151
|
Safarova MS, Kullo IJ. My Approach to the Patient With Familial Hypercholesterolemia. Mayo Clin Proc 2016; 91:770-86. [PMID: 27261867 PMCID: PMC5374743 DOI: 10.1016/j.mayocp.2016.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/18/2016] [Accepted: 04/12/2016] [Indexed: 02/07/2023]
Abstract
Familial hypercholesterolemia (FH), a relatively common Mendelian genetic disorder, is associated with a dramatically increased lifetime risk of premature atherosclerotic cardiovascular disease due to elevated plasma low-density lipoprotein cholesterol (LDL-C) levels. The diagnosis of FH is based on clinical presentation or genetic testing. Early identification of patients with FH is of great public health importance because preventive strategies can lower the absolute lifetime cardiovascular risk and screening can detect affected relatives. However, low awareness, detection, and control of FH pose hurdles in the prevention of FH-related cardiovascular events. Of the estimated 0.65 million to 1 million patients with FH in the United States, less than 10% carry a diagnosis of FH. Based on registry data, a substantial proportion of patients with FH are receiving no or inadequate lipid-lowering therapy. Statins remain the mainstay of treatment for patients with FH. Lipoprotein apheresis and newly approved lipid-lowering drugs are valuable adjuncts to statin therapy, particularly when the LDL-C-lowering response is suboptimal. Monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 provide an additional approximately 60% lowering of LDL-C levels and are approved for use in patients with FH. For homozygous FH, 2 new drugs that work independent of the LDL receptor pathway are available: an apolipoprotein B antisense oligonucleotide (mipomersen) and a microsomal triglyceride transfer protein inhibitor (lomitapide). This review attempts to critically examine the available data to provide a summary of the current evidence for managing patients with FH, including screening, diagnosis, treatment, and surveillance.
Collapse
Affiliation(s)
- Maya S Safarova
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester MN
| | - Iftikhar J Kullo
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester MN.
| |
Collapse
|
152
|
Henderson R, O'Kane M, McGilligan V, Watterson S. The genetics and screening of familial hypercholesterolaemia. J Biomed Sci 2016; 23:39. [PMID: 27084339 PMCID: PMC4833930 DOI: 10.1186/s12929-016-0256-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/03/2016] [Indexed: 11/14/2022] Open
Abstract
Familial Hypercholesterolaemia is an autosomal, dominant genetic disorder that leads to elevated blood cholesterol and a dramatically increased risk of atherosclerosis. It is perceived as a rare condition. However it affects 1 in 250 of the population globally, making it an important public health concern. In communities with founder effects, higher disease prevalences are observed. We discuss the genetic basis of familial hypercholesterolaemia, examining the distribution of variants known to be associated with the condition across the exons of the genes LDLR, ApoB, PCSK9 and LDLRAP1. We also discuss screening programmes for familial hypercholesterolaemia and their cost-effectiveness. Diagnosis typically occurs using one of the Dutch Lipid Clinic Network (DCLN), Simon Broome Register (SBR) or Make Early Diagnosis to Prevent Early Death (MEDPED) criteria, each of which requires a different set of patient data. New cases can be identified by screening the family members of an index case that has been identified as a result of referral to a lipid clinic in a process called cascade screening. Alternatively, universal screening may be used whereby a population is systematically screened. It is currently significantly more cost effective to identify familial hypercholesterolaemia cases through cascade screening than universal screening. However, the cost of sequencing patient DNA has fallen dramatically in recent years and if the rate of progress continues, this may change.
Collapse
Affiliation(s)
- Raymond Henderson
- Northern Ireland Centre for Stratified Medicine, Ulster University, C-TRIC, Altnagelvin Hospital Campus, Derry, Co Londonderry, Northern Ireland, BT47 6SB, UK
| | - Maurice O'Kane
- Department of Clinical Chemistry, Altnagelvin Hospital, Western Health and Social Care Trust, Londonderry, Northern Ireland, BT47 6SB, UK
| | - Victoria McGilligan
- Northern Ireland Centre for Stratified Medicine, Ulster University, C-TRIC, Altnagelvin Hospital Campus, Derry, Co Londonderry, Northern Ireland, BT47 6SB, UK
| | - Steven Watterson
- Northern Ireland Centre for Stratified Medicine, Ulster University, C-TRIC, Altnagelvin Hospital Campus, Derry, Co Londonderry, Northern Ireland, BT47 6SB, UK.
