151
|
Iacopetta K, Collins-Praino LE, Buisman-Pijlman FTA, Hutchinson MR. Can neuroimmune mechanisms explain the link between ultraviolet light (UV) exposure and addictive behavior? Brain Behav Immun 2018; 73:125-132. [PMID: 30009997 DOI: 10.1016/j.bbi.2018.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 12/22/2022] Open
Abstract
High ultraviolet (UV) light exposure on the skin acts as a reinforcing stimulus, increasing sun-seeking behavior and even addiction-like sun seeking behavior. However, the physiological mechanisms that underlie this process remain to be defined. Here, we propose a novel hypothesis that neuroimmune signaling, arising from inflammatory responses in UV-damaged skin cells, causes potentiated signaling within the cortico-mesolimbic pathway, leading to increased sun-seeking behaviors. This hypothesized UV-induced, skin-to-brain signaling depends upon cell stress signals, termed alarmins, reaching the circulation, thereby triggering the activation of innate immune receptors, such as toll-like receptors (TLRs). This innate immune response is hypothesized to occur both peripherally and centrally, with the downstream signaling from TLR activation affecting both the endogenous opioid system and the mesolimbic dopamine pathway. As both neurotransmitter systems play a key role in the development of addiction behaviors through their actions at key brain regions, such as the nucleus accumbens (NAc), we hypothesize a novel connection between UV-induced inflammation and the activation of pathways that contribute to the development of addiction. This paper is a review of the existing literature to examine the evidence which suggests that chronic sun tanning resembles a behavioral addiction and proposes a novel pathway by which persistent sun-seeking behavior could affect brain neurochemistry in a manner similar to that of repeated drug use.
Collapse
Affiliation(s)
- Krystal Iacopetta
- Adelaide Centre for Neuroscience Research, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Lyndsey E Collins-Praino
- Adelaide Centre for Neuroscience Research, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Femke T A Buisman-Pijlman
- Adelaide Centre for Neuroscience Research, Adelaide Medical School, University of Adelaide, SA, Australia
| | - Mark R Hutchinson
- Adelaide Centre for Neuroscience Research, Adelaide Medical School, University of Adelaide, SA, Australia; Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
152
|
Wallach D. The Tumor Necrosis Factor Family: Family Conventions and Private Idiosyncrasies. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028431. [PMID: 28847899 DOI: 10.1101/cshperspect.a028431] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The tumor necrosis factor (TNF) cytokine family and the TNF/nerve growth factor (NGF) family of their cognate receptors together control numerous immune functions, as well as tissue-homeostatic and embryonic-development processes. These diverse functions are dictated by both shared and distinct features of family members, and by interactions of some members with nonfamily ligands and coreceptors. The spectra of their activities are further expanded by the occurrence of the ligands and receptors in both membrane-anchored and soluble forms, by "re-anchoring" of soluble forms to extracellular matrix components, and by signaling initiation via intracellular domains (IDs) of both receptors and ligands. Much has been learned about shared features of the receptors as well as of the ligands; however, we still have only limited knowledge of the mechanistic basis for their functional heterogeneity and for the differences between their functions and those of similarly acting cytokines of other families.
Collapse
Affiliation(s)
- David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
153
|
Sousa C, Golebiewska A, Poovathingal SK, Kaoma T, Pires-Afonso Y, Martina S, Coowar D, Azuaje F, Skupin A, Balling R, Biber K, Niclou SP, Michelucci A. Single-cell transcriptomics reveals distinct inflammation-induced microglia signatures. EMBO Rep 2018; 19:embr.201846171. [PMID: 30206190 PMCID: PMC6216255 DOI: 10.15252/embr.201846171] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 01/10/2023] Open
Abstract
Microglia are specialized parenchymal‐resident phagocytes of the central nervous system (CNS) that actively support, defend and modulate the neural environment. Dysfunctional microglial responses are thought to worsen CNS diseases; nevertheless, their impact during neuroinflammatory processes remains largely obscure. Here, using a combination of single‐cell RNA sequencing and multicolour flow cytometry, we comprehensively profile microglia in the brain of lipopolysaccharide (LPS)‐injected mice. By excluding the contribution of other immune CNS‐resident and peripheral cells, we show that microglia isolated from LPS‐injected mice display a global downregulation of their homeostatic signature together with an upregulation of inflammatory genes. Notably, we identify distinct microglial activated profiles under inflammatory conditions, which greatly differ from neurodegenerative disease‐associated profiles. These results provide insights into microglial heterogeneity and establish a resource for the identification of specific phenotypes in CNS disorders, such as neuroinflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Carole Sousa
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg.,Doctoral School of Science and Technology, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Suresh K Poovathingal
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg.,Single Cell Analytics & Microfluidics Core, Vlaams Instituut voor Biotechnologie-KU Leuven, Leuven, Belgium
| | - Tony Kaoma
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Yolanda Pires-Afonso
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Doctoral School of Science and Technology, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Silvia Martina
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Djalil Coowar
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Francisco Azuaje
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg.,National Centre for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Rudi Balling
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| | - Knut Biber
- Section Molecular Psychiatry, Department for Psychiatry and Psychotherapy, Laboratory of Translational Psychiatry, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Section Medical Physiology, Department of Neuroscience, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg.,Department of Biomedicine, KG Jebsen Brain Tumour Research Center, University of Bergen, Bergen, Norway
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg .,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg
| |
Collapse
|
154
|
Winther G, Elfving B, Müller HK, Lund S, Wegener G. Maternal High-fat Diet Programs Offspring Emotional Behavior in Adulthood. Neuroscience 2018; 388:87-101. [DOI: 10.1016/j.neuroscience.2018.07.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/01/2018] [Accepted: 07/06/2018] [Indexed: 01/28/2023]
|
155
|
Dietary hydrogenated vegetable fat exacerbates the activation of kynurenine pathway caused by peripheral lipopolysaccharide immune challenge in aged mice. Chem Biol Interact 2018; 293:28-37. [DOI: 10.1016/j.cbi.2018.07.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 11/22/2022]
|
156
|
Chistyakov DV, Astakhova AA, Sergeeva MG. Resolution of inflammation and mood disorders. Exp Mol Pathol 2018; 105:190-201. [PMID: 30098318 DOI: 10.1016/j.yexmp.2018.08.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/21/2018] [Accepted: 08/07/2018] [Indexed: 02/08/2023]
Abstract
Relationship between mood disorders and inflammation is now well-documented, although molecular mechanisms are not understood. Previously mostly pro-inflammatory cytokines of immune system (IL-6, TNF, etc.) were taken into account. However, recent understanding of resolution of inflammation as an active process drew attention to mediators of resolution, which include both proteins and ω-3 and ω-6 polyunsaturated fatty acids derivatives (resolvins, cyclopentenone prostaglandins, etc.). This review takes into account new data on resolution of inflammation and action of mediators of resolution in models of depression. New facts and ideas about mechanisms of chronic inflammation onset are considered in relation to mood disorders. Basic control mechanisms of inflammation at the cellular level and the role of resolution substances in regulation of depression and other mood disorders are discussed. Signaling systems of innate immunity located in non-immune cells and their ability to generate substances that affect an onset of depression are reviewed. A novel hypothesis of depression as a type of abnormal resolution is proposed.
Collapse
Affiliation(s)
- Dmiry V Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alina A Astakhova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Marina G Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia.
| |
Collapse
|
157
|
Lasselin J, Lekander M, Axelsson J, Karshikoff B. Sex differences in how inflammation affects behavior: What we can learn from experimental inflammatory models in humans. Front Neuroendocrinol 2018; 50:91-106. [PMID: 29935190 DOI: 10.1016/j.yfrne.2018.06.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/29/2018] [Accepted: 06/19/2018] [Indexed: 12/12/2022]
Abstract
Human models demonstrate that experimental activation of the innate immune system has profound effects on brain activation and behavior, inducing fatigue, worsened mood and pain sensitivity. It has been proposed that inflammation is a mechanism involved in the etiology and maintenance of depression, chronic pain and long-term fatigue. These diseases show a strong female overrepresentation, suggesting that a better understanding of sex differences in how inflammation drives behavior could help the development of individualized treatment interventions. For this purpose, we here review sex differences in studies using experimental inflammatory models to investigate changes in brain activity and behavior. We suggest a model in which inflammation accentuates sex differences in brain networks and pre-existing vulnerability factors. This effect could render women more vulnerable to the detrimental effects of immune-to-brain communication over time. We call for systematic and large scale investigations of vulnerability factors for women in the behavioral response to inflammation.
Collapse
Affiliation(s)
- Julie Lasselin
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, Essen, Germany
| | - Mats Lekander
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - John Axelsson
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Bianka Karshikoff
- Stress Research Institute, Stockholm University, Stockholm, Sweden; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Osher Center for Integrative Medicine, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Division of Pain Medicine, Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, USA.
| |
Collapse
|
158
|
López-Cruz L, Salamone JD, Correa M. Caffeine and Selective Adenosine Receptor Antagonists as New Therapeutic Tools for the Motivational Symptoms of Depression. Front Pharmacol 2018; 9:526. [PMID: 29910727 PMCID: PMC5992708 DOI: 10.3389/fphar.2018.00526] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/01/2018] [Indexed: 01/06/2023] Open
Abstract
Major depressive disorder is one of the most common and debilitating psychiatric disorders. Some of the motivational symptoms of depression, such anergia (lack of self-reported energy) and fatigue are relatively resistant to traditional treatments such as serotonin uptake inhibitors. Thus, new pharmacological targets are being investigated. Epidemiological data suggest that caffeine consumption can have an impact on aspects of depressive symptomatology. Caffeine is a non-selective adenosine antagonist for A1/A2A receptors, and has been demonstrated to modulate behavior in classical animal models of depression. Moreover, selective adenosine receptor antagonists are being assessed for their antidepressant effects in animal studies. This review focuses on how caffeine and selective adenosine antagonists can improve different aspects of depression in humans, as well as in animal models. The effects on motivational symptoms of depression such as anergia, fatigue, and psychomotor slowing receive particular attention. Thus, the ability of adenosine receptor antagonists to reverse the anergia induced by dopamine antagonism or depletion is of special interest. In conclusion, although further studies are needed, it appears that caffeine and selective adenosine receptor antagonists could be therapeutic agents for the treatment of motivational dysfunction in depression.
