151
|
Smith AP. Systemic Signaling in the Maintenance of Phosphate Homeostasis. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
152
|
|
153
|
Lakshmanan V, Kitto SL, Caplan JL, Hsueh YH, Kearns DB, Wu YS, Bais HP. Microbe-associated molecular patterns-triggered root responses mediate beneficial rhizobacterial recruitment in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:1642-61. [PMID: 22972705 PMCID: PMC3486800 DOI: 10.1104/pp.112.200386] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 09/11/2012] [Indexed: 05/18/2023]
Abstract
This study demonstrated that foliar infection by Pseudomonas syringae pv tomato DC3000 induced malic acid (MA) transporter (ALUMINUM-ACTIVATED MALATE TRANSPORTER1 [ALMT1]) expression leading to increased MA titers in the rhizosphere of Arabidopsis (Arabidopsis thaliana). MA secretion in the rhizosphere increased beneficial rhizobacteria Bacillus subtilis FB17 (hereafter FB17) titers causing an induced systemic resistance response in plants against P. syringae pv tomato DC3000. Having shown that a live pathogen could induce an intraplant signal from shoot-to-root to recruit FB17 belowground, we hypothesized that pathogen-derived microbe-associated molecular patterns (MAMPs) may relay a similar response specific to FB17 recruitment. The involvement of MAMPs in triggering plant innate immune response is well studied in the plant's response against foliar pathogens. In contrast, MAMPs-elicited plant responses on the roots and the belowground microbial community are not well understood. It is known that pathogen-derived MAMPs suppress the root immune responses, which may facilitate pathogenicity. Plants subjected to known MAMPs such as a flagellar peptide, flagellin22 (flg22), and a pathogen-derived phytotoxin, coronatine (COR), induced a shoot-to-root signal regulating ALMT1 for recruitment of FB17. Micrografts using either a COR-insensitive mutant (coi1) or a flagellin-insensitive mutant (fls2) as the scion and ALMT1(pro):β-glucuronidase as the rootstock revealed that both COR and flg22 are required for a graft transmissible signal to recruit FB17 belowground. The data suggest that MAMPs-induced signaling to regulate ALMT1 is salicylic acid and JASMONIC ACID RESISTANT1 (JAR1)/JASMONATE INSENSITIVE1 (JIN1)/MYC2 independent. Interestingly, a cell culture filtrate of FB17 suppressed flg22-induced MAMPs-activated root defense responses, which are similar to suppression of COR-mediated MAMPs-activated root defense, revealing a diffusible bacterial component that may regulate plant immune responses. Further analysis showed that the biofilm formation in B. subtilis negates suppression of MAMPs-activated defense responses in roots. Moreover, B. subtilis suppression of MAMPs-activated root defense does require JAR1/JIN1/MYC2. The ability of FB17 to block the MAMPs-elicited signaling pathways related to antibiosis reflects a strategy adapted by FB17 for efficient root colonization. These experiments demonstrate a remarkable strategy adapted by beneficial rhizobacteria to suppress a host defense response, which may facilitate rhizobacterial colonization and host-mutualistic association.
Collapse
|
154
|
Notaguchi M, Wolf S, Lucas WJ. Phloem-mobile Aux/IAA transcripts target to the root tip and modify root architecture. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:760-72. [PMID: 22925478 DOI: 10.1111/j.1744-7909.2012.01155.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In plants, the phloem is the component of the vascular system that delivers nutrients and transmits signals from mature leaves to developing sink tissues. Recent studies have identified proteins, mRNA, and small RNA within the phloem sap of several plant species. It is now of considerable interest to elucidate the biological functions of these potential long-distance signal agents, to further our understanding of how plants coordinate their developmental programs at the whole-plant level. In this study, we developed a strategy for the functional analysis of phloem-mobile mRNA by focusing on IAA transcripts, whose mobility has previously been reported in melon (Cucumis melo cv. Hale's Best Jumbo). Indoleacetic acid (IAA) proteins are key transcriptional regulators of auxin signaling, and are involved in a broad range of developmental processes including root development. We used a combination of vasculature-enriched sampling and hetero-grafting techniques to identify IAA18 and IAA28 as phloem-mobile transcripts in the model plant Arabidopsis thaliana. Micro-grafting experiments were used to confirm that these IAA transcripts, which are generated in vascular tissues of mature leaves, are then transported into the root system where they negatively regulate lateral root formation. Based on these findings, we present a model in which auxin distribution, in combination with phloem-mobile Aux/IAA transcripts, can determine the sites of auxin action.
Collapse
Affiliation(s)
- Michitaka Notaguchi
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
155
|
Effects of engineered Sinorhizobium meliloti on cytokinin synthesis and tolerance of alfalfa to extreme drought stress. Appl Environ Microbiol 2012; 78:8056-61. [PMID: 22961897 DOI: 10.1128/aem.01276-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cytokinin is required for the initiation of leguminous nitrogen fixation nodules elicited by rhizobia and the delay of the leaf senescence induced by drought stress. A few free-living rhizobia have been found to produce cytokinin. However, the effects of engineered rhizobia capable of synthesizing cytokinin on host tolerance to abiotic stresses have not yet been described. In this study, two engineered Sinorhizobium strains overproducing cytokinin were constructed. The tolerance of inoculated alfalfa plants to severe drought stress was assessed. The engineered strains, which expressed the Agrobacterium ipt gene under the control of different promoters, synthesized more zeatins than the control strain under free-living conditions, but their own growth was not affected. After a 4-week inoculation period, the effects of engineered strains on alfalfa growth and nitrogen fixation were similar to those of the control strain under nondrought conditions. After being subjected to severe drought stress, most of the alfalfa plants inoculated with engineered strains survived, and the nitrogenase activity in their root nodules showed no apparent change. A small elevation in zeatin concentration was observed in the leaves of these plants. The expression of antioxidant enzymes increased, and the level of reactive oxygen species decreased correspondingly. Although the ipt gene was transcribed in the bacteroids of engineered strains, the level of cytokinin in alfalfa nodules was identical to that of the control. These findings suggest that engineered Sinorhizobium strains synthesizing more cytokinin could improve the tolerance of alfalfa to severe drought stress without affecting alfalfa nodulation or nitrogen fixation.