| |
Collapse
|
153
|
Tao W, Moore R, Meng Y, Smith ER, Xu XX. Endocytic adaptors Arh and Dab2 control homeostasis of circulatory cholesterol. J Lipid Res 2016; 57:809-17. [PMID: 27005486 DOI: 10.1194/jlr.m063065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 11/20/2022] Open
Abstract
High serum cholesterol (hypercholesterolemia) strongly associates with cardiovascular diseases as the atherogenic LDLs promote atheroma development in arteries (atherosclerosis). LDL clearance from the circulation by LDL receptor (LDLR)-mediated endocytosis by hepatic and peripheral tissues and subsequent feedback regulation of endogenous synthesis of cholesterol is a key determinant of serum LDL level. Human mutation analysis revealed that autosomal recessive hypercholesterolemia (ARH), an LDLR endocytic adaptor, perturbs LDLR function and thus impacts serum cholesterol levels. In our genetic analysis of mutant mice, we found that deletion of another LDLR endocytic adaptor, Disabled-2 (Dab2), only slightly affected serum cholesterol levels. However, elimination of both arh and dab2 genes in mice resulted in profound hypercholesterolemia similar to that resulting from ldlr homozygous deletion. In the liver, Dab2 is expressed in sinusoid endothelial cells but not in hepatocytes. When deleting both Dab2 and Arh, HMG-CoA reductase level increased to the level similar to that of ldlr knockout. Thus, in the absence of Arh, Dab2 in liver endothelial cells regulates cholesterol synthesis in hepatocytes. We conclude that the combination of Arh and Dab2 is responsible for the majority of adaptor function in LDLR endocytosis and LDLR-mediated cholesterol homeostasis.
Collapse
Affiliation(s)
- Wensi Tao
- Department of Cell Biology, Molecular Cell and Developmental Biology Graduate Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Robert Moore
- Department of Cell Biology, Molecular Cell and Developmental Biology Graduate Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Yue Meng
- Department of Cell Biology, Molecular Cell and Developmental Biology Graduate Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Elizabeth R Smith
- Department of Cell Biology, Molecular Cell and Developmental Biology Graduate Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Xiang-Xi Xu
- Department of Cell Biology, Molecular Cell and Developmental Biology Graduate Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
154
|
Abstract
Hereditary dyslipidemias are often underdiagnosed and undertreated, yet with significant health implications, most importantly causing preventable premature cardiovascular diseases. The commonly used clinical criteria to diagnose hereditary lipid disorders are specific but are not very sensitive. Genetic testing may be of value in making accurate diagnosis and improving cascade screening of family members, and potentially, in risk assessment and choice of therapy. This review focuses on using genetic testing in the clinical setting for lipid disorders, particularly familial hypercholesterolemia.
Collapse
Affiliation(s)
- Ozlem Bilen
- Department of Medicine, Baylor College of Medicine, 3131 Fannin Street, Houston, TX 77030, USA
| | - Yashashwi Pokharel
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, 6565 Fannin Street, Suite B157, Houston, TX 77030, USA; Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart and Vascular Center, 6565 Fannin Street, M.S. A-601, Houston, TX 77030, USA
| | - Christie M Ballantyne
- Center for Cardiovascular Disease Prevention, Methodist DeBakey Heart and Vascular Center, 6565 Fannin Street, M.S. A-601, Houston, TX 77030, USA; Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, 6565 Fannin Street, M.S. A-601, Suite 656, Houston, TX 77030, USA; Section of Cardiology, Department of Medicine, Baylor College of Medicine, 6565 Fannin Street, M.S. A-601, Suite 656, Houston, TX 77030, USA.
