004 and logistic and linear regressions to test pathways linking psychosocial stress to periodontal disease, and periodontal disease to serum vitamin C levels. We then use causal mediation analysis to test the role of mediating variables in these pathways (n = 1853 individuals). RESULTS Food insecurity was positively associated with periodontal disease and negatively associated with serum counts of C-reactive protein (CRP) and neutrophils. Neither CRP nor neutrophils significantly mediated the relationship between food insecurity and periodontal disease. Periodontal disease was negatively associated with serum vitamin C levels and positively associated with neutrophil counts. Neutrophils may mediate the relationship between periodontal disease and vitamin C. CONCLUSIONS We identify two main findings: (a) periodontal disease contributes to and may result from immune dysregulation, particularly of neutrophils, and (b) an immune response to chronic infection such as periodontal disease is metabolically expensive for the body to maintain and likely depletes serum micronutrient levels. Both micronutrient status and serum neutrophil counts affect multiple skeletal and physiological phenotypes and thus position periodontal disease in whole-body context.
Collapse
Affiliation(s)
- Sophia C Dent
- Department of Anthropology, Appalachian State University, Boone, NC, USA
| | - Steph M Berger
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jacob S Griffin
- Department of Anthropology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
162
|
Sperl G, Gattner J, Deschner J, Wolf M, Proff P, Schröder A, Kirschneck C. Effects of Histamine Receptor Antagonist Cetirizine on Orthodontic Tooth Movement. Biomedicines 2020; 8:biomedicines8120583. [PMID: 33302395 PMCID: PMC7762581 DOI: 10.3390/biomedicines8120583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 11/16/2022] Open
Abstract
Many patients regularly take histamine receptor antagonists, such as cetirizine, to prevent allergic reactions, but these antiallergic drugs may have inadvertent effects on orthodontic treatment. In previous studies, histamine has been shown to modulate the sterile inflammatory reaction underlying orthodontic tooth movement. Pertinent effects of histamine antagonization via cetirizine during orthodontic treatment, however, have not been adequately investigated. We thus treated male Fischer344 rats either with tap water (control group) or cetirizine by daily oral gavage corresponding to the clinically used human dosage adjusted to the rat metabolism (0.87 mg/kg) or to a previously published high dosage of cetirizine (3 mg/kg). Experimental anterior movement of the first upper left molar was induced by insertion of a nickel-titanium (NiTi) coil spring (0.25 N) between the molar and the upper incisors. Cone-beam computed tomography (CBCT), micro-computed tomography (µCT) images, as well as histological hematoxylin-eosin (HE), and tartrate-resistant acid phosphatase (TRAP) stainings were used to assess the extent of tooth movement, cranial growth, periodontal bone loss, root resorptions, and osteoclast activity in the periodontal ligament. Both investigated cetirizine dosages had no impact on the weight gain of the animals and, thus, animal welfare. Neither the extent of tooth movement, nor cranial growth, nor root resorption, nor periodontal bone loss were significantly influenced by the cetirizine dosages investigated. We, thus, conclude that histamine receptor antagonist cetirizine can be used during orthodontic treatment to prevent allergic reactions without clinically relevant side effects on orthodontic tooth movement.
Collapse
Affiliation(s)
- Gregor Sperl
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (G.S.); (J.G.); (P.P.); (A.S.)
| | - Johanna Gattner
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (G.S.); (J.G.); (P.P.); (A.S.)
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University of Mainz, 55131 Mainz, Germany;
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, 52062 Aachen, Germany;
| | - Peter Proff
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (G.S.); (J.G.); (P.P.); (A.S.)
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (G.S.); (J.G.); (P.P.); (A.S.)
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (G.S.); (J.G.); (P.P.); (A.S.)
- Correspondence: ; Tel.: +49-941-944-6093
| |
Collapse
|
163
|
Gomes NA, Guarenghi GG, Valenga HM, Warnavin SVSC, Chaves JDP, Cardoso AC, Steffens JP. Mandibular-related bone metabolism in orchiectomized rats treated with sex hormones. Arch Oral Biol 2020; 122:105000. [PMID: 33307323 DOI: 10.1016/j.archoralbio.2020.105000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/29/2020] [Accepted: 11/22/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to compare the impact of testosterone and estrogen replacement therapy on mandibular bone density and bone-related markers. DESIGN Forty male adult rats were randomly allocated to 4 experimental groups (n = 10/group): Sham (Control); Orchiectomy; Orchiectomy plus testosterone replacement; and orchiectomy plus estradiol replacement. Twenty-four days after orchiectomy, the hemi-mandibles were collected and processed for analysis of microhardness in cortical and trabecular bone, radiographic bone density and histomorphometric evaluation. Serum was collected for the analysis of calcium, phosphorus, alkaline phosphatase and magnesium. RESULTS The orchiectomy group had the lowest mandibular bone density (p < 0.01) and also their serum levels of alkaline phosphatase were higher than all other experimental groups (p < 0.001). Estradiol replacement significantly reduced microhardness when compared to orchiectomy in cortical bone (p < 0.05). Both testosterone and estrogen replacement reverted orchiectomy impact on this parameter (p < 0.01); and decreased alkaline phosphatase to levels comparable to the Sham-Control group. The effect of estrogen was more pronounced than testosterone, and a statistically significant difference was observed between Sham-Control and testosterone replacement (p < 0.05) but not between Sham-Control and estradiol replacement groups. CONCLUSION Our findings demonstrated that both estradiol and testosterone replacement therapies play a role in mandibular bone metabolism, but suggest different pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - João Paulo Steffens
- Postgraduate Program in Dentistry, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
164
|
Bemmann M, Schulz-Kornas E, Hammel JU, Hipp A, Moosmann J, Herrel A, Rack A, Radespiel U, Zimmermann E, Kaiser TM, Kupczik K. Movement analysis of primate molar teeth under load using synchrotron X-ray microtomography. J Struct Biol 2020; 213:107658. [PMID: 33207268 DOI: 10.1016/j.jsb.2020.107658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Mammalian teeth have to sustain repetitive and high chewing loads without failure. Key to this capability is the periodontal ligament (PDL), a connective tissue containing a collagenous fibre network which connects the tooth roots to the alveolar bone socket and which allows the teeth to move when loaded. It has been suggested that rodent molars under load experience a screw-like downward motion but it remains unclear whether this movement also occurs in primates. Here we use synchroton micro-computed tomography paired with an axial loading setup to investigate the form-function relationship between tooth movement and the morphology of the PDL space in a non-human primate, the mouse lemur (Microcebus murinus). The loading behavior of both mandibular and maxillary molars showed a three-dimensional movement with translational and rotational components, which pushes the tooth into the alveolar socket. Moreover, we found a non-uniform PDL thickness distribution and a gradual increase in volumetric proportion of the periodontal vasculature from cervical to apical. Our results suggest that the PDL morphology may optimize the three-dimensional tooth movement to avoid high stresses under loading.
Collapse
Affiliation(s)
- Maximilian Bemmann
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max-Planck-Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Department of Cariology, Endodontics and Periodontology, University of Leipzig, Liebigstrasse 12, 04103 Leipzig, Germany
| | - Ellen Schulz-Kornas
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max-Planck-Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Department of Cariology, Endodontics and Periodontology, University of Leipzig, Liebigstrasse 12, 04103 Leipzig, Germany; Center of Natural History (CeNak), University of Hamburg, Hamburg, Germany
| | - Jörg U Hammel
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
| | - Alexander Hipp
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
| | - Julian Moosmann
- Institute of Materials Research, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
| | - Anthony Herrel
- UMR 7179 C.N.R.S/M.N.H.N., Département Adaptations du Vivant, Bâtiment d'Anatomie Comparée, 55 rue Buffon, 75005 Paris, France
| | - Alexander Rack
- ESRF The European Synchrotron, 71 Rue des Martyrs, 38000 Grenoble, France
| | - Ute Radespiel
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Elke Zimmermann
- Institute of Zoology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Thomas M Kaiser
- Center of Natural History (CeNak), University of Hamburg, Hamburg, Germany
| | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max-Planck-Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
| |
Collapse
|
165
|
<i>In Vitro</i> Characterization of Polyurethane-Carbon Nanotube Drug Eluting Composite Scaffold for Dental Tissue Engineering Application. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2020. [DOI: 10.4028/www.scientific.net/jbbbe.47.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tooth loss due to periodontal disease, dental caries, trauma or a variety of genetic disorders causes an adverse inability in adult’s lives. It is proved that biodegradable composite scaffolds in dental tissue engineering could play crucial role. To inhibit bacterial colonization in dental structure noticeable research concerning the drug delivery approach has been administrated. Nanostructures retain and release drug molecules more efficiently and continuously than other microstructure. In the present research, composite electrospun nanofibers of polyurethane-Single-walled carbon nanotube (SWNT) by the different mass ratios of metronidazole benzoate were prepared. Physico-chemical characterization of scaffolds including Scanning electron microscopy (SEM), uniaxial tensile testing and Ultraviolet-Visible (UV-Vis) spectroscopy analysis was operated. Culture of dental pulp stem cells (DPSCs) to evaluate cells behavior was carried out. The role of nanofiber diameters and drug content on releasing profile of the scaffolds was investigated. The median diameter of the nanofibrous scaffold was reduced from 330 ± 4 to 120 ± 4 nm. Ultimate stress and Young modulus of the scaffolds by enhancement of drug content increased from 0.28 ± 0.05 up to the 1.8 ± 0.05 MPa and 0.87 ± 0.05 up to the 4.4 ± 0.05 Mpa respectively. According to the result, prolonged and continuous releasing profile of the drug molecules was achieved. As the content of the drug increased, the drug was released continuously. It means that two parameters of fiber's diameter and drug ratio affected the releasing behavior of composite structures. Polyurethane-SWNT scaffolds contained metronidazole benzoate presented appropriate support of DPSCs adhesion and proliferation and biomimetic architecture like the structure of dental ECM.
