151
|
Dong C, Zhang H, Yang Y, He X, Liu L, Fu J, Shi J, Wu Z. Physiological and transcriptomic analyses to determine the responses to phosphorus utilization in Nostoc sp. HARMFUL ALGAE 2019; 84:10-18. [PMID: 31128794 DOI: 10.1016/j.hal.2019.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
Phosphorus (P) is an important factor driving algal growth in aquatic ecosystems. In the present study, the growth, P uptake and utilization, photosynthesis, and transcriptome profile of Nostoc sp. were measured when Nostoc sp. cultured in media containing β-glycerol phosphate (β-gly, containing COP bonds), 2-aminoethylphosphonic acid (2-amin, containing CP bonds), or orthophosphate (K2HPO4), and in P-free (NP) medium. The results revealed that NP treatment adversely affected the growth and photosynthesis of Nostoc sp. and significantly down-regulated the expression of genes related to nutrient transport and material metabolism. Furthermore, 2-amin treatment reduced the growth of Nostoc sp. but did not significantly reduce photosynthesis, and the treatments of NP and 2-amin up-regulated the expressions of genes related antioxidation and stress. Additionally, there were no obvious differences in growth, photosynthesis, and phosphorus utilization between the β-gly and K2HPO4 treatments. These results suggested that Nostoc had a flexible ability to utilize P, which might play an important role in its widespread distribution in the environment.
Collapse
Affiliation(s)
- Congcong Dong
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Hongbo Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Yanjun Yang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Xinyu He
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Li Liu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Junke Fu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Junqiong Shi
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China
| | - Zhongxing Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), Chongqing Key Laboratory of Plant Ecology and Resources Research in Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
152
|
Microcrystalline Apatite Minerals: Mechanochemical Activation for Agricultural Application. MINERALS 2019. [DOI: 10.3390/min9040211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphate minerals of apatite from three mines with different amounts of gangue minerals were activated by milling to increase their microcrystallinity and subsequent dissolution in a citric acid solution to serve as slow-release fertilizers for agricultural production. XRD (X-ray diffraction), FTIR (Fourier Transform Infrared), and SEM (Scanning electron microscope) were employed to characterize the properties of the prepared samples, such as changes in microcrystallinity, mineral composition, lattice structure, and granule morphology during the milling. With prolonged milling time, accompanied with the progress in microcrystallinity, the ratio of the formed amorphous compositions increased, resulting in higher dissolution in citric acid solution. In the case of carrot plants, the addition of the microcrystalline phosphate rock together with phosphorus bacteria allowed an efficient nutrient (P, K, and N) uptake as high as 77.0%, 36.7%, and 32.2%, which increased by 91.3%, 123.0%, and 105.2%, respectively, from the growth on an original soil without any addition, demonstrating clear contribution of the activated apatites in agricultural production.
Collapse
|
153
|
Zhang SF, Chen Y, Xie ZX, Zhang H, Lin L, Wang DZ. Unraveling the molecular mechanism of the response to changing ambient phosphorus in the dinoflagellate Alexandrium catenella with quantitative proteomics. J Proteomics 2019; 196:141-149. [PMID: 30414514 DOI: 10.1016/j.jprot.2018.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
Abstract
Phosphorus (P) is a key macronutrient limiting cell growth and bloom formation of marine dinoflagellates. Physiological responses to changing ambient P have been investigated in dinoflagellates; however, the molecular mechanisms behind these responses remain limited. Here, we compared the protein expression profiles of a marine dinoflagellate Alexandrium catenella grown in inorganic P-replete, P-deficient, and inorganic- and organic-P resupplied conditions using an iTRAQ-based quantitative proteomic approach. P deficiency inhibited cell growth and enhanced alkaline phosphatase activity (APA) but had no effect on photosynthetic efficiency. After P resupply, the P-deficient cells recovered growth rapidly and APA decreased. Proteins involved in sphingolipid metabolism, organic P utilization, starch and sucrose metabolism, and photosynthesis were up-regulated in the P-deficient cells, while proteins associated with protein synthesis, nutrient assimilation and energy metabolism were down-regulated. The responses of the P-deficient A. catenella to the resupply of organic and inorganic P presented significant differences: more biological processes were enhanced in the organic P-resupplied cells than those in the inorganic P-resupplied cells; A. catenella might directly utilize G-6-P for nucleic acid synthesis through the pentose phosphate pathway. Our results indicate that A. catenella has evolved diverse adaptive strategies to ambient P deficiency and specific mechanisms to utilize dissolved organic P, which might be an important reason resulting in A. catenella bloom in the low inorganic P environment. BIOLOGICAL SIGNIFICANCE: The ability of marine dinoflagellates to utilize different phosphorus (P) species and adapt to ambient P deficiency determines their success in the ocean. In this study, we investigated the response mechanisms of a dinoflagellate Alexandrium catenella to ambient P deficiency, and resupply of inorganic- and organic-P at the proteome level. Our results indicated that A. catenella initiated multiple adaptive strategies to ambient P deficiency, e.g. utilizing nonphospholipids and glycosphingolipids instead of phospholipids, enhancing expression of acid phosphatase to utilize organic P, and reallocating intracellular energy. Proteome responses of the P-deficient A. catenella to resupply of inorganic- and organic-P differed significantly, indicating different utilization pathways of inorganic and organic P, A. catenella might directly utilize low molecular weight organic P, such as G-6-P as both P and carbon sources.
Collapse
Affiliation(s)
- Shu-Feng Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Ying Chen
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Zhang-Xian Xie
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Hao Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China; Key Laboratory of Marine Ecology & Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
154
|
Jiang J, Shen A, Wang H, Yuan S. Regulation of phosphate uptake kinetics in the bloom-forming dinoflagellates prorocentrum donghaiense with emphasis on two-stage dynamic process. J Theor Biol 2019; 463:12-21. [PMID: 30529485 DOI: 10.1016/j.jtbi.2018.12.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/23/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022]
Abstract
Phosphorus is an essential element for the growth and reproduction of algae. In recent years, the frequent outbreaks of algal blooms caused by eutrophication have drawn much attention to the influence of phosphate (P) uptake on the growth of algal cells. The previous study only considered the effect of total P pools on the P uptake process of algal cells and considered the process as one stage, which is insufficient. P uptake by algae is actually a two-stage kinetic process because in many algae species, surface-adsorbed P pools account for a large proportion of total P pools. In this paper, we fit one-stage and two-stage models of P uptake by algae to our experimental data on short-term uptake kinetics of algae Prorocentrum donghaiense under P-deplete and P-replete conditions at 24°C. According to the experimental results, P. donghaiense possesses different P uptake characteristics under different P concentrations. P. donghaiense grows faster and exponentially for longer periods of time under P-replete condition. Ranges of change of Qc (cell quota of intracellular P) and Sp (cell quota of surface-adsorbed P) during the culture time are obviously larger under P-replete condition than those under P-deplete condition. The value of Kp (represents the impact of P-starvation on P uptake rate) in one-stage model under P-deplete condition is smaller than that under P-replete condition, which is opposite to results of two-stage model and does not meet the actual biological significance of Kp. The two-stage model gives more reasonable and realistic explanations to the process of P uptake by algae no matter from the perspective of intuitive fitting effect, biological significance of parameters, statistical test results or essential dynamic process. These results, combined with long-term lab and field data in ocean, could be used to effectively predict algal blooms.
