151
|
Al-Nowaiser AM, Al-Zoman H, Baskaradoss JK, Robert AA, Al-Zoman KH, Al-Sohail AM, Al-Suwyed AS, Ciancio SG, Al-Mubarak SA. Evaluation of adjunctive systemic doxycycline with non-surgical periodontal therapy within type 2 diabetic patients. Saudi Med J 2014; 35:1203-9. [PMID: 25316464 PMCID: PMC4362117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES To evaluate the effects of systemic doxycycline on clinical and microbiological parameters of diabetic subjects with chronic periodontitis. METHODS This 9-month multi-center, randomized, parallel, single-blinded study was conducted from different hospitals in Riyadh, Saudi Arabia between April 2010 and December 2010. A total of 76 diabetic subjects with chronic periodontitis were randomized into 2 groups: control group (CG) received only scaling and root planing (SRP), and the treatment group (TG) receiving systemic doxycycline during the reevaluation visit 45 days after the completion of SRP. Probing pocket depth, clinical attachment level, gingival index, plaque index, and bleeding on probing were collected at baseline, 45 days after SRP, and one, 3, and 6 months after the use of systemic doxycycline. Microbiological analysis comprised the detection of Tannerella forsythia (Tf), Aggregatibacter actinomycetemcomitans (Aa), Porphyromonas gingivalis (Pg), and Prevotella intermedia (Pi) by polymerase chain reaction method. RESULTS Sixty-eight (33 CG and 35 TG) subjects completed the study. Greater reduction in the population of Tf, Pg, and Pi were observed in TG compared with CG in the first month after the administration of systemic doxycycline. The TG showed a significant improvement in gingival index scores compared with the CG (p<0.05) by the end of the first and 6 months after the administration of doxycycline. CONCLUSION Adjunct systemic doxycycline can be associated with a reduction of Tf, Pg, and Pi in the first month after the administration of doxycycline with an improvement in the GI.
Collapse
Affiliation(s)
- Abeer M. Al-Nowaiser
- From the Department of Preventive Dental Sciences (Al-Nowaiser), King Abdulaziz University, College of Dentistry (Al-Zoman H), King Saud University, the Department of Endocrinology and Diabetes (Robert), Diabetes Treatment Center, Prince Sultan Military Medical City, the Dental Department (Al-Zoman K, Al-Mubarak), King Faisal Specialist Hospital & Research Center, the Prince Abdulrahman Bin Abdulaziz Institute for Higher Dental Studies (Al-Sohail), the Dental Department (Al-Suwyed), King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia, the Department of Dental Public Health (Baskaradoss), School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, and the Department of Periodontics and Endodontics (Ciancio), School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America.
| | - Hamad Al-Zoman
- From the Department of Preventive Dental Sciences (Al-Nowaiser), King Abdulaziz University, College of Dentistry (Al-Zoman H), King Saud University, the Department of Endocrinology and Diabetes (Robert), Diabetes Treatment Center, Prince Sultan Military Medical City, the Dental Department (Al-Zoman K, Al-Mubarak), King Faisal Specialist Hospital & Research Center, the Prince Abdulrahman Bin Abdulaziz Institute for Higher Dental Studies (Al-Sohail), the Dental Department (Al-Suwyed), King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia, the Department of Dental Public Health (Baskaradoss), School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, and the Department of Periodontics and Endodontics (Ciancio), School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America.
| | - Jagan K. Baskaradoss
- From the Department of Preventive Dental Sciences (Al-Nowaiser), King Abdulaziz University, College of Dentistry (Al-Zoman H), King Saud University, the Department of Endocrinology and Diabetes (Robert), Diabetes Treatment Center, Prince Sultan Military Medical City, the Dental Department (Al-Zoman K, Al-Mubarak), King Faisal Specialist Hospital & Research Center, the Prince Abdulrahman Bin Abdulaziz Institute for Higher Dental Studies (Al-Sohail), the Dental Department (Al-Suwyed), King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia, the Department of Dental Public Health (Baskaradoss), School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, and the Department of Periodontics and Endodontics (Ciancio), School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America.
| | - Asirvatham A. Robert
- From the Department of Preventive Dental Sciences (Al-Nowaiser), King Abdulaziz University, College of Dentistry (Al-Zoman H), King Saud University, the Department of Endocrinology and Diabetes (Robert), Diabetes Treatment Center, Prince Sultan Military Medical City, the Dental Department (Al-Zoman K, Al-Mubarak), King Faisal Specialist Hospital & Research Center, the Prince Abdulrahman Bin Abdulaziz Institute for Higher Dental Studies (Al-Sohail), the Dental Department (Al-Suwyed), King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia, the Department of Dental Public Health (Baskaradoss), School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, and the Department of Periodontics and Endodontics (Ciancio), School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America.
| | - Khalid H. Al-Zoman
- From the Department of Preventive Dental Sciences (Al-Nowaiser), King Abdulaziz University, College of Dentistry (Al-Zoman H), King Saud University, the Department of Endocrinology and Diabetes (Robert), Diabetes Treatment Center, Prince Sultan Military Medical City, the Dental Department (Al-Zoman K, Al-Mubarak), King Faisal Specialist Hospital & Research Center, the Prince Abdulrahman Bin Abdulaziz Institute for Higher Dental Studies (Al-Sohail), the Dental Department (Al-Suwyed), King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia, the Department of Dental Public Health (Baskaradoss), School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, and the Department of Periodontics and Endodontics (Ciancio), School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America.
| | - Abdulaziz M. Al-Sohail
- From the Department of Preventive Dental Sciences (Al-Nowaiser), King Abdulaziz University, College of Dentistry (Al-Zoman H), King Saud University, the Department of Endocrinology and Diabetes (Robert), Diabetes Treatment Center, Prince Sultan Military Medical City, the Dental Department (Al-Zoman K, Al-Mubarak), King Faisal Specialist Hospital & Research Center, the Prince Abdulrahman Bin Abdulaziz Institute for Higher Dental Studies (Al-Sohail), the Dental Department (Al-Suwyed), King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia, the Department of Dental Public Health (Baskaradoss), School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, and the Department of Periodontics and Endodontics (Ciancio), School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America.
| | - Abdulaziz S. Al-Suwyed
- From the Department of Preventive Dental Sciences (Al-Nowaiser), King Abdulaziz University, College of Dentistry (Al-Zoman H), King Saud University, the Department of Endocrinology and Diabetes (Robert), Diabetes Treatment Center, Prince Sultan Military Medical City, the Dental Department (Al-Zoman K, Al-Mubarak), King Faisal Specialist Hospital & Research Center, the Prince Abdulrahman Bin Abdulaziz Institute for Higher Dental Studies (Al-Sohail), the Dental Department (Al-Suwyed), King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia, the Department of Dental Public Health (Baskaradoss), School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, and the Department of Periodontics and Endodontics (Ciancio), School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America.
| | - Sebastian G. Ciancio
- From the Department of Preventive Dental Sciences (Al-Nowaiser), King Abdulaziz University, College of Dentistry (Al-Zoman H), King Saud University, the Department of Endocrinology and Diabetes (Robert), Diabetes Treatment Center, Prince Sultan Military Medical City, the Dental Department (Al-Zoman K, Al-Mubarak), King Faisal Specialist Hospital & Research Center, the Prince Abdulrahman Bin Abdulaziz Institute for Higher Dental Studies (Al-Sohail), the Dental Department (Al-Suwyed), King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia, the Department of Dental Public Health (Baskaradoss), School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, and the Department of Periodontics and Endodontics (Ciancio), School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America.
| | - Sultan A. Al-Mubarak
- From the Department of Preventive Dental Sciences (Al-Nowaiser), King Abdulaziz University, College of Dentistry (Al-Zoman H), King Saud University, the Department of Endocrinology and Diabetes (Robert), Diabetes Treatment Center, Prince Sultan Military Medical City, the Dental Department (Al-Zoman K, Al-Mubarak), King Faisal Specialist Hospital & Research Center, the Prince Abdulrahman Bin Abdulaziz Institute for Higher Dental Studies (Al-Sohail), the Dental Department (Al-Suwyed), King Abdulaziz Medical City, Riyadh, Kingdom of Saudi Arabia, the Department of Dental Public Health (Baskaradoss), School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, and the Department of Periodontics and Endodontics (Ciancio), School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York, United States of America.,Address correspondence and reprint request to: Dr. Sultan A. Al-Mubarak, Senior Clinical Scientist and Consultant, Dental Department, King Faisal Specialist Hospital & Research Center, PO Box 3354, Riyadh 11211, Kingdom of Saudi Arabia. E-mail:
| |
Collapse
|
152
|
Periodontal disease and rheumatoid arthritis: the evidence accumulates for complex pathobiologic interactions. Curr Opin Rheumatol 2013; 25:345-53. [PMID: 23455329 DOI: 10.1097/bor.0b013e32835fb8ec] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review was conducted to focus on the recent clinical and translational research related to the associations between periodontal disease and rheumatoid arthritis. RECENT FINDINGS There is a growing interest in the associations between oral health and autoimmune and inflammatory diseases. A number of epidemiologic studies have described associations between rheumatoid arthritis and periodontal disease. Recent clinical studies continue to support these reports, and are increasingly linked with biological assessments to better understand the nature of these relationships. A number of recent studies have evaluated the periopathogenic roles of Porphyromonas gingivalis, the oral microbiome, and mechanisms of site-specific and substrate-specific citrullination. These are helping to further elucidate the interactions between these two inflammatory disease processes. SUMMARY Studies of clinical oral health parameters, the gingival microenvironment, autoantibodies and biomarkers, and rheumatoid arthritis disease activity measures are providing a better understanding of the potential mechanisms responsible for rheumatoid arthritis and periodontal disease associations. The cumulative results and ongoing studies have the promise to identify novel mechanisms and interventional strategies to improve patient outcomes for both conditions.