Collapse
|
156
|
Radchuk V, Radchuk R, Pirko Y, Vankova R, Gaudinova A, Korkhovoy V, Yemets A, Weber H, Weschke W, Blume YB. A somaclonal line SE7 of finger millet (Eleusine coracana) exhibits modified cytokinin homeostasis and increased grain yield. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5497-506. [PMID: 22888132 PMCID: PMC3444265 DOI: 10.1093/jxb/ers200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The SE7 somaclonal line of finger millet (Eleusine coracana) achieved increased grain yield in field trials that apparently resulted from a higher number of inflorescences and seeds per plant, compared with the wild type. Levels of endogenous cytokinins, especially those of highly physiologically active iso-pentenyl adenine, were increased during early inflorescence development in SE7 plants. Transcript levels of cytokinin-degrading enzymes but not of a cytokinin-synthesizing enzyme were also decreased in young leaves, seedlings, and initiating inflorescences of SE7. These data suggest that attenuated degradation of cytokinins in SE7 inflorescences leads to higher cytokinin levels that stimulate meristem activity and result in production of more inflorescences. Gene expression was compared between SE7 and wild-type young inflorescences using the barley 12K cDNA array. The largest fraction of up-regulated genes in SE7 was related to transcription, translation, and cell proliferation, cell wall assembly/biosynthesis, and to growth regulation of young and meristematic tissues including floral formation. Other up-regulated genes were associated with protein and lipid degradation and mitochondrial energy production. Down-regulated genes were related to pathogen defence and stress response, primary metabolism, glycolysis, and the C:N balance. The results indicate a prolonged proliferation phase in SE7 young inflorescences characterized by up-regulated protein synthesis, cytokinesis, floral formation, and energy production. In contrast, wild-type inflorescences are similar to a more differentiated status characterized by regulated protein degradation, cell elongation, and defence/stress responses. It is concluded that attenuated degradation of cytokinins in SE7 inflorescences leads to higher cytokinin levels, which stimulate meristem activity, inflorescence formation, and seed set.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, D-06466 Gatersleben, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Hayashi KI, Kusaka N, Ando K, Mitsui T, Aoyama T, Nozaki H. Design and synthesis of photolabile caged cytokinin. Bioorg Med Chem Lett 2012; 22:5663-7. [PMID: 22832308 DOI: 10.1016/j.bmcl.2012.06.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 11/27/2022]
Abstract
Cytokinins are phytohormones that regulate diverse developmental processes throughout the life of a plant. trans-Zeatin, kinetin, benzyladenine and dihydrozeatin are adenine-type cytokinins that are perceived by the AHK cytokinin receptors. Endogenous cytokinin levels are critical for regulating plant development. To manipulate intracellular cytokinin levels, caged cytokinins were designed on the basis of the crystal structure of the AHK4 cytokinin receptor. The caged cytokinin was photolyzed to release the cytokinin molecule inside the cells and induce cytokinin-responsive gene expression. The uncaging of intracellular caged cytokinins demonstrated that cytokinin-induced root growth inhibition can be manipulated with photo-irradiation. This caged cytokinin system could be a powerful tool for cytokinin biology.
Collapse
Affiliation(s)
- Ken-ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan.
| | | | | | | | | | | |
Collapse
|
158
|
Kiran NS, Benková E, Reková A, Dubová J, Malbeck J, Palme K, Brzobohatý B. Retargeting a maize β-glucosidase to the vacuole--evidence from intact plants that zeatin-O-glucoside is stored in the vacuole. PHYTOCHEMISTRY 2012; 79:67-77. [PMID: 22552277 DOI: 10.1016/j.phytochem.2012.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/05/2012] [Accepted: 03/23/2012] [Indexed: 05/31/2023]
Abstract
Cytokinin (CK) activity is regulated by the complex interplay of their metabolism, transport, stability and cellular/tissue localization. O-glucosides of zeatin-type CKs are postulated to be storage and/or transport forms. Active CK levels are determined in part by their differential distribution of CK metabolites across different subcellular compartments. We have previously shown that overexpressing chloroplast-localized Zm-p60.1, a maize β-glucosidase capable of releasing active cytokinins from their O- and N3-glucosides, perturbs CK homeostasis in transgenic tobacco. We obtained tobacco (Nicotiana tabacum L., cv Petit Havana SR1) plants overexpressing a recombinant Zm-p60.1 that is targeted to the vacuole. The protein is correctly processed and localized to the vacuole. When grown on medium containing exogenous zeatin, transgenic seedlings rapidly accumulate fresh weight due to ectopic growths at the base of the hypocotyl. The presence of the enzyme in these ectopic structures is shown by histochemical staining. CK quantification reveals that these transgenic seedlings are unable to accumulate zeatin-O-glucoside to levels similar to those observed in the wild type. When crossed with tobacco overexpressing the zeatin-O-glucosyltransferase gene from Phaseolus, the vacuolar variant shows an almost complete reversion in the root elongation assay. This is the first evidence from intact plants that the vacuole is the storage organelle for CK O-glucosides and that they are available to attack by Zm-p60.1. We propose the use of Zm-p60.1 as a robust molecular tool that exploits the reversibility of O-glucosylation and enables delicate manipulations of active CK content at the cellular level.