Collapse
Affiliation(s)
- Laura López-Cruz
- Àrea de Psicobiologia, Universitat Jaume I, Castellón de la Plana, Spain
| | - John D. Salamone
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| | - Mercè Correa
- Àrea de Psicobiologia, Universitat Jaume I, Castellón de la Plana, Spain
- Behavioral Neuroscience Division, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
159
|
Feng LR, Fernández-Martínez JL, Zaal KJ, deAndrés-Galiana EJ, Wolff BS, Saligan LN. mGluR5 mediates post-radiotherapy fatigue development in cancer patients. Transl Psychiatry 2018; 8:110. [PMID: 29849049 PMCID: PMC5976668 DOI: 10.1038/s41398-018-0161-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/26/2018] [Accepted: 04/11/2018] [Indexed: 02/06/2023] Open
Abstract
Cancer-related fatigue (CRF) is a common burden in cancer patients and little is known about its underlying mechanism. The primary aim of this study was to identify gene signatures predictive of post-radiotherapy fatigue in prostate cancer patients. We employed Fisher Linear Discriminant Analysis (LDA) to identify predictive genes using whole genome microarray data from 36 men with prostate cancer. Ingenuity Pathway Analysis was used to determine functional networks of the predictive genes. Functional validation was performed using a T lymphocyte cell line, Jurkat E6.1. Cells were pretreated with metabotropic glutamate receptor 5 (mGluR5) agonist (DHPG), antagonist (MPEP), or control (PBS) for 20 min before irradiation at 8 Gy in a Mark-1 γ-irradiator. NF-κB activation was assessed using a NF-κB/Jurkat/GFP Transcriptional Reporter Cell Line. LDA achieved 83.3% accuracy in predicting post-radiotherapy fatigue. "Glutamate receptor signaling" was the most significant (p = 0.0002) pathway among the predictive genes. Functional validation using Jurkat cells revealed clustering of mGluR5 receptors as well as increased regulated on activation, normal T cell expressed and secreted (RANTES) production post irradiation in cells pretreated with DHPG, whereas inhibition of mGluR5 activity with MPEP decreased RANTES concentration after irradiation. DHPG pretreatment amplified irradiation-induced NF-κB activation suggesting a role of mGluR5 in modulating T cell activation after irradiation. These results suggest that mGluR5 signaling in T cells may play a key role in the development of chronic inflammation resulting in fatigue and contribute to individual differences in immune responses to radiation. Moreover, modulating mGluR5 provides a novel therapeutic option to treat CRF.
Collapse
Affiliation(s)
- Li Rebekah Feng
- 0000 0001 2297 5165grid.94365.3dNational Institute of Nursing Research, National Institutes of Health, Bethesda, MD USA
| | | | - Kristien J.M. Zaal
- 0000 0001 2297 5165grid.94365.3dLight Imaging Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD USA
| | | | - Brian S. Wolff
- 0000 0001 2297 5165grid.94365.3dNational Institute of Nursing Research/National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Leorey N. Saligan
- 0000 0001 2297 5165grid.94365.3dNational Institute of Nursing Research, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
160
|
Moieni M, Eisenberger NI. Effects of inflammation on social processes and implications for health. Ann N Y Acad Sci 2018; 1428:5-13. [PMID: 29806109 DOI: 10.1111/nyas.13864] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/24/2018] [Accepted: 05/01/2018] [Indexed: 12/14/2022]
Abstract
Although at first glance inflammation and social behavior may appear unrelated, research points to an important role for inflammation in shaping social processes. This review summarizes findings in this field, specifically highlighting work that provides support for the idea that inflammation can lead to (1) increases in sensitivity to negative, threatening social experiences and (2) increases in sensitivity to positive, socially rewarding experiences. These diverging sensitivities in response to inflammation may depend on context and be adaptive for recuperation and recovery from illness. This review also discusses the implications of these findings for health and future research, including implications for depression, loneliness, and inflammatory disorders.
Collapse
Affiliation(s)
- Mona Moieni
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Naomi I Eisenberger
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
161
|
Nguyen TTL, Chan LC, Borreginne K, Kale RP, Hu C, Tye SJ. A review of brain insulin signaling in mood disorders: From biomarker to clinical target. Neurosci Biobehav Rev 2018; 92:7-15. [PMID: 29758232 DOI: 10.1016/j.neubiorev.2018.05.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/08/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022]
Abstract
Patients with mood disorders are at increased risk for metabolic dysfunction. Co-occurrence of the two conditions is typically associated with a more severe disease course and poorer treatment outcomes. The specific pathophysiological mechanisms underlying this bidirectional relationship between mood and metabolic dysfunction remains poorly understood. However, it is likely that impairment of metabolic processes within the brain play a critical role. The insulin signaling pathway mediates metabolic homeostasis and is important in the regulation of neurotrophic and synaptic plasticity processes, including those involved in neurodegenerative diseases like Alzheimer's. Thus, insulin signaling in the brain may serve to link metabolic function and mood. Central insulin signaling is mediated through locally secreted insulin and widespread insulin receptor expression. Here we review the preclinical and clinical data addressing the relationships between central insulin signaling, cellular metabolism, neurotrophic processes, and mood regulation, including key points of mechanistic overlap. These relationships have important implications for developing biomarker-based diagnostics and precision medicine approaches to treat severe mood disorders.
Collapse
Affiliation(s)
- Thanh Thanh L Nguyen
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States; Department of Biology and Psychology, Green Mountain College, 1 Brennan Cir, Poultney, VT, 05764, United States
| | - Lily C Chan
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States
| | - Kristin Borreginne
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States
| | - Rajas P Kale
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States; School of Engineering, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Chunling Hu
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States
| | - Susannah J Tye
- Department of Psychiatry and Psychology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, United States; Department of Psychiatry, University of Minnesota, 3 Morrill Hall, 100 Church Street SE, Minneapolis, MN, 55454, United States; School of Psychology, Deakin University, Burwood, VIC, 3125, Australia; Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
162
|
de Gomes MG, Souza LC, Goes AR, Del Fabbro L, Filho CB, Donato F, Prigol M, Luchese C, Roman SS, Puntel RL, Boeira SP, Jesse CR. Fish oil ameliorates sickness behavior induced by lipopolysaccharide in aged mice through the modulation of kynurenine pathway. J Nutr Biochem 2018; 58:37-48. [PMID: 29870875 DOI: 10.1016/j.jnutbio.2018.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/15/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022]
Abstract
Sickness behavior is an expression of a central motivational state triggered by activation of the immune system, being considered a strategy of the organism to fight infection. Sickness behavior is induced by peripheral administration of lipopolysaccharide (LPS). LPS can increase the levels of proinflammatory cytokines, which induce the activation of the kynurenine pathway (KP) and behavioral alterations. Previous studies have shown that omega-3 (n-3) polyunsaturated fatty acid (PUFA) has anti-inflammatory properties. Because of this, the purpose of the present study was to evaluate the protective effect of fish oil (FO) supplementation against LPS-induced sickness behavior in aged mice with respect to anhedonia, locomotor activity and body weight. Moreover, we evaluated the ability of FO treatment on the regulation of neuroinflammation (levels of interleukin-1β, interleukin-6, tumor factor necrosis-α and interferon-γ), KP biomarkers (levels of tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine and quinolinic acid and activities of indoleamine-2,3-dioxygenase, kynurenine monooxygenase and kynurenine aminotransferase) and serotonergic system (levels of serotonin and 5-hydroxyindoleactic acid) in the hippocampus, striatum and prefrontal cortex of LPS-treated mice. We found that FO prevented the LPS-mediated body weight loss, anhedonic behavior, reduction of locomotor activity, up-regulation of the proinflammatory cytokines and serotoninergic alterations. We also found that FO was effective in modulating the KP biomarkers, inhibiting or attenuating KP dysregulation induced by LPS. Together, our results indicated that FO may have beneficial effects on LPS induced sickness-behavior in aged mice either by modulating central inflammation, KP and serotonergic signaling (indirectly effect) or by fatty acids incorporation into neuronal membranes (direct effect).
Collapse
Affiliation(s)
- Marcelo Gomes de Gomes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil; Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil.
| | - Leandro Cattelan Souza
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - André Rossito Goes
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Lucian Del Fabbro
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Carlos Borges Filho
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Franciele Donato
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Marina Prigol
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Cristiane Luchese
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário, s/n, 96160-000, Capão do Leão, RS, Brazil
| | | | - Robson Luiz Puntel
- Universidade Federal do Pampa, Campus Uruguaiana BR 472, Km 7, 97500-970, Uruguaiana, RS, Brazil
| | - Silvana Peterini Boeira
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil
| | - Cristiano Ricardo Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas-LaftamBio Pampa-Universidade Federal do Pampa, Itaqui, RS, Brazil
| |
Collapse
|
163
|
Kuppili PP, Selvakumar N, Menon V. Sickness Behavior and Seasonal Affective Disorder: An Immunological Perspective of Depression. Indian J Psychol Med 2018; 40:266-268. [PMID: 29875535 PMCID: PMC5968649 DOI: 10.4103/ijpsym.ijpsym_232_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We describe a case of 45-year-old female suffering from chronic hepatitis B and bronchial asthma who presented with symptoms of seasonal affective disorder and sickness behavior. The case report illustrates syndromal and sub syndromal presentations of depression such as sickness behavior in support of "malaise theory of depression" from psychoneuroimmunological perspective. The current case depicts the complex interplay of inflammatory physical illness, medication and manifestations of depression in an individual case. Thus, the physicians and psychiatrists must be vigilant regarding the psychiatric manifestations of physical illness with immune-inflammatory component.
Collapse
Affiliation(s)
- Pooja Patnaik Kuppili
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Nivedhitha Selvakumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Vikas Menon
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
164
|
Kim JM, Stewart R, Kim JW, Kang HJ, Bae KY, Kim SW, Shin IS, Yoon JS. Changes in pro-inflammatory cytokine levels and late-life depression: A two year population based longitudinal study. Psychoneuroendocrinology 2018; 90:85-91. [PMID: 29471232 DOI: 10.1016/j.psyneuen.2018.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/31/2022]
Abstract
Longitudinal associations of cytokine levels with depression are unclear. This study aimed to investigate cross-sectional and prospective associations between five serum pro-inflammatory cytokine levels and late-life depression. 732 Korean people aged 65+ were evaluated at baseline. Of 631 without depression (Geriatric Mental State schedule) at baseline, 521 (83%) were followed over a 2 year period and incident depression was ascertained. Serum tumor necrosis factor-α, interleukin (IL)-1α, IL-1β, IL-6, and IL-8 levels were assayed at both baseline and follow-up. Associations between cytokine levels and depressive status were evaluated using linear regression models, considering potential covariates (demographics, cognitive function, disability, lifestyle factors, and vascular risk factors) and applying Bonferroni corrections. Prevalent depression at baseline was significantly associated with higher contemporaneous levels of IL-1β and IL-8, independent of relevant covariates and after applying Bonferroni corrections. In the analyses of the five cytokine levels in combination, independent associations were found between prevalent depression and increased numbers of cytokines at higher levels at baseline. Incident depression was significantly associated with increases in IL-1β, IL-6, and IL-8 levels during the follow-up independent of relevant covariates and after applying Bonferroni corrections. In combination analyses, incident depression was independently associated with higher numbers of cytokines showing increasing levels over the same follow-up period. However, incident depression was not predicted by higher baseline pro-inflammatory cytokine levels in any analysis. Our findings suggest that depression might affect serum cytokines alterations and lead to inflammatory processes in late-life.