Collapse
Affiliation(s)
- Jie Jiang
- College of science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Anglu Shen
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China; East China Sea Fisheries Research Institute, Shanghai 200090, China
| | - Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta T6G 2G1, Canada
| | - Sanling Yuan
- College of science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
155
|
Whitney LP, Lomas MW. Phosphonate utilization by eukaryotic phytoplankton. LIMNOLOGY AND OCEANOGRAPHY LETTERS 2019. [PMID: 0 DOI: 10.1002/lol2.10100] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
156
|
Wang S, Deng Y, Liu B, Li X, Lin X, Yuan D, Ma J. High-performance liquid chromatographic determination of 2-aminoethylphosphonic acid and 2-amino-3-phosphonopropionic acid in seawater matrix using precolumn fluorescence derivatization with o-phthalaldehyde-ethanethiol. J Chromatogr A 2018; 1571:147-154. [PMID: 30119975 DOI: 10.1016/j.chroma.2018.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/21/2018] [Accepted: 08/06/2018] [Indexed: 12/27/2022]
Abstract
2-Aminoethylphosphonic acid (2-AEP) and 2-amino-3-phosphonopropionic acid (2-AP3) are two types of abundant and ubiquitous naturally occurring phosphonates used as sources of phosphorus by many prokaryotic lineages. The potential utilization mechanism of 2-AEP and 2-AP3 in eukaryotic phytoplankton is currently under investigation. However, the lack of suitable analytical methods in saline samples are the limitation of such researches. Herein, a high-performance liquid chromatography (HPLC) method for monitoring 2-AEP and 2-AP3 using precolumn fluorescence derivatization with o-phthalaldehyde-ethanethiol (OPA-ET) in seawater matrix was developed. The derivatization procedure and HPLC conditions were carefully examined, which included optimization of the fluorescence excitation and emission wavelengths, the ammonium acetate concentration and pH of the mobile phase, the OPA-ET reagent content and composition and derivatization time. Because increasing salinity was observed to lower the derivatization efficiency, working standards were freshly prepared in artificial seawater with the same salinity as that of the samples for the quantification of 2-AEP and 2-AP3. The developed HPLC method showed a wide linear response with high linearity (R2 > 0.999) and high repeatability at three concentration levels. The relative standard deviation was less than 4.1% for 2-AEP and less than 1.7% for 2-AP3 (n = 7). The limits of detection for 2-AEP and 2-AP3 in artificial seawater matrix were both 12.0 μg/L. The recoveries were 83.0-104% for 2-AEP and 72.6-98.6% for 2-AP3 in different aqueous samples, including algal culture medium prepared with filtered seawater. These results indicated the matrix effect of this method was insignificant.
Collapse
Affiliation(s)
- Shu Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| | - Yao Deng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| | - Baomin Liu
- State Key Laboratory of Marine Environmental Science, College of the Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xiaolin Li
- State Key Laboratory of Marine Environmental Science, College of the Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, College of the Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, Fujian, China
| | - Dongxing Yuan
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China
| | - Jian Ma
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, 361102, Xiamen, Fujian, China.
| |
Collapse
|
157
|
Fru EC, Callac N, Posth NR, Argyraki A, Ling YC, Ivarsson M, Broman C, Kilias SP. Arsenic and high affinity phosphate uptake gene distribution in shallow submarine hydrothermal sediments. BIOGEOCHEMISTRY 2018; 141:41-62. [PMID: 30956374 PMCID: PMC6413627 DOI: 10.1007/s10533-018-0500-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/14/2018] [Indexed: 05/27/2023]
Abstract
The toxicity of arsenic (As) towards life on Earth is apparent in the dense distribution of genes associated with As detoxification across the tree of life. The ability to defend against As is particularly vital for survival in As-rich shallow submarine hydrothermal ecosystems along the Hellenic Volcanic Arc (HVA), where life is exposed to hydrothermal fluids containing up to 3000 times more As than present in seawater. We propose that the removal of dissolved As and phosphorus (P) by sulfide and Fe(III)(oxyhydr)oxide minerals during sediment-seawater interaction, produces nutrient-deficient porewaters containing < 2.0 ppb P. The porewater arsenite-As(III) to arsenate-As(V) ratios, combined with sulfide concentration in the sediment and/or porewater, suggest a hydrothermally-induced seafloor redox gradient. This gradient overlaps with changing high affinity phosphate uptake gene abundance. High affinity phosphate uptake and As cycling genes are depleted in the sulfide-rich settings, relative to the more oxidizing habitats where mainly Fe(III)(oxyhydr)oxides are precipitated. In addition, a habitat-wide low As-respiring and As-oxidizing gene content relative to As resistance gene richness, suggests that As detoxification is prioritized over metabolic As cycling in the sediments. Collectively, the data point to redox control on Fe and S mineralization as a decisive factor in the regulation of high affinity phosphate uptake and As cycling gene content in shallow submarine hydrothermal ecosystems along the HVA.
Collapse
Affiliation(s)
- Ernest Chi Fru
- Department of Geological Sciences and Bolin Center for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
- College of Physical Sciences and Engineering, School of Earth and Ocean Sciences, Geobiology Center, Cardiff University, Park Place, Cardiff, Wales CF10 3AT UK
| | - Nolwenn Callac
- Department of Geological Sciences and Bolin Center for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Nicole R. Posth
- Department of Biology, Nordic Center for Earth Evolution (NordCEE), Campusvej 55, 5230 Odense M, Denmark
- Department of Geosciences & Natural Resource Management, Geology Section, University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen K, Denmark
| | - Ariadne Argyraki
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 157 84 Athens, Greece
| | - Yu-Chen Ling
- College of Physical Sciences and Engineering, School of Earth and Ocean Sciences, Geobiology Center, Cardiff University, Park Place, Cardiff, Wales CF10 3AT UK
| | - Magnus Ivarsson
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Curt Broman
- Department of Geological Sciences and Bolin Center for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| | - Stephanos P. Kilias
- Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 157 84 Athens, Greece
| |
Collapse
|
158
|
Li T, Guo C, Zhang Y, Wang C, Lin X, Lin S. Identification and Expression Analysis of an Atypical Alkaline Phosphatase in Emiliania huxleyi. Front Microbiol 2018; 9:2156. [PMID: 30283412 PMCID: PMC6156274 DOI: 10.3389/fmicb.2018.02156] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 08/23/2018] [Indexed: 12/21/2022] Open
Abstract
Emiliania huxleyi, a cosmopolitan coccolithophore in the modern ocean, plays an important role in the carbon cycle and local climate feedback as it can form extensive blooms, calcify, and produce dimethylsulfoniopropionate (DMSP) leading to the generation of dimethyl sulfide (DMS) which affects climate when oxidized in the atmosphere. It is known to be able to utilize dissolved organic phosphorus (DOP) by expressing a specific type of alkaline phosphatase (EHAP1) under phosphorus-limited conditions. In this study, we identified a new alkaline phosphatase (EH-PhoAaty) in this species, which we found belongs to the newly classified PhoAaty family. The expression of this atypical phosphatase was up-regulated under P-depleted conditions at both the transcriptional and translational levels, suggesting that E. huxleyi is able to express this AP to cope with phosphorus limitation. Comparative analysis revealed different transcriptional expression dynamics between eh-PhoAaty and ehap1, although both genes exhibited inducible expression under phosphate deficiency. In addition, after AP activity was eliminated by using EDTA to chelate metal ions, we found that AP activity was recovered with the supplement of Ca2+ and Zn2+, indicative of the adoption of Ca2+ as the cofactor under Zn-P co-limited conditions, likely a result of adaptation to oceanic environments where Zn2+ is often limiting.
Collapse
Affiliation(s)
- Tangcheng Li
- State Key Laboratory of Marine Environmental Science and Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University, Xiamen, China
| | - Chentao Guo
- State Key Laboratory of Marine Environmental Science and Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University, Xiamen, China
| | - Yaqun Zhang
- State Key Laboratory of Marine Environmental Science and Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University, Xiamen, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science and Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University, Xiamen, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science and Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University, Xiamen, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University, Xiamen, China.,Department of Marine Sciences, University of Connecticut, Groton, CT, United States
| |
Collapse
|
159
|
Biogenic Polyphosphate Nanoparticles from a Marine Cyanobacterium Synechococcus sp. PCC 7002: Production, Characterization, and Anti-Inflammatory Properties In Vitro. Mar Drugs 2018; 16:md16090322. [PMID: 30201855 PMCID: PMC6163655 DOI: 10.3390/md16090322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 11/25/2022] Open
Abstract
Probiotic-derived polyphosphates have attracted interest as potential therapeutic agents to improve intestinal health. The current study discovered the intracellular accumulation of polyphosphates in a marine cyanobacterium Synechococcus sp. PCC 7002 as nano-sized granules. The maximum accumulation of polyphosphates in Synechococcus sp. PCC 7002 was found at the late logarithmic growth phase when the medium contained 0.74 mM of KH2PO4, 11.76 mM of NaNO3, and 30.42 mM of Na2SO4. Biogenic polyphosphate nanoparticles (BPNPs) were obtained intact from the algae cells by hot water extraction, and were purified to remove the organic impurities by Sephadex G-100 gel filtration. By using 100 kDa ultrafiltration, BPNPs were fractionated into the larger and smaller populations with diameters ranging between 30–70 nm and 10–30 nm, respectively. 4′,6-diamidino-2-phenylindole fluorescence and orthophosphate production revealed that a minor portion of BPNPs (about 14–18%) were degraded during simulated gastrointestinal digestion. In vitro studies using lipopolysaccharide-activated RAW264.7 cells showed that BPNPs inhibited cyclooxygenase-2, inducible nitric oxide (NO) synthase expression, and the production of proinflammatory mediators, including NO, tumor necrosis factor-α, interleukin-6, and interleukin-1β through suppressing the Toll-like receptor 4/NF-κB signaling pathway. Overall, there is promise in the use of the marine cyanobacterium Synechococcus sp. PCC 7002 to produce BPNPs, an anti-inflammatory postbiotic.