Collapse
Affiliation(s)
- Nagavalli S Kiran
- Department of Molecular Biology and Radiobiology, Faculty of Agronomy, Mendel University in Brno, Zemědělská 1, CZ-61300 Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
159
|
Podlešáková K, Zalabák D, Čudejková M, Plíhal O, Szüčová L, Doležal K, Spíchal L, Strnad M, Galuszka P. Novel cytokinin derivatives do not show negative effects on root growth and proliferation in submicromolar range. PLoS One 2012; 7:e39293. [PMID: 22723989 PMCID: PMC3377648 DOI: 10.1371/journal.pone.0039293] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 05/21/2012] [Indexed: 11/18/2022] Open
Abstract
Background When applied to a nutrition solution or agar media, the non-substituted aromatic cytokinins caused thickening and shortening of the primary root, had an inhibitory effect on lateral root branching, and even showed some negative effects on development of the aerial part at as low as a 10 nanomolar concentration. Novel analogues of aromatic cytokinins ranking among topolins substituted on N9-atom of adenine by tetrahydropyranyl or 4-chlorobutyl group have been prepared and tested in standardized cytokinin bioassays [1]. Those showing comparable activities with N6-benzylaminopurine were further tested in planta. Methodology/Principal Findings The main aim of the study was to explain molecular mechanism of function of novel cytokinin derivatives on plant development. Precise quantification of cytokinin content and profiling of genes involved in cytokinin metabolism and perception in treated plants revealed several aspects of different action of m-methoxytopolin base and its substituted derivative on plant development. In contrast to standard cytokinins, N9- tetrahydropyranyl derivative of m-topolin and its methoxy-counterpart showed the negative effects on root development only at three orders of magnitude higher concentrations. Moreover, the methoxy-derivative demonstrates a positive effect on lateral root branching and leaf emerging in a nanomolar range of concentrations, in comparison with untreated plants. Conclusions/Significance Tetrahydropyranyl substitution at N9-position of cytokinin purine ring significantly enhances acropetal transport of a given cytokinins. Together with the methoxy-substitution, impedes accumulation of non-active cytokinin glucoside forms in roots, allows gradual release of the active base, and has a significant effect on the distribution and amount of endogenous isoprenoid cytokinins in different plant tissues. The utilization of novel aromatic cytokinin derivatives can distinctively improve expected hormonal effects in plant propagation techniques in the future.
Collapse
Affiliation(s)
- Kateřina Podlešáková
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - David Zalabák
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Mária Čudejková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Ondřej Plíhal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Lucie Szüčová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Karel Doležal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Lukáš Spíchal
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Petr Galuszka
- Department of Biochemistry, Faculty of Science, Palacký University, Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
- * E-mail:
| |
Collapse
|
160
|
Liao C, Liu R, Zhang F, Li C, Li X. Nitrogen under- and over-supply induces distinct protein responses in maize xylem sap. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:374-387. [PMID: 22501030 DOI: 10.1111/j.1744-7909.2012.01122.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Xylem sap primarily transports water and mineral nutrients such as nitrogen (N) from roots to shoots in vascular plants. However, it remains largely unknown how nitrogenous compounds, especially proteins in xylem sap, respond to N under- or over-supply. We found that reducing N supply increased amino-N percentage of total N in maize (Zea mays L.) xylem sap. Proteomic analysis showed that 23 proteins in the xylem sap of maize plants, including 12 newly identified ones, differentially accumulated in response to various N supplies. Fifteen of these 23 proteins were primarily involved in general abiotic or biotic stress responses, whereas the other five proteins appeared to respond largely to N under- or over-supply, suggesting distinct protein responses in maize xylem upon N under- and over-supply. Furthermore, one putative xylanase inhibitor and two putative O-glycosyl hydrolases had preferential gene expression in shoots.
Collapse
Affiliation(s)
- Chengsong Liao
- Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
161
|
Yang ZB, Eticha D, Albacete A, Rao IM, Roitsch T, Horst WJ. Physiological and molecular analysis of the interaction between aluminium toxicity and drought stress in common bean (Phaseolus vulgaris). JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3109-25. [PMID: 22371077 PMCID: PMC3350927 DOI: 10.1093/jxb/ers038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/06/2012] [Accepted: 01/17/2012] [Indexed: 05/11/2023]
Abstract
Aluminium (Al) toxicity and drought are two major factors limiting common bean (Phaseolus vulgaris) production in the tropics. Short-term effects of Al toxicity and drought stress on root growth in acid, Al-toxic soil were studied, with special emphasis on Al-drought interaction in the root apex. Root elongation was inhibited by both Al and drought. Combined stresses resulted in a more severe inhibition of root elongation than either stress alone. This result was different from the alleviation of Al toxicity by osmotic stress (-0.60 MPa polyethylene glycol) in hydroponics. However, drought reduced the impact of Al on the root tip, as indicated by the reduction of Al-induced callose formation and MATE expression. Combined Al and drought stress enhanced up-regulation of ACCO expression and synthesis of zeatin riboside, reduced drought-enhanced abscisic acid (ABA) concentration, and expression of NCED involved in ABA biosynthesis and the transcription factors bZIP and MYB, thus affecting the regulation of ABA-dependent genes (SUS, PvLEA18, KS-DHN, and LTP) in root tips. The results provide circumstantial evidence that in soil, drought alleviates Al injury, but Al renders the root apex more drought-sensitive, particularly by impacting the gene regulatory network involved in ABA signal transduction and cross-talk with other phytohormones necessary for maintaining root growth under drought.