Collapse
Affiliation(s)
- Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, 501-757, Republic of Korea.
| | - Robert Stewart
- King's College London, Institute of Psychiatry, London, UK; South London and Maudsley NHS Foundation Trust, London, UK
| | - Ju-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, 501-757, Republic of Korea
| | - Hee-Ju Kang
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, 501-757, Republic of Korea
| | - Kyung-Yeol Bae
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, 501-757, Republic of Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, 501-757, Republic of Korea
| | - Il-Seon Shin
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, 501-757, Republic of Korea
| | - Jin-Sang Yoon
- Department of Psychiatry, Chonnam National University Medical School, Gwangju, 501-757, Republic of Korea
| |
Collapse
|
165
|
Page GG, Corwin EJ, Dorsey SG, Redeker NS, McCloskey DJ, Austin JK, Guthrie BJ, Moore SM, Barton D, Kim MT, Docherty SL, Waldrop-Valverde D, Bailey DE, Schiffman RF, Starkweather A, Ward TM, Bakken S, Hickey KT, Renn CL, Grady P. Biomarkers as Common Data Elements for Symptom and Self-Management Science. J Nurs Scholarsh 2018; 50:276-286. [PMID: 29575635 DOI: 10.1111/jnu.12378] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2017] [Indexed: 02/07/2023]
Abstract
PURPOSE Biomarkers as common data elements (CDEs) are important for the characterization of biobehavioral symptoms given that once a biologic moderator or mediator is identified, biologically based strategies can be investigated for treatment efforts. Just as a symptom inventory reflects a symptom experience, a biomarker is an indicator of the symptom, though not the symptom per se. The purposes of this position paper are to (a) identify a "minimum set" of biomarkers for consideration as CDEs in symptom and self-management science, specifically biochemical biomarkers; (b) evaluate the benefits and limitations of such a limited array of biomarkers with implications for symptom science; (c) propose a strategy for the collection of the endorsed minimum set of biologic samples to be employed as CDEs for symptom science; and (d) conceptualize this minimum set of biomarkers consistent with National Institute of Nursing Research (NINR) symptoms of fatigue, depression, cognition, pain, and sleep disturbance. DESIGN AND METHODS From May 2016 through January 2017, a working group consisting of a subset of the Directors of the NINR Centers of Excellence funded by P20 or P30 mechanisms and NINR staff met bimonthly via telephone to develop this position paper suggesting the addition of biomarkers as CDEs. The full group of Directors reviewed drafts, provided critiques and suggestions, recommended the minimum set of biomarkers, and approved the completed document. Best practices for selecting, identifying, and using biological CDEs as well as challenges to the use of biological CDEs for symptom and self-management science are described. Current platforms for sample outcome sharing are presented. Finally, biological CDEs for symptom and self-management science are proposed along with implications for future research and use of CDEs in these areas. FINDINGS The recommended minimum set of biomarker CDEs include pro- and anti-inflammatory cytokines, a hypothalamic-pituitary-adrenal axis marker, cortisol, the neuropeptide brain-derived neurotrophic factor, and DNA polymorphisms. CONCLUSIONS It is anticipated that this minimum set of biomarker CDEs will be refined as knowledge regarding biologic mechanisms underlying symptom and self-management science further develop. The incorporation of biological CDEs may provide insights into mechanisms of symptoms, effectiveness of proposed interventions, and applicability of chosen theoretical frameworks. Similarly, as for the previously suggested NINR CDEs for behavioral symptoms and self-management of chronic conditions, biological CDEs offer the potential for collaborative efforts that will strengthen symptom and self-management science. CLINICAL RELEVANCE The use of biomarker CDEs in biobehavioral symptoms research will facilitate the reproducibility and generalizability of research findings and benefit symptom and self-management science.
Collapse
Affiliation(s)
- Gayle G Page
- Nu Beta, Professor and Independence Foundation Chair in Nursing Education, Johns Hopkins University School of Nursing, Baltimore, MD, USA
| | - Elizabeth J Corwin
- Alpha Epsilon, Professor and Associate Dean for Research, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Susan G Dorsey
- Pi, Professor and Chair, Department of Pain and Translational Symptom Science, University of Maryland Baltimore, Baltimore, MD, USA
| | - Nancy S Redeker
- Delta Mu, Beatrice Renfield Term Professor of Nursing, Professor, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University, New Haven, CT
| | - Donna Jo McCloskey
- Clinical Advisor, Contractor, National Institute of Nursing Research, NIH, Bethesda, MD, USA
| | - Joan K Austin
- Alpha, Distinguished Professor Emerita, Indiana University School of Nursing, Indianapolis, IN and National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA
| | - Barbara J Guthrie
- Professor, Director of the PhD Program, Northeastern University, Boston, MA, USA
| | - Shirley M Moore
- Delta Xi, Edward J. and Louise Mellen Professor of Nursing, Frances Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, USA
| | - Debra Barton
- Mary Lou Willard French Professor of Oncology Nursing, University of Michigan, Ann Arbor, MI, USA
| | - Miyong T Kim
- Epsilon Theta, Professor, Associate Vice President for Community Health Engagement, University of Texas at Austin, Austin, TX, USA
| | - Sharron L Docherty
- Iota Omicron, Associate Professor, School of Nursing; Associate Professor, Department of Pediatrics, School of Medicine, Duke University, Durham, NC, USA
| | - Drenna Waldrop-Valverde
- Associate Professor and Assistant Dean for Research, Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Donald E Bailey
- Beta Epsilon and Theta Iota, Associate Professor, Duke University, Durham, NC, USA
| | - Rachel F Schiffman
- Alpha Chi and Eta Nu, Professor and Associate Dean for Research, College of Nursing, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | | | - Teresa M Ward
- Psi-at-Large, Associate Professor, University of Washington School of Nursing, Seattle, WA, USA
| | - Suzanne Bakken
- Alpha Eta, The Alumni Professor of Nursing and Professor of Biomedical Informatics Director, Columbia University, New York, NY, USA
| | - Kathleen T Hickey
- Alpha Eta, Professor of Nursing at Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Cynthia L Renn
- Pi, Associate Professor Department of Pain and Translational Symptom Science, University of Maryland Baltimore, Baltimore, MD, USA
| | - Patricia Grady
- Tau, Director, National Institute of Nursing Research, National Institutes or Health, Bethesda, MD, USA
| |
Collapse
|
166
|
Barreto TR, Costola-de-Souza C, Margatho RO, Queiroz-Hazarbassanov N, Rodrigues SC, Felício LF, Palermo-Neto J, Zager A. Repeated Domperidone treatment modulates pulmonary cytokines in LPS-induced acute lung injury in mice. Int Immunopharmacol 2018; 56:43-50. [DOI: 10.1016/j.intimp.2018.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/04/2018] [Accepted: 01/04/2018] [Indexed: 11/27/2022]
|
167
|
Hadamitzky M, Herring A, Kirchhof J, Bendix I, Haight MJ, Keyvani K, Lückemann L, Unteroberdörster M, Schedlowski M. Repeated Systemic Treatment with Rapamycin Affects Behavior and Amygdala Protein Expression in Rats. Int J Neuropsychopharmacol 2018; 21:592-602. [PMID: 29462337 PMCID: PMC6007742 DOI: 10.1093/ijnp/pyy017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Clinical data indicate that therapy with small-molecule immunosuppressive drugs is frequently accompanied by an incidence rate of neuropsychiatric symptoms. In the current approach, we investigated in rats whether repeated administration of rapamycin, reflecting clinical conditions of patients undergoing therapy with this mammalian target of rapamycin inhibitor, precipitates changes in neurobehavioral functioning. METHODS Male adult Dark Agouti rats were daily treated with i.p. injections of rapamycin (1, 3 mg/kg) or vehicle for 8 days. On days 6 and 7, respectively, behavioral performance in the Elevated Plus-Maze and the Open-Field Test was evaluated. One day later, amygdala tissue and blood samples were taken to analyze protein expression ex vivo. RESULTS The results show that animals treated with rapamycin displayed alterations in Elevated Plus-Maze performance with more pronounced effects in the higher dose group. Besides, an increase in glucocorticoid receptor density in the amygdala was seen in both treatment groups even though p-p70 ribosomal S6 kinase alpha, a marker for mammalian target of rapamycin functioning, was not affected. Protein level of the neuronal activity marker c-Fos was again only elevated in the higher dose group. Importantly, effects occurred in the absence of acute peripheral neuroendocrine changes. CONCLUSIONS Our findings indicate that anxiety-related behavior following rapamycin treatment was not directly attributed to mTOR-dependent mechanisms or stress but rather due to hyperexcitability of the amygdala together with glucocorticoid receptor-regulated mechanism(s) in this brain region. Together, the present results support the contention that subchronic treatment with rapamycin may induce neurobehavioral alterations in healthy, naive subjects. We here provide novel insights in central effects of systemic rapamycin in otherwise healthy subjects but also raise the question whether therapy with this drug may have detrimental effects on patients' neuropsychological functioning during immune therapy.
Collapse
Affiliation(s)
- Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany,Correspondence: Martin Hadamitzky, PhD, Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany ()
| | - Arne Herring
- Institute of Neuropathology, University Hospital Essen, Essen, Germany
| | - Julia Kirchhof
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I/ Experimental perinatal Neuroscience, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthew J Haight
- Department of Anesthesia, School of Medicine, University of San Francisco, San Francisco CA
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, Essen, Germany
| | - Laura Lückemann
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Meike Unteroberdörster
- Department of Neurosurgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany,Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
168
|
Evidence of fatigue, disordered sleep and peripheral inflammation, but not increased brain TSPO expression, in seasonal allergy: A [ 11C]PBR28 PET study. Brain Behav Immun 2018; 68:146-157. [PMID: 29054675 DOI: 10.1016/j.bbi.2017.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/07/2017] [Accepted: 10/16/2017] [Indexed: 02/05/2023] Open
Abstract
Allergy is associated with non-specific symptoms such as fatigue, sleep problems and impaired cognition. One explanation could be that the allergic inflammatory state includes activation of immune cells in the brain, but this hypothesis has not been tested in humans. The aim of the present study was therefore to investigate seasonal changes in the glial cell marker translocator protein (TSPO), and to relate this to peripheral inflammation, fatigue and sleep, in allergy. We examined 18 patients with severe seasonal allergy, and 13 healthy subjects in and out-of pollen season using positron emission tomography (n = 15/13) and the TSPO radioligand [11C]PBR28. In addition, TNF-α, IL-5, IL-6, IL-8 and IFN-γ were measured in peripheral blood, and subjective ratings of fatigue and sleepiness as well as objective and subjective sleep were investigated. No difference in levels of TSPO was seen between patients and healthy subjects, nor in relation to pollen season. However, allergic subjects displayed both increased fatigue, sleepiness and increased percentage of deep sleep, as well as increased levels of IL-5 and TNF-α during pollen season, compared to healthy subjects. Allergic subjects also had shorter total sleep time, regardless of season. In conclusion, allergic subjects are indicated to respond to allergen exposure during pollen season with a clear pattern of behavioral disruption and peripheral inflammatory activation, but not with changes in brain TSPO levels. This underscores a need for development and use of more specific markers to understand brain consequences of peripheral inflammation that will be applicable in human subjects.