Collapse
|
160
|
V Bondoc KG, Lembke C, Vyverman W, Pohnert G. Selective chemoattraction of the benthic diatom Seminavis robusta to phosphate but not to inorganic nitrogen sources contributes to biofilm structuring. Microbiologyopen 2018; 8:e00694. [PMID: 30033670 PMCID: PMC6460271 DOI: 10.1002/mbo3.694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 11/07/2022] Open
Abstract
Diatoms frequently dominate marine and freshwater biofilms as major primary producers. Nutrient resources in these biofilms are patchily distributed and fluctuate dynamically over time. We recently reported that this spatially and temporally structured environment can be exploited by motile diatoms that use chemoattraction to dissolved silicate (dSi) under Si starvation. Here, we show that the behavioral response of diatoms is more complex and selective as cells are also responding to gradients of dissolved phosphate (dP) when starved in this nutrient. In contrast, neither nitrate nor ammonium (dN) triggers an attractive response under nitrogen limitation. Video monitoring and movement pattern analysis of the model diatom Seminavis robusta revealed that dP attraction is mediated by a combined chemokinetic and chemotactic response. After locating nutrient hotspots, the microalgae slow down and recover from the limitation. The fastest recovery in terms of growth was observed after dSi limitation. In agreement with the lack of directional response, recovery from dN limitation was slowest, indicating that no short-term benefit would be drawn by the algae from the location of transient hotspots of this resource. Our results highlight the ability of diatoms to adapt to nutrient limitation by active foraging and might explain their success in patchy benthic environments.
Collapse
Affiliation(s)
- Karen Grace V Bondoc
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Jena, Germany.,Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Christine Lembke
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology, Department of Biology, University Gent, Gent, Belgium
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Jena, Germany.,Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
161
|
Vandersea MW, Kibler SR, Tester PA, Holderied K, Hondolero DE, Powell K, Baird S, Doroff A, Dugan D, Litaker RW. Environmental factors influencing the distribution and abundance of Alexandrium catenella in Kachemak bay and lower cook inlet, Alaska. HARMFUL ALGAE 2018; 77:81-92. [PMID: 30005804 DOI: 10.1016/j.hal.2018.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 06/08/2023]
Abstract
Despite the long history of paralytic shellfish poisoning (PSP) events in Alaska, little is known about the seasonal distribution and abundance of the causative organism, Alexandrium, or the environmental factors that govern toxic bloom development. To address this issue, a five year study (2012-2017) was undertaken in Kachemak Bay and lower Cook Inlet Alaska to determine how the occurrence of Alexandrium catenella, the dominant PSP-causing Alexandrium species, was influenced by temperature, salinity, nutrient concentrations, and other environmental factors. Cell concentrations from 572 surface water samples were estimated using quantitative PCR. Monthly sampling revealed a seasonal pattern of A. catenella bloom development that was positively correlated with water temperature. Prevailing salinity conditions did not significantly affect abundance, nor was nutrient limitation a direct factor. Elevated cell concentrations were detected in 35 samples from Kachemak Bay (100-3050 cell eq. L-1) while a maximum abundance of 67 cell eq. L-1 was detected in samples from lower Cook Inlet sites. Monitoring data showed average water temperatures in Kachemak Bay increased by ∼2 °C over the course of the study and were accompanied by an increase in Alexandrium abundance. Based on these findings, 7-8 °C appears to represent a temperature threshold for significant bloom development in Kachemak Bay, with the greatest risk of shellfish toxicity occurring when temperatures exceed 10-12 °C. The role of temperature is further supported by time series data from the Alaska Coastal Current (station GAK1), which showed that summertime shellfish toxicity events in Kachemak Bay generally followed periods of anomalously high winter water temperatures. These data indicate monitoring changes in water temperatures may be used as an early warning signal for subsequent development of shellfish toxicity in Kachemak Bay.
Collapse
Affiliation(s)
- Mark W Vandersea
- National Oceanographic and Atmospheric Administration, National Ocean Service, Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Beaufort Laboratory, Beaufort, NC 28516, USA.
| | - Steven R Kibler
- National Oceanographic and Atmospheric Administration, National Ocean Service, Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Beaufort Laboratory, Beaufort, NC 28516, USA
| | | | - Kristine Holderied
- National Oceanographic and Atmospheric Administration, National Ocean Service, Centers for Coastal Ocean Science, Kasitsna Bay Laboratory, Homer, AK, USA
| | - Dominic E Hondolero
- National Oceanographic and Atmospheric Administration, National Ocean Service, Centers for Coastal Ocean Science, Kasitsna Bay Laboratory, Homer, AK, USA
| | - Kim Powell
- National Oceanographic and Atmospheric Administration, National Ocean Service, Centers for Coastal Ocean Science, Kasitsna Bay Laboratory, Homer, AK, USA
| | - Steve Baird
- Kachemak Bay National Estuarine Research Reserve, Homer, AK, USA
| | - Angela Doroff
- South Slough National Estuarine Research Reserve, Charleston, OR, USA
| | - Darcy Dugan
- Alaska Ocean Observing System, Anchorage, AK, USA
| | - R Wayne Litaker
- National Oceanographic and Atmospheric Administration, National Ocean Service, Centers for Coastal Ocean Science, Stressor Detection and Impacts Division, Beaufort Laboratory, Beaufort, NC 28516, USA
| |
Collapse
|
162
|
Lu GY, Wang WX. Trace metals and macroelements in mussels from Chinese coastal waters: National spatial patterns and normalization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:307-318. [PMID: 29353779 DOI: 10.1016/j.scitotenv.2018.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/01/2018] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Metal contamination is one of the most ubiquitous and complex problems in the Chinese coastal environment. To explore the large-scale spatial patterns of bioavailable metals, we sampled three major mussels, including 784 blue mussels (Mytilus edulis Linnaeus, 1758) of 14 sites, 224 hard-shelled mussels (Mytilus unguiculatus Valenciennes, 1858) of 4 sites, and 392 green mussels (Perna viridis (Linnaeus, 1758)) of 7 sites, ranging from temperate to tropical coastlines of China, during August and September 2015. The concentrations of macroelements (Na, K, Ca, Mg, and P) and toxic trace metals (Ag, Cd, Cr, Cu, Ni, Pb, Ti, and Zn) in the mussel's whole soft tissues were determined. Among the four Chinese coastal basins, Cd, Ti and Cr in the mussel tissues were the highest at Bohai Sea (BS) and Yellow Sea (YS), and Cu, Ni, Pb and Ag in the mussel tissues were the highest at East China Sea (ECS) and South China Sea (SCS). Zinc concentrations in mussels from YS were significantly higher than those from the other regions. Given the variability of environmental conditions such as salinity and nutrients, we further normalized the measured tissue metal concentrations with tissue Na and P levels. After Na normalization as the salinity proxy, the variability of Cd, Cu, Zn, Ag, and Ni was reduced. Trace elements accumulation in the mussel tissues was significantly related to both macroelements (Na or P) and body dry weight. The present study demonstrated that nonlinear optimization of different elements was necessary in assessing metal bioaccumulation patterns in marine mussels at a large spatial scale.