Collapse
|
153
|
Kunnen A, van Pampus MG, Aarnoudse JG, van der Schans CP, Abbas F, Faas MM. The effect of Porphyromonas gingivalis lipopolysaccharide on pregnancy in the rat. Oral Dis 2013; 20:591-601. [PMID: 24112943 DOI: 10.1111/odi.12177] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 07/16/2013] [Accepted: 08/04/2013] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Periodontitis, mostly associated with Porphyromonas gingivalis, has frequently been related to adverse pregnancy outcomes. We therefore investigated whether lipopolysaccharides of P. gingivalis (Pg-LPS) induced pregnancy complications in the rat. METHODS Experiment 1: pregnant rats (day 14) received increasing Pg-LPS doses (0.0-50.0 μg kg(-1) bw; n = 2/3 p per dose). Maternal intra-aortic blood pressure, urinary albumin excretion, placental and foetal weight and foetal resorptions were documented. Experiment 2: 10.0 μg kg(-1) bw (which induced the highest blood pressure together with decreased foetal weight in experiment 1) or saline was infused in pregnant and non-pregnant rats (n = 7/9 p per group). Parameters of experiment 1 and numbers of peripheral leucocytes as well as signs of inflammation in the kidney and placenta were evaluated. RESULTS Pg-LPS infusion in pregnant rats increased maternal systolic blood pressure, reduced placental weight (dose dependently) and decreased foetal weight and induced foetal resorptions. It, however, did not induce proteinuria or a generalised inflammatory response. No effects of Pg-LPS were seen in non-pregnant rats. CONCLUSION Pg-LPS increased maternal blood pressure, induced placental and foetal growth restriction, and increased foetal resorptions, without inducing proteinuria and inflammation. Pg-LPS may therefore play a role in pregnancy complications induced by periodontitis.
Collapse
Affiliation(s)
- A Kunnen
- Department of Periodontology, Center for Dentistry and Oral Hygiene, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; School of Health Care Studies, Hanze University of Applied Sciences Groningen, Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
154
|
Reyes L, Eiler-McManis E, Rodrigues PH, Chadda AS, Wallet SM, Bélanger M, Barrett AG, Alvarez S, Akin D, Dunn WA, Progulske-Fox A. Deletion of lipoprotein PG0717 in Porphyromonas gingivalis W83 reduces gingipain activity and alters trafficking in and response by host cells. PLoS One 2013; 8:e74230. [PMID: 24069284 PMCID: PMC3772042 DOI: 10.1371/journal.pone.0074230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/29/2013] [Indexed: 01/10/2023] Open
Abstract
P. gingivalis (Pg), a causative agent of chronic generalized periodontitis, has been implicated in promoting cardiovascular disease. Expression of lipoprotein gene PG0717 of Pg strain W83 was found to be transiently upregulated during invasion of human coronary artery endothelial cells (HCAEC), suggesting this protein may be involved in virulence. We characterized the virulence phenotype of a PG0717 deletion mutant of pg W83. There were no differences in the ability of W83Δ717 to adhere and invade HCAEC. However, the increased proportion of internalized W83 at 24 hours post-inoculation was not observed with W83∆717. Deletion of PG0717 also impaired the ability of W83 to usurp the autophagic pathway in HCAEC and to induce autophagy in Saos-2 sarcoma cells. HCAEC infected with W83Δ717 also secreted significantly greater amounts of MCP-1, IL-8, IL-6, GM-CSF, and soluble ICAM-1, VCAM-1, and E-selectin when compared to W83. Further characterization of W83Δ717 revealed that neither capsule nor lipid A structure was affected by deletion of PG0717. Interestingly, the activity of both arginine (Rgp) and lysine (Kgp) gingipains was reduced in whole-cell extracts and culture supernatant of W83Δ717. RT-PCR revealed a corresponding decrease in transcription of rgpB but not rgpA or kgp. Quantitative proteome studies of the two strains revealed that both RgpA and RgpB, along with putative virulence factors peptidylarginine deiminase and Clp protease were significantly decreased in the W83Δ717. Our results suggest that PG0717 has pleiotropic effects on W83 that affect microbial induced manipulation of host responses important for microbial clearance and infection control.
Collapse
Affiliation(s)
- Leticia Reyes
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Eileen Eiler-McManis
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Paulo H. Rodrigues
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Amandeep S. Chadda
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Shannon M. Wallet
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Myriam Bélanger
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Amanda G. Barrett
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| | - Sophie Alvarez
- Donald Danforth Plant Science Center, proteomics & mass spectrometry Core, St. Louis, Missouri, United States of America
| | - Debra Akin
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - William A. Dunn
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Ann Progulske-Fox
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, Gainesville, Florida, United States of America
| |
Collapse
|
155
|
Palm E, Khalaf H, Bengtsson T. Porphyromonas gingivalis downregulates the immune response of fibroblasts. BMC Microbiol 2013; 13:155. [PMID: 23841502 PMCID: PMC3717116 DOI: 10.1186/1471-2180-13-155] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 07/05/2013] [Indexed: 12/02/2022] Open
Abstract
Background Porphyromonas gingivalis is a key pathogen in periodontitis, an inflammatory disease leading to destruction of bone and tooth-supporting tissue. P. gingivalis possesses a number of pathogenic properties to enhance growth and survival, including proteolytic gingipains. Accumulating data shows that gingipains are involved in the regulation of host inflammatory responses. The aim of this study was to determine if P. gingivalis infection modulates the inflammatory response of fibroblasts, including the release of chemokines and cytokines. Human gingival fibroblasts or primary dermal fibroblasts were pre-stimulated with tumor-necrosis factor-α (TNF- α) and cocultured with P. gingivalis. Gingipain inhibitors were used to explore the effect of gingipains. CXCL8 levels were determined with ELISA and the relative levels of various inflammatory mediators were determined by a cytokine assay. Results TNF-α-triggered CXCL8 levels were completely abolished by viable P. gingivalis, whereas heat-killed P. gingivalis did not suppress CXCL8. Accumulation of CXCL8 was partially restored by an arginine-gingipain inhibitor. Furthermore, fibroblasts produced several inflammatory mediators, notably chemokines, all of which were suppressed by viable P. gingivalis. Conclusion These findings provide evidence that fibroblast-derived inflammatory signals are modulated by heat-instable gingipains, whereby the bacteria can escape killing by the host immune system and promote its own growth and establishment. In addition, we show that fibroblasts are important mediators of inflammation in response to infection and thereby play a crucial role in determining the nature and magnitude of the invasion of immune cells.
Collapse
Affiliation(s)
- Eleonor Palm
- Division of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden.
| | | | | |
Collapse
|
156
|
Abstract
Established risk factors for pancreatic cancer, including tobacco smoking, chronic pancreatitis, obesity and type 2 diabetes, collectively account for less than half of all pancreatic cancer cases. Inflammation plays a key role in pancreatic carcinogenesis, but it is unclear what causes local inflammation, other than pancreatitis. Epidemiological data suggest that Helicobacter pylori may be a risk factor for pancreatic cancer, and more recently, data suggest that periodontal disease, and Porphyromonas gingivalis, a pathogen for periodontal disease, may also play a role in pancreatic carcinogenesis. Individuals with periodontal disease have elevated markers of systemic inflammation, and oral bacteria can disseminate into the blood, stomach, heart and even reach the brain. These infections may contribute to the progression of pancreatic cancer by acting jointly with other pancreatic cancer risk factors that impact the inflammation and immune response, such as smoking and obesity, and the ABO genetic variant, recently linked to pancreatic cancer through genome-wide association studies. The complex interplay between bacteria, host immune response and environmental factors has been examined closely in relation to gastric cancer, but new research suggests bacteria may be playing a role in other gastrointestinal cancers. This review will summarize the literature on epidemiological studies examining infections that have been linked to pancreatic cancer and propose mechanistic pathways that may tie infections to pancreatic cancer.