Collapse
|
169
|
Fields CT, Chassaing B, Castillo-Ruiz A, Osan R, Gewirtz AT, de Vries GJ. Effects of gut-derived endotoxin on anxiety-like and repetitive behaviors in male and female mice. Biol Sex Differ 2018; 9:7. [PMID: 29351816 PMCID: PMC5775597 DOI: 10.1186/s13293-018-0166-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/05/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gut dysbiosis is observed in several neuropsychiatric disorders exhibiting increases in anxiety behavior, and recent work suggests links between gut inflammation and such disorders. One source of this inflammation may be lipopolysaccharide (LPS), a toxic component of gram-negative bacteria. Here, we (1) determine whether oral gavage of LPS, as a model of gut-derived endotoxemia, affects anxiety-like and/or repetitive behaviors; (2) test whether these changes depend on TLR4 signaling; and (3) test the extent to which gut-derived endotoxin and TLR4 antagonism affects males and females differently. METHODS In experiment 1, male wild-type (WT) and Tlr4-/- mice were tested for locomotor, anxiety-like, and repetitive behaviors in an automated open field test apparatus, 2 h after oral gavage of LPS or saline. In experiment 2, male and female WT mice received an oral gavage of LPS and an injection of one or two TLR4 antagonists that target different TLR4 signaling pathways ((+)-naloxone and LPS derived from R. sphaeroides (LPS-RS)). Univariate and multivariate analyses were used to identify effects of treatment, sex, and genotype and their interaction. RESULTS In experiment 1, oral gavage of LPS increased anxiety-like behavior in male WT mice but not in Tlr4-/- mice. In experiment 2, oral gavage of LPS increased anxiety-like and decreased repetitive behaviors in WT mice of both sexes. Neither antagonist directly blocked the effects of orally administered LPS. However, treatment with (+)-naloxone, which blocks the TRIF pathway of TLR4, had opposing behavioral effects in males and females (independent of LPS treatment). We also identified sex differences in the expression of interleukin-6, a pro-inflammatory cytokine, in the gut both in basal conditions and in response to LPS. CONCLUSION In spite of the ubiquitous nature of LPS in the gut lumen, this is the first study to demonstrate that intestinally derived LPS can initiate behavioral aspects of the sickness response. While an increased enteric load of LPS increases anxiety-like behavior in both sexes, it likely does so via sex-specific mechanisms. Similarly, TLR4 signaling may promote baseline expression of repetitive behavior differently in males and females. This study lays the groundwork for future interrogations into connections between gut-derived endotoxin and behavioral pathology in males and females.
Collapse
Affiliation(s)
| | - Benoit Chassaing
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303 USA
| | | | - Remus Osan
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303 USA
| | - Andrew T. Gewirtz
- Institute for Biomedical Sciences, Center for Inflammation, Immunity & Infection, Georgia State University, Atlanta, GA 30303 USA
| | - Geert J. de Vries
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
170
|
Dantzer R. Neuroimmune Interactions: From the Brain to the Immune System and Vice Versa. Physiol Rev 2018; 98:477-504. [PMID: 29351513 PMCID: PMC5866360 DOI: 10.1152/physrev.00039.2016] [Citation(s) in RCA: 606] [Impact Index Per Article: 86.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/05/2017] [Accepted: 06/18/2017] [Indexed: 12/14/2022] Open
Abstract
Because of the compartmentalization of disciplines that shaped the academic landscape of biology and biomedical sciences in the past, physiological systems have long been studied in isolation from each other. This has particularly been the case for the immune system. As a consequence of its ties with pathology and microbiology, immunology as a discipline has largely grown independently of physiology. Accordingly, it has taken a long time for immunologists to accept the concept that the immune system is not self-regulated but functions in close association with the nervous system. These associations are present at different levels of organization. At the local level, there is clear evidence for the production and use of immune factors by the central nervous system and for the production and use of neuroendocrine mediators by the immune system. Short-range interactions between immune cells and peripheral nerve endings innervating immune organs allow the immune system to recruit local neuronal elements for fine tuning of the immune response. Reciprocally, immune cells and mediators play a regulatory role in the nervous system and participate in the elimination and plasticity of synapses during development as well as in synaptic plasticity at adulthood. At the whole organism level, long-range interactions between immune cells and the central nervous system allow the immune system to engage the rest of the body in the fight against infection from pathogenic microorganisms and permit the nervous system to regulate immune functioning. Alterations in communication pathways between the immune system and the nervous system can account for many pathological conditions that were initially attributed to strict organ dysfunction. This applies in particular to psychiatric disorders and several immune-mediated diseases. This review will show how our understanding of this balance between long-range and short-range interactions between the immune system and the central nervous system has evolved over time, since the first demonstrations of immune influences on brain functions. The necessary complementarity of these two modes of communication will then be discussed. Finally, a few examples will illustrate how dysfunction in these communication pathways results in what was formerly considered in psychiatry and immunology to be strict organ pathologies.
Collapse
Affiliation(s)
- Robert Dantzer
- Department of Symptom Research, University of Texas MD Anderson Cancer Center , Houston, Texas
| |
Collapse
|
171
|
Abstract
The field of psychoneuroimmunology (PNI) aims to uncover the processes and consequences of nervous, immune, and endocrine system relationships. Behavior is a consequence of such interactions and manifests from a complex interweave of factors including immune-to-neural and neural-to-immune communication. Often the signaling molecules involved during a particular episode of neuroimmune activation are not known but behavioral response provides evidence that bioactives such as neurotransmitters and cytokines are perturbed. Immunobehavioral phenotyping is a first-line approach when examining the neuroimmune system and its reaction to immune stimulation or suppression. Behavioral response is significantly more sensitive than direct measurement of a single specific bioactive and can quickly and efficiently rule in or out relevance of a particular immune challenge or therapeutic to neuroimmunity. Classically, immunobehavioral research was focused on sickness symptoms related to bacterial infection but neuroimmune activation is now a recognized complication of diseases and disorders ranging from cancer to diabesity to Alzheimer's. Immunobehaviors include lethargy, loss of appetite, and disinterest in social activity/surrounding environment. In addition, neuroimmune activation can diminish physical activity, precipitate feelings of depression and anxiety, and impair cognitive and executive function. Provided is a detailed overview of behavioral tests frequently used to examine neuroimmune activation in mice with a special emphasis on pre-experimental conditions that can confound or prevent successful immunobehavioral experimentation.
Collapse
|
172
|
Moraes LJ, Miranda MB, Loures LF, Mainieri AG, Mármora CHC. A systematic review of psychoneuroimmunology-based interventions. PSYCHOL HEALTH MED 2017; 23:635-652. [DOI: 10.1080/13548506.2017.1417607] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Lucam J. Moraes
- Department of Psychology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
- Studies and Research Group in Neuroscience, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Márcia B. Miranda
- Department of Psychology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
- Studies and Research Group in Neuroscience, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Liliany F. Loures
- School of Physiotherapy, Federal University of Juiz de Fora, Juiz de Fora, Brazil
- Studies and Research Group in Neuroscience, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Alessandra G. Mainieri
- Department of Clinical Medicine, Research Center in Spirituality and Health, School of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Brazil
- Studies and Research Group in Neuroscience, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Cláudia Helena C. Mármora
- Department of Psychology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
- School of Physiotherapy, Federal University of Juiz de Fora, Juiz de Fora, Brazil
- Studies and Research Group in Neuroscience, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
173
|
Lodin K, Lekander M, Syk J, Alving K, Andreasson A. Associations between self-rated health, sickness behaviour and inflammatory markers in primary care patients with allergic asthma: a longitudinal study. NPJ Prim Care Respir Med 2017; 27:67. [PMID: 29255205 PMCID: PMC5735192 DOI: 10.1038/s41533-017-0068-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 01/02/2023] Open
Abstract
Allergic asthma is a chronic inflammatory disorder associated with elevated levels of immunoglobulin E (IgE), serum eosinophilic cationic protein (S-ECP), plasma eosinophil-derived neurotoxin (P-EDN) and fraction of exhaled nitric oxide (FENO). Poor self-rated health and sickness behaviour has repeatedly been associated with inflammatory markers, but the nature of this relationship in chronic inflammatory disease is not known. Likewise, such findings largely rely on cross-sectional investigations. Self-rated health (How would you rate your general state of health?), sickness behaviour (mean rating of satisfaction with energy, sleep, fitness, appetite and memory), IgE, S-ECP, P-EDN, and FENO were assessed in 181 non-smoking primary care patients with asthma in a 1-year longitudinal study. Associations between repeated measurements were calculated using mixed regression models and Spearman's correlations for change scores. Poor self-rated health was associated with high levels of seasonal IgE (p = 0.05) and food IgE (p = 0.04), but not total IgE or inflammatory markers. An increase over 1 year in perennial IgE was associated with a worsening of self-rated health (ρ = 0.16, p = 0.04). Poor self-rated health was associated with more pronounced sickness behaviour (p < 0.001), and a worsening in sickness behaviour was associated with a worsening of self-rated health over time (ρ = 0.21, p = 0.007). The study corroborates the importance of sickness behaviour as a determinant of self-rated health by showing that these factors co-vary over a 1-year period in a group of patients with allergic asthma. The importance of specific IgE for perceived health in primary care patients with mild to moderate asthma needs further investigation.
Collapse
Affiliation(s)
- Karin Lodin
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden.
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| | - Mats Lekander
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Stress Research Institute, Stockholm University, Stockholm, Sweden
| | - Jörgen Syk
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
- Centre for Allergy Research, Karolinska Institute, Stockholm, Sweden
- Academic Primary Health Care Centre, Stockholm, Sweden
| | - Kjell Alving
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Anna Andreasson
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
- Stress Research Institute, Stockholm University, Stockholm, Sweden
- Department of Psychology, Macquarie University, North Ryde, Australia
| |
Collapse
|
174
|
Hamasato EK, Lovelock D, Palermo-Neto J, Deak T. Assessment of social behavior directed toward sick partners and its relation to central cytokine expression in rats. Physiol Behav 2017; 182:128-136. [PMID: 29031549 PMCID: PMC5672824 DOI: 10.1016/j.physbeh.2017.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 10/18/2022]
Abstract
Acute illness not only reduces the expression of social behavior by sick rodents, but can also lead to avoidance responses when detected by healthy, would-be social partners. When healthy animals interact with a sick partner, an intriguing question arises: does exposure to a sick conspecific elicit an anticipatory immune response that would facilitate defense against future infection? To address this question, healthy adult male Sprague-Dawley rats (N=64) were given a brief social interaction (30min) with a partner that was either sick (250μg/kg injection with lipopolysaccharide [LPS] 3h prior to test) or healthy (sterile saline injection). During this exposure, social behavior directed toward the healthy or sick conspecific was measured. Additionally, the impact of housing condition was assessed, with rats group- or isolate-housed. Immediately after social interaction, brains were harvested for cytokine assessments within socially-relevant brain structures (olfactory bulb, amygdala, hippocampus and PVN). As expected, behavioral results demonstrated that (i) there was a robust suppression of social interaction directed against sick conspecifics; and (ii) isolate-housing generally increased social behavior. Furthermore, examination of central cytokine expression in healthy experimental subjects revealed a modest increase in TNF-α in rats that interacted with a sick social partner, but only in the olfactory bulb. Among the LPS-injected partners, expected increases in IL-1β, IL-6, and TNF-α expression were observed across all brain sites. Moreover, IL-1β and IL-6 expression was exacerbated in LPS-injected partners that interacted with isolate-housed experimental subjects. Together, these data replicate and extend our prior work showing that healthy rats avoid sick conspecifics, and provide preliminary evidence for an anticipatory cytokine response when rats are exposed to a sick partner. These data also provide new evidence to suggest that recent housing history potently modulates cytokine responses evoked by LPS.