Collapse
Affiliation(s)
- Guang-Yuan Lu
- Marine Environmental Laboratory, Shenzhen Research Institute, The Hong Kong University of Science and Technology (HKUST), Shenzhen 518000 Shenzhen, China; Division of Life Science, HKUST, Clearwater Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- Marine Environmental Laboratory, Shenzhen Research Institute, The Hong Kong University of Science and Technology (HKUST), Shenzhen 518000 Shenzhen, China; Division of Life Science, HKUST, Clearwater Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
163
|
Brembu T, Mühlroth A, Alipanah L, Bones AM. The effects of phosphorus limitation on carbon metabolism in diatoms. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0406. [PMID: 28717016 PMCID: PMC5516115 DOI: 10.1098/rstb.2016.0406] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2017] [Indexed: 01/26/2023] Open
Abstract
Phosphorus is an essential element for life, serving as an integral component of nucleic acids, lipids and a diverse range of other metabolites. Concentrations of bioavailable phosphorus are low in many aquatic environments. Microalgae, including diatoms, apply physiological and molecular strategies such as phosphorus scavenging or recycling as well as adjusting cell growth in order to adapt to limiting phosphorus concentrations. Such strategies also involve adjustments of the carbon metabolism. Here, we review the effect of phosphorus limitation on carbon metabolism in diatoms. Two transcriptome studies are analysed in detail, supplemented by other transcriptome, proteome and metabolite data, to gain an overview of different pathways and their responses. Phosphorus, nitrogen and silicon limitation responses are compared, and similarities and differences discussed. We use the current knowledge to propose a suggestive model for the carbon flow in phosphorus-replete and phosphorus-limited diatom cells. This article is part of the themed issue ‘The peculiar carbon metabolism in diatoms’.
Collapse
Affiliation(s)
- Tore Brembu
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Alice Mühlroth
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Leila Alipanah
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Atle M Bones
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
164
|
Zhang C, Chen G, Wang Y, Guo C, Zhou J. Physiological and molecular responses of Prorocentrum donghaiense to dissolved inorganic phosphorus limitation. MARINE POLLUTION BULLETIN 2018; 129:562-572. [PMID: 29055559 DOI: 10.1016/j.marpolbul.2017.10.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 10/09/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Prorocentrum donghaiense is an important dinoflagellate as it frequently forms harmful algal blooms that cause serious damage to marine ecosystems and fisheries in the coast of East China Sea. Previous studies showed that phosphorus acquisition (especially inorganic phosphorus) was the limiting factor for P. donghaiense growth. However, the responsive mechanism of this microalga under dissolved inorganic phosphorus (DIP) limitation is poorly understood. In this work, the physiological parameters and differentially expressed genes in P. donghaiense response to DIP limitation were comparatively analyzed. DIP-depleted P. donghaiense displayed decreased growth rate, enlarged cell size, decreased cellular phosphorus content, and high AP activities. A forward suppression subtractive hybridization (SSH) library representing differentially upregulated genes in P. donghaiense under DIP-depleted conditions was constructed, and 134 ESTs were finally identified, with a significant identity (E values<1×10-4) to the deposited genes (proteins) in the corresponding databases. Five representative genes, namely, NAD-dependent deacetylase, phosphoglycolate phosphatase, heat shock protein (HSP) 90, rhodopsin, and HSP40 were investigated through real-time quantitative PCR to verify the effectiveness of the established SSH library. Results showed that all the selected genes were differentially expressed and thus indicated that the established SSH library generally represented differentially expressed genes. These genes were classified into 11 categories according to their gene ontology annotations of biological processes. The members involved in functional responses such as cell defense/homeostasis, phosphorus metabolism, and cellular cycles were specially discussed. This study is the first to perform a global analysis of differentially expressed functional genes in P. donghaiense under DIP-depleted condition. It provided new insights into the molecular adaptive mechanisms of dinoflagellate in response to phosphorous limitation and elucidating the formation mechanism of algal blooms.
Collapse
Affiliation(s)
- Chunyun Zhang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Guofu Chen
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Yuanyuan Wang
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Changlu Guo
- College of Oceanology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China
| | - Jin Zhou
- The Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China.
| |
Collapse
|
165
|
Girault M, Beneyton T, Pekin D, Buisson L, Bichon S, Charbonnier C, del Amo Y, Baret JC. High-Content Screening of Plankton Alkaline Phosphatase Activity in Microfluidics. Anal Chem 2018; 90:4174-4181. [DOI: 10.1021/acs.analchem.8b00234] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Mathias Girault
- Centre de Recherche Paul Pascal, Unité Mixte de Recherche 5031, Université de Bordeaux, Centre National de la Recherche Scientifique, 33600 Pessac, France
| | - Thomas Beneyton
- Centre de Recherche Paul Pascal, Unité Mixte de Recherche 5031, Université de Bordeaux, Centre National de la Recherche Scientifique, 33600 Pessac, France
| | - Deniz Pekin
- Centre de Recherche Paul Pascal, Unité Mixte de Recherche 5031, Université de Bordeaux, Centre National de la Recherche Scientifique, 33600 Pessac, France
| | - Lionel Buisson
- Centre de Recherche Paul Pascal, Unité Mixte de Recherche 5031, Université de Bordeaux, Centre National de la Recherche Scientifique, 33600 Pessac, France
| | - Sabrina Bichon
- Centre de Recherche Paul Pascal, Unité Mixte de Recherche 5031, Université de Bordeaux, Centre National de la Recherche Scientifique, 33600 Pessac, France
| | - Céline Charbonnier
- Laboratoire d’Environnements et Paléoenvironnements Océaniques et Continentaux, Unité Mixte de Recherche 5805, Centre National de la Recherche Scientifique, 33615 Pessac, France
| | - Yolanda del Amo
- Laboratoire d’Environnements et Paléoenvironnements Océaniques et Continentaux, Unité Mixte de Recherche 5805, Centre National de la Recherche Scientifique, 33615 Pessac, France
| | - Jean-Christophe Baret
- Centre de Recherche Paul Pascal, Unité Mixte de Recherche 5031, Université de Bordeaux, Centre National de la Recherche Scientifique, 33600 Pessac, France
| |
Collapse
|
166
|
Ji N, Lin L, Li L, Yu L, Zhang Y, Luo H, Li M, Shi X, Wang DZ, Lin S. Metatranscriptome analysis reveals environmental and diel regulation of a Heterosigma akashiwo
(raphidophyceae) bloom. Environ Microbiol 2018; 20:1078-1094. [DOI: 10.1111/1462-2920.14045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 01/09/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Nanjing Ji
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
- Department of Marine Sciences; University of Connecticut; Groton CT 06340 USA
| | - Lingxiao Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
| | - Yaqun Zhang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
| | - Hao Luo
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
| | - Meizhen Li
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
| | - Xinguo Shi
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences; Xiamen University; Xiamen Fujian 361102 China
- Department of Marine Sciences; University of Connecticut; Groton CT 06340 USA
| |
Collapse
|
167
|
Colin S, Coelho LP, Sunagawa S, Bowler C, Karsenti E, Bork P, Pepperkok R, de Vargas C. Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes. eLife 2017. [PMID: 29087936 DOI: 10.7554/elife.26066.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
We present a 3D-fluorescence imaging and classification tool for high throughput analysis of microbial eukaryotes in environmental samples. It entails high-content feature extraction that permits accurate automated taxonomic classification and quantitative data about organism ultrastructures and interactions. Using plankton samples from the Tara Oceans expeditions, we validate its applicability to taxonomic profiling and ecosystem analyses, and discuss its potential for future integration of eukaryotic cell biology into evolutionary and ecological studies.