Collapse
Affiliation(s)
- Dominique S Michaud
- Department of Epidemiology, School of Public Health, Brown University, Box G-S121-2, Providence, RI 02912, USA and
| |
Collapse
|
157
|
Walker JM, Maitra A, Walker J, Ehrnhoefer-Ressler MM, Inui T, Somoza V. Identification of Magnolia officinalis L. Bark Extract as the Most Potent Anti-Inflammatory of Four Plant Extracts. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2013; 41:531-44. [DOI: 10.1142/s0192415x13500389] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This study was designed to compare the anti-inflammatory potential of a Magnolia officinalis L. bark extract solely or in combination with extracts prepared from either Polygonum aviculare L., Sambucus nigra L., or Isodon japonicus L. in bacterial lipopolysaccharide (LPS) stimulated human gingival fibroblasts (HGF-1) and human U-937 monocytes, as cell models of periodontal disease. HGF-1 and U-937 cells were incubated with LPS from either Porphyromonas gingivalis or Escherichia coli together with the four plant extracts alone or in combination. Secretion of anti-inflammatory cytokines from HGF-1 and U-937 cells was measured by means of a multiplexed bead assay system. Magnolia officinalis L. bark extract, at concentrations of 1 μg/mL and 10 μg/mL, reduced interleukin 6 (IL-6) and interleukin-8 (IL-8) secretion from HGF-1 cells to 72.5 ± 28.6% and reduced matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) secretion from U-937 cells to 8.87 ± 7.97% compared to LPS-treated cells (100%). The other three extracts also reduced secretion of these inflammatory markers but were not as effective. Combination of 9 μg/mL Magnolia officinalis L. extract with 1 μg/mL of each of the other extracts maintained the anti-inflammatory effect of Magnolia officinalis L. extract. Combination of 5 μg/mL Magnolia officinalis L. extract with 5 μg/mL Isodon japonicus L. extract also maintained the anti-inflammatory potential of the Magnolia officinalis L. extract, whereas increasing concentrations of any of the other plant extracts in the combination experiments reduced the Magnolia officinalis L. extract efficacy in U-937 cells.
Collapse
Affiliation(s)
- Joel M. Walker
- Department of Nutritional and Physiological Chemistry, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | | | - Jessica Walker
- Department of Nutritional and Physiological Chemistry, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Miriam M. Ehrnhoefer-Ressler
- Department of Nutritional and Physiological Chemistry, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Taichi Inui
- Wm. Wrigley Jr. Company, Chicago, IL 60611, USA
| | - Veronika Somoza
- Department of Nutritional and Physiological Chemistry, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
158
|
Periodontal disease: linking the primary inflammation to bone loss. Clin Dev Immunol 2013; 2013:503754. [PMID: 23762091 PMCID: PMC3676984 DOI: 10.1155/2013/503754] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/06/2013] [Indexed: 01/22/2023]
Abstract
Periodontal disease (PD), or periodontitis, is defined as a bacterially induced disease of the tooth-supporting (periodontal) tissues. It is characterized by inflammation and bone loss; therefore understanding how they are linked would help to address the most efficacious therapeutic approach. Bacterial infection is the primary etiology but is not sufficient to induce the disease initiation or progression. Indeed, bacteria-derived factors stimulate a local inflammatory reaction and activation of the innate immune system. The innate response involves the recognition of microbial components by host cells, and this event is mediated by toll-like receptors (TLRs) expressed by resident cells and leukocytes. Activation of these cells leads to the release of proinflammatory cytokines and recruitment of phagocytes and lymphocytes. Activation of T and B cells initiates the adaptive immunity with Th1 Th2 Th17 Treg response and antibodies production respectively. In this inflammatory scenario, cytokines involved in bone regulation and maintenance have considerable relevance because tissue destruction is believed to be the consequence of host inflammatory response to the bacterial challenge. In the present review, we summarize host factors including cell populations, cytokines, and mechanisms involved in the destruction of the supporting tissues of the tooth and discuss treatment perspectives based on this knowledge.
Collapse
|
159
|
Phoolcharoen W, Sooampon S, Sritularak B, Likhitwitayawuid K, Kuvatanasuchati J, Pavasant P. Anti-periodontal Pathogen and Anti-inflammatory Activities of Oxyresveratrol. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800518] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Oxyresveratrol, a compound in the heartwood of Artocarpus lakoocha Roxb and other medicinal plants, has been shown to have various biological activities. However, these have not been studied in periodontal research. In this study, we investigated whether oxyresveratrol has antibacterial activity against the predominant perio-pathogenic bacteria Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans. Moreover, the anti-inflammatory properties of oxyresveratrol were studied in LPS-stimulated human periodontal ligament (hPDL) cells. The antibacterial activity of oxyresveratrol on P. gingivalis and A. actinomycetemcomitans was initially evaluated using a disc diffusion test. The anti-bacterial strength of oxyresveratrol was then assessed in vitro by determining the minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC). Furthermore, the effects of oxyresveratrol on the LPS-induced production of inflammatory mediators were measured in hPDL cells. The levels of cytokine mRNA and protein expression were determined using reverse transcriptase-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed that oxyresveratrol exhibited antibacterial activities against P. gingivalis with MIC and MBC values of 0.07 mg/mL and 0.16 mg/mL, respectively. The MIC and MBC values against A. actinomycetemcomitans were 0.08 mg/mL and 0.16 mg/mL, respectively. When examining inflammatory stimulation, LPS treatment strongly induced the expression of pro-inflammatory cytokines in hPDL cells. However, pre-treatment with oxyresveratrol significantly inhibited the expression of IL-6 and IL-8 at both the mRNA and protein levels. The IL-1β mRNA level was suppressed by oxyresveratrol, but the level of secreted IL-1β protein was not detectable using ELISA. The results of the present study indicate that oxyresveratrol is a potential candidate for use as an anti-periodontitis agent because of its anti-bacterial activity against the main oral pathogens related to periodontal disease and its anti-inflammatory activity in LPS-stimulated hPDL cells.
Collapse
Affiliation(s)
- Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sireerat Sooampon
- Department of Pharmacology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Developing Research Unit in Cell Signaling and Protein Function, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittisak Likhitwitayawuid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Prasit Pavasant
- Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
- Mineralized Tissue Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
160
|
Piau C, Arvieux C, Bonnaure-Mallet M, Jolivet-Gougeon A. Capnocytophaga spp. involvement in bone infections: a review. Int J Antimicrob Agents 2013; 41:509-15. [PMID: 23642766 DOI: 10.1016/j.ijantimicag.2013.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/06/2013] [Indexed: 10/26/2022]
Abstract
Capnocytophaga are commensal gliding bacteria that are isolated from human and animal oral flora and are responsible for infections both in immunocompromised and immunocompetent hosts. Accumulation of microbial plaque, loss of collagen attachment, and alveolar bone resorption around the tooth can lead to local Capnocytophaga spp. bone infections. These capnophilic bacteria, from oral sources or following domestic animal bites, are also causative agents of bacteraemia and systemic infections as well as osteomyelitis, septic arthritis, and infections on implants and devices. The present literature review describes the main aetiologies of bone infections due to Capnocytophaga spp., the cellular mechanisms involved, methods used for diagnosis, antimicrobial susceptibility, and effective treatments.
Collapse
Affiliation(s)
- Caroline Piau
- Laboratoire de Bactériologie, Rennes University Hospital, rue Henri Le Guilloux, 35043 Rennes, France
| | | | | | | |
Collapse
|
161
|
Abstract
The link between oral infections and adverse systemic conditions has attracted much attention in the research community. Several mechanisms have been proposed, including spread of the oral infection due to transient bacteremia resulting in bacterial colonization in extra-oral sites, systemic injury by free toxins of oral pathogens, and systemic inflammation caused by soluble antigens of oral pathogens. Mounting evidence supports a major role of the systemic spread of oral commensals and pathogens to distant body sites causing extra-oral infections and inflammation. We review here the most recent findings on systemic infections and inflammation complicated by oral bacteria, including cardiovascular disease, adverse pregnancy outcomes, rheumatoid arthritis, inflammatory bowel disease and colorectal cancer, respiratory tract infections, and organ inflammations and abscesses. The recently identified virulence mechanisms of oral species Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus mutans, and Campylobacter rectus are also reviewed. A pattern emerges indicating that only select subtype(s) of a given species, e.g., F. nucleatum subspecies animalis and polymorphum and S. mutans non-c serotypes, are prone to extra-oral translocation. These findings advocate the importance of identification and quantification of potential pathogens at the subtype levels for accurate prediction of disease potential.