Collapse
|
166
|
Zhao Y, Liu H, Xi X, Chen S, Liu D. TRIM16 protects human periodontal ligament stem cells from oxidative stress-induced damage via activation of PICOT. Exp Cell Res 2020; 397:112336. [PMID: 33091421 DOI: 10.1016/j.yexcr.2020.112336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/18/2020] [Indexed: 02/09/2023]
Abstract
Periodontitis is a chronic inflammatory disease that result in severe loss of supporting structures and substantial tooth loss. Oxidative stress is tightly involved in the progression of periodontitis. Tripartite Motif 16 (TRIM16) has been identified as a novel regulatory protein in response to oxidative and proteotoxic stresses. The present study aimed to investigate the role of TRIM16 in human periodontal ligament stem cells (hPDLSCs) under oxidative stress. First, we found that the expression of TRIM16 decreased after exposure to H2O2. Then TRIM16 overexpression alleviated H2O2-induced oxidative stress by enhancing antioxidant capacity and reducing the amount of intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS). TRIM16 increased cell viability, inhibited cell apoptosis and the depolarization of the mitochondrial membrane potential in hPDLSCs. Furthermore, TRIM16 attenuated H2O2-induced suppression of osteogenic differentiation. Mechanistically, TRIM16 promoted the activation of protein kinase C (PKC)-interacting cousin of thioredoxin (PICOT), p-Akt and Nrf2, while knockdown of PICOT reversed TRIM16-mediated ROS resistance and decreased the expression of p-Akt and Nrf2. In conclusion, TRIM16 alleviated oxidative damage in hPDLSCs via the activation of PICOT/Akt/Nrf2 pathway, suggesting that TRIM16 could be a promising target to develop effective therapies for periodontitis.
Collapse
Affiliation(s)
- Yi Zhao
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Hong Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Xun Xi
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Shuai Chen
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China
| | - Dongxu Liu
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, China; Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, China.
| |
Collapse
|
167
|
Fischer NG, Münchow EA, Tamerler C, Bottino MC, Aparicio C. Harnessing biomolecules for bioinspired dental biomaterials. J Mater Chem B 2020; 8:8713-8747. [PMID: 32747882 PMCID: PMC7544669 DOI: 10.1039/d0tb01456g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dental clinicians have relied for centuries on traditional dental materials (polymers, ceramics, metals, and composites) to restore oral health and function to patients. Clinical outcomes for many crucial dental therapies remain poor despite many decades of intense research on these materials. Recent attention has been paid to biomolecules as a chassis for engineered preventive, restorative, and regenerative approaches in dentistry. Indeed, biomolecules represent a uniquely versatile and precise tool to enable the design and development of bioinspired multifunctional dental materials to spur advancements in dentistry. In this review, we survey the range of biomolecules that have been used across dental biomaterials. Our particular focus is on the key biological activity imparted by each biomolecule toward prevention of dental and oral diseases as well as restoration of oral health. Additional emphasis is placed on the structure-function relationships between biomolecules and their biological activity, the unique challenges of each clinical condition, limitations of conventional therapies, and the advantages of each class of biomolecule for said challenge. Biomaterials for bone regeneration are not reviewed as numerous existing reviews on the topic have been recently published. We conclude our narrative review with an outlook on the future of biomolecules in dental biomaterials and potential avenues of innovation for biomaterial-based patient oral care.
Collapse
Affiliation(s)
- Nicholas G Fischer
- Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-250A Moos Tower, 515 Delaware St. SE, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
168
|
Lin JH, Lin IP, Ohyama Y, Mochida H, Kudo A, Kaku M, Mochida Y. FAM20C directly binds to and phosphorylates Periostin. Sci Rep 2020; 10:17155. [PMID: 33051588 PMCID: PMC7555550 DOI: 10.1038/s41598-020-74400-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
It is widely accepted that FAM20C functions as a Golgi casein kinase and has large numbers of kinase substrates within the secretory pathway. It has been previously reported that FAM20C is required for maintenance of healthy periodontal tissues. However, there has been no report that any extracellular matrix molecules expressed in periodontal tissues are indeed substrates of FAM20C. In this study, we sought to identify the binding partner(s) of FAM20C. FAM20C wild-type (WT) and its kinase inactive form D478A proteins were generated. These proteins were electrophoresed and the Coomassie Brilliant Blue (CBB)-positive bands were analyzed to identify FAM20C-binding protein(s) by Mass Spectrometry (MS) analysis. Periostin was found by the analysis and the binding between FAM20C and Periostin was investigated in cell cultures and in vitro. We further determined the binding region(s) within Periostin responsible for FAM20C-binding. Immunolocalization of FAM20C and Periostin was examined using mouse periodontium tissues by immunohistochemical analysis. In vitro kinase assay was performed using Periostin and FAM20C proteins to see whether FAM20C phosphorylates Periostin in vitro. We identified Periostin as one of FAM20C-binding proteins by MS analysis. Periostin interacted with FAM20C in a kinase-activity independent manner and the binding was direct in vitro. We further identified the binding domain of FAM20C in Periostin, which was mapped within Fasciclin (Fas) I domain 1-4 of Periostin. Immunolocalization of FAM20C was observed in periodontal ligament (PDL) extracellular matrix where that of Periostin was also immunostained in murine periodontal tissues. FAM20C WT, but not D478A, phosphorylated Periostin in vitro. Consistent with the overlapped expression pattern of FAM20C and Periostin, our data demonstrate for the first time that Periostin is a direct FAM20C-binding partner and that FAM20C phosphorylates Periostin in vitro.
Collapse
Affiliation(s)
- Ju-Hsien Lin
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - I-Ping Lin
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yoshio Ohyama
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Hanna Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Akira Kudo
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
169
|
Li H, Zhou J, Zhu M, Ying S, Li L, Chen D, Li J, Song J. Low-intensity pulsed ultrasound promotes the formation of periodontal ligament stem cell sheets and ectopic periodontal tissue regeneration. J Biomed Mater Res A 2020; 109:1101-1112. [PMID: 32964617 DOI: 10.1002/jbm.a.37102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
Abstract
Human periodontal ligament stem cells (hPDLSCs) sheets play an important role in periodontal tissue engineering. Low-intensity pulsed ultrasound (LIPUS) has been reported as an effective stimulus to regulate cell biological behavior. The present study aims to explore the potential of LIPUS to promote the formation and function of hPDLSC sheets (hPDLSCSs). Hematoxylin-eosin (H&E) staining, western blot, real-time PCR, alkaline phosphatase (ALP), and alizarin red staining were used to evaluate the formation and osteogenic effect of LIPUS on hPDLSCSs in vitro. Hydroxyapatite with or without hPDLSCSs was transplanted in the subcutaneous pockets on the back of nude mice and histological analysis was performed. H&E staining showed increased synthesis of extracellular matrix (ECM) and real-time PCR detected a significant increase in ECM-related genes after LIPUS treatment. In addition, LIPUS could promote the expression of osteogenic differentiation-related genes and proteins. ALP and alizarin red staining also found LIPUS enhanced the osteogenesis of hPDLSCSs. After transplantation in vivo, more dense collagen fibers similar to periodontal ligament were regenerated. Collectively, these results indicate that LIPUS not only promotes the formation and osteogenic differentiation of hPDLSCSs but also is a potential treatment strategy for periodontal tissue engineering.
Collapse
Affiliation(s)
- Han Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Zhou
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mengyuan Zhu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Siqi Ying
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lingjie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Duanjing Chen
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
170
|
Xu X, Ren S, Li L, Zhou Y, Peng W, Xu Y. Biodegradable engineered fiber scaffolds fabricated by electrospinning for periodontal tissue regeneration. J Biomater Appl 2020; 36:55-75. [PMID: 32842852 DOI: 10.1177/0885328220952250] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Considering the specificity of periodontium and the unique advantages of electrospinning, this technology has been used to fabricate biodegradable tissue engineering materials for functional periodontal regeneration. For better biomedical quality, a continuous technological progress of electrospinning has been performed. Based on property of materials (natural, synthetic or composites) and additive novel methods (drug loading, surface modification, structure adjustment or 3 D technique), various novel membranes and scaffolds that could not only relief inflammation but also influence the biological behaviors of cells have been fabricated to achieve more effective periodontal regeneration. This review provides an overview of the usage of electrospinning materials in treatments of periodontitis, in order to get to know the existing research situation and find treatment breakthroughs of the periodontal diseases.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Shuangshuang Ren
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Wenzao Peng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| |
Collapse
|
171
|
Coluzzi D, Anagnostaki E, Mylona V, Parker S, Lynch E. Do Lasers Have an Adjunctive Role in Initial Non-Surgical Periodontal Therapy? A Systematic Review. Dent J (Basel) 2020; 8:dj8030093. [PMID: 32824321 PMCID: PMC7558016 DOI: 10.3390/dj8030093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/31/2022] Open
Abstract
(1) Background: dental lasers have numerous applications for periodontal therapy which include surgical procedures of soft tissue and osseous structures, and non-surgical treatments such as pathogen reduction, removal of surface accretions, and photobiomodulation. The aim of this review was to evaluate the scientific literature to ascertain whether lasers have a beneficial role when used adjunctively in initial non-surgical periodontal therapy. (2) Methods: A PubMed search was performed specifically for randomized clinical trials where a dental laser was used adjunctively for initial periodontal therapy on human patients published from January 2010–April 2020. The first search identified 1294 eligible studies. After additional criteria and filters were applied, 20 manuscripts were included in this review. (3) Results: The chosen manuscripts reported on investigations into initial therapy for patients diagnosed with chronic periodontitis. After periodontal charting, conventional instrumentation such as hand and ultrasonic scaling was performed on all patients in the studies, and then a test group or groups of patients were treated adjunctively with a laser. That adjunctive laser group’s periodontal findings showed various degrees of improved health compared to the group treated with only conventional methods. (4) Conclusion: This systematic review found that 70% of the included studies reported significantly better outcomes in certain clinical parameters, but no improvement in others. The remaining 30% of the manuscripts reported no significant difference in any of the measurements. With consideration to correct parametry, lasers have an adjunctive role in initial non-surgical periodontal therapy.
Collapse
Affiliation(s)
- Donald Coluzzi
- School of Dentistry, University of California, San Francisco, CA 94143, USA
- Correspondence:
| | - Eugenia Anagnostaki
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (E.A.); (V.M.); (S.P.); (E.L.)
| | - Valina Mylona
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (E.A.); (V.M.); (S.P.); (E.L.)
| | - Steven Parker
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (E.A.); (V.M.); (S.P.); (E.L.)
| | - Edward Lynch
- Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (E.A.); (V.M.); (S.P.); (E.L.)