Collapse
Affiliation(s)
- Sebastien Colin
- UMR 7144, team EPEP, Station Biologique de Roscoff, Centre Nationnal de la Recherche Scientifique, Roscoff, France
- Université Pierre et Marie Curie, Sorbonne Universités, Roscoff, France
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Luis Pedro Coelho
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shinichi Sunagawa
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres Research University, Paris, France
| | - Eric Karsenti
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres Research University, Paris, France
- Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rainer Pepperkok
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Colomban de Vargas
- UMR 7144, team EPEP, Station Biologique de Roscoff, Centre Nationnal de la Recherche Scientifique, Roscoff, France
- Université Pierre et Marie Curie, Sorbonne Universités, Roscoff, France
| |
Collapse
|
168
|
Colin S, Coelho LP, Sunagawa S, Bowler C, Karsenti E, Bork P, Pepperkok R, de Vargas C. Quantitative 3D-imaging for cell biology and ecology of environmental microbial eukaryotes. eLife 2017; 6. [PMID: 29087936 PMCID: PMC5663481 DOI: 10.7554/elife.26066] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 09/25/2017] [Indexed: 01/01/2023] Open
Abstract
We present a 3D-fluorescence imaging and classification tool for high throughput analysis of microbial eukaryotes in environmental samples. It entails high-content feature extraction that permits accurate automated taxonomic classification and quantitative data about organism ultrastructures and interactions. Using plankton samples from the Tara Oceans expeditions, we validate its applicability to taxonomic profiling and ecosystem analyses, and discuss its potential for future integration of eukaryotic cell biology into evolutionary and ecological studies. Our planet’s ecosystems – from its oceans to its forests – are teeming with microbes. DNA analysis of environmental samples shows that many of these microbes belong to a group known as protists. This group consists of single-celled organisms that are close relatives of fungi, plants and animals. Though protists are a widespread and diverse group, scientists know little about them. One reason for this is the lack of high-throughput ways to recognize and count protists in environmental samples. Colin, Coelho et al. set out to tackle this blind spot in ecology and cell biology by developing an automated imaging system. The system needed to image many kinds of protist cells in enough detail to see the features inside. The end-result was a 3D-imaging technique called e-HCFM – which is short for “environmental high content fluorescence microscopy”. Colin, Coelho et al. went on to use the technique on 72 samples collected on an expedition across the world’s oceans. This allowed them to automatically image, recognize and classify over 330,000 organisms. This approach and new dataset will benefit researchers working in many fields, from cell biology to ecology, computational biology and beyond. In the future, this imaging method might integrate with techniques that can analyze the DNA in individual cells. This would allow scientists to link protists’ visible features to their genetic information, in a way that will scale from single cells up to entire ecosystems.
Collapse
Affiliation(s)
- Sebastien Colin
- UMR 7144, team EPEP, Station Biologique de Roscoff, Centre Nationnal de la Recherche Scientifique, Roscoff, France.,Université Pierre et Marie Curie, Sorbonne Universités, Roscoff, France.,Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Luis Pedro Coelho
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Shinichi Sunagawa
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres Research University, Paris, France
| | - Eric Karsenti
- Institut de Biologie de l'École Normale Supérieure, École Normale Supérieure, Paris Sciences et Lettres Research University, Paris, France.,Directors' Research, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peer Bork
- Structural and Computational Biology, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Rainer Pepperkok
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Colomban de Vargas
- UMR 7144, team EPEP, Station Biologique de Roscoff, Centre Nationnal de la Recherche Scientifique, Roscoff, France.,Université Pierre et Marie Curie, Sorbonne Universités, Roscoff, France
| |
Collapse
|
169
|
Cañavate JP, Armada I, Hachero-Cruzado I. Common and Species-Specific Effects of Phosphate on Marine Microalgae Fatty Acids Shape Their Function in Phytoplankton Trophic Ecology. MICROBIAL ECOLOGY 2017; 74:623-639. [PMID: 28411302 DOI: 10.1007/s00248-017-0983-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/10/2017] [Indexed: 05/08/2023]
Abstract
The use of fatty acids (FA) to infer structure of phytoplankton assemblages and as indicators of microalgae nutritional value is acquiring relevance in modern phytoplankton ecology and new advances concerning factors influencing FA variability among microalgae are demanded. In this regard, the relationship between phosphorus and FA remains particularly little studied in marine phytoplankton. In the present study, we focus on phosphate effects on FA from a diversified set of marine microalgae and provide new insights into the applicability of FA in phytoplankton trophic ecology. Phosphate deprivation mainly induced monounsaturated FA production in eight out of nine microalgae and their changes were species-specific, with palmitoleic acid exhibiting extreme variation and discriminating between haptophyte classes. The important phosphate-induced and interspecific variability found for oleic acid was perceived as a concern for the current application of this FA as a trophic position indicator in grazers. Chloroplast C-16 and C-18 polyunsaturated FA were more affected by phosphate than C-20 and C-22 highly unsaturated FA (HUFA). The relative stability of stearidonic acid to phosphate in cryptophytes and haptophytes pinpointed this FA as a suited marker for both microalgae groups. Taken all species together, phosphate deprivation and taxonomy accounted for 20.8 and 50.7% of total FA variation, respectively. HUFA were minimally affected by phosphate indicating their suitability as indicators of phytoplankton trophic value. The asymptotic relationship between HUFA and phosphorus cell content suggested mineral composition (phosphorus) could be more important than HUFA content as attribute of marine microalgae nutritional value at the species level.
Collapse
Affiliation(s)
- José Pedro Cañavate
- IFAPA Centro El Toruño. Andalusia Research and Training Institute for Fisheries and Agriculture, 11500-El Puerto de Santa María, Cádiz, Spain.
| | - Isabel Armada
- IFAPA Centro El Toruño. Andalusia Research and Training Institute for Fisheries and Agriculture, 11500-El Puerto de Santa María, Cádiz, Spain
| | - Ismael Hachero-Cruzado
- IFAPA Centro El Toruño. Andalusia Research and Training Institute for Fisheries and Agriculture, 11500-El Puerto de Santa María, Cádiz, Spain
| |
Collapse
|
170
|
Luo H, Lin X, Li L, Lin L, Zhang C, Lin S. Transcriptomic and physiological analyses of the dinoflagellate Karenia mikimotoi reveal non-alkaline phosphatase-based molecular machinery of ATP utilisation. Environ Microbiol 2017; 19:4506-4518. [PMID: 28856827 DOI: 10.1111/1462-2920.13899] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 11/28/2022]
Abstract
The ability to utilize dissolved organic phosphorus (DOP) is important for phytoplankton to survive the scarcity of dissolved inorganic phosphorus (DIP), and alkaline phosphatase (AP) has been the major research focus as a facilitating mechanism. Here, we employed a unique molecular ecological approach and conducted a broader search for underpinning molecular mechanisms of adenosine triphosphate (ATP) utilisation. Cultures of the dinoflagellate Karenia mikimotoi were set up in L1 medium (+P), DIP-depleted L1 medium (-P) and ATP-replacing-DIP medium (ATP). Differential gene expression was profiled for ATP and +P cultures using suppression subtractive hybridisation (SSH) followed by 454 pyrosequencing, and RT-qPCR methods. We found that ATP supported a similar growth rate and cell yield as L1 medium and observed DIP release from ATP into the medium, suggesting that K. mikimotoi cells were expressing extracellular hydrolases to hydrolyse ATP. However, our SSH, qPCR and enzymatic activity assays indicated that 5'-nucleotidase (5NT), rather than AP, was responsible for ATP hydrolysis. Further gene expression analyses uncovered that intercellular purine metabolism was significantly changed following the utilisation of ATP. Our findings reveal a multi-faceted machinery regulating ATP utilisation and P metabolism in K. mikimotoi, and underscore AP activity is not the exclusive indicator of DOP utilisation.
Collapse
Affiliation(s)
- Hao Luo
- State Key Laboratory of Marine Environmental Science, Department of Marine Biological Sciences and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Xin Lin
- State Key Laboratory of Marine Environmental Science, Department of Marine Biological Sciences and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, Department of Marine Biological Sciences and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Lingxiao Lin
- State Key Laboratory of Marine Environmental Science, Department of Marine Biological Sciences and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Zhang
- Department of Biochemistry, Province Key Laboratory of Biochip, School of Basic Medical Science and Institute of Genetic Engineering, Southern Medical University, Guangzhou, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Department of Marine Biological Sciences and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.,Department of Marine Sciences, University of Connecticut, Groton, CT 06405, USA
| |
Collapse
|
171
|
Zhou ZX, Yu RC, Zhou MJ. Seasonal succession of microalgal blooms from diatoms to dinoflagellates in the East China Sea: A numerical simulation study. Ecol Modell 2017. [DOI: 10.1016/j.ecolmodel.2017.06.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
172
|
Haley ST, Alexander H, Juhl AR, Dyhrman ST. Transcriptional response of the harmful raphidophyte Heterosigma akashiwo to nitrate and phosphate stress. HARMFUL ALGAE 2017; 68:258-270. [PMID: 28962986 DOI: 10.1016/j.hal.2017.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
The marine eukaryotic alga Heterosigma akashiwo (Raphidophyceae) is known for forming ichthyotoxic harmful algal blooms (HABs). In the past 50 years, H. akashiwo blooms have increased, occurring globally in highly eutrophic coastal and estuarine systems. These systems often incur dramatic physicochemical changes, including macronutrient (nitrogen and phosphorus) enrichment and depletion, on short timescales. Here, H. akashiwo cultures grown under nutrient replete, low N and low P growth conditions were examined for changes in biochemical and physiological characteristics in concert with transcriptome sequencing to provide a mechanistic perspective on the metabolic processes involved in responding to N and P stress. There was a marked difference in the overall transcriptional pattern between low N and low P transcriptomes. Both nutrient stresses led to significant changes in the abundance of thousands of contigs related to a wide diversity of metabolic pathways, with limited overlap between the transcriptomic responses to low N and low P. Enriched contigs under low N included many related to nitrogen metabolism, acquisition, and transport. In addition, metabolic modules like photosynthesis and carbohydrate metabolism changed significantly under low N, coincident with treatment-specific changes in photosynthetic efficiency and particulate carbohydrate content. P-specific contigs responsible for P transport and organic P use were more enriched in the low P treatment than in the replete control and low N treatment. These results provide new insight into the genetic mechanisms that distinguish how this HAB species responds to these two common nutrient stresses, and the results can inform future field studies, linking transcriptional patterns to the physiological ecology of H. akashiwo in situ.