Collapse
Affiliation(s)
- Y W Han
- Department of Periodontics, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | |
Collapse
|
162
|
Schenkein HA, Loos BG. Inflammatory mechanisms linking periodontal diseases to cardiovascular diseases. J Periodontol 2013; 84:S51-69. [DOI: 10.1902/jop.2013.134006] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
163
|
Rivera MF, Lee JY, Aneja M, Goswami V, Liu L, Velsko IM, Chukkapalli SS, Bhattacharyya I, Chen H, Lucas AR, Kesavalu LN. Polymicrobial infection with major periodontal pathogens induced periodontal disease and aortic atherosclerosis in hyperlipidemic ApoE(null) mice. PLoS One 2013; 8:e57178. [PMID: 23451182 PMCID: PMC3581444 DOI: 10.1371/journal.pone.0057178] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/18/2013] [Indexed: 01/12/2023] Open
Abstract
Periodontal disease (PD) and atherosclerosis are both polymicrobial and multifactorial and although observational studies supported the association, the causative relationship between these two diseases is not yet established. Polymicrobial infection-induced periodontal disease is postulated to accelerate atherosclerotic plaque growth by enhancing atherosclerotic risk factors of orally infected Apolipoprotein E deficient (ApoEnull) mice. At 16 weeks of infection, samples of blood, mandible, maxilla, aorta, heart, spleen, and liver were collected, analyzed for bacterial genomic DNA, immune response, inflammation, alveolar bone loss, serum inflammatory marker, atherosclerosis risk factors, and aortic atherosclerosis. PCR analysis of polymicrobial-infected (Porphyromonas gingivalis [P. gingivalis], Treponema denticola [T. denticola], and Tannerella forsythia [T. forsythia]) mice resulted in detection of bacterial genomic DNA in oral plaque samples indicating colonization of the oral cavity by all three species. Fluorescent in situ hybridization detected P. gingivalis and T. denticola within gingival tissues of infected mice and morphometric analysis showed an increase in palatal alveolar bone loss (p<0.0001) and intrabony defects suggesting development of periodontal disease in this model. Polymicrobial-infected mice also showed an increase in aortic plaque area (p<0.05) with macrophage accumulation, enhanced serum amyloid A, and increased serum cholesterol and triglycerides. A systemic infection was indicated by the detection of bacterial genomic DNA in the aorta and liver of infected mice and elevated levels of bacterial specific IgG antibodies (p<0.0001). This study was a unique effort to understand the effects of a polymicrobial infection with P. gingivalis, T. denticola and T. forsythia on periodontal disease and associated atherosclerosis in ApoEnull mice.
Collapse
Affiliation(s)
- Mercedes F. Rivera
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Ju-Youn Lee
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- Department of Periodontology, School of Dentistry, Pusan National University, Yangsan, Gyeongsangnam-do, Korea
| | - Monika Aneja
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Vishalkant Goswami
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Liying Liu
- Departments of Medicine and Molecular Genetics & Microbiology, Division of Cardiovascular Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Irina M. Velsko
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Sasanka S. Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Indraneel Bhattacharyya
- Department of Oral Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Hao Chen
- Departments of Medicine and Molecular Genetics & Microbiology, Division of Cardiovascular Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Alexandra R. Lucas
- Departments of Medicine and Molecular Genetics & Microbiology, Division of Cardiovascular Medicine, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Lakshmyya N. Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
164
|
Zhao C, Li X, Li L, Cheng G, Gong X, Zheng J. Dual functionality of antimicrobial and antifouling of poly(N-hydroxyethylacrylamide)/salicylate hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:1517-1524. [PMID: 23317290 DOI: 10.1021/la304511s] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The emergence and reemergence of microbial infection demand an urgent response to develop effective biomaterials that prevent biofilm formation and associated bacterial infection. In this work, we have synthesized and characterized hybrid poly(N-hydroxyethylacrylamide) (polyHEAA)/salicylate (SA) hydrogels with integrated antifouling and antimicrobial capacities. The antifouling efficacy of polyHEAA hydrogels was examined via exposure to proteins, cells, and bacteria, while the antimicrobial activity of SA-treated polyHEAA hydrogels was investigated against both gram-negative Escherichia coli RP437 and gram-positive Staphylococcus epidermidis. The results showed that polyHEAA/SA hydrogels exhibited high surface resistance to protein adsorption, cell adhesion, and bacteria attachment. The polyHEAA hydrogels were also characterized by their water content and state of water, revealing a strong ability to contain and retain high nonfreezable water content. This work demonstrates that the hybrid polyHEAA/SA hydrogels can be engineered to possess both antifouling and antimicrobial properties, which can be used for different in vitro and in vivo applications against bacterial infection.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | | | | | | | | | | |
Collapse
|
165
|
Kebschull M, Haupt M, Jepsen S, Deschner J, Nickenig G, Werner N. Mobilization of endothelial progenitors by recurrent bacteremias with a periodontal pathogen. PLoS One 2013; 8:e54860. [PMID: 23355901 PMCID: PMC3552864 DOI: 10.1371/journal.pone.0054860] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 12/19/2012] [Indexed: 11/19/2022] Open
Abstract
Background Periodontal infections are independent risk factors for atherosclerosis. However, the exact mechanisms underlying this link are yet unclear. Here, we evaluate the in vivo effects of bacteremia with a periodontal pathogen on endothelial progenitors, bone marrow-derived cells capable of endothelial regeneration, and delineate the critical pathways for these effects. Methods 12-week old C57bl6 wildtype or toll-like receptor (TLR)-2 deficient mice were repeatedly intravenously challenged with 109 live P. gingivalis 381 or vehicle. Numbers of Sca1+/flk1+ progenitors, circulating angiogenic cells, CFU-Hill, and late-outgrowth EPC were measured by FACS/culture. Endothelial function was assessed using isolated organ baths, reendothelization was measured in a carotid injury model. RANKL/osteoprotegerin levels were assessed by ELISA/qPCR. Results In wildtype mice challenged with intravenous P.gingivalis, numbers of Sca1+/flk1+ progenitors, CAC, CFU-Hill, and late-outgrowth EPC were strongly increased in peripheral circulation and spleen, whereas Sca1+/flk1+ progenitor numbers in bone marrow decreased. Circulating EPCs were functional, as indicated by improved endothelial function and improved reendothelization in infected mice. The osteoprotegerin/RANKL ratio was increased after P. gingivalis challenge in the bone marrow niche of wildtype mice and late-outgrowth EPC in vitro. Conversely, in mice deficient in TLR2, no increase in progenitor mobilization or osteoprotegerin/RANKL ratio was detected. Conclusion Recurrent transient bacteremias, a feature of periodontitis, increase peripheral EPC counts and decrease EPC pools in the bone marrow, thereby possibly reducing overall endothelial regeneration capacity, conceivably explaining pro-atherogenic properties of periodontal infections. These effects are seemingly mediated by toll-like receptor (TLR)-2.
Collapse
Affiliation(s)
- Moritz Kebschull
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | - Manuela Haupt
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | - Søren Jepsen
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - James Deschner
- Department of Periodontology, Operative and Preventive Dentistry, University of Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
| | - Nikos Werner
- Department of Internal Medicine II, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
166
|
Peyyala R, Kirakodu SS, Novak KF, Ebersole JL. Oral epithelial cell responses to multispecies microbial biofilms. J Dent Res 2013; 92:235-40. [PMID: 23300185 DOI: 10.1177/0022034512472508] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This report describes the use of a novel model of multispecies biofilms to stimulate profiles of cytokines/chemokines from oral epithelial cells that contribute to local inflammation in the periodontium. Streptococcus gordonii (Sg)/S. oralis (So)/S. sanguinis (Ss) and Sg/Fusobacterium nucleatum (Fn)/Porphyromonas gingivalis (Pg) biofilms elicited significantly elevated levels of IL-1α and showed synergistic stimulatory activity compared with an additive effect of the 3 individual bacteria. Only the Sg/Actinomyces naeslundii (An)/Fn multispecies biofilms elicited IL-6 levels above those of control. IL-8 was a primary response to the Sg/An/Fn biofilms, albeit the level was not enhanced compared with a predicted composite level from the monospecies challenges. These results represent some of the first data documenting alterations in profiles of oral epithelial cell responses to multispecies biofilms.
Collapse
Affiliation(s)
- R Peyyala
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
167
|
Fröhlich E, Kantyka T, Plaza K, Schmidt KH, Pfister W, Potempa J, Eick S. Benzamidine derivatives inhibit the virulence of Porphyromonas gingivalis. Mol Oral Microbiol 2012; 28:192-203. [PMID: 23279840 DOI: 10.1111/omi.12015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2012] [Indexed: 12/12/2022]
Abstract
We have previously shown that benzamidine-type compounds can inhibit the activity of arginine-specific cysteine proteinases (gingipains HRgpA and RgpB); well-known virulence factors of Porphyromonas gingivalis. They also hinder in vitro growth of this important periodontopathogenic bacterium. Apparently growth arrest is not associated with their ability to inhibit these proteases, because pentamidine, which is a 20-fold less efficient inhibitor of gingipain than 2,6-bis-(4-amidinobenzyl)-cyclohexanone (ACH), blocked P. gingivalis growth far more effectively. To identify targets for benzamidine-derived compounds other than Arg-gingipains, and to explain their bacteriostatic effects, P. gingivalis ATCC 33277 and P. gingivalis M5-1-2 (clinical isolate) cell extracts were subjected to affinity chromatography using a benzamidine-Sepharose column to identify proteins interacting with benzamidine. In addition to HRgpA and RgpB the analysis revealed heat-shock protein GroEL as another ligand for benzamidine. To better understand the effect of benzamidine-derived compounds on P. gingivalis, bacteria were exposed to benzamidine, pentamidine, ACH and heat, and the expression of gingipains and GroEL was determined. Exposure to heat and benzamidine-derived compounds caused significant increases in GroEL, at both the mRNA and protein levels. Interestingly, despite the fact that gingipains were shown to be the main virulence factors in a fertilized egg model of infection, mortality rates were strongly reduced, not only by ACH, but also by pentamidine, a relatively weak gingipain inhibitor. This effect may depend not only on gingipain inhibition but also on interaction of benzamidine derivatives with GroEL. Therefore these compounds may find use in supportive periodontitis treatment.