Collapse
Affiliation(s)
- Eduardo Kenji Hamasato
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo (USP), São Paulo, Brazil; Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Dennis Lovelock
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - João Palermo-Neto
- Neuroimmunomodulation Research Group, Department of Pathology, School of Veterinary Medicine, University of São Paulo (USP), São Paulo, Brazil
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States.
| |
Collapse
|
175
|
Ji YB, Bo CL, Xue XJ, Weng EM, Gao GC, Dai BB, Ding KW, Xu CP. Association of Inflammatory Cytokines With the Symptom Cluster of Pain, Fatigue, Depression, and Sleep Disturbance in Chinese Patients With Cancer. J Pain Symptom Manage 2017; 54:843-852. [PMID: 28797869 DOI: 10.1016/j.jpainsymman.2017.05.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/30/2017] [Accepted: 05/25/2017] [Indexed: 02/01/2023]
Abstract
CONTEXT Pain, fatigue, depression, and sleep disturbance are common in patients with cancer and usually co-occur as a symptom cluster. However, the mechanism underlying this symptom cluster is unclear. OBJECTIVES This study aimed to identify subgroups of cluster symptoms, compare demographic and clinical characteristics between subgroups, and examine the associations between inflammatory cytokines and cluster symptoms. METHODS Participants were 170 Chinese inpatients with cancer from two tertiary hospitals. Inflammatory markers including interleukin-6 (IL-6), interleukin-1 receptor antagonist, and tumor necrosis factor alpha were measured. Intergroup differences and associations of inflammatory cytokines with the cluster symptoms were examined with one-way analyses of variance and logistic regression. RESULTS Based on cluster analysis, participants were categorized into Subgroup 1 (all low symptoms), Subgroup 2 (low pain and moderate fatigue), or Subgroup 3 (moderate-to-high on all symptoms). The three subgroups differed significantly in Eastern Cooperative Oncology Group (ECOG) performance status, sex, residence, current treatment, education, economic status, and inflammatory cytokines levels (all P < 0.05). Compared with Subgroup 1, Subgroup 3 had a significantly poorer ECOG physical performance status and higher IL-6 levels, were more often treated with combined chemoradiotherapy, and were more likely to be rural residents. IL-6 and ECOG physical performance status were significantly associated with 1.246-fold (95% CI 1.114-1.396) and 31.831-fold (95% CI 6.017-168.385) increased risk of Subgroup 3. CONCLUSION Our findings suggest that IL-6 levels are associated with cluster symptoms in cancer patients. Clinicians should identify patients at risk for more severe symptoms and formulate novel target interventions to improve symptom management.
Collapse
Affiliation(s)
- Yan-Bo Ji
- Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China
| | - Chun-Lu Bo
- School of Nursing, Cheeloo Health Science Center, Shandong University, Jinan, Shandong Province, China
| | - Xiu-Juan Xue
- Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China
| | - En-Ming Weng
- Yanggu No. 2 People's Hospital, Liaocheng, Shandong Province, China
| | - Guang-Chao Gao
- School of Nursing, Taishan Medical College, Tai'an, Shandong Province, China
| | - Bei-Bei Dai
- School of Nursing, Taishan Medical College, Tai'an, Shandong Province, China
| | - Kai-Wen Ding
- School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Cui-Ping Xu
- Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
176
|
The impact of chronic mild stress on long-term depressive behavior in rats which have survived sepsis. J Psychiatr Res 2017; 94:47-53. [PMID: 28662375 DOI: 10.1016/j.jpsychires.2017.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/22/2017] [Accepted: 06/15/2017] [Indexed: 11/22/2022]
Abstract
The present study was created to investigate the effects of chronic mild stress (CMS) on the depressive behavior and neurochemical parameters of rats that were subjected to sepsis. Wistar rats were subjected to a CMS protocol, and sepsis was induced by cecal ligation and perforation (CLP). The animals were then divided into 4 separate groups; Control + Sham (n = 20), Control + CLP (n = 30), CMS + Sham (n = 20) and CMS + CLP (n = 30). Body weight, food and water intake and mortality were measured on a daily basis for a period of 10 days after the induction of sepsis. Locomotor activity, splash and forced swimming tests were performed ten days after CLP. At the end of the test period, the animals were euthanized, and the prefrontal cortex and hippocampus were removed to determine the levels of cytokines and oxidative damage. Our results show that there was no significant interaction between CMS and CLP in relation to locomotor activity and the forced swimming test. However, we did observe a significant decrease in total grooming time in the Control + CLP and CMS + Sham groups, with the CMS + CLP group showing behavior similar to that of the control animals. This was found to be related to a decrease in the levels of brain cytokines, and not to oxidative damage parameters. Collectively, our results suggest that a previous stress caused by CMS can protect the brain against the systemic acute and severe stress elicited by sepsis.
Collapse
|
177
|
Steenbergen L, Colzato LS. Overweight and Cognitive Performance: High Body Mass Index Is Associated with Impairment in Reactive Control during Task Switching. Front Nutr 2017; 4:51. [PMID: 29164126 PMCID: PMC5671535 DOI: 10.3389/fnut.2017.00051] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022] Open
Abstract
The prevalence of weight problems is increasing worldwide. There is growing evidence that high body mass index (BMI) is associated with frontal lobe dysfunction and deficits in cognitive control. The present study aims to clarify the association between weight status and the degree of impairment in cognitive flexibility, i.e., the ability to efficiently switch from one task to another, by disentangling the preparatory and residual domains of task switching. Twenty-six normal weight (BMI < 25, five males) and twenty-six overweight (BMI ≥ 25, seven males) university students performed a task-switching paradigm that provides a relatively well-established diagnostic measure of proactive vs. reactive control with regard to cognitive flexibility. Compared to individuals with a BMI lower than 25, overweight (i.e., ≥25) was associated with increased switching costs in the reactive switching condition (i.e., when preparation time is short), representing reduced cognitive flexibility in the preparatory domain. In addition, the overweight group reported significantly more depression and binge eating symptoms, although still indicating minimal depression. No between-group differences were found with regard to self-reported autism spectrum symptoms, impulsiveness, state- and trait anxiety, and cognitive reactivity to depression. The present findings are consistent with and extend previous literature showing that elevated BMI in young, otherwise healthy individuals is associated with significantly more switching costs due to inefficiency in the retrieval, implementation, and maintenance of task sets, indicating less efficient cognitive control functioning.
Collapse
Affiliation(s)
- Laura Steenbergen
- Cognitive Psychology Unit, Leiden University, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Lorenza S Colzato
- Cognitive Psychology Unit, Leiden University, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands.,Department of Cognitive Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany.,Institute of Sports and Sport Science, University of Kassel, Kassel, Germany
| |
Collapse
|
178
|
Jonker I, Schoevers R, Klein H, Rosmalen J. The association between herpes virus infections and functional somatic symptoms in a general population of adolescents. The TRAILS study. PLoS One 2017; 12:e0185608. [PMID: 29045430 PMCID: PMC5646771 DOI: 10.1371/journal.pone.0185608] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/15/2017] [Indexed: 12/28/2022] Open
Abstract
Background FSS have been suggested to follow activation of the immune system, triggered by herpes virus infections. The aim of this study was to find out whether herpes virus infections were associated with the experience of FSS in adolescents, and whether this association was mediated by hsCRP, as a general marker of immune activation. Methods This study was performed in TRAILS, a large prospective population cohort of 2230 adolescents (mean age: 16.1 years, SD = .66, 53.4% girls). FSS were assessed using the somatic complaints subscale of the Youth Self-Report. FSS were analyzed as total scores and divided in two group clusters based on previous studies in this cohort. Levels of hsCRP and antibody levels to the herpes viruses HSV1, HSV2, CMV, EBV and HHV6 were assessed in blood samples at age 16. Also a value for pathogen burden was created adding the number of viruses the adolescents were seropositive for. Multiple regression analysis with bootstrapping was used to analyze the association between viral antibodies and pathogen burden, hsCRP and FSS scores. Results Antibody levels and pathogen burden were not associated with FSS total scores or FSS scores in both symptom groups. hsCRP was associated with the total FSS score (B = .02, 95% CI: .004 to .028, p = .01) and FSS score in the symptom group of headache and gastrointestinal complaints (B = .02, 95% CI: .001 to .039, p = .04). Conclusion Our study showed no association between herpes virus infections and FSS in general or specific FSS symptom clusters. A role for inflammatory processes in FSS development was supported by the significant association we found between hsCRP levels and FSS, especially in the symptom group of headache and gastrointestinal complaints.
Collapse
Affiliation(s)
- Iris Jonker
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center for Psychopathology and Emotion Regulation (ICPE), Groningen, The Netherlands
- * E-mail:
| | - Robert Schoevers
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center for Psychopathology and Emotion Regulation (ICPE), Groningen, The Netherlands
| | - Hans Klein
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center for Psychopathology and Emotion Regulation (ICPE), Groningen, The Netherlands
| | - Judith Rosmalen
- University of Groningen, University Medical Center Groningen, Department of Psychiatry, Interdisciplinary Center for Psychopathology and Emotion Regulation (ICPE), Groningen, The Netherlands
- Department of Internal Medicine, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
179
|
Longitudinal co-variations between inflammatory cytokines, lung function and patient reported outcomes in patients with asthma. PLoS One 2017; 12:e0185019. [PMID: 28915273 PMCID: PMC5600400 DOI: 10.1371/journal.pone.0185019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/04/2017] [Indexed: 11/19/2022] Open
Abstract
Background Asthma is a chronic inflammatory respiratory disorder associated with reduced lung function and poor quality of life. The condition is also associated with poor self-rated health, a major predictor of objective health trajectories. Of biological correlates to self-rated health, evidence suggests a role for inflammatory cytokines and related sickness behaviours. However, this is mainly based on cross-sectional data, and the relation has not been investigated in patients with chronic inflammatory conditions. Objective To investigate inflammatory cytokines, lung function, sickness behaviour and asthma-related quality of life as determinants of self-rated health in patients with asthma, and to investigate if these variables co-vary over time. Methods Plasma cytokines (IL-5, IL-6), lung function (FEV1), sickness behaviour, asthma-related quality of life and self-rated health were assessed in 181 patients with allergic asthma aged 18–64 years in a one-year longitudinal study. Mixed effect regression models and Spearman’s correlation were performed to analyse the associations between repeated measurements. Results More sickness behaviour and poorer asthma-related quality of life were associated with poorer self-rated health (p’s<0.001). In men, both low and high levels of interleukin (IL)-6 and poorer lung function were related with poorer self-rated health (p’s<0.05). Over the year, improved asthma-related quality of life was associated with better self-rated health (Spearman’s rho = -0.34 women,-0.36 men, p’s<0.01). Further, if sickness behaviour decreased, self-rated health improved, but only in women (Rho = -0.21, p<0.05). Increased FEV1 in men was associated with an increase in IL-6 (Rho = 0.24, p<0.05) as well as improved self-rated health (Rho = -0.21, p<0.05) and asthma-related quality of life (Rho = 0.29, p<0.01) over the year. Conclusion The study highlights the importance of subjectively perceived sickness behaviour and asthma-related quality of life together with lung function as determinants of self-rated health in asthmatic patients. The importance of inflammatory activation for patient reported outcomes in chronic inflammatory conditions need further investigation.