Collapse
Affiliation(s)
- Zhong-Bao Yang
- Institute of Plant Nutrition, Leibniz Universität Hannover, Herrenhaeuser Str. 2, D-30419 Hannover, Germany
| | - Dejene Eticha
- Institute of Plant Nutrition, Leibniz Universität Hannover, Herrenhaeuser Str. 2, D-30419 Hannover, Germany
| | - Alfonso Albacete
- Institute of Plant Science, Karl-Franzens-Universität Graz, Schubertstrasse 51, A-8010 Graz, Austria
| | | | - Thomas Roitsch
- Institute of Plant Science, Karl-Franzens-Universität Graz, Schubertstrasse 51, A-8010 Graz, Austria
| | - Walter Johannes Horst
- Institute of Plant Nutrition, Leibniz Universität Hannover, Herrenhaeuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
162
|
Zhao L, Liu T, An X, Gu R. Evolution and expression analysis of the β-glucosidase (GLU) encoding gene subfamily in maize. Genes Genomics 2012. [DOI: 10.1007/s13258-011-0156-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
163
|
Spadafora ND, Parfitt D, Marchbank A, Li S, Bruno L, Vaughan R, Nieuwland J, Buchanan-Wollaston V, Herbert RJ, Bitonti MB, Doonan J, Albani D, Prinsen E, Francis D, Rogers HJ. Perturbation of cytokinin and ethylene-signalling pathways explain the strong rooting phenotype exhibited by Arabidopsis expressing the Schizosaccharomyces pombe mitotic inducer, cdc25. BMC PLANT BIOLOGY 2012; 12:45. [PMID: 22452972 PMCID: PMC3362767 DOI: 10.1186/1471-2229-12-45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 03/27/2012] [Indexed: 05/29/2023]
Abstract
BACKGROUND Entry into mitosis is regulated by cyclin dependent kinases that in turn are phosphoregulated. In most eukaryotes, phosphoregulation is through WEE1 kinase and CDC25 phosphatase. In higher plants a homologous CDC25 gene is unconfirmed and hence the mitotic inducer Schizosaccharomyces pombe (Sp) cdc25 has been used as a tool in transgenic plants to probe cell cycle function. Expression of Spcdc25 in tobacco BY-2 cells accelerates entry into mitosis and depletes cytokinins; in whole plants it stimulates lateral root production. Here we show, for the first time, that alterations to cytokinin and ethylene signaling explain the rooting phenotype elicited by Spcdc25 expression in Arabidopsis. RESULTS Expressing Spcdc25 in Arabidopsis results in increased formation of lateral and adventitious roots, a reduction of primary root width and more isodiametric cells in the root apical meristem (RAM) compared with wild type. Furthermore it stimulates root morphogenesis from hypocotyls when cultured on two way grids of increasing auxin and cytokinin concentrations. Microarray analysis of seedling roots expressing Spcdc25 reveals that expression of 167 genes is changed by > 2-fold. As well as genes related to stress responses and defence, these include 19 genes related to transcriptional regulation and signaling. Amongst these was the up-regulation of genes associated with ethylene synthesis and signaling. Seedlings expressing Spcdc25 produced 2-fold more ethylene than WT and exhibited a significant reduction in hypocotyl length both in darkness or when exposed to 10 ppm ethylene. Furthermore in Spcdc25 expressing plants, the cytokinin receptor AHK3 was down-regulated, and endogenous levels of iPA were reduced whereas endogeous IAA concentrations in the roots increased. CONCLUSIONS We suggest that the reduction in root width and change to a more isodiametric cell phenotype in the RAM in Spcdc25 expressing plants is a response to ethylene over-production. The increased rooting phenotype in Spcdc25 expressing plants is due to an increase in the ratio of endogenous auxin to cytokinin that is known to stimulate an increased rate of lateral root production. Overall, our data reveal important cross talk between cell division and plant growth regulators leading to developmental changes.
Collapse
Affiliation(s)
- Natasha D Spadafora
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
- Dipartimento di Ecologia, Università della Calabria, Arcavacata di Rende, Cosenza I-87030, Italy
| | - David Parfitt
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | | | - Sherong Li
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Leonardo Bruno
- Dipartimento di Ecologia, Università della Calabria, Arcavacata di Rende, Cosenza I-87030, Italy
| | - Rhys Vaughan
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | | | | | - Robert J Herbert
- Institute of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
| | - Maria Beatrice Bitonti
- Dipartimento di Ecologia, Università della Calabria, Arcavacata di Rende, Cosenza I-87030, Italy
| | - John Doonan
- Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Penglais, Aberystwyth University, Ceredigion SY23 3DA, Aberystwyth, UK
| | - Diego Albani
- Department of Botanical, Ecological and Geological Sciences, University of Sassari, Via Piandanna 4, Sassari 07100, Italy
| | - Els Prinsen
- Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp B-2020, Belgium
| | - Dennis Francis
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Hilary J Rogers
- School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
| |
Collapse
|
164
|
Ha S, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP. Cytokinins: metabolism and function in plant adaptation to environmental stresses. TRENDS IN PLANT SCIENCE 2012; 17:172-9. [PMID: 22236698 DOI: 10.1016/j.tplants.2011.12.005] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/06/2011] [Accepted: 12/12/2011] [Indexed: 05/18/2023]
Abstract
In plants, the cytokinin (CK) phytohormones regulate numerous biological processes, including responses to environmental stresses, via a complex network of CK signaling. By an unknown mechanism, stress signals are perceived and transmitted through the His-Asp phosphorelay, an important component of the CK signal transduction pathway, triggering CK-responsive genes. Because of the intensive crosstalk between CKs and abscisic acid (ABA), modulation of CK levels and their signal transduction affects both ABA-dependent and ABA-independent pathways, enabling plant adaptation to adverse conditions. This review presents our current understanding of the functions of CKs and CK signaling in the regulation of plant adaptation to stress. Biotechnological strategies based on the modulation of CK levels have been examined with the aim of stabilizing agriculture yields.