Collapse
Affiliation(s)
- E Fröhlich
- Department of Experimental Anesthesiology, Clinic for Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | | | | | | | | | | | | |
Collapse
|
168
|
Rodrigues PH, Reyes L, Chadda AS, Bélanger M, Wallet SM, Akin D, Dunn W, Progulske-Fox A. Porphyromonas gingivalis strain specific interactions with human coronary artery endothelial cells: a comparative study. PLoS One 2012; 7:e52606. [PMID: 23300720 PMCID: PMC3530483 DOI: 10.1371/journal.pone.0052606] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/19/2012] [Indexed: 12/24/2022] Open
Abstract
Both epidemiologic and experimental findings suggest that infection with Porphyromonas gingivalis exacerbates progression of atherosclerosis. As P. gingivalis exhibits significant strain variation, it is reasonable that different strains possess different capabilities and/or mechanisms by which they promote atherosclerosis. Using P. gingivalis strains that have been previously evaluated in the ApoE null atherosclerosis model, we assessed the ability of W83, A7436, 381, and 33277 to adhere, invade, and persist in human coronary artery endothelial (HCAE) cells. W83 and 381 displayed an equivalent ability to adhere to HCAE cells, which was significantly greater than both A7436 and 33277 (P<0.01). W83, 381, and 33277 were more invasive than A7436 (P<0.0001). However, only W83 and A7436 were able to remain viable up to 48 hours in HCAE cell cultures, whereas 381 was cleared by 48 hours and 33277 was cleared by 24 hours. These differences in persistence were in part due to strain specific differences in intracellular trafficking. Both W83 and 381 trafficked through the autophagic pathway, but not A7436 or 33277. Internalized 381 was the only strain that was dependent upon the autophagic pathway for its survival. Finally, we assessed the efficacy of these strains to activate HCAE cells as defined by production of IL-6, IL-8, IL-12p40, MCP-1, RANTES, TNF-α, and soluble adhesion molecules (sICAM-1, sVCAM-1, and sE-selectin). Only moderate inflammation was observed in cells infected with either W83 or A7436, whereas cells infected with 381 exhibited the most profound inflammation, followed by cells infected with 33277. These results demonstrate that virulence mechanisms among different P. gingivalis strains are varied and that pathogenic mechanisms identified for one strain are not necessarily applicable to other strains.
Collapse
Affiliation(s)
- Paulo H. Rodrigues
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Leticia Reyes
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Amandeep S. Chadda
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Myriam Bélanger
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Shannon M. Wallet
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, Florida, United States of America
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Debra Akin
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - William Dunn
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Ann Progulske-Fox
- Department of Oral Biology, College of Dentistry and Center for Molecular Microbiology, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
169
|
Papadopoulos G, Weinberg EO, Massari P, Gibson FC, Wetzler LM, Morgan EF, Genco CA. Macrophage-specific TLR2 signaling mediates pathogen-induced TNF-dependent inflammatory oral bone loss. THE JOURNAL OF IMMUNOLOGY 2012; 190:1148-57. [PMID: 23264656 DOI: 10.4049/jimmunol.1202511] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Porphyromonas gingivalis is a primary etiological agent of chronic periodontal disease, an infection-driven chronic inflammatory disease that leads to the resorption of tooth-supporting alveolar bone. We previously reported that TLR2 is required for P. gingivalis-induced alveolar bone loss in vivo, and our in vitro work implicated TNF as a key downstream mediator. In this study, we show that TNF-deficient (Tnf(-/-)) mice are resistant to alveolar bone loss following oral infection with P. gingivalis, and thus establish a central role for TNF in experimental periodontal disease. Using bone marrow-derived macrophages (BMDM) from wild-type and gene-specific knockout mice, we demonstrate that the initial inflammatory response to P. gingivalis in naive macrophages is MyD88 dependent and requires cooperative signaling of TLR2 and TLR4. The ability of P. gingivalis to activate cells via TLR2 or TLR4 was confirmed in TLR2- or TLR4-transformed human embryonic kidney cells. Additional studies using bacterial mutants demonstrated a role for fimbriae in the modulation of TLR-mediated activation of NF-κB. Whereas both TLR2 and TLR4 contributed to TNF production in naive macrophages, P. gingivalis preferentially exploited TLR2 in endotoxin-tolerant BMDM to trigger excessive TNF production. We found that TNF induced surface TLR2 expression and augmented TLR-induced cytokine production in P. gingivalis-stimulated BMDM, establishing a previously unidentified TNF-dependent feedback loop. Adoptive transfer of TLR2-expressing macrophages to TLR2-deficient mice restored the ability of P. gingivalis to induce alveolar bone loss in vivo. Collectively, our results identify a TLR2- and TNF-dependent macrophage-specific mechanism underlying pathogen-induced inflammatory bone loss in vivo.
Collapse
Affiliation(s)
- George Papadopoulos
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | |
Collapse
|
170
|
Cai Y, Kurita-Ochiai T, Hashizume T, Yamamoto M. Green tea epigallocatechin-3-gallate attenuates Porphyromonas gingivalis-induced atherosclerosis. Pathog Dis 2012; 67:76-83. [PMID: 23620122 DOI: 10.1111/2049-632x.12001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to determine whether epigallocatechin-3-gallate (EGCG) ameliorates Porphyromonas gingivalis-induced atherosclerosis. EGCG is a polyphenol extract from green tea with health benefits and P. gingivalis is shown here to accelerate atheroma formation in a murine model. Apolipoprotein E knockout mice were administered EGCG or vehicle in drinking water; they were then fed high-fat diets and injected with P. gingivalis three times a week for 3 weeks. Mice were then killed at 15 weeks. Atherosclerotic plaques in the proximal aorta were determined by Oil Red O staining. Atherosclerosis risk factors in serum, liver or aorta were analysed using cytokine antibody arrays, enzyme-linked immunosorbent assay and real-time PCR. Atherosclerotic lesion areas of the aortic sinus caused by P. gingivalis infection decreased in EGCG-treated groups, wherein EGCG reduced the production of C-reactive protein, monocyte chemoattractant protein-1, and oxidized low-density lipoprotein (LDL), and slightly lowered LDL/very LDL cholesterol in P. gingivalis-challenged mice serum. Furthermore, the increase in CCL2, MMP-9, ICAM-1, HSP60, CD44, LOX-1, NOX-4, p22phox and iNOS gene expression levels in the aorta of P. gingivalis-challenged mice were reduced in EGCG-treated mice. However, HO-1 mRNA levels were elevated by EGCG treatment, suggesting that EGCG, as a natural substance, inhibits P. gingivalis-induced atherosclerosis through anti-inflammatory and antioxidative effects.
Collapse
Affiliation(s)
- Yu Cai
- Department of Microbiology and Immunology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | |
Collapse
|
171
|
Glycyrrhetinic acid inhibits Porphyromonas gingivalis lipopolysaccharide-induced vascular permeability via the suppression of interleukin-8. Inflamm Res 2012; 62:145-54. [DOI: 10.1007/s00011-012-0560-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 09/18/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022] Open
|
172
|
Hayashi C, Papadopoulos G, Gudino CV, Weinberg EO, Barth KR, Madrigal AG, Chen Y, Ning H, LaValley M, Gibson FC, Hamilton JA, Genco CA. Protective role for TLR4 signaling in atherosclerosis progression as revealed by infection with a common oral pathogen. THE JOURNAL OF IMMUNOLOGY 2012; 189:3681-8. [PMID: 22956579 DOI: 10.4049/jimmunol.1201541] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clinical and epidemiological studies have implicated chronic infections in the development of atherosclerosis. It has been proposed that common mechanisms of signaling via TLRs link stimulation by multiple pathogens to atherosclerosis. However, how pathogen-specific stimulation of TLR4 contributes to atherosclerosis progression remains poorly understood. In this study, atherosclerosis-prone apolipoprotein-E null (ApoE(-/-)) and TLR4-deficient (ApoE(-/-)TLR4(-/-)) mice were orally infected with the periodontal pathogen Porphyromonas gingivalis. ApoE(-/-)TLR4(-/-) mice were markedly more susceptible to atherosclerosis after oral infection with P. gingivalis. Using live animal imaging, we demonstrate that enhanced lesion progression occurs progressively and was increasingly evident with advancing age. Immunohistochemical analysis of lesions from ApoE(-/-)TLR4(-/-) mice revealed an increased inflammatory cell infiltrate composed primarily of macrophages and IL-17 effector T cells (Th17), a subset linked with chronic inflammation. Furthermore, enhanced atherosclerosis in TLR4-deficient mice was associated with impaired development of Th1 immunity and regulatory T cell infiltration. In vitro studies suggest that the mechanism of TLR4-mediated protective immunity may be orchestrated by dendritic cell IL-12 and IL-10, which are prototypic Th1 and regulatory T cell polarizing cytokines. We demonstrate an atheroprotective role for TLR4 in response to infection with the oral pathogen P. gingivalis. Our results point to a role for pathogen-specific TLR signaling in chronic inflammation and atherosclerosis.