- School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV 89106, USA
| |
Collapse
|
172
|
Connizzo BK, Naveh GRS. In situ AFM-based nanoscale rheology reveals regional non-uniformity in viscoporoelastic mechanical behavior of the murine periodontal ligament. J Biomech 2020; 111:109996. [PMID: 32861150 DOI: 10.1016/j.jbiomech.2020.109996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/04/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022]
Abstract
The periodontal ligament (PDL) is a critical player in the maintenance of tooth health, acting as the primary stabilizer of tooth position. Recent studies have identified two unique regions within the PDL, the 'dense collar' region and the 'furcation' region, which exhibit distinct structural and compositional differences. However, specific functional differences between these regions have yet to be investigated. We adapted an AFM-based nanoscale rheology method to regionally assess mechanical properties and poroelasticity in the mouse PDL while minimizing the disruption of the 3-dimensional native boundary conditions, and then explored tissue mechanical function in four different regions within the dense collar as well as in the furcation region. We found significant differences between the collar and furcation regions, with the collar acting as a stabilizing ligamentous structure and the furcation acting as both a compressive cushion for vertical forces and a conduit for nutrient transport. While this finding supports our hypothesis, based on previous studies investigating structural and compositional differences, we also found surprising inhomogeneity within the collar region itself. This inhomogeneity supports previous findings of a tilting movement in the buccal direction of mandibular molar teeth and the structural adaptation to prevent lingual movement. Future work will aim to understand how different regions of the PDL change functionally during biological or mechanical perturbations, such as orthodontic tooth movement, development, or aging, with the ultimate goal of better understanding the mechanobiology of the PDL function in health and disease.
Collapse
Affiliation(s)
- Brianne K Connizzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| | - Gili R S Naveh
- Department of Oral Medicine, Infection and Immunity, School of Dental Medicine, Harvard University, Boston, MA 02115, United States
| |
Collapse
|
173
|
Wu B, Pu P, Zhao S, Izadikhah I, Shi H, Liu M, Lu R, Yan B, Ma S, Markert B. Frequency-related viscoelastic properties of the human incisor periodontal ligament under dynamic compressive loading. PLoS One 2020; 15:e0235822. [PMID: 32658896 PMCID: PMC7357742 DOI: 10.1371/journal.pone.0235822] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
Studies concerning the mechanical properties of the human periodontal ligament under dynamic compression are rare. This study aimed to determine the viscoelastic properties of the human periodontal ligament under dynamic compressive loading. Ten human incisor specimens containing 5 maxillary central incisors and 5 maxillary lateral incisors were used in a dynamic mechanical analysis. Frequency sweep tests were performed under the selected frequencies between 0.05 Hz and 5 Hz with a compression amplitude that was 2% of the PDL's initial width. The compressive strain varied over a range of 4%-8% of the PDL's initial width. The storage modulus, ranging from 28.61 MPa to 250.21 MPa, increased with the increase in frequency. The loss modulus (from 6.00 MPa to 49.28 MPa) also increased with frequency from 0.05 Hz- 0.5 Hz but remained constant when the frequency was higher than 0.5 Hz. The tanδ showed a negative logarithmic correlation with frequency. The dynamic moduli and the loss tangent of the central incisor were higher than those of the lateral incisor. This study concluded that the human PDL exhibits viscoelastic behavior under compressive loadings within the range of the used frequency, 0.05 Hz- 5 Hz. The tooth position and testing frequency may have effects on the viscoelastic properties of PDL.
Collapse
Affiliation(s)
- Bin Wu
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing, China
| | - Panjun Pu
- Jiangsu Key Laboratory of Oral Diseases, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Siyu Zhao
- Jiangsu Key Laboratory of Oral Diseases, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Iman Izadikhah
- Jiangsu Key Laboratory of Oral Diseases, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Haotian Shi
- Jiangsu Key Laboratory of Oral Diseases, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Mao Liu
- Jiangsu Key Laboratory of Oral Diseases, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ruxin Lu
- College of Mechanical Engineering, Southeast University, Nanjing, China
| | - Bin Yan
- Jiangsu Key Laboratory of Oral Diseases, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- * E-mail:
| | - Songyun Ma
- Institute of General Mechanics, RWTH-Aachen University, Aachen, Nordrhein-Westfalen, Germany
| | - Bernd Markert
- Institute of General Mechanics, RWTH-Aachen University, Aachen, Nordrhein-Westfalen, Germany
| |
Collapse
|
174
|
Panahipour L, Kochergina E, Laggner M, Zimmermann M, Mildner M, Ankersmit HJ, Gruber R. Role for Lipids Secreted by Irradiated Peripheral Blood Mononuclear Cells in Inflammatory Resolution in Vitro. Int J Mol Sci 2020; 21:ijms21134694. [PMID: 32630157 PMCID: PMC7370068 DOI: 10.3390/ijms21134694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022] Open
Abstract
Periodontal inflammation is associated with dying cells that potentially release metabolites helping to promote inflammatory resolution. We had shown earlier that the secretome of irradiated, dying peripheral blood mononuclear cells support in vitro angiogenesis. However, the ability of the secretome to promote inflammatory resolution remains unknown. Here, we determined the expression changes of inflammatory cytokines in murine bone marrow macrophages, RAW264.7 cells, and gingival fibroblasts exposed to the secretome obtained from γ-irradiated peripheral blood mononuclear cells in vitro by RT-PCR and immunoassays. Nuclear translocation of p65 was detected by immunofluorescence staining. Phosphorylation of p65 and degradation of IκB was determined by Western blot. The secretome of irradiated peripheral blood mononuclear cells significantly decreased the expression of IL1 and IL6 in primary macrophages and RAW264.7 cells when exposed to LPS or saliva, and of IL1, IL6, and IL8 in gingival fibroblasts when exposed to IL-1β and TNFα. These changes were associated with decreased phosphorylation and nuclear translocation of p65 but not degradation of IκB in macrophages. We also show that the lipid fraction of the secretome lowered the inflammatory response of macrophages exposed to the inflammatory cues. These results demonstrate that the secretome of irradiated peripheral blood mononuclear cells can lower an in vitro simulated inflammatory response, supporting the overall concept that the secretome of dying cells promotes inflammatory resolution.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (E.K.)
| | - Evgeniya Kochergina
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (E.K.)
| | - Maria Laggner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Währingergürtel 18-20, 1090 Vienna, Austria; (M.L.); (H.J.A.)
- Division of Thoracic Surgery, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria
| | - Matthias Zimmermann
- Department of Oral and Maxillofacial Surgery, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Hendrik J. Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Währingergürtel 18-20, 1090 Vienna, Austria; (M.L.); (H.J.A.)
- Division of Thoracic Surgery, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (E.K.)
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria
- Correspondence:
| |
Collapse
|
175
|
Zhou Y, Gong C, Hossaini-Zadeh M, Du J. 3D full-field strain in bone-implant and bone-tooth constructs and their morphological influential factors. J Mech Behav Biomed Mater 2020; 110:103858. [PMID: 32501222 DOI: 10.1016/j.jmbbm.2020.103858] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 01/20/2023]
Abstract
The biomechanics of bone-tooth and bone-implant interfaces affects the outcomes of several dental treatments, such as implant placement, because bone, tooth and periodontal ligament are living tissues that adapt to the changes in mechanical stimulations. In this work, mechanical testing coupled with micro-CT was performed on human cadaveric mandibular bone-tooth and bone-implant constructs. Using digital volume correlation, the 3D full-field strain in bone under implant loading and tooth loading was measured. Concurrently, bone morphology and bone-implant and bone-tooth contact were also measured through the analysis of micro-CT images. The results show that strain in bone increased when a tooth was replaced by a dental implant. Strain concentration was observed in peri-implant bone, as well as in the buccal bone plate, which is also the clinically-observed bone resorption area after implant placement. Decreasing implant stability measurements (resonance frequency analysis and torque test) indicated increased peri-implant strain, but their relationships may not be linear. Peri-implant bone strain linearly increased with decreasing bone-implant contact (BIC) ratio. It also linearly decreased with increasing bone-tooth/bone-implant contact ratio. The high strain in the buccal bone plate linearly increased with decreasing buccal bone plate thickness. The results of this study revealed 3D full-field strain in bone-tooth and bone-implant constructs, as well as their several morphological influential factors.
Collapse
Affiliation(s)
- Yuxiao Zhou
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, United States.
| | - Chujie Gong
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, United States.
| | - Mehran Hossaini-Zadeh
- Department of Oral Maxillofacial Pathology, Medicine and Surgery, Temple University, Philadelphia, PA, 19140, United States.
| | - Jing Du
- Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, 16802, United States.
| |
Collapse
|
176
|
Lin JD, Ryder M, Kang M, Ho SP. Biomechanical pathways of dentoalveolar fibrous joints in health and disease. Periodontol 2000 2020; 82:238-256. [PMID: 31850635 DOI: 10.1111/prd.12306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Spatial and temporal adaptations within periodontal tissues and their interfaces result from functional loads. Functional loads can be physiologic and/or pathologic in nature. The prolonged effect of these loads can alter the overall biomechanics of a dentoalveolar fibrous joint (dentoalveolar joint) by changing the form of the tooth root and its socket. This "sculpting" of the tooth root and alveolar bony socket is a consequence of several mechano-biological changes that occur within the periodontal complex of a load-bearing dentoalveolar joint. These include changes in biochemical expressions, structure, elemental composition, and mechanical properties of alveolar bone, the underlying tissues of the roots of teeth, and their interfaces. These physicochemical changes in tissues continue to prompt mechano-responsive biochemical activities at the attachment sites of periodontal ligament (soft) with bone (hard), and ligament with cementum (hard), which are the entheses of a load-bearing dentoalveolar joint. Forces at soft-hard tissue attachment sites between disparate materials with different stiffness values theoretically generate strain singularities or discontinuities. These discontinuities under prolonged functional loading increase the probability for failure to occur specifically at the enthesial zones. However, in a normal dentoalveolar joint, gradual stiffness gradients exist from ligament to bone, and from ligament to cementum. The gradual transitions in stiffness from softer ligament (lower stiffness) to harder bone or cementum (higher stiffness) or vice versa optimize tissue and interfacial strains. Optimization of tissue and ligament-enthesial physical and chemical properties facilitates transmission of cyclic forces of varying magnitudes and frequencies that collectively maintain the overall biomechanics of a dentoalveolar joint. The objectives of this review are 3-fold: (i) to illustrate physicochemical adaptations at the periodontal ligament entheses of a human periodontal complex affected by subgingival calculus; (ii) to demonstrate how to "program" the hallmarks of periodontitis in small-scale vertebrates in vivo to generate spatiotemporal maps of physicochemical adaptations in a diseased dentoalveolar joint; and (iii) to correlate dentoalveolar joint biomechanics in healthy and diseased states to spatiotemporal maps of physicochemical adaptations within respective periodontal tissues. This interdisciplinary approach demonstrates that physicochemical adaptations within periodontal tissues using the mechanics of materials (tissue mechanics), materials science (tissue composition), and mechano-biology (matrix molecules) can help explain the mechano-adaptation of dentoalveolar joints in normal and diseased functional states. Multiscale biomechanics and mechano-biology approaches can provide insights into the functional competence of a diseased relative to a normal dentoalveolar joint. Insights gathered from interdisciplinary and multiscale biomechanics approaches include the following: (i) physiologic loads related to chewing maintain a balance between mineral-forming and-resorbing biochemical cellular events, resulting in gradual stiffness gradients at the periodontal ligament entheses, and, in turn, sustain the overall biomechanics of a normal "healthy" dentoalveolar joint; (ii) pathologic loads resulting from tissue degradation and physical changes to the periodontal complex promote an abrupt stiffness gradient at the periodontal ligament entheses. The shift from gradual to an abrupt stiffness gradient could prompt a shift in the biochemical cascades, exacerbate mechano-responsive biochemical expressions at periodontal ligament entheses farther away from the site of insult, and culminate in joint degradation; (iii) sustained pathologic function on periodontally diseased joints exacerbates degradation of periodontal ligament entheses providing insights into "rescue therapy", such as the use of an adequate "mechanocal dose" to regain joint function; and (iv) spatiotemporal maps of changes in biochemical expressions, and physicochemical properties of strain-dominated affected sites, including the periodontal ligament entheses, can guide anatomy-specific therapeutics for tissue regeneration and/or disease control with the purpose of regaining dentoalveolar joint function. Modulation of occlusal loads could minimize disease progression and potentially assist in regaining functional attachment of ligament to bone and/or ligament to cementum of the dentoalveolar joint. Elucidating mechanisms that drive the breakdown of the functionally active periodontal complex burdened with microbes will provide the required critical insights into regenerative medicine and/or biomimetic approaches that would facilitate rescue/regain of dentoalveolar joint function.