Collapse
Affiliation(s)
- Sukbong Ha
- Department of Plant Biotechnology, Chonnam National University, Buk-Gu, Gwangju 500-757, Korea
| | | | | | | | | |
Collapse
|
165
|
Brenner WG, Ramireddy E, Heyl A, Schmülling T. Gene regulation by cytokinin in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2012; 3:8. [PMID: 22639635 PMCID: PMC3355611 DOI: 10.3389/fpls.2012.00008] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/06/2012] [Indexed: 05/18/2023]
Abstract
The plant hormone cytokinin realizes at least part of its signaling output through the regulation of gene expression. A great part of the early transcriptional regulation is mediated by type-B response regulators, which are transcription factors of the MYB family. Other transcription factors, such as the cytokinin response factors of the AP2/ERF family, have also been shown to be involved in this process. Additional transcription factors mediate distinct parts of the cytokinin response through tissue- and cell-specific downstream transcriptional cascades. In Arabidopsis, only a single cytokinin response element, to which type-B response regulators bind, has been clearly proven so far, which has 5'-GAT(T/C)-3' as a core sequence. This motif has served to construct a synthetic cytokinin-sensitive two-component system response element, which is useful for monitoring the cellular cytokinin status. Insight into the extent of transcriptional regulation has been gained by genome-wide gene expression analyses following cytokinin treatment and from plants having an altered cytokinin content or signaling. This review presents a meta analysis of such microarray data resulting in a core list of cytokinin response genes. Genes encoding type-A response regulators displayed the most stable response to cytokinin, but a number of cytokinin metabolism genes (CKX4, CKX5, CYP735A2, UGT76C2) also belong to them, indicating homeostatic mechanisms operating at the transcriptional level. The cytokinin core response genes are also the target of other hormones as well as biotic and abiotic stresses, documenting crosstalk of the cytokinin system with other hormonal and environmental signaling pathways. The multiple links of cytokinin to diverse functions, ranging from control of meristem activity, hormonal crosstalk, nutrient acquisition, and various stress responses, are also corroborated by a compilation of genes that have been repeatedly found by independent gene expression profiling studies. Such functions are, at least in part, supported by genetic studies.
Collapse
Affiliation(s)
- Wolfram G. Brenner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
| | - Eswar Ramireddy
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
| | - Alexander Heyl
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
- *Correspondence: Alexander Heyl and Thomas Schmülling, Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany. e-mail: ;
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität BerlinBerlin, Germany
- *Correspondence: Alexander Heyl and Thomas Schmülling, Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, D-14195 Berlin, Germany. e-mail: ;
| |
Collapse
|
166
|
Shakirova FM, Avalbaev AM, Bezrukova MV, Fatkhutdinova RA, Maslennikova DR, Yuldashev RA, Allagulova CR, Lastochkina OV. Hormonal Intermediates in the Protective Action of Exogenous Phytohormones in Wheat Plants Under Salinity. PHYTOHORMONES AND ABIOTIC STRESS TOLERANCE IN PLANTS 2012:185-228. [DOI: 10.1007/978-3-642-25829-9_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
|
167
|
Mameaux S, Cockram J, Thiel T, Steuernagel B, Stein N, Taudien S, Jack P, Werner P, Gray JC, Greenland AJ, Powell W. Molecular, phylogenetic and comparative genomic analysis of the cytokinin oxidase/dehydrogenase gene family in the Poaceae. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:67-82. [PMID: 21838715 DOI: 10.1111/j.1467-7652.2011.00645.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The genomes of cereals such as wheat (Triticum aestivum) and barley (Hordeum vulgare) are large and therefore problematic for the map-based cloning of agronomicaly important traits. However, comparative approaches within the Poaceae permit transfer of molecular knowledge between species, despite their divergence from a common ancestor sixty million years ago. The finding that null variants of the rice gene cytokinin oxidase/dehydrogenase 2 (OsCKX2) result in large yield increases provides an opportunity to explore whether similar gains could be achieved in other Poaceae members. Here, phylogenetic, molecular and comparative analyses of CKX families in the sequenced grass species rice, brachypodium, sorghum, maize and foxtail millet, as well as members identified from the transcriptomes/genomes of wheat and barley, are presented. Phylogenetic analyses define four Poaceae CKX clades. Comparative analyses showed that CKX phylogenetic groupings can largely be explained by a combination of local gene duplication, and the whole-genome duplication event that predates their speciation. Full-length OsCKX2 homologues in barley (HvCKX2.1, HvCKX2.2) and wheat (TaCKX2.3, TaCKX2.4, TaCKX2.5) are characterized, with comparative analysis at the DNA, protein and genetic/physical map levels suggesting that true CKX2 orthologs have been identified. Furthermore, our analysis shows CKX2 genes in barley and wheat have undergone a Triticeae-specific gene-duplication event. Finally, by identifying ten of the eleven CKX genes predicted to be present in barley by comparative analyses, we show that next-generation sequencing approaches can efficiently determine the gene space of large-genome crops. Together, this work provides the foundation for future functional investigation of CKX family members within the Poaceae.