Collapse
Affiliation(s)
- Chie Hayashi
- Section of Infectious Diseases, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Taxman DJ, Lei Y, Zhang S, Holley-Guthrie E, Offenbacher S, Ting JPY. ASC-dependent RIP2 kinase regulates reduced PGE2 production in chronic periodontitis. J Dent Res 2012; 91:877-82. [PMID: 22828789 DOI: 10.1177/0022034512454541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Levels of prostaglandin E(2) (PGE(2)) and its processing enzyme, prostaglandin-endoperoxide-synthase-2/ cyclooxygenase-2 (PTGS2/COX-2), are elevated in actively progressing periodontal lesions, but suppressed in chronic disease. COX-2 expression is regulated through inflammatory signaling that converges on the mitogen-activated protein kinase (MAPK) pathway. Emerging evidence suggests a role for the inflammatory adaptor protein, ASC/Pycard, in MAPK activation. We postulated that ASC may represent a mediator of the MAPK-mediated regulatory network of PGE(2) production. Using RNAi-mediated gene slicing, we demonstrated that ASC regulates COX-2 expression and PGE(2) production in THP1 monocytic cells following infection with Porphyromonas gingivalis (Pg). Production of PGE(2) did not require the inflammasome adaptor function of ASC, but was dependent on MAPK activation. Furthermore, the MAP kinase kinase kinase CARD domain-containing protein RIPK2 was induced by Pg in an ASC-dependent manner. Reduced ASC and RIPK2 levels were revealed by orthogonal comparison of the expression of the RIPK family in ASC-deficient THP1 cells with that in chronic periodontitis patients. We show that pharmacological inhibition of RIPK2 represses PGE(2) secretion, and RNAi-mediated silencing of RIPK2 leads to diminished MAPK activation and PGE(2) secretion. These findings identify a novel ASC-RIPK2 axis in the generation of PGE(2) that is repressed in patients diagnosed with chronic adult periodontitis.
Collapse
Affiliation(s)
- D J Taxman
- Department of Microbiology and Immunology, School of Medicine; University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | | | | | |
Collapse
|
174
|
Pushalkar S, Ji X, Li Y, Estilo C, Yegnanarayana R, Singh B, Li X, Saxena D. Comparison of oral microbiota in tumor and non-tumor tissues of patients with oral squamous cell carcinoma. BMC Microbiol 2012; 12:144. [PMID: 22817758 PMCID: PMC3507910 DOI: 10.1186/1471-2180-12-144] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/20/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Bacterial infections have been linked to malignancies due to their ability to induce chronic inflammation. We investigated the association of oral bacteria in oral squamous cell carcinoma (OSCC/tumor) tissues and compared with adjacent non-tumor mucosa sampled 5 cm distant from the same patient (n = 10). By using culture-independent 16S rRNA approaches, denaturing gradient gel electrophoresis (DGGE) and cloning and sequencing, we assessed the total bacterial diversity in these clinical samples. RESULTS DGGE fingerprints showed variations in the band intensity profiles within non-tumor and tumor tissues of the same patient and among the two groups. The clonal analysis indicated that from a total of 1200 sequences characterized, 80 bacterial species/phylotypes were detected representing six phyla, Firmicutes, Bacteroidetes, Proteobacteria, Fusobacteria, Actinobacteria and uncultivated TM7 in non-tumor and tumor libraries. In combined library, 12 classes, 16 order, 26 families and 40 genera were observed. Bacterial species, Streptococcus sp. oral taxon 058, Peptostreptococcus stomatis, Streptococcus salivarius, Streptococcus gordonii, Gemella haemolysans, Gemella morbillorum, Johnsonella ignava and Streptococcus parasanguinis I were highly associated with tumor site where as Granulicatella adiacens was prevalent at non-tumor site. Streptococcus intermedius was present in 70% of both non-tumor and tumor sites. CONCLUSIONS The underlying changes in the bacterial diversity in the oral mucosal tissues from non-tumor and tumor sites of OSCC subjects indicated a shift in bacterial colonization. These most prevalent or unique bacterial species/phylotypes present in tumor tissues may be associated with OSCC and needs to be further investigated with a larger sample size.
Collapse
Affiliation(s)
- Smruti Pushalkar
- Department of Basic Sciences and Craniofacial Biology, New York University College of Dentistry, 345 E, 24th Street, Room 921B, New York, NY, 10010, USA
| | - Xiaojie Ji
- Department of Basic Sciences and Craniofacial Biology, New York University College of Dentistry, 345 E, 24th Street, Room 921B, New York, NY, 10010, USA
- Department of Chemical and Biological Sciences, Polytechnic Institute of NYU, New York, NY, USA
| | - Yihong Li
- Department of Basic Sciences and Craniofacial Biology, New York University College of Dentistry, 345 E, 24th Street, Room 921B, New York, NY, 10010, USA
| | - Cherry Estilo
- Dental Service, Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Ramanathan Yegnanarayana
- Laboratory of Epithelial Cancer Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Bhuvanesh Singh
- Laboratory of Epithelial Cancer Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Xin Li
- Department of Basic Sciences and Craniofacial Biology, New York University College of Dentistry, 345 E, 24th Street, Room 921B, New York, NY, 10010, USA
| | - Deepak Saxena
- Department of Basic Sciences and Craniofacial Biology, New York University College of Dentistry, 345 E, 24th Street, Room 921B, New York, NY, 10010, USA
| |
Collapse
|
175
|
Kozarov E. Bacterial invasion of vascular cell types: vascular infectology and atherogenesis. Future Cardiol 2012; 8:123-38. [PMID: 22185451 DOI: 10.2217/fca.11.75] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
To portray the chronic inflammation in atherosclerosis, leukocytic cell types involved in the immune response to invading pathogens are often the focus. However, atherogenesis is a complex pathological deterioration of the arterial walls, where vascular cell types are participants with regards to deterioration and disease. Since other recent reviews have detailed the role of both the innate and adaptive immune response in atherosclerosis, herein we will summarize the latest developments regarding the association of bacteria with vascular cell types: infections as a risk factor for atherosclerosis; bacterial invasion of vascular cell types; the atherogenic sequelae of bacterial presence such as endothelial activation and blood clotting; and the identification of the species that are able to colonize this niche. The evidence of a polybacterial infectious component of the atheromatous lesions opens the doors for exploration of the new field of vascular infectology and for the study of atherosclerosis microbiome.
Collapse
Affiliation(s)
- Emil Kozarov
- Section of Oral & Diagnostic Sciences, Columbia University Medical Center, 630 West 168 Street, P&S Box 20, New York, NY 10032, USA.
| |
Collapse
|
176
|
Abstract
PURPOSE OF REVIEW This review focuses on recent research that explores the role of infectious organisms in the development of autoimmunity and rheumatoid arthritis (RA). RECENT FINDINGS Human and animal studies provide further evidence supporting a role for the periodontal pathogen, Porphyromonas gingivalis, in the development of RA. The microbiome plays a key role in the developing immune system. Alterations in the bowel microbiome lead to altered innate and adaptive immune responses potentially relevant to the development or persistence of RA. SUMMARY Microbes and the host response to microbes are important factors in the maintenance of health. Abnormalities or imbalances in these responses can lead to the development of autoimmune inflammatory conditions such as RA.