| |
Collapse
|
155
|
Fahed AC, Khalaf R, Salloum R, Andary RR, Safa R, El-Rassy I, Moubarak E, Azar ST, Bitar FF, Nemer G. Variable expressivity and co-occurrence of LDLR and LDLRAP1 mutations in familial hypercholesterolemia: failure of the dominant and recessive dichotomy. Mol Genet Genomic Med 2016; 4:283-91. [PMID: 27247956 PMCID: PMC4867562 DOI: 10.1002/mgg3.203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The familial inherited genetic disorder of lipoprotein metabolism affects more than 10 million individuals around the world. Lebanon is one of the several endemic areas for familial hypercholesterolemia (FH) with a founder mutation in the low-density lipoprotein cholesterol receptor (LDLR) gene, responsible for most of the cases. We have previously shown that 16% of all familial cases with hypercholesterolemia do not show genotype segregation of LDLR with the underlying phenotype. METHODS We used Sanger sequencing to genotype 25 Lebanese families with severe FH for the gene encoding the LDLR-associated protein (LDLRAP1), responsible for the recessive form of the disease starting with the four families that did not show any genotype-phenotype correlation in our previous screening. RESULTS We showed that the previously reported p.Q136* variant is linked to the hypercholesterolemia phenotype in the four families. In addition, we showed a variable phenotype between families and between members of the same family. One family exhibits mutations in both LDLR and LDLRAP1 with family members showing differential phenotypes unexplained by the underlying genotypes of the two genes. CONCLUSION The p.Q136* variant in LDLRAP1 is yet another founder mutation in Lebanon and coupled with the LDLR p.C681* variant explains all the genetic causes of FH in Lebanon.
Collapse
Affiliation(s)
- Akl C Fahed
- Department of Biochemistry and Molecular GeneticsAmerican University of BeirutBeirutLebanon; Department of GeneticsHarvard Medical School and Department of Internal MedicineMassachusetts General HospitalBostonMassachusetts
| | - Ruby Khalaf
- Department of Biochemistry and Molecular Genetics American University of Beirut Beirut Lebanon
| | - Rony Salloum
- Department of Biochemistry and Molecular Genetics American University of Beirut Beirut Lebanon
| | - Rabih R Andary
- Department of Biochemistry and Molecular Genetics American University of Beirut Beirut Lebanon
| | - Raya Safa
- Department of Biochemistry and Molecular Genetics American University of Beirut Beirut Lebanon
| | - Inaam El-Rassy
- Department of Biochemistry and Molecular Genetics American University of Beirut Beirut Lebanon
| | - Elie Moubarak
- National LDL Apheresis Center Dahr El-Bashek Governmental University Hospital Roumieh Lebanon
| | - Sami T Azar
- Department of Internal Medicine American University of Beirut Beirut Lebanon
| | - Fadi F Bitar
- Department of Pediatrics and Adolescent Medicine American University of Beirut Beirut Lebanon
| | - Georges Nemer
- Department of Biochemistry and Molecular Genetics American University of Beirut Beirut Lebanon
| |
Collapse
|
156
|
Update on the molecular biology of dyslipidemias. Clin Chim Acta 2016; 454:143-85. [DOI: 10.1016/j.cca.2015.10.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
|
157
|
Zhou M, Zhao D. Familial Hypercholesterolemia in Asian Populations. J Atheroscler Thromb 2016; 23:539-49. [DOI: 10.5551/jat.34405] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Mengge Zhou
- Department of Epidemiology, Beijing An Zhen Hospital, Capital Medical University, the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases
| | - Dong Zhao
- Department of Epidemiology, Beijing An Zhen Hospital, Capital Medical University, the Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases
| |
Collapse
|
158
|
Brautbar A, Leary E, Rasmussen K, Wilson DP, Steiner RD, Virani S. Genetics of familial hypercholesterolemia. Curr Atheroscler Rep 2015; 17:491. [PMID: 25712136 DOI: 10.1007/s11883-015-0491-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Familial hypercholesterolemia (FH) is a genetic disorder characterized by elevated low-density lipoprotein (LDL) cholesterol and premature cardiovascular disease, with a prevalence of approximately 1 in 200-500 for heterozygotes in North America and Europe. Monogenic FH is largely attributed to mutations in the LDLR, APOB, and PCSK9 genes. Differential diagnosis is critical to distinguish FH from conditions with phenotypically similar presentations to ensure appropriate therapeutic management and genetic counseling. Accurate diagnosis requires careful phenotyping based on clinical and biochemical presentation, validated by genetic testing. Recent investigations to discover additional genetic loci associated with extreme hypercholesterolemia using known FH families and population studies have met with limited success. Here, we provide a brief overview of the genetic determinants, differential diagnosis, genetic testing, and counseling of FH genetics.