Collapse
Affiliation(s)
- Sabine Mameaux
- National Institute of Agricultural Botany (NIAB), Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Zalabák D, Pospíšilová H, Šmehilová M, Mrízová K, Frébort I, Galuszka P. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants. Biotechnol Adv 2011; 31:97-117. [PMID: 22198203 DOI: 10.1016/j.biotechadv.2011.12.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/02/2011] [Indexed: 01/02/2023]
Abstract
Cytokinins (CKs) are ubiquitous phytohormones that participate in development, morphogenesis and many physiological processes throughout plant kingdom. In higher plants, mutants and transgenic cells and tissues with altered activity of CK metabolic enzymes or perception machinery, have highlighted their crucial involvement in different agriculturally important traits, such as productivity, increased tolerance to various stresses and overall plant morphology. Furthermore, recent precise metabolomic analyses have elucidated the specific occurrence and distinct functions of different CK types in various plant species. Thus, smooth manipulation of active CK levels in a spatial and temporal way could be a very potent tool for plant biotechnology in the future. This review summarises recent advances in cytokinin research ranging from transgenic alteration of CK biosynthetic, degradation and glucosylation activities and CK perception to detailed elucidation of molecular processes, in which CKs work as a trigger in model plants. The first attempts to improve the quality of crop plants, focused on cereals are discussed, together with proposed mechanism of action of the responses involved.
Collapse
Affiliation(s)
- David Zalabák
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, Šlechtitelů 11, 783 71 Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
169
|
Hussain A, Hasnain S. Comparative assessment of the efficacy of bacterial and cyanobacterial phytohormones in plant tissue culture. World J Microbiol Biotechnol 2011; 28:1459-66. [DOI: 10.1007/s11274-011-0947-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/04/2011] [Indexed: 11/25/2022]
|
170
|
Abstract
Shoot branching is a highly plastic developmental process in which axillary buds are formed in the axil of each leaf and may subsequently be activated to give branches. Three classes of plant hormones, auxins, cytokinins and strigolactones (or strigolactone derivatives) are central to the control of bud activation. These hormones move throughout the plant forming a network of systemic signals. The past decade brought great progress in understanding the mechanisms of shoot branching control. Biological and computational studies have led to the proposal of two models, the auxin transport canalization-based model and the second messenger model, which provide mechanistic explanations for apical dominance.
Collapse
|
171
|
Müller B. Generic signal-specific responses: cytokinin and context-dependent cellular responses. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3273-88. [PMID: 21212299 DOI: 10.1093/jxb/erq420] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phytohormone cytokinin triggers numerous and diverse responses during the plant life cycle via a two-component phosphorelay signalling system. Each step of the signalling cascade is supported by a gene family comprising several members. While functional redundancy is observed among family members, additional gene-specific functions encoded by cis-regulatory and coding sequence of individual family members have been described and contribute to specificity in signalling output. In addition, the cellular context of the signal-receiving cell affects the response triggered. Recent studies in Arabidopsis have demonstrated how expression of cytokinin signalling components predefines a spatiotemporal map of signalling sensitivity, which causes local signal amplification and attenuation. In summary, the specific interpretation of cytokinin signalling is affected by an orchestrated interplay of signalling genes and cellular context.
Collapse
Affiliation(s)
- Bruno Müller
- Institute of Plant Biology, Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland.
| |
Collapse
|
172
|
Skylar A, Wu X. Regulation of meristem size by cytokinin signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:446-54. [PMID: 21554538 DOI: 10.1111/j.1744-7909.2011.01045.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The plant meristems possess unique features that involve maintaining the stem cell populations while providing cells for continued development. Although both the primary shoot apical meristem (SAM) and the root apical meristem (RAM) are specified during embryogenesis, post-embryonic tissue proliferation is required for their full establishment and maintenance throughout a plants' life. The phytohormone cytokinin (CK) interacts with other systemic signals and is a key regulator of meristem size and functions. The SAM and the RAM respond to CK stimulations in different manners: CK promotes tissue proliferation in the SAM through pathways dominated by homeobox transcription factors, including the class I KNOX genes, STIP, and WUS; and curiously, it favors proliferation at low levels and differentiation at a slightly higher concentration in the RAM instead. Here we review the current understanding of the molecular mechanisms underlying CK actions in regulating meristematic tissue proliferation.
Collapse
Affiliation(s)
- Anna Skylar
- Molecular and Computational Biology, University of Southern California, Los Angeles, USA
| | | |
Collapse
|
173
|
Bishopp A, Lehesranta S, Vatén A, Help H, El-Showk S, Scheres B, Helariutta K, Mähönen AP, Sakakibara H, Helariutta Y. Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr Biol 2011; 21:927-32. [PMID: 21620705 DOI: 10.1016/j.cub.2011.04.049] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 04/07/2011] [Accepted: 04/28/2011] [Indexed: 10/18/2022]
Abstract
Cytokinin phytohormones regulate a variety of developmental processes in the root such as meristem size, vascular pattern, and root architecture [1-3]. Long-distance transport of cytokinin is supported by the discovery of cytokinins in xylem and phloem sap [4] and by grafting experiments between wild-type and cytokinin biosynthesis mutants [5]. Acropetal transport of cytokinin (toward the shoot apex) has also been implicated in the control of shoot branching [6]. However, neither the mode of transport nor a developmental role has been shown for basipetal transport of cytokinin (toward the root apex). In this paper, we combine the use of a new technology that blocks symplastic connections in the phloem with a novel approach to visualize radiolabeled hormones in planta to examine the basipetal transport of cytokinin. We show that this occurs through symplastic connections in the phloem. The reduction of cytokinin levels in the phloem leads to a destabilization of the root vascular pattern in a manner similar to mutants affected in auxin transport or cytokinin signaling [7]. Together, our results demonstrate a role for long-distance basipetal transport of cytokinin in controlling polar auxin transport and maintaining the vascular pattern in the root meristem.