Collapse
Affiliation(s)
- Jeremy D Lin
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Mark Ryder
- Division of Periodontics, Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Misun Kang
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Sunita P Ho
- Division of Preclinical Education, Biomaterials & Engineering, Department of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,Department of Urology, School of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
177
|
Cerrito P, Bailey SE, Hu B, Bromage TG. Parturitions, menopause and other physiological stressors are recorded in dental cementum microstructure. Sci Rep 2020; 10:5381. [PMID: 32214148 PMCID: PMC7096390 DOI: 10.1038/s41598-020-62177-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/05/2020] [Indexed: 01/22/2023] Open
Abstract
The life history pattern of recent humans is uniquely derived in many of its aspects including an extended post-reproductive lifespan combined with short interbirth intervals. A number of theories have been proposed to explain the evolution of this unusual pattern. However most have been difficult to test due to the fragmentary nature of the hominin fossil record and the lack of methods capable of inferring such later life history events. In search of a method we tested the hypothesis that the physiologically impactful events of parturition and menopause are recorded in dental cementum microstructure. We performed histomorphological analyses of 47 teeth from 15 individuals with known life history events and were able to detect reproductive events and menopause in all females. Furthermore, we found that other stressful events such as systemic illnesses and incarceration are also detectable. Finally, through the development of a novel analytical method we were able to time all such events with high accuracy (R-squared = 0.92).
Collapse
Affiliation(s)
- Paola Cerrito
- Department of Anthropology, New York University, New York, USA. .,New York Consortium in Evolutionary Primatology, New York, USA. .,Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA.
| | - Shara E Bailey
- Department of Anthropology, New York University, New York, USA.,New York Consortium in Evolutionary Primatology, New York, USA
| | - Bin Hu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA
| | - Timothy G Bromage
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, USA.,Department of Biomaterials, New York University College of Dentistry, New York, USA
| |
Collapse
|
178
|
Tenkumo T, Rojas-Sánchez L, Vanegas Sáenz JR, Ogawa T, Miyashita M, Yoda N, Prymak O, Sokolova V, Sasaki K, Epple M. Reduction of inflammation in a chronic periodontitis model in rats by TNF-α gene silencing with a topically applied siRNA-loaded calcium phosphate paste. Acta Biomater 2020; 105:263-279. [PMID: 31982590 DOI: 10.1016/j.actbio.2020.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
We developed a calcium phosphate-based paste containing siRNA against TNF-α and investigated its anti-inflammatory and bone-healing effects in vitro and in vivo in a rat periodontitis model. The bioactive spherical CaP/PEI/siRNA/SiO2 nanoparticles had a core diameter of 40-90 nm and a positive charge (+23 mV) that facilitated cellular uptake. The TNF- α gene silencing efficiency of the nanoparticles in J774.2 monocytes, gingival-derived cells, and bone marrow-derived cells was 12 ± 2%, 36 ± 8%, and 35 ± 22%, respectively. CaP/PEI/siRNA/SiO2 nanoparticles cancelled the suppression of alkaline phosphatase (ALP) activity in LPS-stimulated bone marrow-derived cells. In vivo, ALP mRNA was up-regulated, TNF-α mRNA was down-regulated, and the amount of released TNF-α was significantly reduced after topical application of the calcium phosphate-based paste containing siRNA-loaded nanoparticles. The number of TNF-α-positive cells in response to CaP/PEI/siRNA/SiO2 nanoparticle application was lower than that observed in the absence of siRNA. Elevated ALP activity and numerous TRAP-positive cells (osteoclasts) were observed in response to the application of all calcium phosphate pastes. These results demonstrate that local application of a paste consisting of siRNA-loaded calcium phosphate nanoparticles successfully induces TNF-α silencing in vitro and in vivo and removes the suppression of ALP activity stimulated by inflammation. STATEMENT OF SIGNIFICANCE: We developed a calcium phosphate-based paste containing nanoparticles loaded with siRNA against TNF-α. The nanoparticles had a core diameter of 40-90 nm and positive charge (+23 mV). The anti-inflammatory and osteoinductive effects of the paste were investigated in vitro and in vivo in a rat periodontitis model. In vitro, the TNF-α gene silencing efficiency of the nanoparticles in J774.2 monocytes, gingival-derived cells, and bone marrow-derived cells was 12 ± 2%, 36 ± 8%, and 35 ± 22%, respectively. The ALP activity of bone marrow-derived cells was recovered. In vivo, TNF-α mRNA was down-regulated and the amount of released TNF-α was significantly reduced, whereas the ALP mRNA was up-regulated. Elevated ALP activity and TRAP-positive cells were observed by immunohistochemistry.
Collapse
Affiliation(s)
- Taichi Tenkumo
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan.
| | - Leonardo Rojas-Sánchez
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Juan Ramón Vanegas Sáenz
- Materiales Dentales. Facultad de Odontología, Universidad Americana UAM, Costado Noroeste Camino de Oriente, Managua, Nicaragua
| | - Toru Ogawa
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Makiko Miyashita
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Nobuhiro Yoda
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Oleg Prymak
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Viktoriya Sokolova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany
| | - Keiichi Sasaki
- Division of Advanced Prosthetic Dentistry, Tohoku University Graduate school of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany.
| |
Collapse
|
179
|
Jönsson D, Orho-Melander M, Demmer RT, Engström G, Melander O, Klinge B, Nilsson PM. Periodontal disease is associated with carotid plaque area: the Malmö Offspring Dental Study (MODS). J Intern Med 2020; 287:301-309. [PMID: 31633250 DOI: 10.1111/joim.12998] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/13/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Periodontal disease is associated with cardiovascular disease (CVD) but it is unknown if periodontal disease severity is associated with asymptomatic carotid plaque. The aim of the current population-based, observational study was to investigate if signs of periodontal disease are associated with the occurrence of carotid plaque and total plaque area (TPA). METHODS The Malmö Offspring Study (MOS) is a population-based study. MOS participants underwent a thorough cardiovascular phenotyping, including carotid ultrasonography. The Malmö Offspring Dental Study (MODS) invited participants of MOS for dental examination, including periodontal charting. Multivariable regression models were used to analyse the presence of carotid plaque and TPA in relation to periodontal parameters. RESULTS In all, 831 MODS participants were recruited, out of which 495 belonged to the children generation with mean age of 53 years, 63% had carotid plaque and 38% had moderate or severe periodontal disease. In models adjusted for CVD risk factors, the OR for having carotid plaque in subjects with vs without periodontal disease was 1.75 (95% CI: 1.11-2.78). In a linear model with TPA as dependent and number of periodontal pockets ≥ 4 mm as independent variable, the adjusted beta-coefficient was 0.34 mm2 (95% CI 0.16-0.52). CONCLUSION Individuals within the highest quartile of periodontal pockets are expected to have 9 mm2 larger TPA compared to those without pockets. Our results suggest that intervention studies addressing periodontal disease could be useful for prevention of CVD.