Collapse
|
177
|
Michelin MCAN, Teixeira SRL, Ando-Suguimoto ES, Lucas SRR, Mayer MPA. Porphyromonas gingivalis infection at different gestation periods on fetus development and cytokines profile. Oral Dis 2012; 18:648-54. [PMID: 22471815 DOI: 10.1111/j.1601-0825.2012.01917.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AIM Infective agents may affect pregnancy outcomes by deregulating homeostasis. OBJECTIVES The effects of Porphyromonas gingivalis infection before and at different gestation periods were evaluated. MATERIALS AND METHODS Wistar rats infected via subcutaneous with P. gingivalis W83, one week before mating (BM), days 1 (PR1) and 11 of gestation (PR11), and controls were evaluated, and samples were obtained at the end of gestation. P. gingivalis was detected by PCR. Cytokine was determined by ELISA. RESULTS Infected rats had lower maternal gain of weight. Implantation was not observed in 2/12 BM rats. PR11 presented more fetal-placental resorptions and lower placenta/fetus weight than controls. P. gingivalis was detected in placenta and fetus. IL-6 and TNF-α levels were higher in placenta and serum of infected groups, except for TNF-α in placenta of PR1. IL-1β levels were higher in placenta of PR11, but lower in serum and placenta of PR1. There were no differences in IL-10 and PGE2 concentrations among the groups (P < 0.05). CONCLUSIONS The experimental infection by P. gingivalis resulted in alterations in the gestational pattern and in fetal development. The consequences of infection at mid-gestation were more severe than at the beginning, possibly due to the induction of pro-inflammatory cytokines in the fetal compartment.
Collapse
Affiliation(s)
- M C A N Michelin
- Department of Morphology and Genetics, Laboratory of Developmental Biology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | |
Collapse
|
178
|
Rutger Persson G. Rheumatoid arthritis and periodontitis - inflammatory and infectious connections. Review of the literature. J Oral Microbiol 2012; 4:JOM-4-11829. [PMID: 22347541 PMCID: PMC3280043 DOI: 10.3402/jom.v4i0.11829] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 01/23/2012] [Accepted: 01/23/2012] [Indexed: 12/20/2022] Open
Abstract
An association between oral disease/periodontitis and rheumatoid arthritis (RA) has been considered since the early 1820s. The early treatment was tooth eradication. Epidemiological studies suggest that the prevalence of RA and periodontitis may be similar and about 5% of the population are aged 50 years or older. RA is considered as an autoimmune disease whereas periodontitis has an infectious etiology with a complex inflammatory response. Both diseases are chronic and may present with bursts of disease activity. Association studies have suggested odds ratios of having RA and periodontitis varying from 1.8:1 (95% CI: 1.0–3.2, NS) to 8:1 (95% CI: 2.9–22.1, p<0.001). Genetic factors are driving the host responses in both RA and periodontitis. Tumor necrosis factor-α, a proinflammatory cytokine, regulates a cascade of inflammatory events in both RA and periodontitis. Porphyromonas gingivalis is a common pathogen in periodontal infection. P. gingivalis has also been identified in synovial fluid. The specific abilities of P. gingivalis to citrullinate host peptides by proteolytic cleavage at Arg-X peptide bonds by arginine gingipains can induce autoimmune responses in RA through development of anticyclic citrullinated peptide antibodies. In addition, P. gingivalis carries heat shock proteins (HSPs) that may also trigger autoimmune responses in subjects with RA. Data suggest that periodontal therapies combined with routine RA treatments further improve RA status.
Collapse
Affiliation(s)
- G Rutger Persson
- Department of Periodontics and Department of Oral Medicine, University of Washington, Seattle, WA, USA; Oral Health Sciences, University of Kristianstad, Kristianstad, Sweden; and Department of Periodontology, University of Bern, Bern, Switzerland
| |
Collapse
|
179
|
Huck O, Elkaim R, Davideau J, Tenenbaum H. Porphyromonas gingivalis and its lipopolysaccharide differentially regulate the expression of cathepsin B in endothelial cells. Mol Oral Microbiol 2012; 27:137-48. [DOI: 10.1111/j.2041-1014.2012.00638.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
180
|
Janardhanam SB, Prakasam S, Swaminathan VT, Kodumudi KN, Zunt SL, Srinivasan M. Differential expression of TLR-2 and TLR-4 in the epithelial cells in oral lichen planus. Arch Oral Biol 2011; 57:495-502. [PMID: 22119043 DOI: 10.1016/j.archoralbio.2011.10.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 10/03/2011] [Accepted: 10/17/2011] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Oral lichen planus (OLP) is a chronic inflammatory condition of the mucosa mediated by a complex signalling network between the keratinocytes and the sub-epithelial lymphocytes. Since OLP occurs in constantly renewing epithelium continuously exposed to commensals, we hypothesised that the epithelial cell microflora interactions may mediate the persistent inflammation. By virtue of their ability to respond to most oral commensal microorganisms, the toll like receptor-2 (TLR-2) and TLR-4 are the most widely investigated receptors in oral diseases. The overall objective of this study was to investigate the role of TLR-2 and TLR-4 in OLP. DESIGN Systemically healthy OLP and control subjects were recruited after obtaining the institutional review board approval. Expression of TLR-2 and TLR-4 proteins and transcripts in the tissue epithelium and in the epithelial cells isolated from saliva were determined by immunohistochemistry and quantitative real-time polymerase chain reaction respectively. RESULTS The tissue epithelium and the salivary epithelial cells expressed reduced TLR-2 and increased TLR-4 proteins and transcripts in OLP. The salivary epithelial cells from OLP subjects secreted elevated IL-12. However, upon stimulation with bacterial lipopolysaccharide the epithelial cells from OLP exhibited a mixed Th1 (IL-12) and Th2 (IL-4) response. Presence of dexamethasone significantly reduced inflammatory cytokines in the in vitro stimulated cultures of salivary epithelial cells from OLP subjects. CONCLUSION Collectively, our data support a critical role for the host-microbial interactions in the OLP pathogenesis. The potential use of exfoliated oral epithelial cells in saliva for functional analysis exponentially increases its value as biological specimen for clinical research.
Collapse
Affiliation(s)
- Srihari B Janardhanam
- Department of Oral Pathology, Medicine and Radiology, Indiana University School of Dentistry, Indianapolis, IN 46202-5186, United States
| | | | | | | | | | | |
Collapse
|
181
|
Fukasawa A, Kurita-Ochiai T, Hashizume T, Kobayashi R, Akimoto Y, Yamamoto M. Porphyromonas gingivalis accelerates atherosclerosis in C57BL/6 mice fed a high-fat diet. Immunopharmacol Immunotoxicol 2011; 34:470-6. [PMID: 22047042 DOI: 10.3109/08923973.2011.627866] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Porphyromonas gingivalis has been shown to accelerate atherosclerotic lesion development in atherosclerotic apo E-deficient mice. Here, we investigated whether repeated P. gingivalis injection affected the inflammatory and atherosclerotic responses of C57BL/6 mice fed a high-fat diet (HFD). MATERIALS AND METHODS Eight-week-old C57BL/6 mice fed either HFD or a regular chow diet (RD) were inoculated intravenously with P. gingivalis or phosphate-buffered saline three times per week for 10 weeks and sacrificed at 19 weeks of age. Atheromatous lesions in the proximal aorta of each animal were analyzed histomorphometrically, and the serum cytokine and C-reactive protein (CRP) levels were determined. RESULTS Long-term HFD feeding as compared to RD feeding led to a slight increase in atheromatous lesions in the aortic sinus as well as increases in the levels of serum monocyte chemoattractant protein 1. Further, P. gingivalis injection significantly enhanced the formation of atherosclerotic plaque, and increased CRP and inflammatory cytokine levels, in mice fed the HFD, although no further increase in LDL was observed. CONCLUSION These results suggest that bacteremia-induced by repeated injection with P. gingivalis accelerates atherosclerosis in normal C57BL/6 mice by initiating inflammation, and is therefore implicated in chronic infection-related pathogenicity.
Collapse
Affiliation(s)
- Asuka Fukasawa
- Department of Oral Surgery, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
182
|
Vernon LT, Babineau DC, Demko CA, Lederman MM, Wang X, Toossi Z, Weinberg A, Rodriguez B. A prospective cohort study of periodontal disease measures and cardiovascular disease markers in HIV-infected adults. AIDS Res Hum Retroviruses 2011; 27:1157-66. [PMID: 21443451 PMCID: PMC3206743 DOI: 10.1089/aid.2010.0320] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The determinants of HIV-associated cardiovascular disease (CVD) are not well understood. Periodontal disease (PD) has been linked to CVD but this connection has not been examined in HIV infection. We followed a cohort of HIV-infected adults to ascertain whether PD was associated with carotid artery intima media thickness (IMT) and brachial artery flow-mediated dilation (FMD). We performed a longitudinal observational study of HIV-infected adults on HAART for <2 years with no known heart disease. PD was characterized clinically and microbiologically. Cardiovascular disease was assessed by IMT/FMD. Linear mixed models assessed cross-sectional and longitudinal associations between PD and FMD/IMT. Forty three HIV(+) adults completed a median of 24 (6-44) months on the study. Defining delta to be the change in a variable between baseline and a follow-up time, longitudinally, on average and after adjusting for change in time, CVD-specific and HIV-specific potential confounding covariates, a 1-log(10) increase in delta Porphyromonas gingivalis was associated with a 0.013 mm increase in delta IMT (95% CI: 0.0006-0.0262; p=0.04). After adjusting for the same potential confounding covariates, a 10% increase in delta gingival recession was associated with a 2.3% increase in delta FMD (95% CI: 0.4-4.2; p=0.03). In a cohort of HIV-infected adults, an increase in subgingival Porphyromonas gingivalis, a known periodontal pathogen, was significantly associated with longitudinal increases in IMT, while increased gingival recession, which herein may represent PD resolution, was significantly associated with longitudinal improvement in FMD. In the context of HIV infection, PD may contribute to CVD risk. Intervention studies treating PD may help clarify this association.