Collapse
Affiliation(s)
- Ariel Brautbar
- Division of Genetics, Cook Children's Medical Center, Fort Worth, TX, USA,
| | | | | | | | | | | |
Collapse
|
159
|
Robinson MS. Forty Years of Clathrin-coated Vesicles. Traffic 2015; 16:1210-38. [PMID: 26403691 DOI: 10.1111/tra.12335] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022]
Abstract
The purification of coated vesicles and the discovery of clathrin by Barbara Pearse in 1975 was a landmark in cell biology. Over the past 40 years, work from many labs has uncovered the molecular details of clathrin and its associated proteins, including how they assemble into a coated vesicle and how they select cargo. Unexpected connections have been found with signalling, development, neuronal transmission, infection, immunity and genetic disorders. But there are still a number of unanswered questions, including how clathrin-mediated trafficking is regulated and how the machinery evolved.
Collapse
Affiliation(s)
- Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
160
|
Radovica-Spalvina I, Latkovskis G, Silamikelis I, Fridmanis D, Elbere I, Ventins K, Ozola G, Erglis A, Klovins J. Next-generation-sequencing-based identification of familial hypercholesterolemia-related mutations in subjects with increased LDL-C levels in a latvian population. BMC MEDICAL GENETICS 2015; 16:86. [PMID: 26415676 PMCID: PMC4587402 DOI: 10.1186/s12881-015-0230-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 09/15/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is one of the commonest monogenic disorders, predominantly inherited as an autosomal dominant trait. When untreated, it results in early coronary heart disease. The vast majority of FH remains undiagnosed in Latvia. The identification and early treatment of affected individuals remain a challenge worldwide. Most cases of FH are caused by mutations in one of four genes, APOB, LDLR, PCSK9, or LDLRAP1. The spectrum of disease-causing variants is very diverse and the variation detection panels usually used in its diagnosis cover only a minority of the disease-causing gene variants. However, DNA-based tests may provide an FH diagnosis for FH patients with no physical symptoms and with no known family history of the disease. Here, we evaluate the use of targeted next-generation sequencing (NGS) to identify cases of FH in a cohort of patients with coronary artery disease (CAD) and individuals with abnormal low-density lipoprotein-cholesterol (LDL-C) levels. METHODS We used targeted amplification of the coding regions of LDLR, APOB, PCSK9, and LDLRAP1, followed by NGS, in 42 CAD patients (LDL-C, 4.1-7.2 mmol/L) and 50 individuals from a population-based cohort (LDL-C, 5.1-9.7 mmol/L). RESULTS In total, 22 synonymous and 31 nonsynonymous variants, eight variants in close proximity (10 bp) to intron-exon boundaries, and 50 other variants were found. We identified four pathogenic mutations (p.(Arg3527Gln) in APOB, and p.(Gly20Arg), p.(Arg350*), and c.1706-10G > A in LDLR) in seven patients (7.6 %). Three possible pathogenic variants were also found in four patients. CONCLUSION NGS-based methods can be used to detect FH in high-risk individuals when they do not meet the defined clinical criteria.
Collapse
Affiliation(s)
- Ilze Radovica-Spalvina
- Latvian Biomedical Research and Study Center, Ratsupites Street 1, Riga, LV-1067, Latvia.
| | - Gustavs Latkovskis
- Latvian Center of Cardiology, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, Riga, LV-1002, Latvia. .,Faculty of Medicine, University of Latvia, Raina Blvd. 19, Riga, LV-1586, Latvia. .,Research Institute of Cardiology, University of Latvia, Pilsonu Street 13, Riga, LV-1002, Latvia.
| | - Ivars Silamikelis
- Latvian Biomedical Research and Study Center, Ratsupites Street 1, Riga, LV-1067, Latvia.
| | - Davids Fridmanis
- Latvian Biomedical Research and Study Center, Ratsupites Street 1, Riga, LV-1067, Latvia.
| | - Ilze Elbere
- Latvian Biomedical Research and Study Center, Ratsupites Street 1, Riga, LV-1067, Latvia.
| | - Karlis Ventins
- Vidzemes Hospital, Jumaras Street 195, Valmiera, LV-4201, Latvia.
| | - Guna Ozola
- Latvian Center of Cardiology, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, Riga, LV-1002, Latvia.
| | - Andrejs Erglis
- Latvian Center of Cardiology, Pauls Stradins Clinical University Hospital, Pilsonu Street 13, Riga, LV-1002, Latvia. .,Faculty of Medicine, University of Latvia, Raina Blvd. 19, Riga, LV-1586, Latvia. .,Research Institute of Cardiology, University of Latvia, Pilsonu Street 13, Riga, LV-1002, Latvia.