Collapse
Affiliation(s)
- D Jönsson
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Swedish Dental Service of Skåne, Lund, Sweden
| | - M Orho-Melander
- Department of Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - R T Demmer
- School of Public Health, University of Minnesota, Minneapolis, MN, USA.,Mailman School of Public Health, Columbia University, New York, NY, USA
| | - G Engström
- Department of Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - O Melander
- Department of Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - B Klinge
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Solna, Sweden
| | - P M Nilsson
- Department of Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| |
Collapse
|
180
|
Li M, Yu Y, Shi Y, Zhou Y, Zhang W, Hua H, Ge J, Zhang Z, Ye D, Yang C, Wang S. Decreased Osteogenic Ability of Periodontal Ligament Stem Cells Leading to Impaired Periodontal Tissue Repair in BRONJ Patients. Stem Cells Dev 2020; 29:156-168. [PMID: 31801410 DOI: 10.1089/scd.2019.0151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bisphosphonate-related osteonecrosis of the jaws (BRONJ) is a severe adverse reaction, which results in progressive bone destruction in the maxillofacial region of patients. To date, the pathological mechanisms remain largely unclear. Recently, we found that BRONJ patient had significantly deep periodontal pockets and severe periodontal bone defects before the exposed necrotic bone. Human periodontal ligament stem cells (hPDLSCs) play key roles in physiological maintenance and regeneration of periodontal tissues. However, the activities of hPDLSCs derived from BRONJ lesions and the role of hPDLSCs in BRONJ periodontal defect repair remain poorly understood. The aim of the present study was to elucidate the role of hPDLSCs in BRONJ. In this study, we found that the capacities of cell proliferation, adhesion, and migration of hPDLSCs derived from BRONJ lesions (BRONJ-hPDLSCs) were significantly decreased compared with control-hPDLSCs. BRONJ-hPDLSCs underwent early apoptosis compared with control-hPDLSCs. Importantly, we first demonstrated that BRONJ-hPDLSCs exhibited impaired osteogenic differentiation abilities in ectopic osteogenesis of nude mice. The above results suggested that the impaired BRONJ-hPDLSCs may be an important factor in deficient periodontal repair of BRONJ lesions and provide new insight into the underlying mechanism of BRONJ.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yejia Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yueqi Shi
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuqiong Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongfei Hua
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jing Ge
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Dongxia Ye
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shaoyi Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
181
|
Choi Y, Yoo JH, Lee JH, Lee Y, Bae MK, Kim YD, Kim HJ. Connective tissue growth factor (CTGF) regulates the fusion of osteoclast precursors by inhibiting Bcl6 in periodontitis. Int J Med Sci 2020; 17:647-656. [PMID: 32210715 PMCID: PMC7085216 DOI: 10.7150/ijms.41075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/11/2020] [Indexed: 11/28/2022] Open
Abstract
Connective tissue growth factor (CTGF), an extracellular matrix protein with various biological functions, is known to be upregulated in multiple chronic diseases such as liver fibrosis and congestive heart failure, but the mechanism it undertakes to cause alveolar bone loss in periodontitis remains elusive. The present study therefore investigates the pathways involving CTGF in chronic periodontitis. RNA sequencing revealed a notable increase in the expression of CTGF in chronic periodontitis tissues. Also, TRAP staining, TRAP activity and bone resorption assays showed that osteoclast formation and function is significantly facilitated in CTGF-treated bone marrow-derived macrophages (BMMs). Interestingly, western blotting and immunofluorescence staining results displayed that CTGF had little effect on the osteoclastogenic differentiation mediated by the positive regulators of osteoclastogenesis such as nuclear factor of activated T cells 1 (NFATc1). However, following results showed that both the mRNA and protein expressions of B cell lymphoma 6 (Bcl6), a transcriptional repressor of "osteoclastic" genes, were significantly downregulated by CTGF treatment. Moreover, CTGF upregulated the expressions of v-ATPase V0 subunit d2 (ATP6v0d2) and Dendritic cell-specific transmembrane protein (DC-STAMP) which are osteoclastic genes specifically required for osteoclast cell-cell fusion in pre-osteoclasts. Findings from this study suggest that CTGF promotes the fusion of pre-osteoclasts by downregulating Bcl6 and subsequently increasing the expression of DC-STAMP in periodontitis. Understanding this novel mechanism that leads to increased osteoclastogenesis in periodontitis may be employed for the development of new therapeutic targets for preventing periodontitis-associated alveolar bone resorption.
Collapse
Affiliation(s)
- YunJeong Choi
- Department of Oral Physiology, BK21 PLUS Project, Periodontal Diseases Signaling Network Research Center, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea, 50611
| | - Ji Hyun Yoo
- Department of Oral Physiology, BK21 PLUS Project, Periodontal Diseases Signaling Network Research Center, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea, 50611
| | - Jae-Hyung Lee
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Department of Life and Nanopharmaceutical Sciences, Kyung Hee Medical Science Institute, Kyung Hee University, Seoul, Republic of Korea, 02447
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea, 41940
| | - Moon-Kyoung Bae
- Department of Oral Physiology, BK21 PLUS Project, Periodontal Diseases Signaling Network Research Center, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea, 50611
| | - Yong-Deok Kim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea, 50611
| | - Hyung Joon Kim
- Department of Oral Physiology, BK21 PLUS Project, Periodontal Diseases Signaling Network Research Center, and Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan, Republic of Korea, 50611
| |
Collapse
|
182
|
da Motta RJG, Almeida LY, Villafuerte KRV, Ribeiro-Silva A, León JE, Tirapelli C. FOXP3+ and CD25+ cells are reduced in patients with stage IV, grade C periodontitis: A comparative clinical study. J Periodontal Res 2019; 55:374-380. [PMID: 31876956 DOI: 10.1111/jre.12721] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Some studies suggest that regulatory T cells (Tregs) have suppressive effects on inflammatory osteolysis. The aim of this study was to evaluate Treg immunomarkers in periodontitis-affected tissues from patients with periodontitis and clinically healthy gingiva (control). MATERIAL AND METHODS The presence and distribution of positive cells for CD4, CD25 and FOXP3 (Treg immunomarkers) in periodontitis-affected tissues (epithelium and lamina propria) of 30 patients (ten per group) with a diagnosis of stage IV, grade C periodontitis (IV-C), stage III, grade B periodontitis (III-B) and the control were evaluated. A two-way ANOVA followed by Fisher's LSD test was used to demonstrate differences between the groups and immunomarkers; Student's t test was used to demonstrate differences between the epithelium and the lamina propria. RESULTS Both IV-C and III-B periodontitis presented a significantly high proportion of immune-stained cells for all immunomarkers when compared to the control group. Notably, CD25+ and FOXP3+ cells were detected in a significantly higher number in III-B than IV-C periodontitis (P < .05). CONCLUSION Our results suggest the participation of Tregs on the osteoimmunological mechanisms in IV-C and III-B periodontitis patients, notably contributing to strategies for alveolar bone regeneration in clinical treatment decisions.
Collapse
Affiliation(s)
- Raphael J G da Motta
- Integrated Dental Clinic, Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto (FORP/USP), University of São Paulo, Ribeirão Preto, Brazil
| | - Luciana Yamamoto Almeida
- Haematology Division, Department of Clinical Medicine, Ribeirão Preto Medical School (FMRP/USP), University of São Paulo, Ribeirão Preto, Brazil
| | - Kelly R V Villafuerte
- Department of Oral and Maxillofacial Surgery and Periodontology, School of Dentistry of Ribeirão Preto (FORP/USP), University of São Paulo, Ribeirão Preto, Brazil
| | - Alfredo Ribeiro-Silva
- Department of Pathology, Ribeirão Preto Medical School (FMRP/USP), University of São Paulo, Ribeirão Preto, Brazil
| | - Jorge E León
- Oral Pathology, Department of Stomatology, Public Oral Health, and Forensic Dentistry, School of Dentistry of Ribeirão Preto (FORP/USP), University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Tirapelli
- Integrated Dental Clinic, Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirão Preto (FORP/USP), University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
183
|
da Costa FP, Puty B, Nogueira LS, Mitre GP, dos Santos SM, Teixeira BJB, Kataoka MSDS, Martins MD, Barboza CAG, Monteiro MC, Rogez H, de Oliveira EHC, Lima RR. Piceatannol Increases Antioxidant Defense and Reduces Cell Death in Human Periodontal Ligament Fibroblast under Oxidative Stress. Antioxidants (Basel) 2019; 9:E16. [PMID: 31878036 PMCID: PMC7023480 DOI: 10.3390/antiox9010016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 12/03/2019] [Indexed: 02/08/2023] Open
Abstract
Piceatannol is a resveratrol metabolite that is considered a potent antioxidant and cytoprotector because of its high capacity to chelate/sequester reactive oxygen species. In pathogenesis of periodontal diseases, the imbalance of reactive oxygen species is closely related to the disorder in the cells and may cause changes in cellular metabolism and mitochondrial activity, which is implicated in oxidative stress status or even in cell death. In this way, this study aimed to evaluate piceatannol as cytoprotector in culture of human periodontal ligament fibroblasts through in vitro analyses of cell viability and oxidative stress parameters after oxidative stress induced as an injury simulator. Fibroblasts were seeded and divided into the following study groups: control, vehicle, control piceatannol, H2O2 exposure, and H2O2 exposure combined with the maintenance in piceatannol ranging from 0.1 to 20 μM. The parameters analyzed following exposure were cell viability by trypan blue exclusion test, general metabolism status by the 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method, mitochondrial activity through the ATP production, total antioxidant capacity, and reduced gluthatione. Piceatannol was shown to be cytoprotective due the maintenance of cell viability between 1 and 10 μM even in the presence of H2O2. In a concentration of 0.1 μM piceatannol decreased significantly cell viability but increased cellular metabolism and antioxidant capacity of the fibroblasts. On the other hand, the fibroblasts treated with piceatannol at 1 μM presented low metabolism and antioxidant capacity. However, piceatannol did not protect cells from mitochondrial damage as measured by ATP production. In summary, piceatannol is a potent antioxidant in low concentrations with cytoprotective capacity, but it does not prevent all damage caused by hydrogen peroxide.
Collapse
Affiliation(s)
- Flávia Póvoa da Costa
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém-Pará 66075-110, Brazil; (F.P.d.C.); (B.P.); (L.S.N.)
- Laboratory of Tissue Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua-Pará 67030-000, Brazil;
| | - Bruna Puty
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém-Pará 66075-110, Brazil; (F.P.d.C.); (B.P.); (L.S.N.)
- Laboratory of Tissue Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua-Pará 67030-000, Brazil;
| | - Lygia S. Nogueira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém-Pará 66075-110, Brazil; (F.P.d.C.); (B.P.); (L.S.N.)