Collapse
Affiliation(s)
- Anthony Bishopp
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Müller D, Leyser O. Auxin, cytokinin and the control of shoot branching. ANNALS OF BOTANY 2011; 107:1203-12. [PMID: 21504914 PMCID: PMC3091808 DOI: 10.1093/aob/mcr069] [Citation(s) in RCA: 250] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
175
|
Wang YH, Irving HR. Developing a model of plant hormone interactions. PLANT SIGNALING & BEHAVIOR 2011; 6:494-500. [PMID: 21406974 PMCID: PMC3142376 DOI: 10.4161/psb.6.4.14558] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 05/18/2023]
Abstract
Plant growth and development is influenced by mutual interactions among plant hormones. The five classical plant hormones are auxins, cytokinins, gibberellins, abscisic acid and ethylene. They are small diffusible molecules that easily penetrate between cells. In addition, newer classes of plant hormones have been identified such as brassinosteroids, jasmonic acid, salicylic acid and various small proteins or peptides. These hormones also play important roles in the regulation of plant growth and development. This review begins with a brief summary of the current findings on plant hormones. Based on this knowledge, a conceptual model about interactions among plant hormones is built so as to link and develop an understanding of the diverse functions of different plant hormones as a whole in plants.
Collapse
Affiliation(s)
- Yu Hua Wang
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Victoria, Australia
| | | |
Collapse
|
176
|
D'Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, Coupland G, Périlleux C. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:972-9. [PMID: 21205031 DOI: 10.1111/j.1365-313x.2011.04482.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cytokinins are involved in many aspects of plant growth and development, and physiological evidence also indicates that they have a role in floral transition. In order to integrate these phytohormones into the current knowledge of genetically defined molecular pathways to flowering, we performed exogenous treatments of adult wild type and mutant Arabidopsis plants, and analysed the expression of candidate genes. We used a hydroponic system that enables synchronous growth and flowering of Arabidopsis, and allows the precise application of chemicals to the roots for defined periods of time. We show that the application of N⁶-benzylaminopurine (BAP) promotes flowering of plants grown in non-inductive short days. The response to cytokinin treatment does not require FLOWERING LOCUS T (FT), but activates its paralogue TWIN SISTER OF FT (TSF), as well as FD, which encodes a partner protein of TSF, and the downstream gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1). Treatment of selected mutants confirmed that TSF and SOC1 are necessary for the flowering response to BAP, whereas the activation cascade might partially act independently of FD. These experiments provide a mechanistic basis for the role of cytokinins in flowering, and demonstrate that the redundant genes FT and TSF are differently regulated by distinct floral-inducing signals.
Collapse
Affiliation(s)
- Maria D'Aloia
- Laboratory of Plant Physiology, University of Liège, Bât. B22 Sart Tilman, B-4000 Liège, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Vercruyssen L, Gonzalez N, Werner T, Schmülling T, Inzé D. Combining enhanced root and shoot growth reveals cross talk between pathways that control plant organ size in Arabidopsis. PLANT PHYSIOLOGY 2011; 155:1339-52. [PMID: 21205622 PMCID: PMC3046590 DOI: 10.1104/pp.110.167049] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/31/2010] [Indexed: 05/19/2023]
Abstract
Functionally distinct Arabidopsis (Arabidopsis thaliana) genes that positively affect root or shoot growth when ectopically expressed were combined to explore the feasibility of enhanced biomass production. Enhanced root growth resulting from cytokinin deficiency was obtained by overexpressing CYTOKININ OXIDASE/DEHYDROGENASE3 (CKX3) under the control of the root-specific PYK10 promoter. Plants harboring the PYK10-CKX3 construct were crossed with four different transgenic lines showing enhanced leaf growth. For all combinations, the phenotypic traits of the individual lines could be combined, resulting in an overall growth increase. Unexpectedly, three out of four combinations had more than additive effects. Both leaf and root growth were synergistically enhanced in plants ectopically expressing CKX3 and BRASSINOSTEROID INSENSITIVE1, indicating cross talk between cytokinins and brassinosteroids. In agreement, treatment of PYK10-CKX3 plants with brassinolide resulted in a dramatic increase in lateral root growth that could not be observed in wild-type plants. Coexpression of CKX3 and the GROWTH-REGULATING FACTOR5 (GRF5) antagonized the effects of GRF5 overexpression, revealing an interplay between cytokinins and GRF5 during leaf cell proliferation. The combined overexpression of CKX3 and GIBBERELLIN 20-OXIDASE1 led to a synergistic increase in leaf growth, suggesting an antagonistic growth control by cytokinins and gibberellins. Only additive effects on root and shoot growth were visible in plants ectopically expressing both CKX3 and ARABIDOPSIS VACUOLAR PYROPHOSPHATASE1, hinting at an independent action mode. Our results show new interactions and contribute to the molecular and physiological understanding of biomass production at the whole plant level.