| | - Janis Klovins
- Latvian Biomedical Research and Study Center, Ratsupites Street 1, Riga, LV-1067, Latvia.
| |
Collapse
|
161
|
Butkinaree C, Canuel M, Essalmani R, Poirier S, Benjannet S, Asselin MC, Roubtsova A, Hamelin J, Marcinkiewicz J, Chamberland A, Guillemot J, Mayer G, Sisodia SS, Jacob Y, Prat A, Seidah NG. Amyloid Precursor-like Protein 2 and Sortilin Do Not Regulate the PCSK9 Convertase-mediated Low Density Lipoprotein Receptor Degradation but Interact with Each Other. J Biol Chem 2015; 290:18609-20. [PMID: 26085104 DOI: 10.1074/jbc.m115.647180] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Indexed: 01/07/2023] Open
Abstract
Amyloid precursor-like protein 2 (APLP2) and sortilin were reported to individually bind the proprotein convertase subtilisin/kexin type 9 (PCSK9) and regulate its activity on the low-density lipoprotein receptor (LDLR). The data presented herein demonstrate that mRNA knockdowns of APLP2, sortilin, or both in the human hepatocyte cell lines HepG2 and Huh7 do not affect the ability of extracellular PCSK9 to enhance the degradation of the LDLR. Furthermore, mice deficient in APLP2 or sortilin do not exhibit significant changes in liver LDLR or plasma total cholesterol levels. Moreover, cellular overexpression of one or both proteins does not alter PCSK9 secretion, or its activity on the LDLR. We conclude that PCSK9 enhances the degradation of the LDLR independently of either APLP2 or sortilin both ex vivo and in mice. Interestingly, when co-expressed with PCSK9, both APLP2 and sortilin were targeted for lysosomal degradation. Using chemiluminescence proximity and co-immunoprecipitation assays, as well as biosynthetic analysis, we discovered that sortilin binds and stabilizes APLP2, and hence could regulate its intracellular functions on other targets.
Collapse
Affiliation(s)
- Chutikarn Butkinaree
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Maryssa Canuel
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Rachid Essalmani
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Steve Poirier
- the Laboratory of Molecular Cell Biology, Montreal Heart Institute, 5000 Bélanger, Montréal, Quebec H1T 1C8, Canada
| | - Suzanne Benjannet
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Marie-Claude Asselin
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Anna Roubtsova
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Josée Hamelin
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Jadwiga Marcinkiewicz
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Ann Chamberland
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Johann Guillemot
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Gaétan Mayer
- the Laboratory of Molecular Cell Biology, Montreal Heart Institute, 5000 Bélanger, Montréal, Quebec H1T 1C8, Canada
| | - Sangram S Sisodia
- the Department of Neurobiology, University of Chicago, Chicago, Illinois 60637
| | - Yves Jacob
- the Département de Virologie, Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, F-75015 Paris, France, the CNRS, URA3015, F-75015 Paris, France, and the Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, F-75015 Paris, France
| | - Annik Prat
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada
| | - Nabil G Seidah
- From the Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, University of Montreal, Montreal, Quebec H2W 1R7, Canada,
| |
Collapse
|
162
|
Go GW. Low-Density Lipoprotein Receptor-Related Protein 6 (LRP6) Is a Novel Nutritional Therapeutic Target for Hyperlipidemia, Non-Alcoholic Fatty Liver Disease, and Atherosclerosis. Nutrients 2015; 7:4453-64. [PMID: 26046396 PMCID: PMC4488795 DOI: 10.3390/nu7064453] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/13/2015] [Accepted: 05/27/2015] [Indexed: 12/23/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is a member of the low-density lipoprotein receptor family and has a unique structure, which facilitates its multiple functions as a co-receptor for Wnt/β-catenin signaling and as a ligand receptor for endocytosis. The role LRP6 plays in metabolic regulation, specifically in the nutrient-sensing pathway, has recently garnered considerable interest. Patients carrying an LRP6 mutation exhibit elevated levels of LDL cholesterol, triglycerides, and fasting glucose, which cooperatively constitute the risk factors of metabolic syndrome and atherosclerosis. Since the discovery of this mutation, the general role of LRP6 in lipid homeostasis, glucose metabolism, and atherosclerosis has been thoroughly researched. These studies have demonstrated that LRP6 plays a role in LDL receptor-mediated LDL uptake. In addition, when the LRP6 mutant impaired Wnt-LRP6 signaling, hyperlipidemia, non-alcoholic fatty liver disease, and atherosclerosis developed. LRP6 regulates lipid homeostasis and body fat mass via the nutrient-sensing mechanistic target of the rapamycin (mTOR) pathway. Furthermore, the mutant LRP6 triggers atherosclerosis by activating platelet-derived growth factor (PDGF)-dependent vascular smooth muscle cell differentiation. This review highlights the exceptional opportunities to study the pathophysiologic contributions of LRP6 to metabolic syndrome and cardiovascular diseases, which implicate LRP6 as a latent regulator of lipid metabolism and a novel therapeutic target for nutritional intervention.