Collapse
Affiliation(s)
- Sheean T Haley
- Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY, USA
| | - Harriet Alexander
- Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Andrew R Juhl
- Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY, USA; Columbia University, Department of Earth and Environmental Sciences, Palisades, NY, USA
| | - Sonya T Dyhrman
- Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY, USA; Columbia University, Department of Earth and Environmental Sciences, Palisades, NY, USA.
| |
Collapse
|
173
|
Drzyzga D, Lipok J. Glyphosate dose modulates the uptake of inorganic phosphate by freshwater cyanobacteria. JOURNAL OF APPLIED PHYCOLOGY 2017; 30:299-309. [PMID: 29576687 PMCID: PMC5857279 DOI: 10.1007/s10811-017-1231-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/10/2017] [Accepted: 07/10/2017] [Indexed: 05/26/2023]
Abstract
The usefulness of glyphosate [N-(phosphonomethyl)glycine] as a source of nutritive phosphorus for species of halophilic cyanobacteria has been postulated for years. Our results indicate a stimulating effect of glyphosate on the growth of four out of five examined freshwater species, Anabaena variabilis (CCALA 007), Chroococcus minutus (CCALA 055), Fischerella cf. maior (CCALA 067) and Nostoc cf. muscorum (CCALA 129), in a manner dependent on the applied concentration. The most significant stimulation was observed at a dose of 0.1 mM glyphosate. The decrease in the amount of phosphonate, which correlated with microbial growth, demonstrated that glyphosate may play an important role in cyanobacterial nourishment. Surprisingly, the consumption of organic phosphorus did not start when concentrations of inorganic phosphate (PO43-) had fallen dramatically; instead, the assimilation of both types of phosphorus occurred simultaneously. The greatest decrease in the amount of glyphosate was observed during the first week. The uptake of the standard nutrient-phosphate (PO43-), was strongly dependent on the xenobiotic concentration. When a concentration of 0.1 mM glyphosate was used, the consumption of phosphate decreased in favour of glyphosate assimilation. Our study revealed for the very first time that the presence of inorganic phosphate significantly enhances the bioavailability of glyphosate. Statistical analysis confirmed that the nutritive usage of glyphosate and the absorption of phosphate are features associated with the herbicide concentration rather than features related to the species of freshwater cyanobacterium. This finding supports the thesis of an important role of organic phosphorus in the formation of cyanobacterial blooms and creates the opportunity of using these cyanobacteria to bind both organic and inorganic forms of phosphorus in microalgal biomasses.
Collapse
Affiliation(s)
- Damian Drzyzga
- Faculty of Chemistry, Opole University, Oleska 48, 45-052 Opole, Poland
| | - Jacek Lipok
- Faculty of Chemistry, Opole University, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
174
|
Harke MJ, Juhl AR, Haley ST, Alexander H, Dyhrman ST. Conserved Transcriptional Responses to Nutrient Stress in Bloom-Forming Algae. Front Microbiol 2017; 8:1279. [PMID: 28769884 PMCID: PMC5513979 DOI: 10.3389/fmicb.2017.01279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/26/2017] [Indexed: 11/13/2022] Open
Abstract
The concentration and composition of bioavailable nitrogen (N) and phosphorus (P) in the upper ocean shape eukaryotic phytoplankton communities and influence their physiological responses. Phytoplankton are known to exhibit similar physiological responses to limiting N and P conditions such as decreased growth rates, chlorosis, and increased assimilation of N and P. Are these responses similar at the molecular level across multiple species? To interrogate this question, five species from biogeochemically important, bloom-forming taxa (Bacillariophyta, Dinophyta, and Haptophyta) were grown under similar low N, low P, and replete nutrient conditions to identify transcriptional patterns and associated changes in biochemical pools related to N and P stress. Metabolic profiles, revealed through the transcriptomes of these taxa, clustered together based on species rather than nutrient stressor, suggesting that the global metabolic response to nutrient stresses was largely, but not exclusively, species-specific. Nutrient stress led to few transcriptional changes in the two dinoflagellates, consistent with other research. An orthologous group analysis examined functionally conserved (i.e., similarly changed) responses to nutrient stress and therefore focused on the diatom and haptophytes. Most conserved ortholog changes were specific to a single nutrient treatment, but a small number of orthologs were similarly changed under both N and P stress in 2 or more species. Many of these orthologs were related to photosynthesis and may represent generalized stress responses. A greater number of orthologs were conserved across more than one species under low P compared to low N. Screening the conserved orthologs for functions related to N and P metabolism revealed increased relative abundance of orthologs for nitrate, nitrite, ammonium, and amino acid transporters under N stress, and increased relative abundance of orthologs related to acquisition of inorganic and organic P substrates under P stress. Although the global transcriptional responses were dominated by species-specific changes, the analysis of conserved responses revealed functional similarities in resource acquisition pathways among different phytoplankton taxa. This overlap in nutrient stress responses observed among species may be useful for tracking the physiological ecology of phytoplankton field populations.
Collapse
Affiliation(s)
- Matthew J Harke
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States
| | - Andrew R Juhl
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States.,Department of Earth and Environmental Sciences, Columbia UniversityPalisades, NY, United States
| | - Sheean T Haley
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States
| | - Harriet Alexander
- Department of Population Health and Reproduction, University of California, DavisDavis, CA, United States
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia UniversityPalisades, NY, United States.,Department of Earth and Environmental Sciences, Columbia UniversityPalisades, NY, United States
| |
Collapse
|
175
|
Zhang C, Luo H, Huang L, Lin S. Molecular mechanism of glucose-6-phosphate utilization in the dinoflagellate Karenia mikimotoi. HARMFUL ALGAE 2017; 67:74-84. [PMID: 28755722 DOI: 10.1016/j.hal.2017.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Phosphorus (P) is an essential nutrient for marine phytoplankton as for other living organisms, and the preferred form, dissolved inorganic phosphate (DIP), is often quickly depleted in the sunlit layer of the ocean. Phytoplankton have developed mechanisms to utilize organic forms of P (DOP). Hydrolysis of DOP to release DIP by alkaline phosphatase is believed to be the most common mechanism of DOP utilization. Little effort has been made, however, to understand other potential molecular mechanisms of utilizing different types of DOP. This study investigated the bioavailability of glucose-6-phosphate (G6P) and its underlying molecular mechanism in the dinoflagellate Karenia mikimotoi. Suppression Subtraction Hybridization (SSH) was used to identify genes up- and down-regulated during G6P utilization compared to DIP condition. The results showed that G6P supported the growth and yield of K. mikimotoi as efficiently as DIP. Neither DIP release nor AP activity was detected in the cultures grown in G6P medium, however, suggesting direct uptake of G6P. SSH analysis and RT-qPCR results showed evidence of metabolic modifications, particularly that mitochondrial ATP synthase f1gamma subunit and thioredoxin reductase were up-regulated while diphosphatase and pyrophosphatase were down-regulated in the G6P cultures. All the results indicate that K. mikimotoi has developed a mechanism other than alkaline phosphatase to utilize G6P.