Collapse
|
178
|
Kiba T, Kudo T, Kojima M, Sakakibara H. Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1399-409. [PMID: 21196475 DOI: 10.1093/jxb/erq410] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nitrogen is the mineral nutrient that often limits plant growth and development. In response to changes in nitrogen supply, plants display elaborate responses at both physiological and morphological levels to adjust their growth and development. Because higher plants consist of multiple organs with different functions and nutritional requirements, they rely on local and long-distance signalling pathways to coordinate the responses at the whole-plant level. Phytohormones have been considered as signalling substances of such pathways. Amongst phytohormones, abscisic acid, auxin, and cytokinins have been closely linked to nitrogen signalling. Recent evidence has provided some insights into how nitrogen and the phytohormone signals are integrated to bring about changes in physiology and morphology. In this review, the evidence is summarized, mostly focusing on examples related to nitrogen acquisition.
Collapse
Affiliation(s)
- Takatoshi Kiba
- RIKEN Plant Science Center, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
179
|
Garnica M, Houdusse F, Zamarreño AM, Garcia-Mina JM. The signal effect of nitrate supply enhances active forms of cytokinins and indole acetic content and reduces abscisic acid in wheat plants grown with ammonium. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1264-1272. [PMID: 20598773 DOI: 10.1016/j.jplph.2010.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/16/2010] [Accepted: 04/19/2010] [Indexed: 05/29/2023]
Abstract
Ammonium can result in toxicity symptoms in many plants when supplied as a sole nitrogen source. Nitrate reduces the negative effects caused by ammonium and promotes plant growth. In order to explore the mechanism responsible of this beneficial effect, we investigated whether nitrate application causes significant changes in the indoleacetic acid (IAA)- and cytokinin-plant distribution and abscisic acid (ABA) accumulation in wheat (Triticum aestivum L.) plants grown with ammonium. Two different doses of nitrate were supplied to ammonium-fed plants (100 microM and 5mM), to determine whether the effects of nitrate require significant doses (nutritional character), or can be promoted by very low doses (signal effect). The results showed that the presence of NO(3)(-) was associated with clear increases in the active forms of cytokinins (zeatine (Z), trans-zeatine riboside (tZR), isopentenyl adenosine (IPR)) and reduction of the levels of the lower active forms (cis-zeatine riboside (cZR)), independently of the dose applied. Likewise, the presence of nitrate also enhanced IAA shoot content, which correlated with higher cytokinin levels and a tendency toward lower ABA concentration. This study presents further evidence that the possible signal effect of NO(3)(-) involved in its beneficial effect on the growth of wheat plants fed with NH(4)(+) could be mediated by a coordinated action of the levels of cytokinins, IAA and ABA in the shoot.
Collapse
Affiliation(s)
- Maria Garnica
- CIPAV-Roullier Group, Poligono Arazuri-Orcoyen, 31160 Orcoyen, Navarra, Spain
| | | | | | | |
Collapse
|
180
|
Chen W, Gai Y, Liu S, Wang R, Jiang X. Quantitative analysis of cytokinins in plants by high performance liquid chromatography: electronspray ionization ion trap mass spectrometry. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:925-32. [PMID: 20883444 DOI: 10.1111/j.1744-7909.2010.00989.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The present paper introduces a highly sensitive and selective method for simultaneous quantification of 12 cytokinins (free form and their conjugates). The method includes a protocol of extraction with methanol/water/formic acid (15/4/1, v/v/v) to the micro-scale samples, pre-purification with solid phase extraction (SPE) cartridges of the extracts, separation with a high performance liquid chromatography (HPLC) and detection by an electrospray ionization ion trap mass spectrometry (ESI-Ion trap-MS) system in a consecutive ion monitoring (CRM) mode at the three stage fragmentation of mass spectrometry (MS(3) ). The lowest detection level of the cytokinins of the method reaches 0.1-2.0 pg with a very wide range of linear regression from 1-512 pg, at the coefficient factors of 0.98-0.99. The feasibility of this method has been proven in the application of the method to the analysis of the trace-amount contents of cytokinins in the micro-scale samples of various types of plant materials, such as aerial parts of rice and poplar leaves etc. 12 endogenous cytokinins had been identified and quantified in the plant tissues, with an acceptable relatively higher recovery rate from 40% to 70%.
Collapse
|
181
|
Sieburth LE, Lee DK. BYPASS1: how a tiny mutant tells a big story about root-to-shoot signaling. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:77-85. [PMID: 20074142 DOI: 10.1111/j.1744-7909.2010.00902.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants coordinate their development using long-distance signaling. The vascular system provides a route for long-distance movement, and specifically the xylem for root-to-shoot signaling. Root-to-shoot signals play roles communicating soil conditions, and these signals are important for agricultural water conservation. Using genetic approaches, the Arabidopsis bypass1 (bps1) mutant, which over-produces a root-derived signal, was identified. Although bps1 mutants have both root and shoot defects, the shoot can develop normally if the roots are removed, and the mutant root is sufficient to induce arrest of the wild-type shoot. BYPASS1 encodes a protein with no functionally characterized domains, and BPS1-like genes are found in plant genomes, but not the genomes of animals. Analyses of hormone pathways indicate that the mobile compound that arises in bps1 roots requires carotenoid biosynthesis, but it is neither abscisic acid nor strigolactone. The current model suggests that BPS1 is required to prevent the synthesis of a novel substance that moves from the root to the shoot, where it modifies shoot growth by interfering with auxin signaling.
Collapse
Affiliation(s)
- Leslie E Sieburth
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.
| | | |
Collapse
|
182
|
|