- Laboratory of Tissue Culture and Cytogenetics, Environment Section, Evandro Chagas Institute, Ananindeua-Pará 67030-000, Brazil;
| | - Geovanni Pereira Mitre
- Laboratory of Cell Culture, Faculty of Dentistry, Federal University of Pará (UFPA), Belém-Pará 66075-110, Brazil; (G.P.M.); (M.S.d.S.K.)
| | - Sávio Monteiro dos Santos
- Laboratory of Oxidative Stress and Clinical Immunology, Faculty of Pharmacy, Federal University of Pará (UFPA), Belém-Pará 66075-110, Brazil; (S.M.d.S.); (M.C.M.)
| | - Bruno José Brito Teixeira
- Center for Valorization of Amazonian Bioactive Compounds (CVACBA) & Federal University of Pará UFPA, Belém-Pará 66075-110, Brazil; (B.J.B.T.); (H.R.)
| | - Maria Sueli da Silva Kataoka
- Laboratory of Cell Culture, Faculty of Dentistry, Federal University of Pará (UFPA), Belém-Pará 66075-110, Brazil; (G.P.M.); (M.S.d.S.K.)
| | - Manoela Domingues Martins
- Department of Oral Pathology, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre 91509-900, RS, Brazil;
| | | | - Marta Chagas Monteiro
- Laboratory of Oxidative Stress and Clinical Immunology, Faculty of Pharmacy, Federal University of Pará (UFPA), Belém-Pará 66075-110, Brazil; (S.M.d.S.); (M.C.M.)
| | - Hervé Rogez
- Center for Valorization of Amazonian Bioactive Compounds (CVACBA) & Federal University of Pará UFPA, Belém-Pará 66075-110, Brazil; (B.J.B.T.); (H.R.)
| | | | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará (UFPA), Belém-Pará 66075-110, Brazil; (F.P.d.C.); (B.P.); (L.S.N.)
| |
Collapse
|
184
|
Steinfort S, Röcken M, Vogelsberg J, Failing K, Staszyk C. The Equine Gingiva: A Histological Evaluation. Front Vet Sci 2019; 6:435. [PMID: 31921900 PMCID: PMC6923225 DOI: 10.3389/fvets.2019.00435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022] Open
Abstract
Equine periodontal disease in horses has long been recognized as a painful disease, leading to a poor condition. The disease is widespread and attracts growing attention in equine dental medicine. The understanding of the underlying etiological and pathological mechanisms of equine periodontal disease is necessary to develop effective prophylactic and treatment options. As a first step, a thorough description of the histological features of the healthy equine gingiva is required. Specimens were taken from six horses (3 mares, 3 geldings, age: 0.5–26 years). The animals were euthanized for reasons not related to this study. Heads were dissected and gingival specimens, including parts of the adjacent teeth, alveolar bone and the periodontal ligament, were obtained from several positions of the dentition. Histological sections were evaluated via light microscopy, with special attention to the structural components of the gingiva, i.e., the gingival sulcus, the epithelium, and the components of the lamina propria (LP). Although the equine gingiva showed the same structural components as described in humans and dogs, the equine junctional epithelium was adapted to the equine dental anatomy and attached to the equine-unique peripheral cementum. Leucocytic infiltrations (LI) of the LP, sulcular epithelium (SE) and junctional epithelium (JE) were frequently seen. The amount of LI was not associated with a macroscopically visual pathology (e.g., diastema or food entrapment) in the respective position. The gingival sulcus depth had an average depth of <1 mm.
Collapse
Affiliation(s)
- Saskia Steinfort
- Institute of Veterinary-Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Michael Röcken
- Surgery, Equine Clinic, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Jörg Vogelsberg
- Institute of Veterinary-Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Klaus Failing
- Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Carsten Staszyk
- Institute of Veterinary-Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
185
|
Minty M, Canceil T, Serino M, Burcelin R, Tercé F, Blasco-Baque V. Oral microbiota-induced periodontitis: a new risk factor of metabolic diseases. Rev Endocr Metab Disord 2019; 20:449-459. [PMID: 31741266 DOI: 10.1007/s11154-019-09526-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has recently become evident that the periodontium (gingiva, desmodontal ligament, cementum and alveolar bone) and the associated microbiota play a pivotal role in regulating human health and diseases. The oral cavity is the second largest microbiota in the body with around 500 different bacterial species identified today. When disruption of oral cavity and dysbiosis occur, the proportion of strict anaerobic Gram-negative bacteria is then increased. Patients with periodontitis present 27 to 53% more risk to develop diabetes than the control population suggesting that periodontitis is an aggravating factor in the incidence of diabetes. Moreover, dysbiosis of oral microbiota is involved in both periodontal and metabolic disorders (cardiovascular diseases, dyslipidaemia …). The oral diabetic dysbiosis is characterized by a specific bacteria Porphyromonas, which is highly expressed in periodontal diseases and could exacerbate insulin resistance. In this review, we will address the nature of the oral microbiota and how it affects systemic pathologies with a bidirectional interaction. We also propose that using prebiotics like Akkermansia muciniphila may influence oral microbiota as novel therapeutic strategies. The discovery of the implication of oral microbiota for the control of metabolic diseases could be a new way for personalized medicine.
Collapse
Affiliation(s)
- Matthieu Minty
- INSERM U1048, F-31432 Toulouse, France, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse, France
- Université Paul Sabatier III (UPS), F-31432, Toulouse, France
- CHU Toulouse, Service d'Odontologie Toulouse, F-3100, Toulouse, France
| | - Thibault Canceil
- Université Paul Sabatier III (UPS), F-31432, Toulouse, France
- CHU Toulouse, Service d'Odontologie Toulouse, F-3100, Toulouse, France
| | - Matteo Serino
- INSERM, INRA, ENVT, UPS, IRSD, Université de Toulouse, 31024, Toulouse, France
| | - Remy Burcelin
- INSERM U1048, F-31432 Toulouse, France, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse, France
- Université Paul Sabatier III (UPS), F-31432, Toulouse, France
- CHU Toulouse, Service d'Odontologie Toulouse, F-3100, Toulouse, France
| | - François Tercé
- INSERM U1048, F-31432 Toulouse, France, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse, France
- Université Paul Sabatier III (UPS), F-31432, Toulouse, France
- CHU Toulouse, Service d'Odontologie Toulouse, F-3100, Toulouse, France
| | - Vincent Blasco-Baque
- INSERM U1048, F-31432 Toulouse, France, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), F-31432, Toulouse, France.
- Université Paul Sabatier III (UPS), F-31432, Toulouse, France.
- CHU Toulouse, Service d'Odontologie Toulouse, F-3100, Toulouse, France.
- INSERM UMR1048-I2MC Team 2 « Intestinal Risk Factors, Diabetes and Dyslipidemia » Building L4, 1st floor, Hospital of Rangueil 1, Avenue Jean Poulhès, 84225 31432, Toulouse Cedex 4 Lab, BP, France.
| |
Collapse
|
186
|
Mehari Abraha H, Iriarte-Diaz J, Ross CF, Taylor AB, Panagiotopoulou O. The Mechanical Effect of the Periodontal Ligament on Bone Strain Regimes in a Validated Finite Element Model of a Macaque Mandible. Front Bioeng Biotechnol 2019; 7:269. [PMID: 31737614 PMCID: PMC6831558 DOI: 10.3389/fbioe.2019.00269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 09/27/2019] [Indexed: 11/13/2022] Open
Abstract
The primary anatomical function of the periodontal ligament (PDL) is to attach teeth to their sockets. However, theoretical and constitutive mechanical models have proposed that during mastication the PDL redistributes local occlusal loads and reduces the jaw's resistance to torsional deformations. These hypotheses imply that accurately modeling the PDL's material properties and geometry in finite element analysis (FEA) is a prerequisite to obtaining precise strain and deformation data. Yet, many finite element studies of the human and non-human primate masticatory apparatus exclude the PDL or model it with simplicity, in part due to limitations in μCT/CT scan resolution and material property assignment. Previous studies testing the sensitivity of finite element models (FEMs) to the PDL have yielded contradictory results, however a major limitation of these studies is that FEMs were not validated against in vivo bone strain data. Hence, this study uses a validated and subject specific FEM to assess the effect of the PDL on strain and deformation regimes in the lower jaw of a rhesus macaque (Macaca mulatta) during simulated unilateral post-canine chewing. Our findings demonstrate that the presence of the PDL does influence local and global surface strain magnitudes (principal and shear) in the jaw. However, the PDL's effect is limited (diff. ~200-300 με) in areas away from the alveoli. Our results also show that varying the PDL's Young's Modulus within the range of published values (0.07-1750 MPa) has very little effect on global surface strains. These findings suggest that the mechanical importance of the PDL in FEMs of the mandible during chewing is dependent on the scope of the hypotheses being tested. If researchers are comparing strain gradients across species/taxa, the PDL may be excluded with minimal effect on results, but, if researchers are concerned with absolute strain values, sensitivity analysis is required.
Collapse
Affiliation(s)
- Hyab Mehari Abraha
- Moving Morphology and Functional Mechanics Laboratory, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jose Iriarte-Diaz
- Department of Biology, The University of the South, Sewanee, TN, United States
| | - Callum F. Ross
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States
| | - Andrea B. Taylor
- Department of Basic Science, Touro University, Vallejo, CA, United States
| | - Olga Panagiotopoulou
- Moving Morphology and Functional Mechanics Laboratory, Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
187
|
Mijailovic I, Nikolic N, Djinic A, Carkic J, Milinkovic I, Peric M, Jankovic S, Milasin J, Aleksic Z. The down‐regulation of Notch 1 signaling contributes to the severity of bone loss in aggressive periodontitis. J Periodontol 2019; 91:554-561. [DOI: 10.1002/jper.18-0755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Iva Mijailovic
- Department of Periodontology and Oral MedicineSchool of Dental MedicineUniversity of Belgrade Belgrade Serbia
| | - Nadja Nikolic
- Department of Human GeneticsSchool of Dental MedicineUniversity of Belgrade Belgrade Serbia
| | - Ana Djinic
- Department of Periodontology and Oral MedicineSchool of Dental MedicineUniversity of Belgrade Belgrade Serbia
| | - Jelena Carkic
- Department of Human GeneticsSchool of Dental MedicineUniversity of Belgrade Belgrade Serbia
| | - Iva Milinkovic
- Department of Periodontology and Oral MedicineSchool of Dental MedicineUniversity of Belgrade Belgrade Serbia
| | - Mina Peric
- Faculty of BiologyUniversity of Belgrade Belgrade Serbia
| | - Sasha Jankovic
- Department of Periodontology and Oral MedicineSchool of Dental MedicineUniversity of Belgrade Belgrade Serbia
| | - Jelena Milasin
- Department of Human GeneticsSchool of Dental MedicineUniversity of Belgrade Belgrade Serbia
| | - Zoran Aleksic
- Department of Periodontology and Oral MedicineSchool of Dental MedicineUniversity of Belgrade Belgrade Serbia
| |
Collapse
|
188
|
Parisi L, Toffoli A, Mozzoni B, Rivara F, Ghezzi B, Cutrera M, Lumetti S, Macaluso GM. Is selective protein adsorption on biomaterials a viable option to promote periodontal regeneration? Med Hypotheses 2019; 132:109388. [PMID: 31491678 DOI: 10.1016/j.mehy.2019.109388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Periodontitis is an inflammatory condition that can induce significant destruction of the periodontium, the set of specialized tissues that provide nourishment and support to the teeth. According to the guided tissue regeneration principles, the periodontium can be regenerated if the spatiotemporal control of wound healing is obtained, namely the tune control of cell response. After material implantation, protein adsorption at the interface is the first occurring biological event, which influences subsequent cell response. With the regard of this, we hypothesize that the control of selective adsorption of biological cues from the surrounding milieu may be a key-point to control selective cell colonization of scaffolds for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Ludovica Parisi
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy.