Collapse
Affiliation(s)
- Gwang-woong Go
- Department of Food and Nutrition, Kookmin University, Seoul 136-702, Korea.
| |
Collapse
|
163
|
|
164
|
|
165
|
Romagnuolo R, Scipione CA, Boffa MB, Marcovina SM, Seidah NG, Koschinsky ML. Lipoprotein(a) catabolism is regulated by proprotein convertase subtilisin/kexin type 9 through the low density lipoprotein receptor. J Biol Chem 2015; 290:11649-62. [PMID: 25778403 DOI: 10.1074/jbc.m114.611988] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Indexed: 01/07/2023] Open
Abstract
Elevated levels of lipoprotein(a) (Lp(a)) have been identified as an independent risk factor for coronary heart disease. Plasma Lp(a) levels are reduced by monoclonal antibodies targeting proprotein convertase subtilisin/kexin type 9 (PCSK9). However, the mechanism of Lp(a) catabolism in vivo and the role of PCSK9 in this process are unknown. We report that Lp(a) internalization by hepatic HepG2 cells and primary human fibroblasts was effectively reduced by PCSK9. Overexpression of the low density lipoprotein (LDL) receptor (LDLR) in HepG2 cells dramatically increased the internalization of Lp(a). Internalization of Lp(a) was markedly reduced following treatment of HepG2 cells with a function-blocking monoclonal antibody against the LDLR or the use of primary human fibroblasts from an individual with familial hypercholesterolemia; in both cases, Lp(a) internalization was not affected by PCSK9. Optimal Lp(a) internalization in both hepatic and primary human fibroblasts was dependent on the LDL rather than the apolipoprotein(a) component of Lp(a). Lp(a) internalization was also dependent on clathrin-coated pits, and Lp(a) was targeted for lysosomal and not proteasomal degradation. Our data provide strong evidence that the LDLR plays a role in Lp(a) catabolism and that this process can be modulated by PCSK9. These results provide a direct mechanism underlying the therapeutic potential of PCSK9 in effectively lowering Lp(a) levels.
Collapse
Affiliation(s)
- Rocco Romagnuolo
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Corey A Scipione
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Michael B Boffa
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Santica M Marcovina
- the Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington, Seattle, Washington 98109, and
| | - Nabil G Seidah
- the Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Marlys L Koschinsky
- From the Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada,
| |
Collapse
|
166
|
Bamimore MA, Zaid A, Banerjee Y, Al-Sarraf A, Abifadel M, Seidah NG, Al-Waili K, Al-Rasadi K, Awan Z. Familial hypercholesterolemia mutations in the Middle Eastern and North African region: A need for a national registry. J Clin Lipidol 2015; 9:187-94. [DOI: 10.1016/j.jacl.2014.11.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/15/2014] [Accepted: 11/23/2014] [Indexed: 01/01/2023]
|
167
|
Takahashi M, Mohan P, Nakade A, Higashimine K, Mott D, Hamada T, Matsumura K, Taguchi T, Maenosono S. Ag/FeCo/Ag core/shell/shell magnetic nanoparticles with plasmonic imaging capability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2228-2236. [PMID: 25614919 DOI: 10.1021/la5046805] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Magnetic nanoparticles (NPs) have been used to separate various species such as bacteria, cells, and proteins. In this study, we synthesized Ag/FeCo/Ag core/shell/shell NPs designed for magnetic separation of subcellular components like intracellular vesicles. A benefit of these NPs is that their silver metal content allows plasmon scattering to be used as a tool to observe detection by the NPs easily and semipermanently. Therefore, these NPs are considered a potential alternative to existing fluorescent probes like dye molecules and colloidal quantum dots. In addition, the Ag core inside the NPs suppresses the oxidation of FeCo because of electron transfer from the Ag core to the FeCo shell, even though FeCo is typically susceptible to oxidation. The surfaces of the Ag/FeCo/Ag NPs were functionalized with ε-poly-L-lysine-based hydrophilic polymers to make them water-soluble and biocompatible. The imaging capability of the polymer-functionalized NPs induced by plasmon scattering from the Ag core was investigated. The response of the NPs to a magnetic field using liposomes as platforms and applying a magnetic field during observation by confocal laser scanning microscopy was assessed. The results of the magnetophoresis experiments of liposomes allowed us to calculate the magnetic force to which each liposome was subjected.