Collapse
|
180
|
Central amygdala circuits modulate food consumption through a positive-valence mechanism. Nat Neurosci 2017; 20:1384-1394. [PMID: 28825719 DOI: 10.1038/nn.4623] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/17/2017] [Indexed: 12/12/2022]
Abstract
The complex behaviors underlying reward seeking and consumption are integral to organism survival. The hypothalamus and mesolimbic dopamine system are key mediators of these behaviors, yet regulation of appetitive and consummatory behaviors outside of these regions is poorly understood. The central nucleus of the amygdala (CeA) has been implicated in feeding and reward, but the neurons and circuit mechanisms that positively regulate these behaviors remain unclear. Here, we defined the neuronal mechanisms by which CeA neurons promote food consumption. Using in vivo activity manipulations and Ca2+ imaging in mice, we found that GABAergic serotonin receptor 2a (Htr2a)-expressing CeA neurons modulate food consumption, promote positive reinforcement and are active in vivo during eating. We demonstrated electrophysiologically, anatomically and behaviorally that intra-CeA and long-range circuit mechanisms underlie these behaviors. Finally, we showed that CeAHtr2a neurons receive inputs from feeding-relevant brain regions. Our results illustrate how defined CeA neural circuits positively regulate food consumption.
Collapse
|
181
|
Feng LR, Suy S, Collins SP, Saligan LN. The role of TRAIL in fatigue induced by repeated stress from radiotherapy. J Psychiatr Res 2017; 91:130-138. [PMID: 28343068 PMCID: PMC5473507 DOI: 10.1016/j.jpsychires.2017.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/14/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023]
Abstract
Fatigue is one of the most common and debilitating side effects of cancer and cancer treatment, and yet its etiology remains elusive. The goal of this study is to understand the role of chronic inflammation in fatigue following repeated stress from radiotherapy. Fatigue and non-fatigue categories were assessed using ≥ 3-point change in Functional Assessment of Cancer Therapy-Fatigue questionnaire (FACT-F) administered to participants at baseline/before radiotherapy and one year post-radiotherapy. Whole genome microarray and cytokine multiplex panel were used to examine fatigue-related transcriptome and serum cytokine changes, respectively. The study included 86 subjects (discovery phase n = 40, validation phase n = 46). The sample in the discovery phase included men with prostate cancer scheduled to receive external-beam radiotherapy. A panel of 48 cytokines were measured and the significantly changed cytokine found in the discovery phase was validated using sera from a separate cohort of men two years after completing radiotherapy for prostate cancer at a different institution. Effects of the significantly changed cytokine on cell viability was quantified using the MTT assay. During the discovery phase, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL decoy receptor, TNFRSF10C (TRAIL-R3), were significantly upregulated in fatigued (≥3-point decrease from baseline to 1yr-post radiotherapy) subjects (n = 15). In the validation phase, TRAIL correlated with fatigue scores 2yrs post-radiotherapy. TRAIL caused selective cytotoxicity in neuronal cells, but not in microglial and muscle cells, in vitro. Late-onset inflammation directed by TRAIL may play a role in fatigue pathogenesis post-repeated stress from irradiation.
Collapse
Affiliation(s)
- Li Rebekah Feng
- National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, USA.
| | - Simeng Suy
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC, USA.
| | - Sean P. Collins
- Department of Radiation Medicine, Georgetown University Hospital, Washington, DC
| | - Leorey N. Saligan
- Corresponding Author: Leorey N. Saligan, PhD, RN, CRNP, FAAN, National Institute of Nursing Research, National Institutes of Health, 9000 Rockville Pike, Building 3, Room 5E14, Bethesda, MD 20892, Phone: 301-451-1685 Fax: 301-480-0729,
| |
Collapse
|
182
|
Lower inflammatory markers in women with antenatal depression brings the M1/M2 balance into focus from a new direction. Psychoneuroendocrinology 2017; 80:15-25. [PMID: 28292683 DOI: 10.1016/j.psyneuen.2017.02.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 02/26/2017] [Accepted: 02/27/2017] [Indexed: 12/30/2022]
Abstract
BACKGROUND Antenatal depression and use of serotonin reuptake inhibitors (SSRI) in pregnancy have both been associated with an increased risk of poor pregnancy outcomes, such as preterm birth and impaired fetal growth. While the underlying biological pathways for these complications are poorly understood, it has been hypothesized that inflammation may be a common physiological pathway. The aim of the present study was to assess peripheral inflammatory markers in healthy women, women with antenatal depression, and in women using SSRI during pregnancy. METHODS 160 healthy pregnant controls, 59 women with antenatal depression and 39 women on treatment with SSRIs were included. The relative levels of 92 inflammatory proteins were analyzed by proximity extension assay technology. RESULTS Overall, 23 of the inflammatory markers were significantly lower in women with antenatal depression and in women on treatment with SSRIs in comparison with the healthy controls. No difference in any of the inflammatory markers was observed between women with antenatal depression and those who were using SSRI. Top three inflammatory markers that were down-regulated in women with antenatal depression were TNF-related apoptosis-inducing ligand (TRAIL), p=0.000001, macrophage colony-stimulating factor 1 (CSF-1), p=0.000004, and fractalkine (CX3CL1), p=0.000005. Corresponding inflammatory markers in SSRI users were CSF-1, p=0.000011, vascular endothelial growth factor A (VEGF-A), p=0.000016, and IL-15 receptor subunit alpha (IL-15RA), p=0.000027. The inflammatory markers were negatively correlated with cortisone serum concentrations in controls, but not in the cases. Differential DNA methylation of was found for seven of these inflammatory markers in an independent epigenetics cohort. CONCLUSION Women with antenatal depression or on SSRI treatment have lower levels of a number of peripheral inflammatory markers than healthy pregnant controls. Hypothetically, this could be due to dysregulated switch to the pro-M2 milieu that characterizes normal third trimester pregnancy. However, longitudinal blood sampling is needed to elucidate whether the presumably dysregulated M2 shift is driving the development of antenatal depression or is a result of the depression.
Collapse
|
183
|
Stefanov IS, Ananiev JR, Ivanova KV, Tolekova AN, Vodenicharov AP, Gulubova MV. Distribution of ghrelin-positive mast cells in rat stomach. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1326013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
184
|
Vogelaar L, de Haar C, Aerts BR, Peppelenbosch MP, Timman R, Hanssen BE, van der Woude CJ. Fatigue in patients with inflammatory bowel disease is associated with distinct differences in immune parameters. Clin Exp Gastroenterol 2017; 10:83-90. [PMID: 28496351 PMCID: PMC5422327 DOI: 10.2147/ceg.s123942] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Although it is well recognized that fatigue is an important problem in many of the quiescent inflammatory bowel disease (IBD) patients, it is unknown whether the immune status is different in fatigued versus non-fatigued patients. In this study, we contrasted various characteristics of the immune system in fatigued against non-fatigued patients with IBD in clinical remission. Patients and methods Patients with IBD in clinical remission were phenotyped according to the Montreal classification, and the checklist individual strength-fatigue (CIS-fatigue) was used to assess fatigue (CIS-fatigue ≥ 35). Flow cytometry on peripheral blood samples was used to investigate differences in leukocyte subsets. The expression of various cytokines was determined in stimulated whole blood and serum samples using enzyme-linked immunosorbent assay. Differences between fatigued and non-fatigued patients with IBD were assessed. Results In total, 55 patients were included in the fatigue group (FG) and 29 patients in the non-fatigue group (NFG). No differences in demographic and clinical characteristics were observed between the groups. Flow cytometry data showed a significantly lower percentage of monocytes (p = 0.011) and a higher percentage of memory T-cells (p = 0.005) and neutrophils (p = 0.033) in the FG compared with the NFG. Whole blood stimulation showed increased TNF-α (p = 0.022) and IFN-γ (p = 0.047) in the FG. The median serum level was significantly higher for IL-12 (p < 0.001) and IL-10 (p = 0.005) and lower for IL-6 (p = 0.002) in the FG compared with NFG. Conclusion Significant differences in immune profile between fatigued and non-fatigued patients with IBD in clinical remission were found, which point out to a chronically active and Th1-skewed immune system in patients with fatigue. Whether these immune differences are directly involved in the fatigue complaints via immune-to-brain communication pathways remains to be determined. As such, further exploration of the underlying immune effects associated with fatigue is warranted to determine potential treatment options.
Collapse
Affiliation(s)
- Lauran Vogelaar
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam
| | - Colin de Haar
- Applied Tumor Immunology, Laboratory of Translational Immunology, UMC Utrecht, Utrecht
| | - Bas Rj Aerts
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam
| | | | - Reinier Timman
- Department of Psychiatry, Section of Medical Psychology and Psychotherapy, Erasmus MC, Rotterdam, the Netherlands
| | - Bettina E Hanssen
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam
| | | |
Collapse
|
185
|
Bryleva EY, Keaton SA, Grit J, Madaj Z, Sauro-Nagendra A, Smart L, Halstead S, Achtyes E, Brundin L. The acute-phase mediator serum amyloid A is associated with symptoms of depression and fatigue. Acta Psychiatr Scand 2017; 135:409-418. [PMID: 28374419 DOI: 10.1111/acps.12730] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Establish whether inflammatory biomarkers-serum amyloid A (SAA), C-reactive protein (CRP), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)-are related to key symptoms of depression, including anxiety and fatigue, in a cross-sectional, out-patient setting to identify biomarkers that reflect psychiatric symptomatology in a naturalistic, real-life population. METHODS We measured SAA, CRP, IL-6, and TNF-α in plasma samples from 89 adult psychiatric out-patients by multiplex, high-sensitivity electrochemiluminescent assays. Psychiatric symptoms were evaluated using the Hamilton Depression Rating Scale (HAMD-17), the Patient Health Questionnaire (PHQ-9), and the Center for Epidemiological Studies Depression Scale (CES-D). RESULTS Plasma SAA was most robustly associated with depressive symptoms across diagnostic boundaries in this cohort of out-patients. Elevated SAA was significantly associated with higher total scores on the HAMD-17 scale and correlated with multiple scale items that rated symptoms of fatigue and depressed mood, but not with anxiety-related items. CONCLUSIONS SAA might constitute a cross-diagnostic marker indicative of depressed mood and fatigue in a naturalistic patient setting. Because SAA activates Toll-like receptors 2 and 4, present on macrophages and glial cells, its association with depression severity could also implicate this inflammatory mediator in the pathogenesis of mood disorders.
Collapse
Affiliation(s)
- E Y Bryleva
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - S A Keaton
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA.,Division of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, USA.,Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - J Grit
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Z Madaj
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, USA
| | - A Sauro-Nagendra
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA
| | - L Smart
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - S Halstead
- Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - E Achtyes
- Division of Psychiatry and Behavioral Medicine, Michigan State University, Grand Rapids, MI, USA.,Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| | - L Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI, USA.,Pine Rest Christian Mental Health Services, Grand Rapids, MI, USA
| |
Collapse
|
186
|
Blaylock RL. Parkinson's disease: Microglial/macrophage-induced immunoexcitotoxicity as a central mechanism of neurodegeneration. Surg Neurol Int 2017; 8:65. [PMID: 28540131 PMCID: PMC5421223 DOI: 10.4103/sni.sni_441_16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/01/2017] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is one of the several neurodegenerative disorders that affects aging individuals, with approximately 1% of those over the age of 60 years developing the disorder in their lifetime. The disease has the characteristics of a progressive disorder in most people, with a common pattern of pathological change occurring in the nervous system that extends beyond the classical striatal degeneration of dopaminergic neurons. Earlier studies concluded that the disease was a disorder of alpha-synuclein, with the formation of aggregates of abnormal alpha-synuclein being characteristic. More recent studies have concluded that inflammation plays a central role in the disorder and that the characteristic findings can be accounted for by either mutation or oxidative damage to alpha-synuclein, with resulting immune reactions from surrounding microglia, astrocytes, and macrophages. What has been all but ignored in most of these studies is the role played by excitotoxicity and that the two processes are intimately linked, with inflammation triggered cell signaling enhancing the excitotoxic cascade. Further, there is growing evidence that it is the excitotoxic reactions that actually cause the neurodegeneration. I have coined the name immunoexcitotoxicity to describe this link between inflammation and excitotoxicity. It appears that the two processes are rarely, if ever, separated in neurodegenerative diseases.