Collapse
Affiliation(s)
- Lance T Vernon
- Case Western Reserve University School of Dental Medicine, Department of Biological Sciences, Cleveland, Ohio 44106-4905, USA.
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D. Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol 2011; 10:471-80. [PMID: 21511199 DOI: 10.1016/s1474-4422(11)70066-7] [Citation(s) in RCA: 408] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Stroke is the second most common cause of death worldwide and a major cause of acquired disability in adults. Despite tremendous progress in understanding the pathophysiology of stroke, translation of this knowledge into effective therapies has largely failed, with the exception of thrombolysis, which only benefits a small proportion of patients. Systemic and local immune responses have important roles in causing stroke and are implicated in the primary and secondary progression of ischaemic lesions, as well as in repair, recovery, and overall outcome after a stroke. However, potential therapeutic targets in the immune system and inflammatory responses have not been well characterised. Development of novel and effective therapeutic strategies for stroke will require further investigation of these pathways in terms of their temporal profile (before, during, and after stroke) and risk-to-benefit therapeutic ratio of modulating them.
Collapse
Affiliation(s)
- Richard Macrez
- Institut National de la Santé et de la Recherche Médicale (INSERM) U919, Serine Proteases and Pathophysiology of the Neurovascular Unit, UMR CNRS 6232 Ci-NAPs, Cyceron, Université de Caen Basse-Normandie, Caen, France
| | | | | | | | | | | | | |
Collapse
|
184
|
|
185
|
Maisetta G, Brancatisano FL, Esin S, Campa M, Batoni G. Gingipains produced by Porphyromonas gingivalis ATCC49417 degrade human-β-defensin 3 and affect peptide's antibacterial activity in vitro. Peptides 2011; 32:1073-7. [PMID: 21335044 DOI: 10.1016/j.peptides.2011.02.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/07/2011] [Accepted: 02/09/2011] [Indexed: 12/21/2022]
Abstract
Porphyromonas gingivalis, one of the major pathogen associated with periodontitis, is a highly proteolytic bacterial species. Production of proteases is a common microbial virulence factor that enables the destruction of host tissues and evasion from host defense mechanisms. Antimicrobial peptides are important effector molecules of the innate immune system with a broad range of antimicrobial and immunoregulatory activities. We and others have previously demonstrated that P. gingivalis is relatively resistant to the bactericidal activity of the human β-defensin 3 (hBD3). In this study, ability of proteases released by the pathogenic strain of P. gingivalis ATCC 49417 to degrade hBD3 and to affect the antibacterial properties of the peptide was assessed. P. gingivalis culture supernatants (CS) were found to degrade hBD3 in a concentration- and time-dependent manner. Such degradation was mainly due to the activity of Arg and Lys-gingipains, as pretreatment of CS with inhibitors selective for this class of proteases abolished CS ability to degrade hBD3. Importantly, preincubation of hBD3 with CS reduced peptide's antibacterial activity against a susceptible strain of Staphylococcus aureus, while the presence of gingipain inhibitors in the bactericidal assay increased P. gingivalis susceptibility to hBD3. Altogether these results suggest that gingipains may have a role in the resistance of P. gingivalis ATCC 49417 to hBD3.
Collapse
Affiliation(s)
- Giuseppantonio Maisetta
- Dipartimento di Patologia Sperimentale, Biotecnologie Mediche, Infettivologia ed Epidemiologia, University of Pisa, Pisa, Italy
| | | | | | | | | |
Collapse
|
186
|
Hayashi C, Viereck J, Hua N, Phinikaridou A, Madrigal AG, Gibson FC, Hamilton JA, Genco CA. Porphyromonas gingivalis accelerates inflammatory atherosclerosis in the innominate artery of ApoE deficient mice. Atherosclerosis 2010. [PMID: 21251656 DOI: 10.1016/j.atherosclerosis.2010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Studies in humans support a role for the oral pathogen Porphyromonas gingivalis in the development of inflammatory atherosclerosis. The goal of this study was to determine if P. gingivalis infection accelerates inflammation and atherosclerosis in the innominate artery of mice, an artery which has been reported to exhibit many features of human atherosclerotic disease, including plaque rupture. METHODS AND RESULTS Apolipoprotein E-deficient (ApoE-/-) mice were orally infected with P. gingivalis, and magnetic resonance imaging (MRI) was used to monitor the progression of atherosclerosis in live mice. P. gingivalis infected mice exhibited a statistically significant increase in atherosclerotic plaque in the innominate artery as compared to uninfected mice. Polarized light microscopy and immunohistochemistry revealed that the innominate arteries of infected mice had increased lipids, macrophages and T cells as compared to uninfected mice. Increases in plaque, total cholesterol esters and cholesterol monohydrate crystals, macrophages, and T cells were prevented by immunization with heat-killed P. gingivalis prior to pathogen exposure. CONCLUSIONS These are the first studies to demonstrate progression of inflammatory plaque accumulation in the innominate arteries by in vivo MRI analysis following pathogen exposure, and to document protection from plaque progression in the innominate artery via immunization.
Collapse
Affiliation(s)
- Chie Hayashi
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, United States.
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Hayashi C, Viereck J, Hua N, Phinikaridou A, Madrigal AG, Gibson FC, Hamilton JA, Genco CA. Porphyromonas gingivalis accelerates inflammatory atherosclerosis in the innominate artery of ApoE deficient mice. Atherosclerosis 2010; 215:52-9. [PMID: 21251656 DOI: 10.1016/j.atherosclerosis.2010.12.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/29/2010] [Accepted: 12/10/2010] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Studies in humans support a role for the oral pathogen Porphyromonas gingivalis in the development of inflammatory atherosclerosis. The goal of this study was to determine if P. gingivalis infection accelerates inflammation and atherosclerosis in the innominate artery of mice, an artery which has been reported to exhibit many features of human atherosclerotic disease, including plaque rupture. METHODS AND RESULTS Apolipoprotein E-deficient (ApoE-/-) mice were orally infected with P. gingivalis, and magnetic resonance imaging (MRI) was used to monitor the progression of atherosclerosis in live mice. P. gingivalis infected mice exhibited a statistically significant increase in atherosclerotic plaque in the innominate artery as compared to uninfected mice. Polarized light microscopy and immunohistochemistry revealed that the innominate arteries of infected mice had increased lipids, macrophages and T cells as compared to uninfected mice. Increases in plaque, total cholesterol esters and cholesterol monohydrate crystals, macrophages, and T cells were prevented by immunization with heat-killed P. gingivalis prior to pathogen exposure. CONCLUSIONS These are the first studies to demonstrate progression of inflammatory plaque accumulation in the innominate arteries by in vivo MRI analysis following pathogen exposure, and to document protection from plaque progression in the innominate artery via immunization.
Collapse
Affiliation(s)
- Chie Hayashi
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, 650 Albany Street, Boston, MA 02118, United States.
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Ball MA, Utsunomiya T, Ikemoto K, Kobayashi M, Pollard RB, Suzuki F. The antiviral effect of keishi-ni-eppi-ichi-to, a traditional Chinese herbal medicine, on influenza A2(H2N2) virus infection in mice. EXPERIENTIA 1994; 50:774-9. [PMID: 7520870 DOI: 10.1007/bf01919381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The antiviral effect of Keishi-ni-eppi-ichi-to (TJS-064), a traditional Chinese herbal medicine, was investigated in mice infected with influenza A2(H2N2) virus. When mice exposed to a 5 LD50 dose of the virus were treated orally with a 70 mg/kg dose of TJS-064 1 day before and 1 day and 4 days after the infection, 100% survived over a 25-day experimental period. At the end of this period all the control mice, treated with saline alone, had died; their mean survival time in days (MSD) was 11.2 days. When mice infected with a 10 LD50 dose of the virus were treated with TJS-064, the MSD was > 17.4 days and there was a 50% survival rate, while the control group had a MSD of 8.7 days and a 0% survival rate. No significant antiviral effect of TJS-064 was observed when the agent was administered orally to mice infected with a 100 LD50 or larger dose of influenza virus. Pulmonary consolidations, virus titers in lung tissues and HAI titers in sera of infected mice treated with TJS-064 were all significantly lower than those of infected mice treated with saline. Interferon activities were detected in sera of mice treated with the agent at a dose of 100 mg/kg orally. Since viricidal and viristatic activities of the agent against influenza virus were not demonstrated, the antiviral effects of TJS-064 may be expressed through the host's antiviral functions including interferon production.
Collapse
Affiliation(s)
- M A Ball
- Department of Internal Medicine, University of Texas Medical Branch, Galveston 77555
| | | | | | | | | | | |
Collapse
|