| | - Andrea Toffoli
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy
| | - Beatrice Mozzoni
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy
| | - Federico Rivara
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy
| | - Benedetta Ghezzi
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy
| | - Miriam Cutrera
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy
| | - Simone Lumetti
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy
| | - Guido M Macaluso
- Centro Universitario di Odontoiatria, Università di Parma, Parma, IT, Italy; Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, IT, Italy; Istituto dei Materiali per l'Elettronica ed il Magnetismo, Consiglio Nazionale delle Ricerche, Parma, IT, Italy
| |
Collapse
|
189
|
Bostanci N, Bao K, Greenwood D, Silbereisen A, Belibasakis GN. Periodontal disease: From the lenses of light microscopy to the specs of proteomics and next-generation sequencing. Adv Clin Chem 2019; 93:263-290. [PMID: 31655732 DOI: 10.1016/bs.acc.2019.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Periodontal disease entails the inflammatory destruction of the tooth supporting (periodontal) tissues as a result of polymicrobial colonization of the tooth surface in the form of biofilms. Extensive data collected over the past decades on this chronic disease demonstrate that its progression is infrequent and episodic, and the susceptibility to it can vary among individuals. Physical assessments of previously occurring damage to periodontal tissues remain the cornerstone of detection and diagnosis, whereas traditionally used diagnostic procedures do neither identify susceptible individuals nor distinguish between disease-active and disease-inactive periodontal sites. Thus, more sensitive and accurate "measurable biological indicators" of periodontal diseases are needed in order to place diagnosis (e.g., the presence or stage) and management of the disease on a more rational less empirical basis. Contemporary "omics" technologies may help unlock the path to this quest. High throughput nucleic acid sequencing technologies have enabled us to examine the taxonomic distribution of microbial communities in oral health and disease, whereas proteomic technologies allowed us to decipher the molecular state of the host in disease, as well as the interactive cross-talk of the host with the microbiome. The newly established field of metaproteomics has enabled the identification of the repertoire of proteins that oral microorganisms use to compete or co-operate with each other. Vast such data is derived from oral biological fluids, including gingival crevicular fluid and saliva, which is progressively completed and catalogued as the analytical technologies and bioinformatics tools progressively advance. This chapter covers the current "omics"-derived knowledge on the microbiome, the host and their "interactome" with regard to periodontal diseases, and addresses challenges and opportunities ahead.
Collapse
Affiliation(s)
- Nagihan Bostanci
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Kai Bao
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - David Greenwood
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Angelika Silbereisen
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georgios N Belibasakis
- Section of Periodontology and Dental Prevention, Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
190
|
Puttipan R, Chansakaow S, Khongkhunthian S, Okonogi S. Caesalpinia sappan: A promising natural source of antimicrobial agent for inhibition of cariogenic bacteria. Drug Discov Ther 2019; 12:197-205. [PMID: 30224592 DOI: 10.5582/ddt.2018.01035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
From the previous findings, the ethanolic fractionated extract of Caesalpinia sappan (F-EtOH) has high activity against Streptococcus mutans, the most severe cariogenic bacteria. The present study was aimed to isolate and identify the active compound of F-EtOH and compare its inhibitory activity against the biofilm of S. mutans as well as the cytotoxicity to oral fibroblast cells with F-EtOH. Compound isolation was done by column chromatography. The active compound was identified using liquid chromatography-mass spectrometry with electrospray ionization and nuclear magnetic resonance spectroscopy. It was found that the major compound of F-EtOH is brazilin. F-EtOH and brazilin were compared for inhibitory potential on the biofilms of three strains of S. mutans. The results exhibited that both F-EtOH and brazilin had potential on inhibiting biofilm formation and eradicating the preformed biofilms and their activity was dose dependent. F-EtOH showed significantly less toxic to normal periodontal ligament fibroblast than brazilin. At low concentration of 1- and 2-MBC, F-EtOH showed higher effective than brazilin. The results of our study suggest that the antibacterial activity of F-EtOH is according to the synergistic effects of the existing compounds including brazilin in F-EtOH.
Collapse
Affiliation(s)
- Rinrampai Puttipan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University
| | - Sunee Chansakaow
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University
| | - Sakornrat Khongkhunthian
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University.,Research Center of Pharmaceutical Nanotechnology, Chiang Mai University
| | - Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University.,Research Center of Pharmaceutical Nanotechnology, Chiang Mai University
| |
Collapse
|
191
|
Russo N, Cassinelli C, Torre E, Morra M, Iviglia G. Improvement of the Physical Properties of Guided Bone Regeneration Membrane from Porcine Pericardium by Polyphenols-Rich Pomace Extract. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2564. [PMID: 31408942 PMCID: PMC6719923 DOI: 10.3390/ma12162564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022]
Abstract
To achieve optimal performances, guided bone regeneration membranes should have several properties, in particular, proper stiffness and tear resistance for space maintenance, appropriate resorption time, and non-cytotoxic effect. In this work, polyphenol-rich pomace extract (PRPE), from a selected grape variety (Nebbiolo), rich in proanthocyanidins and flavonols (e.g., quercetin), was used as a rich source of polyphenols, natural collagen crosslinkers, to improve the physical properties of the porcine pericardium membrane. The incorporation of polyphenols in the collagen network of the membrane was clearly identified by infra-red spectroscopy through the presence of a specific peak between 1360-1380 cm-1. Polyphenols incorporated into the pericardium membrane bind to collagen with high affinity and reduce enzymatic degradation by 20% compared to the native pericardium. The release study shows a release of active molecules from the membrane, suggesting a possible use in patients affected by periodontitis, considering the role of polyphenols in the control of this pathology. Mechanical stiffness is increased making the membrane easier to handle. Young's modulus of pericardium treated with PRPE was three-fold higher than the one measured on native pericardium. Tear and suture retention strength measurement suggest favorable properties in the light of clinical practice requirements.
Collapse
Affiliation(s)
- Nazario Russo
- Specialization School EIMS-UFP, University of Cagliari, Via Università 40, 09124 Cagliari (CA), Italy
| | - Clara Cassinelli
- Nobil Bio Ricerche srl, Via Valcastellana 26, 14037 Portacomaro (AT), Italy
| | - Elisa Torre
- Nobil Bio Ricerche srl, Via Valcastellana 26, 14037 Portacomaro (AT), Italy
| | - Marco Morra
- Nobil Bio Ricerche srl, Via Valcastellana 26, 14037 Portacomaro (AT), Italy
| | - Giorgio Iviglia
- Nobil Bio Ricerche srl, Via Valcastellana 26, 14037 Portacomaro (AT), Italy.
| |
Collapse
|
192
|
Zheng DH, Wang XX, Ma D, Zhang LN, Qiao QF, Zhang J. Erythropoietin enhances osteogenic differentiation of human periodontal ligament stem cells via Wnt/β-catenin signaling pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2543-2552. [PMID: 31440036 PMCID: PMC6666380 DOI: 10.2147/dddt.s214116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022]
Abstract
Objectives The aim of this study is to examine the roles of erythropoietin (EPO) in regulating proliferation and osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and analyze the underlying signaling of these processes. Materials and methods PDLSCs were isolated and characterized. The PDLSCs were transfected with β-catenin shRNA. qRT-PCR and Western blot analysis were used to examine the osteogenic effects of EPO on the expression of osteogenic-related genes and protein (Runx2, OCN and Osterix) in PDLSCs. Alizarin Red-S staining was used to detect mineralized nodule formation. In addition, the relationship between the Wnt/β-catenin pathway and the effect of EPO on the osteogenesis of PDLSCs was investigated. Results The results suggested that EPO exerts positive osteogenic effects on PDLSCs. The results showed that EPO decreased the growth of PDLSCs slightly and increased alkaline phosphatase activity and calcium deposition in a dose-dependent manner. The expression of Runx2, Osterix and OCN was increased after EPO administration. EPO increases β-catenin and Cyclin D1 in PDLSCs. After transfected with β-catenin shRNA, the osteogenic effect of EPO on PDLSCs was attenuated. Conclusion EPO promotes osteogenic differentiation of PDLSCs. The underlying mechanism may be activating Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- De-Hua Zheng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Xu-Xia Wang
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Dan Ma
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Li-Na Zhang
- Department of Orthodontics, Liaocheng People's Hospital, Liaocheng, Shandong Province, People's Republic of China
| | - Qing-Fang Qiao
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| | - Jun Zhang
- Department of Orthodontics, School of Stomatology, Shandong University, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
193
|
Hirashima S, Ohta K, Kanazawa T, Togo A, Kakuma T, Kusukawa J, Nakamura KI. Three-dimensional ultrastructural and histomorphological analysis of the periodontal ligament with occlusal hypofunction via focused ion beam/scanning electron microscope tomography. Sci Rep 2019; 9:9520. [PMID: 31266989 PMCID: PMC6606634 DOI: 10.1038/s41598-019-45963-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/18/2019] [Indexed: 12/17/2022] Open
Abstract
The periodontal ligament (PDL) maintains the environment and function of the periodontium. The PDL has been remodelled in accordance with changes in mechanical loading. Three-dimensional (3D) structural data provide essential information regarding PDL function and dysfunction. However, changes in mechanical loading associated with structural changes in the PDL are poorly understood at the mesoscale. This study aimed to investigate 3D ultrastructural and histomorphometric changes in PDL cells and fibres associated with unloading condition (occlusal hypofunction), using focused ion beam/scanning electron microscope tomography, and to quantitatively analyse the structural properties of PDL cells and fibres. PDL cells formed cellular networks upon morphological changes induced via changes in mechanical loading condition. Drastic changes were observed in a horizontal array of cells, with a sparse and disorganised area of collagen bundles. Furthermore, collagen bundles tended to be thinner than those in the control group. FIB/SEM tomography enables easier acquisition of serial ultrastructural images and quantitative 3D data. This method is powerful for revealing 3D architecture in complex tissues. Our results may help elucidate architectural changes in the PDL microenvironment during changes in mechanical loading condition and regeneration, and advance a wide variety of treatments in dentistry.