Collapse
Affiliation(s)
- Chao Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China; Institute of Genetic Engineering, Southern Medical University, Guangzhou, China, Guangdong Province Key Laboratory of Biochip, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Hao Luo
- Key State Laboratory of Marine Environmental Science and Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen, Fujian, China
| | - Liangmin Huang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Senjie Lin
- Key State Laboratory of Marine Environmental Science and Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen, Fujian, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| |
Collapse
|
176
|
Cañavate JP, Armada I, Hachero-Cruzado I. Aspects of phosphorus physiology associated with phosphate-induced polar lipid remodelling in marine microalgae. JOURNAL OF PLANT PHYSIOLOGY 2017; 214:28-38. [PMID: 28423307 DOI: 10.1016/j.jplph.2017.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 05/10/2023]
Abstract
Marine microalgae exhibit a diversified phosphorus physiology and have also been recently found to show high inter-taxa variability in their phosphate induced-polar lipids' remodelling. Identification of phosphorus physiology aspects that are more related to lipid remodelling can contribute to better understanding of such intricate phytoplankton lipid metabolism. Therefore, some aspects of phosphorus physiology related to its uptake, storage and use were evaluated in a taxonomically diversified group of nine marine microalgae that was arranged into three subgroups, each of them including species showing similar polar lipid responses to phosphate. Luxury phosphate uptake (PU) was the physiological aspect best associated to microalgal polar lipid metabolism as it was maximal in species (Picochlorum atomus, Tetraselmis suecica and Nannochloropsis gaditana) that were able to counterbalance between phospholipids (PL) and betaine lipids (BL). Cryptophytes (Rhodomonas baltica, Chroomonas placoidea), characterized by their constitutive BL and flexible PL contents in response to phosphate, had almost no luxury PU and showed higher phosphorus cell quota (QP) under phosphate deprivation. Haptophyes (Isochrysis galbana, Diacronema vlkianum), with constitutive BL contents and permanently minimal PL contents, showed the lowest QP when deprived of phosphate while their luxury PU was below that for green microalgae. Induction of alkaline phosphatase activity following phosphate depletion was maximal in diatoms (Phaeodactylum tricornutum, Chaetoceros gracilis) and I. galbana but it was unrelated to lipid remodelling. Despite strong influence of taxonomy, polar lipid remodelling accounted for 38.8% of total variation when microalgae were ordinated using their physiological responses to phosphorus as descriptive variables.
Collapse
Affiliation(s)
- José Pedro Cañavate
- IFAPA Centro El Toruño. Andalusia Research and Training Institute for Fisheries and Agriculture, 11500-El Puerto de Santa María, Cádiz, Spain.
| | - Isabel Armada
- IFAPA Centro El Toruño. Andalusia Research and Training Institute for Fisheries and Agriculture, 11500-El Puerto de Santa María, Cádiz, Spain
| | - Ismael Hachero-Cruzado
- IFAPA Centro El Toruño. Andalusia Research and Training Institute for Fisheries and Agriculture, 11500-El Puerto de Santa María, Cádiz, Spain
| |
Collapse
|
177
|
Transcriptomic and microRNAomic profiling reveals multi-faceted mechanisms to cope with phosphate stress in a dinoflagellate. ISME JOURNAL 2017; 11:2209-2218. [PMID: 28548660 DOI: 10.1038/ismej.2017.81] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 12/21/2022]
Abstract
Although gene regulation can occur at both transcriptional and epigenetic (microRNA) levels, combined transcriptomic and microRNAomic responses to environmental stress are still largely unexplored for marine plankton. Here, we conducted transcriptome and microRNAome sequencing for Prorocentrum donghaiense to understand the molecular mechanisms by which this dinoflagellate copes with phosphorus (P) deficiency. Under P-depleted conditions, G1/S specific cyclin gene was markedly downregulated, consistent with growth inhibition, and genes related to dissolved organic phosphorus (DOP) hydrolysis, carbon fixation, nitrate assimilation, glycolysis, and cellular motility were upregulated. The elevated expression of ATP-generating genes (for example, rhodopsin) and ATP-consuming genes suggests some metabolic reconfiguration towards accelerated ATP recycling under P deficiency. MicroRNAome sequencing revealed 17 microRNAs, potentially regulating 3268 protein-coding genes. Functional enrichment analysis of these microRNA-targeted genes predicted decreases in sulfatide (sulfolipid) catabolism under P deficiency. Strikingly, we detected a significant increase in sulfolipid sulfatide content (but not in sulphoquinovosyldiacylglycerol content) and its biosynthesis gene expression, indicating a different sulfolipid-substituting-phospholipid mechanism in this dinoflagellate than other phytoplankters studied previously. Taken together, our integrative transcriptomic and microRNAomic analyses show that enhanced DOP utilization, accelerated ATP cycling and repressed sulfolipid degradation constitute a comprehensive strategy to cope with P deficiency in a model dinoflagellate.
Collapse
|
178
|
Lu GY, Ke CH, Zhu A, Wang WX. Oyster-based national mapping of trace metals pollution in the Chinese coastal waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:658-669. [PMID: 28262379 DOI: 10.1016/j.envpol.2017.02.049] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
To investigate the distribution and variability of trace metal pollution in the Chinese coastal waters, over 1000 adult oyster individuals were collected from 31 sites along the entire coastline, spanning from temperate to tropical regions (Bohai Sea, Yellow Sea, East China Sea and South China Sea), between August and September 2015. Concentrations of macroelements [sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and phosphorus (P)] and trace elements [cadmium (Cd), copper (Cu), zinc (Zn), nickel (Ni), lead (Pb), chromium (Cr), silver (Ag), and titanium (Ti)] in these oysters were concurrently measured and analyzed. The results showed high Ti, Zn and Cu bioaccumulation in oysters from Guangdong (South China Sea) and Zhejiang (East China Sea). Oysters at Nanji Island (Wenzhou) and Daya Bay (Huizhou) accumulated significantly high concentrations of Ni and Cr. The elements in these oysters were several times higher than the national food safety limits of China. On the other hand, the present study found that normalization of metals by salinity (Na) and nutrient (P) could reflect more details of metal pollution in the oysters. Biomonitoring of metal pollution could benefit from incorporating the macroelement calibration instead of focusing only on the total metal concentrations. Overall, simultaneous measurement of macroelements and trace metals coupled with non-linear analysis provide a new perspective for revealing the underlying mechanism of trace metal bioavailability and bioaccumulation in marine organisms.
Collapse
Affiliation(s)
- Guang-Yuan Lu
- Marine Environmental Laboratory, Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen 518000, China; State Key Laboratory for Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Cai-Huan Ke
- State Key Laboratory for Marine Environmental Science, Xiamen University, Xiamen 361005, China
| | - Aijia Zhu
- South China Sea Environmental Monitoring Center, State Oceanic Administration, Guangzhou 510300, China
| | - Wen-Xiong Wang
- Marine Environmental Laboratory, Shenzhen Research Institute, The Hong Kong University of Science and Technology, Shenzhen 518000, China; Division of Life Science, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Kowloon, Hong Kong.
| |
Collapse
|
179
|
Cui Y, Zhang H, Lin S. Enhancement of Non-photochemical Quenching as an Adaptive Strategy under Phosphorus Deprivation in the Dinoflagellate Karlodinium veneficum. Front Microbiol 2017; 8:404. [PMID: 28360892 PMCID: PMC5350143 DOI: 10.3389/fmicb.2017.00404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/27/2017] [Indexed: 11/18/2022] Open
Abstract
Intensified water column stratification due to global warming has the potential to decrease nutrient availability while increasing excess light for the photosynthesis of phytoplankton in the euphotic zone, which together will increase the need for photoprotective strategies such as non-photochemical quenching (NPQ). We investigated whether NPQ is enhanced and how it is regulated molecularly under phosphorus (P) deprivation in the dinoflagellate Karlodinium veneficum. We grew K. veneficum under P-replete and P-depleted conditions, monitored their growth rates and chlorophyll fluorescence, and conducted gene expression and comparative proteomic analyses. The results were used to characterize NPQ modulation and associated gene expression dynamics under P deprivation. We found that NPQ in K. veneficum was elevated significantly under P deprivation. Accordingly, the abundances of three light-harvesting complex stress-related proteins increased under P-depleted condition. Besides, many proteins related to genetic information flow were down-regulated while many proteins related to energy production and conversion were up-regulated under P deprivation. Taken together, our results indicate that K. veneficum cells respond to P deprivation by reconfiguring the metabolic landscape and up-tuning NPQ to increase the capacity to dissipate excess light energy and maintain the fluency of energy flow, which provides a new perspective about what adaptive strategy dinoflagellates have evolved to cope with P deprivation.