Collapse
|
187
|
Yan J, Bai J, Gao C, Liang Y, Zhao B, Bian Y. Chronic unpredictable stress abrogates the endotoxin tolerance induced by repeated peripheral LPS challenge via the TLR4 signaling pathway. Neurosci Lett 2017; 645:7-13. [DOI: 10.1016/j.neulet.2017.02.070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/27/2017] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
|
188
|
N-acetylcysteine Prevents Alcohol Related Neuroinflammation in Rats. Neurochem Res 2017; 42:2135-2141. [DOI: 10.1007/s11064-017-2218-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/17/2017] [Accepted: 02/25/2017] [Indexed: 01/04/2023]
|
189
|
Koski M, Naukkarinen H. The Relationship between Stress and Severe Obesity: A Case-Control Study. Biomed Hub 2017; 2:1-13. [PMID: 31988895 PMCID: PMC6945898 DOI: 10.1159/000458771] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 02/03/2017] [Indexed: 11/19/2022] Open
Abstract
Background Several etiological factors for obesity have been identified, whereas other factors related to obesity, such as stress, remain poorly understood. This study used psychiatric methods to examine the relationship between stress and obesity. Methods Matched study and control groups were established, and the female and male control subjects were selected separately by random sampling. The control subjects were matched with the case subjects with respect to place of residence, sex, age, date that a pension was granted, and occupation. Psychiatric and psychological methods were assessed using a questionnaire and statistical analyses. Results Psychiatric interviews indicated that stress was more prevalent in the study group than in the control group. Separation from parents was nearly significantly more frequently in the study group than in the control group. The questionnaire on coping mechanisms revealed that case subjects tended to resolve their problems in an active manner. Conclusions The aim of this case-control study was to examine the relationship between stress and obesity in individuals receiving a disability pension. We identified stress factors that affect the development of obesity. We believe our study is both necessary and important, as these findings provide valuable insight into the relationship between severe obesity and stress.
Collapse
Affiliation(s)
- Marja Koski
- Department of Psychiatry, University of Helsinki, Helsinki, Finland
| | - Hannu Naukkarinen
- Department of Psychiatry, University of Helsinki, Helsinki, Finland.,Carea Hospital District, Kymenlaakso Psychiatric Hospital, Kuusankoski, Finland
| |
Collapse
|
190
|
Surendran S, Hückesfeld S, Wäschle B, Pankratz MJ. Pathogen-induced food evasion behavior in Drosophila larvae. ACTA ACUST UNITED AC 2017; 220:1774-1780. [PMID: 28254879 DOI: 10.1242/jeb.153395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/24/2017] [Indexed: 12/31/2022]
Abstract
Recognizing a deadly pathogen and generating an appropriate immune reaction is essential for any organism to survive in its natural habitat. Unlike vertebrates and higher primates, invertebrates depend solely on the innate immune system to defend themselves from an attacking pathogen. In this study, we report a behavioral defense strategy observed in Drosophila larvae that helps them escape and limit an otherwise lethal infection. A bacterial infection in the gut is sensed by the larval central nervous system, which generates an alteration in the larva's food preference, leading it to stop feeding and move away from the infectious food source. We have also found that this behavioral response is dependent on the internal nutritive state of the larvae. Using this novel behavioral assay as a read-out, we further identified hugin neuropeptide to be involved in the evasion response and detection of bacterial signals.
Collapse
Affiliation(s)
- Sandya Surendran
- Department of Molecular Brain Physiology, LIMES Institute, University of Bonn, Carl Troll Strasse 31, Bonn 53115, Germany
| | - Sebastian Hückesfeld
- Department of Molecular Brain Physiology, LIMES Institute, University of Bonn, Carl Troll Strasse 31, Bonn 53115, Germany
| | - Benjamin Wäschle
- Department of Molecular Brain Physiology, LIMES Institute, University of Bonn, Carl Troll Strasse 31, Bonn 53115, Germany
| | - Michael J Pankratz
- Department of Molecular Brain Physiology, LIMES Institute, University of Bonn, Carl Troll Strasse 31, Bonn 53115, Germany
| |
Collapse
|
191
|
Dallagnol KMC, Remor AP, da Silva RA, Prediger RD, Latini A, Aguiar AS. Running for REST: Physical activity attenuates neuroinflammation in the hippocampus of aged mice. Brain Behav Immun 2017; 61:31-35. [PMID: 27477921 DOI: 10.1016/j.bbi.2016.07.159] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 01/08/2023] Open
Abstract
Exercise improves mental health and synaptic function in the aged brain. However, the molecular mechanisms involved in exercise-induced healthy brain aging are not well understood. Evidence supports the role of neurogenesis and neurotrophins in exercise-induced neuroplasticity. The gene silencing transcription factor neuronal RE1-silencing transcription factor (REST)/neuron-restrictive silencer factor (NRSF) and an anti-inflammatory role of exercise are also candidate mechanisms. We evaluate the effect of 8weeks of physical activity on running wheels (RW) on motor and depressive-like behavior and hippocampal gene expression of brain-derived neurotrophic factor (BDNF), REST, and interleukins IL-1β and IL-10 of adult and aged C57BL/6 mice. The aged animals exhibited impaired motor function and a depressive-like behavior: decreased mobility in the RW and open field and severe immobility in the tail suspension test. The gene expression of REST, IL-1β, and IL-10 was increased in the hippocampus of aged mice. Physical activity was anxiolytic and antidepressant and improved motor behavior in aged animals. Physical activity also boosted BDNF and REST expression and decreased IL-1β and IL-10 expression in the hippocampus of aged animals. These results support the beneficial role of REST in the aged brain, which can be further enhanced by regular physical activity.
Collapse
Affiliation(s)
- Karine Mathilde Campestrini Dallagnol
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Universidade Federal de Santa Catarina, UFSC, Centro de Ciências Biológicas, CCB, Florianópolis, SC 88049-900, Brazil; Grupo de Pesquisa Neurobiologia do Exercício Físico, Departamento de Fisioterapia, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil
| | - Aline Pertile Remor
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Universidade Federal de Santa Catarina, UFSC, Centro de Ciências Biológicas, CCB, Florianópolis, SC 88049-900, Brazil; Grupo de Pesquisa Neurobiologia do Exercício Físico, Departamento de Fisioterapia, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil
| | - Rodrigo Augusto da Silva
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Universidade Federal de Santa Catarina, UFSC, Centro de Ciências Biológicas, CCB, Florianópolis, SC 88049-900, Brazil
| | - Rui Daniel Prediger
- Laboratório Experimental de Doenças Neurodegenerativas (LEXDON), Departamento de Farmacologia, Universidade Federal de Santa Catarina, UFSC, Centro de Ciências Biológicas, CCB, Florianópolis, SC 88049-900, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Universidade Federal de Santa Catarina, UFSC, Centro de Ciências Biológicas, CCB, Florianópolis, SC 88049-900, Brazil; Grupo de Pesquisa Neurobiologia do Exercício Físico, Departamento de Fisioterapia, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil
| | - Aderbal Silva Aguiar
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Universidade Federal de Santa Catarina, UFSC, Centro de Ciências Biológicas, CCB, Florianópolis, SC 88049-900, Brazil; Grupo de Pesquisa Neurobiologia do Exercício Físico, Departamento de Fisioterapia, Universidade Federal de Santa Catarina, 88906-072 Araranguá, Brazil.
| |
Collapse
|
192
|
Zhang JC, Yao W, Hashimoto K. Brain-derived Neurotrophic Factor (BDNF)-TrkB Signaling in Inflammation-related Depression and Potential Therapeutic Targets. Curr Neuropharmacol 2017; 14:721-31. [PMID: 26786147 PMCID: PMC5050398 DOI: 10.2174/1570159x14666160119094646] [Citation(s) in RCA: 383] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/08/2015] [Accepted: 11/10/2015] [Indexed: 12/20/2022] Open
Abstract
Depression is the most prevalent and among the most debilitating of psychiatric disorders. The precise neurobiology of this illness is unknown. Several lines of evidence suggest that peripheral and central inflammation plays a role in depressive symptoms, and that anti-inflammatory drugs can improve depressive symptoms in patients with inflammation-related depression. Signaling via brain-derived neurotrophic factor (BDNF) and its receptor, tropomycin receptor kinase B (TrkB) plays a key role in the pathophysiology of depression and in the therapeutic mechanisms of antidepressants. A recent paper showed that lipopolysaccharide (LPS)-induced inflammation gave rise to depression-like phenotype by altering BDNF-TrkB signaling in the prefrontal cortex, hippocampus, and nucleus accumbens, areas thought to be involved in the antidepressant effects of TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF) and TrkB antagonist, ANA-12. Here we provide an overview of the tryptophan-kynurenine pathway and BDNF-TrkB signaling in the pathophysiology of inflammation-induced depression, and propose mechanistic actions for potential therapeutic agents. Additionally, the authors discuss the putative role of TrkB agonists and antagonists as novel therapeutic drugs for inflammation-related depression.
Collapse
Affiliation(s)
| | | | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, 1-8-1 Inohana, Chiba 260-8670, Japan
| |
Collapse
|
193
|
Eisenberger NI, Moieni M, Inagaki TK, Muscatell KA, Irwin MR. In Sickness and in Health: The Co-Regulation of Inflammation and Social Behavior. Neuropsychopharmacology 2017; 42:242-253. [PMID: 27480575 PMCID: PMC5143485 DOI: 10.1038/npp.2016.141] [Citation(s) in RCA: 248] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/16/2016] [Accepted: 07/18/2016] [Indexed: 01/18/2023]
Abstract
Although it has commonly been assumed that the immune system and the processes that govern social behavior are separate, non-communicating entities, research over the past several decades suggests otherwise. Considerable evidence now shows that inflammatory processes and social behavior are actually powerful regulators of one another. This review first summarizes evidence that inflammatory processes regulate social behavior, leading to characteristic changes that may help an individual navigate the social environment during times of sickness. Specifically, this review shows that inflammation: (1) increases threat-related neural sensitivity to negative social experiences (eg, rejection, negative social feedback), presumably to enhance sensitivity to threats to well-being or safety in order to avoid them and (2) enhances reward-related neural sensitivity to positive social experiences (eg, viewing close others and receiving positive social feedback), presumably to increase approach-related motivation towards others who might provide support and care during sickness. Next, this review summarizes evidence showing that social behavior also regulates aspects of inflammatory activity, preparing the body for situations in which wounding and infection may be more likely (social isolation). Here, we review research showing: (1) that exposure to social stressors increases proinflammatory activity, (2) that individuals who are more socially isolated (ie, lonely) show increased proinflammatory activity, and (3) that individuals who are more socially isolated show increased proinflammatory activity in response to an inflammatory challenge or social stressor. The implications of the co-regulation of inflammation and social behavior are discussed.