Collapse
Affiliation(s)
- Shingo Hirashima
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan. .,Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, 830-0011, Japan.
| | - Keisuke Ohta
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan.,Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Tomonoshin Kanazawa
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Akinobu Togo
- Advanced Imaging Research Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | | | - Jingo Kusukawa
- Dental and Oral Medical Center, Kurume University School of Medicine, Kurume, 830-0011, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Developmental Anatomy, Department of Anatomy, Kurume University School of Medicine, Kurume, 830-0011, Japan
| |
Collapse
|
194
|
Chen L, Mo S, Hua Y. Compressive force-induced autophagy in periodontal ligament cells downregulates osteoclastogenesis during tooth movement. J Periodontol 2019; 90:1170-1181. [PMID: 31077358 DOI: 10.1002/jper.19-0049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/19/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autophagy has recently emerged as a protective mechanism in response to compressive force and an important process in maintenance of bone homeostasis. It appears to be involved in the degradation of osteoclasts, osteoblasts, and osteocytes. The aim of this study was to investigate the role of compressive force-induced autophagy in periodontal ligament (PDL) cells in regulating osteoclastogenesis of orthodontic tooth movement (OTM). METHODS An OTM model and compressive force on PDL cells were employed to investigate the expression of autophagy markers in vivo and in vitro, respectively. Autophagosomes and autolysosomes were observed in PDL cells by transmission electron microscope (TEM) and autophagy LC3 double labelling. 3-Methyladenine (3-MA) and rapamycin were respectively used to inhibit and promote autophagy, and the effect of autophagy on osteoclastogenesis was explored via microcomputed tomography, hematoxylin and eosin (H&E) staining, histochemistry of titrate-resistant acid phosphatase, and real-time polymerase chain reaction (RT-PCR) in vivo. Receptor activator of nuclear factor-kappa B ligand/osteoprotegerin (RANKL/OPG) was investigated by RT-PCR and ELISA in vitro. RESULTS Orthodontic force-induced autophagy was prominent on the pressured side of PDL tissues. Administration of 3-MA downregulated bone density and upregulated osteoclasts, while rapamycin had reverse results in OTM. The autophagy activity increased initially then decreased in PDL cells during compressive force application and responded to light force. In PDL cells, administration of 3-MA upregulated while rapamycin downregulated the RANKL/OPG ratio. CONCLUSION Autophagy is activated by compressive force in PDL cells. Besides, it could modulate OTM by negatively regulating osteoclastogenesis and keep bone homeostasis via RANKL/OPG signaling.
Collapse
Affiliation(s)
- Liyuan Chen
- Department of Orthodontics, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Shenzheng Mo
- Department of Orthodontics, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yongmei Hua
- Department of Orthodontics, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
195
|
Du A, Cheng Y, Zhao S, Wei X, Zhou Y. MicroRNA expression profiling of nicotine-treated human periodontal ligament cells. J Oral Sci 2019; 61:206-212. [PMID: 31118359 DOI: 10.2334/josnusd.17-0403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Cigarette smoking is a lifestyle-related risk factor involved in the causation and progression of periodontal disease. Nicotine is a key toxic component of tobacco. However, the mechanisms underlying nicotine-induced periodontitis have not yet been fully elucidated. The present study investigated the microRNA (miRNA) expression profile of human periodontal ligament cells (PDLCs) treated with nicotine. Using differential analysis of miRNA array data, several differentially expressed miRNAs were identified in nicotine-treated PDLCs. Quantitative real-time PCR was employed to verify the accuracy of the miRNA array, and the targets of these dysregulated miRNAs were further analyzed. Function and pathway enrichment of differentially expressed miRNAs suggested that several important signaling pathways, such as the Toll-like receptor signaling pathway, nicotine addiction, the transforming growth factor-beta signaling pathway, and the hypoxia inducible factor-1 signaling pathway, are potentially responsible for nicotine-induced periodontitis. This study has helped to clarify the epigenetic mechanisms of nicotine-induced periodontitis, highlighting novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Anqing Du
- Department of Stomatology, Pudong Hospital, Fudan University
| | - Yawei Cheng
- Department of Oral Anatomy, School of Dentistry, Chonbuk National University
| | - Sen Zhao
- Department of Orthodontics, School of Dentistry, Chonbuk National University
| | - Xiaoxia Wei
- Department of Orthodontics, School of Stomatology, First Affiliated Hospital of Zhengzhou University
| | - Yi Zhou
- Zhongshan School of Medicine, Sun Yat-Sen University
| |
Collapse
|
196
|
Serôdio R, Schickert SL, Costa-Pinto AR, Dias JR, Granja PL, Yang F, Oliveira AL. Ultrasound sonication prior to electrospinning tailors silk fibroin/PEO membranes for periodontal regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:969-981. [DOI: 10.1016/j.msec.2019.01.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/07/2018] [Accepted: 01/12/2019] [Indexed: 01/23/2023]
|
197
|
Lazarević JJ, Kukolj T, Bugarski D, Lazarević N, Bugarski B, Popović ZV. Probing primary mesenchymal stem cells differentiation status by micro-Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 213:384-390. [PMID: 30726762 DOI: 10.1016/j.saa.2019.01.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/21/2019] [Indexed: 05/27/2023]
Abstract
We have employed micro-Raman spectroscopy to get insight into intrinsic biomolecular profile of individual mesenchymal stem cell isolated from periodontal ligament. Furthermore, these cells were stimulated towards adipogenic, chondrogenic, and osteogenic lineages and their status of differentiation was assessed using micro-Raman spectroscopy. In both cases, glass coverslips were used as substrates, due to their wide availability and cost effectiveness. In all sample groups, the same type of behavior was observed, manifested as changes in Raman spectra: the increase of relative intensity of protein/lipid bands and decrease of nucleic acid bands. Comprehensive statistical analysis in the form of principal component analysis was performed, which revealed noticeable grouping of cells with the similar features. Despite the inhomogeneity of primary stem cells and their differentiated lineages, we demonstrated that micro-Raman spectroscopy is sufficient for distinguishing cells' status, which can be valuable for medical and clinical application.
Collapse
Affiliation(s)
- J J Lazarević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Belgrade 11080, Serbia
| | - T Kukolj
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11000, Serbia
| | - D Bugarski
- Laboratory for Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade 11000, Serbia
| | - N Lazarević
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Belgrade 11080, Serbia.
| | - B Bugarski
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade 11060, Serbia
| | - Z V Popović
- Center for Solid State Physics and New Materials, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, Belgrade 11080, Serbia; Serbian Academy of Sciences and Arts, Knez Mihailova 35, Belgrade 11000, Serbia
| |
Collapse
|
198
|
Yang X, Ma Y, Guo W, Yang B, Tian W. Stem cells from human exfoliated deciduous teeth as an alternative cell source in bio-root regeneration. Am J Cancer Res 2019; 9:2694-2711. [PMID: 31131062 PMCID: PMC6525984 DOI: 10.7150/thno.31801] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/25/2019] [Indexed: 02/05/2023] Open
Abstract
A stem cell-mediated bioengineered tooth root (bio-root) has proven to be a prospective tool for the treatment of tooth loss. As shown in our previous studies, dental follicle cells (DFCs) are suitable seeding cells for the construction of bio-roots. However, the DFCs which can only be obtained from unerupted tooth germ are restricted. Stem cells from human exfoliated deciduous teeth (SHEDs), which are harvested much more easily through a minimally invasive procedure, may be used as an alternative seeding cell. In this case, we compared the odontogenic characteristics of DFCs and SHEDs in bio-root regeneration. Methods: The biological characteristics of SHEDs and DFCs were determined in vitro. The cells were then induced to secrete abundant extracellular matrix (ECM) and form macroscopic cell sheets. We combined the cell sheets with treated dentin matrix (TDM) for subcutaneous transplantation into nude mice and orthotopic jaw bone implantation in Sprague-Dawley rats to further verify their regenerative potential. Results: DFCs exhibited a higher proliferation rate and stronger osteogenesis and adipogenesis capacities, while SHEDs displayed increased migration ability and excellent neurogenic potential. Both dental follicle cell sheets (DFCSs) and sheets of stem cells from human exfoliated deciduous teeth (SHEDSs) expressed not only ECM proteins but also osteogenic and odontogenic proteins. Importantly, similar to DFCSs/TDM, SHEDSs/TDM also successfully achieved the in vivo regeneration of the periodontal tissues, which consist of periodontal ligament fibers, blood vessels and new born alveolar bone. Conclusions: Both SHEDs and DFCs possessed a similar odontogenic differentiation capacity in vivo, and SHEDs were regarded as a prospective seeding cell for use in bio-root regeneration in the future.
Collapse
|
199
|
Minimally invasive non-surgical locally injected vitamin C versus the conventional surgical depigmentation in treatment of gingival hyperpigmentation of the anterior esthetic zone: A prospective comparative study. CLINICAL NUTRITION EXPERIMENTAL 2019. [DOI: 10.1016/j.yclnex.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
200
|
Wan B, Shahmoradi M, Zhang Z, Shibata Y, Sarrafpour B, Swain M, Li Q. Modelling of stress distribution and fracture in dental occlusal fissures. Sci Rep 2019; 9:4682. [PMID: 30886223 PMCID: PMC6423029 DOI: 10.1038/s41598-019-41304-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/27/2019] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to investigate the fracture behaviour of fissural dental enamel under simulated occlusal load in relation to various interacting factors including fissure morphology, cuspal angle and the underlying material properties of enamel. Extended finite element method (XFEM) was adopted here to analyse the fracture load and crack length in tooth models with different cusp angles (ranging from 50° to 70° in 2.5° intervals), fissural morphologies (namely U shape, V shape, IK shape, I shape and Inverted-Y shape) and enamel material properties (constant versus graded). The analysis results showed that fissures with larger curved morphology, such as U shape and IK shape, exhibit higher resistance to fracture under simulated occlusal load irrespective of cusp angle and enamel properties. Increased cusp angle (i.e. lower cusp steepness), also significantly enhanced the fracture resistance of fissural enamel, particularly for the IK and Inverted-Y shape fissures. Overall, the outcomes of this study explain how the interplay of compositional and structural features of enamel in the fissural area contribute to the resistance of the human tooth against masticatory forces. These findings may provide significant indicators for clinicians and technicians in designing/fabricating extra-coronal dental restorations and correcting the cuspal inclinations and contacts during clinical occlusal adjustment.
Collapse
Affiliation(s)
- Boyang Wan
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mahdi Shahmoradi
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Zhongpu Zhang
- School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Yo Shibata
- Department of Conservative Dentistry, Division of Biomaterials and Engineering, Showa University School of Dentistry, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8555, Japan
| | - Babak Sarrafpour
- The University of Sydney, Discipline of Oral Surgery, Medicine and Diagnostics, School of Dentistry, Faculty of Medicine and Health, The University of Sydney, Westmead Centre for Oral Health, Westmead Hospital, Sydney, NSW, 2145, Australia
| | - Michael Swain
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Qing Li
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|