Collapse
Affiliation(s)
- Yudong Cui
- State Key Laboratory of Marine Environmental Science and Marine Biodiversity and Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University Xiamen, China
| | - Huan Zhang
- Department of Marine Sciences, University of Connecticut, Groton CT, USA
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and Marine Biodiversity and Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen UniversityXiamen, China; Department of Marine Sciences, University of Connecticut, GrotonCT, USA
| |
Collapse
|
180
|
Azevedo C, Saiardi A. Eukaryotic Phosphate Homeostasis: The Inositol Pyrophosphate Perspective. Trends Biochem Sci 2017; 42:219-231. [DOI: 10.1016/j.tibs.2016.10.008] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 12/24/2022]
|
181
|
Hii KS, Lim PT, Kon NF, Takata Y, Usup G, Leaw CP. Physiological and transcriptional responses to inorganic nutrition in a tropical Pacific strain of Alexandrium minutum: Implications for the saxitoxin genes and toxin production. HARMFUL ALGAE 2016; 56:9-21. [PMID: 28073499 DOI: 10.1016/j.hal.2016.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/12/2016] [Accepted: 04/12/2016] [Indexed: 06/06/2023]
Abstract
Saxitoxins (STXs) constitute a family of potent sodium channel blocking toxins, causative agents of paralytic shellfish poisoning (PSP), and are produced by several species of marine dinoflagellates and cyanobacteria. Two STX-core genes, sxtA and sxtG, have been well elucidated in Alexandrium but the expression of these genes under various nutritional modes in tropical species remains unclear. This study investigates the physiological responses of a tropical Pacific strain of Alexandrium minutum growing with nitrate or ammonium, and with various nitrogen to phosphorus (N:P) supply ratios. The transcriptional responses of the sxt genes were observed. Likewise, a putative sxtI encoding O-carbamoyltransferase (herein designated as AmsxtI) was recovered from the transcriptomic data, and its expression was investigated. The results revealed that the cellular toxin quota (Qt) was higher in P-depleted, nitrate-grown cultures. With cultures at similar N:P (<16), cells grown with excess ammonium showed a higher Qt than those grown with nitrate. sxtA1 was not expressed under any culture conditions, suggesting that this gene might not be involved in STX biosynthesis by this strain. Conversely, sxtA4 and sxtG showed positive correlations with Qt, and were up-regulated in P-depleted, nitrate-grown cultures and with excess ambient ammonium. On the other hand, AmsxtI was expressed only when induced by P-depletion, suggesting that this gene may play an important role in P-recycling metabolism, while simultaneously enhancing toxin production.
Collapse
Affiliation(s)
- Kieng Soon Hii
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok 16310, Kelantan, Malaysia.
| | - Nyuk Fong Kon
- Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, Kota Samarahan 94300, Sarawak, Malaysia
| | - Yoshinobu Takata
- The University of Tokyo, Yayoi 1-1-1, Bunkyo-Ku, Tokyo 113-8657, Japan
| | - Gires Usup
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok 16310, Kelantan, Malaysia.
| |
Collapse
|
182
|
Li M, Shi X, Guo C, Lin S. Phosphorus Deficiency Inhibits Cell Division But Not Growth in the Dinoflagellate Amphidinium carterae. Front Microbiol 2016; 7:826. [PMID: 27313570 PMCID: PMC4887478 DOI: 10.3389/fmicb.2016.00826] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/17/2016] [Indexed: 12/03/2022] Open
Abstract
Phosphorus (P) is an essential nutrient element for the growth of phytoplankton. How P deficiency affects population growth and the cell division cycle in dinoflagellates has only been studied in some species, and how it affects photosynthesis and cell growth remains poorly understood. In the present study, we investigated the impact of P deficiency on the cell division cycle, the abundance of the carbon-fixing enzyme Rubisco, and other cellular characteristics in the Gymnodiniales peridinin-plastid species Amphidinium carterae. We found that under P-replete condition, the cell cycle actively progressed in the culture in a 24-h diel cycle with daily growth rates markedly higher than the P-deficient cultures, in which cells were arrested in the G1 phase and cell size significantly enlarged. The results suggest that, as in previously studied dinoflagellates, P deficiency likely disenables A. carterae to complete DNA duplication or check-point protein phosphorylation. We further found that under P-deficient condition, overall photosystem II quantum efficiency (Fv/Fm ratio) and Rubisco abundance decreased but not significantly, while cellular contents of carbon, nitrogen, and proteins increased significantly. These observations indicated that under P-deficiency, this dinoflagellate was able to continue photosynthesis and carbon fixation, such that proteins and photosynthetically fixed carbon could accumulate resulting in continued cell growth in the absence of division. This is likely an adaptive strategy thereby P-limited cells can be ready to resume the cell division cycle upon resupply of phosphorus.
Collapse
Affiliation(s)
- Meizhen Li
- State Key Laboratory of Marine Environmental Science and Marine Biodiversity and Global Change Research Center, Xiamen UniversityXiamen, China
| | - Xinguo Shi
- State Key Laboratory of Marine Environmental Science and Marine Biodiversity and Global Change Research Center, Xiamen UniversityXiamen, China
| | - Chentao Guo
- State Key Laboratory of Marine Environmental Science and Marine Biodiversity and Global Change Research Center, Xiamen UniversityXiamen, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science and Marine Biodiversity and Global Change Research Center, Xiamen UniversityXiamen, China
- Department of Marine Sciences, University of Connecticut, GrotonCT, USA
| |
Collapse
|
183
|
Cooper JT, Sinclair GA, Wawrik B. Transcriptome Analysis of Scrippsiella trochoidea CCMP 3099 Reveals Physiological Changes Related to Nitrate Depletion. Front Microbiol 2016; 7:639. [PMID: 27242681 PMCID: PMC4860509 DOI: 10.3389/fmicb.2016.00639] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 04/18/2016] [Indexed: 01/25/2023] Open
Abstract
Dinoflagellates are a major component of marine phytoplankton and many species are recognized for their ability to produce harmful algal blooms (HABs). Scrippsiella trochoidea is a non-toxic, marine dinoflagellate that can be found in both cold and tropic waters where it is known to produce “red tide” events. Little is known about the genomic makeup of S. trochoidea and a transcriptome study was conducted to shed light on the biochemical and physiological adaptations related to nutrient depletion. Cultures were grown under N and P limiting conditions and transcriptomes were generated via RNAseq technology. De novo assembly reconstructed 107,415 putative transcripts of which only 41% could be annotated. No significant transcriptomic response was observed in response to initial P depletion, however, a strong transcriptional response to N depletion was detected. Among the down-regulated pathways were those for glutamine/glutamate metabolism as well as urea and nitrate/nitrite transporters. Transcripts for ammonia transporters displayed both up- and down-regulation, perhaps related to a shift to higher affinity transporters. Genes for the utilization of DON compounds were up-regulated. These included transcripts for amino acids transporters, polyamine oxidase, and extracellular proteinase and peptidases. N depletion also triggered down regulation of transcripts related to the production of Photosystems I & II and related proteins. These data are consistent with a metabolic strategy that conserves N while maximizing sustained metabolism by emphasizing the relative contribution of organic N sources. Surprisingly, the transcriptome also contained transcripts potentially related to secondary metabolite production, including a homolog to the Short Isoform Saxitoxin gene (sxtA) from Alexandrium fundyense, which was significantly up-regulated under N-depletion. A total of 113 unique hits to Sxt genes, covering 17 of the 34 genes found in C. raciborskii were detected, indicating that S. trochoidea has previously unrecognized potential for the production of secondary metabolites with potential toxicity.
Collapse
Affiliation(s)
- Joshua T Cooper
- Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| | - Geoffrey A Sinclair
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University Raleigh, NC, USA
| | - Boris Wawrik
- Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| |
Collapse
|