Collapse
Affiliation(s)
- Naomi I Eisenberger
- Department of Psychology, University of California, Los Angeles, CA, USA,Department of Psychology, University of California, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA, Tel: +1 310 267 5196, Fax: +1 310 206 5895, E-mail:
| | - Mona Moieni
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Tristen K Inagaki
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Keely A Muscatell
- Department of Psychology, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA
| | - Michael R Irwin
- Department of Psychiatry and Biobehavioral Sciences and Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, CA, USA
| |
Collapse
|
194
|
Mileva GR, Rooke J, Ismail N, Bielajew C. Corticosterone and immune cytokine characterization following environmental manipulation in female WKY rats. Behav Brain Res 2017; 316:197-204. [DOI: 10.1016/j.bbr.2016.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/28/2016] [Accepted: 09/01/2016] [Indexed: 12/29/2022]
|
195
|
Halaris A. Inflammation-Associated Co-morbidity Between Depression and Cardiovascular Disease. Curr Top Behav Neurosci 2017; 31:45-70. [PMID: 27830572 DOI: 10.1007/7854_2016_28] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Morbidity and mortality of cardiovascular disease (CVD) is exceedingly high worldwide. Depressive illness is a serious psychiatric illness that afflicts a significant portion of the world population. Epidemiological studies have confirmed the high co-morbidity between these two disease entities. The co-morbidity is bidirectional and the mechanisms responsible for it are complex and multifaceted. In addition to genetic, biological systems, psychosocial, and behavioral factors that are involved include the central and autonomic nervous systems, the neuroendocrine, immune, and the vascular and hematologic systems. Specific pathophysiologic factors across these systems include homeostatic imbalance between the sympathetic and the parasympathetic systems with loss of heart rate variability (HRV) in depression, sympathoadrenal activation, hypothalamic-pituitary-adrenal (HPA) axis activation, immune system dysregulation resulting in a pro-inflammatory status, platelet activation, and endothelial dysfunction. These abnormalities have been demonstrated in most individuals diagnosed with major depressive disorder (MDD), bipolar disorder (BPD), and probably in other psychiatric disorders. A likely common instigator underlying the co-morbidity between cardiovascular pathology and depression is mental stress. Chronic stress shifts the homeostatic balance in the autonomic nervous system with sustained sympathetic overdrive and diminished vagal tone. Diminished vagal tone contributes to a pro-inflammatory status with associated sequelae. Stress hormones and certain pro-inflammatory substances released by macrophages and microglia upregulate the rate-limiting enzymes in the metabolic pathway of tryptophan (TRP). This enzymatic upregulation stimulates the kynurenine (KYN) pathway resulting in the formation of neurotoxic metabolites. Inflammation occurs in cardiac, cardiovascular, and cerebrovascular pathology independent of the presence or absence of depression. Inflammation is closely associated with endothelial dysfunction, a preamble to atherosclerosis and atherothrombosis. Endothelial dysfunction has been detected in depression and may prove to be a trait marker for this illness. Thus understanding vascular biology in conjunction with psychiatric co-morbidity will be of critical importance. Antidepressant drug therapy is of definite benefit to patients with medical and psychiatric co-morbidity and may reverse the pro-inflammatory status associated with depression. There is, however, an urgent need to develop novel pharmacotherapeutic approaches to benefit a much larger proportion of patients suffering from these disease entities.
Collapse
Affiliation(s)
- Angelos Halaris
- Department of Psychiatry and Behavioral Neuroscience, Stritch School of Medicine, Loyola University Chicago and Loyola University Medical Center, 2160 South First Avenue, Maywood, IL, 60153, USA.
| |
Collapse
|
196
|
Rodent sex differences in disgust behaviors (anticipatory nausea) conditioned to a context associated with the effects of the toxin LiCl: Inhibition of conditioning following immune stimulation with lipopolysaccharide. Pharmacol Biochem Behav 2017; 152:4-12. [DOI: 10.1016/j.pbb.2016.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/29/2016] [Accepted: 08/22/2016] [Indexed: 12/23/2022]
|
197
|
Folic acid supplementation improves cognitive function by reducing the levels of peripheral inflammatory cytokines in elderly Chinese subjects with MCI. Sci Rep 2016; 6:37486. [PMID: 27876835 PMCID: PMC5120319 DOI: 10.1038/srep37486] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/31/2016] [Indexed: 12/23/2022] Open
Abstract
This study aimed to evaluate whether folic acid supplementation would improve cognitive performance by reducing serum inflammatory cytokine concentrations. This RCT was performed in Tianjin, China. Participants with mild cognitive impairment (MCI) were randomly assigned to the folic acid (400 μg/day) or conventional treatment groups. Neuropsychological tests were administered, and folate, homocysteine, vitamin B12, IL-6, TNF-α, Aβ-42, and Aβ-40 were measured at baseline and at 6- and 12-month time points.152 participants (folic acid: 77, conventional: 75) completed the trial. Significant improvements in folate (ηp2 = 0.703, P = 0.011), homocysteine (ηp2 = 0.644, P = 0.009), Aβ-42 (ηp2 = 0.687, P = 0.013), peripheral IL-6 (ηp2 = 0.477, P = 0.025), TNF-α (ηp2 = 0.709, P = 0.009) levels were observed in folic acid group compared with conventional group. Folic acid supplementation improved the Full Scale Intelligence Quotient (P = 0.028; effect size d = 0.153), Information (P = 0.031; d = 0.157) and Digit Span (P = 0.009; d = 0.172) scores at 12 months compared with conventional treatment. Based on these findings, daily oral administration of a 400-μg folic acid supplement to MCI subjects for 12 months can significantly improve cognitive performance and reduce peripheral inflammatory cytokine levels.
Collapse
|
198
|
Soto-Tinoco E, Guerrero-Vargas NN, Buijs RM. Interaction between the hypothalamus and the immune system. Exp Physiol 2016; 101:1463-1471. [PMID: 27753158 DOI: 10.1113/ep085560] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 10/13/2016] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? Both branches of the autonomic nervous system are involved in the regulation of the inflammatory response. We explore how the hypothalamus may influence this process. What advances does it highlight? We analyse how a lipopolysaccharide signal is transmitted to the brain and which areas participate in the response of the brain to lipopolysaccharide. Recent studies show that the hypothalamus can influence the inflammatory response by modifying the autonomic output. The biological clock, the suprachiasmatic nucleus, is integrated into this circuit, putting a time stamp on the intensity of the inflammatory response. The brain is responsible for maintaining homeostasis of the organism, constantly adjusting its output via hormones and the autonomic nervous system to reach an optimal setting in every compartment of the body. Also, the immune system is under strong control of the brain. Apart from the conventional systemic responses evoked by the brain during inflammation, such as hypothalamic-pituitary-adrenal axis activation and the induction of sickness behaviour, the autonomic nervous system is now recognized to exert regulatory effects on the inflammatory response. Both branches of the autonomic nervous system are proposed to influence the inflammatory process. Here, we focus on those areas of the brain that might be involved in sensing inflammatory stimuli, followed by how that sensing could change the output of the autonomic nervous system in order to regulate the inflammatory response. Finally, we will discuss how the defenses of the body against a lipopolysaccharide challenge are organized by the hypothalamus.
Collapse
Affiliation(s)
- Eva Soto-Tinoco
- Departamento de Biología Celular y Fisiología, Instlituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Natalí N Guerrero-Vargas
- Departamento de Biología Celular y Fisiología, Instlituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.,Departamento de Anatomía, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Ruud M Buijs
- Departamento de Biología Celular y Fisiología, Instlituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
199
|
Schmidt FM, Pschiebl A, Sander C, Kirkby KC, Thormann J, Minkwitz J, Chittka T, Weschenfelder J, Holdt LM, Teupser D, Hegerl U, Himmerich H. Impact of Serum Cytokine Levels on EEG-Measured Arousal Regulation in Patients with Major Depressive Disorder and Healthy Controls. Neuropsychobiology 2016; 73:1-9. [PMID: 26812192 DOI: 10.1159/000441190] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/09/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND In major depressive disorder (MDD), findings include hyperstable regulation of brain arousal measured by electroencephalography (EEG) vigilance analysis and alterations in serum levels of cytokines. It is also known that cytokines affect sleep-wake regulation. This study investigated the relationship between cytokines and EEG vigilance in participants with MDD and nondepressed controls, and the influence of cytokines on differences in vigilance between the two groups. METHODS In 60 patients with MDD and 129 controls, 15-min resting-state EEG recordings were performed and vigilance was automatically assessed with the VIGALL 2.0 (Vigilance Algorithm Leipzig). Serum levels of the wakefulness-promoting cytokines interleukin (IL)-4, IL-10, IL-13 and somnogenic cytokines tumor necrosis factor-α, interferon-x03B3; and IL-2 were measured prior to the EEG. RESULTS Summed wakefulness-promoting cytokines, but not somnogenic cytokines, were significantly associated with the time course of EEG vigilance in the MDD group only. In both groups, IL-13 was significantly associated with the course of EEG vigilance. In MDD compared to controls, a hyperstable EEG vigilance regulation was found, significant for group and group × time course interaction. After controlling for wakefulness-promoting cytokines, differences in vigilance regulation between groups remained significant. CONCLUSIONS The present study demonstrated a relationship between wakefulness-promoting cytokines and objectively measured EEG vigilance as an indicator for brain arousal. Altered brain arousal regulation in MDD gives support for future evaluation of vigilance measures as a biomarker in MDD. Since interactions between cytokines and EEG vigilance only moderately differed between the groups and cytokine levels could not explain the group differences in EEG vigilance regulation, cytokines and brain arousal regulation are likely to be associated with MDD in independent ways.
Collapse
Affiliation(s)
- Frank M Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
McHugh Power J, Carney S, Hannigan C, Brennan S, Wolfe H, Lynch M, Kee F, Lawlor B. Systemic inflammatory markers and sources of social support among older adults in the Memory Research Unit cohort. J Health Psychol 2016; 24:397-406. [PMID: 27815328 DOI: 10.1177/1359105316676331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Potential associations between systemic inflammation and social support received by a sample of 120 older adults were examined here. Inflammatory markers, cognitive function, social support and psychosocial wellbeing were evaluated. A structural equation modelling approach was used to analyse the data. The model was a good fit χ1082=256.13 , p < 0.001; comparative fit index = 0.973; Tucker-Lewis Index = 0.962; root mean square error of approximation = 0.021; standardised root mean-square residual = 0.074). Chemokine levels were associated with increased age ( β = 0.276), receipt of less social support from friends ( β = -0.256) and body mass index ( β = -0.256). Results are discussed in relation to social signal transduction theory.
Collapse
Affiliation(s)
- Joanna McHugh Power
- 1 Trinity College, University of Dublin, Republic of Ireland.,2 Queen's University Belfast, UK
| | - Sile Carney
- 1 Trinity College, University of Dublin, Republic of Ireland
| | | | - Sabina Brennan
- 1 Trinity College, University of Dublin, Republic of Ireland
| | - Hannah Wolfe
- 1 Trinity College, University of Dublin, Republic of Ireland
| | - Marina Lynch
- 1 Trinity College, University of Dublin, Republic of Ireland
| | | | - Brian Lawlor
- 1 Trinity College, University of Dublin, Republic of Ireland
| |
Collapse
|