Collapse
Affiliation(s)
- Mari Takahashi
- School of Materials Science, Japan Advanced Institute of Science and Technology , 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
|
169
|
Fellin R, Arca M, Zuliani G, Calandra S, Bertolini S. The history of Autosomal Recessive Hypercholesterolemia (ARH). From clinical observations to gene identification. Gene 2015; 555:23-32. [PMID: 25225128 DOI: 10.1016/j.gene.2014.09.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/01/2014] [Accepted: 09/09/2014] [Indexed: 11/22/2022]
Abstract
The most frequent form of monogenic hypercholesterolemia, also known as Familial Hypercholesterolemia (FH), is characterized by plasma accumulation of cholesterol transported in Low Density Lipoproteins (LDLs). FH has a co-dominant transmission with a gene-dosage effect. FH heterozygotes have levels of plasma LDL-cholesterol (LDL-C) twice normal and present xanthomas and coronary heart disease (CHD) in adulthood. In rare FH homozygotes plasma LDL-C level is four times normal, while xanthomas and CHD are present from infancy. Most FH patients are carriers of mutations of the LDL receptor (LDLR); a minority of them carry either mutations in the Apolipoprotein B (ApoB), the protein constituent of LDLs which is the ligand for LDLR, or gain of function mutations of PCSK9, the protein responsible for the intracellular degradation of the LDLR. From 1970 to the mid 90s some publications described children with the clinical features of homozygous FH, who were born from normocholesterolemic parents, strongly suggesting a recessive transmission of FH. In these patients the involvement of LDLR and APOB genes was excluded. Interestingly, several patients were identified in the island of Sardinia (Italy), whose population has a peculiar genetic background due to geographical isolation. In this review, starting from the early descriptions of patients with putative recessive hypercholesterolemia, we highlight the milestones that led to the identification of a novel gene involved in LDL metabolism and the characterization of its encoded protein. The latter turned out to be an adaptor protein required for the LDLR-mediated endocytosis of LDLs in hepatocytes. The loss of function of this protein is the cause of Autosomal Recessive Hypercholesterolemia (ARH).
Collapse
Affiliation(s)
- Renato Fellin
- Department of Clinical & Experimental Medicine, Section of Internal Medicine, Gerontology & Nutrition, University of Ferrara, Via A. Moro, 8, I-44124 Ferrara, Italy
| | - Marcello Arca
- Department of Internal Medicine and Allied Sciences, Atherosclerosis Center, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 00161 Rome, Italy
| | - Giovanni Zuliani
- Department of Clinical & Experimental Medicine, Section of Internal Medicine, Gerontology & Nutrition, University of Ferrara, Via A. Moro, 8, I-44124 Ferrara, Italy
| | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena & Reggio Emilia, Via Campi 287, I-41125 Modena, Italy.
| | - Stefano Bertolini
- Department of Internal Medicine, University of Genova, Viale Bendetto XV, I-16132 Genova, Italy
| |
Collapse
|
170
|
Musunuru K, Hickey KT, Al-Khatib SM, Delles C, Fornage M, Fox CS, Frazier L, Gelb BD, Herrington DM, Lanfear DE, Rosand J. Basic concepts and potential applications of genetics and genomics for cardiovascular and stroke clinicians: a scientific statement from the American Heart Association. ACTA ACUST UNITED AC 2015; 8:216-42. [PMID: 25561044 DOI: 10.1161/hcg.0000000000000020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
171
|
Muntoni S, Pisciotta L, Muntoni S, Bertolini S. Pharmacological treatment of a Sardinian patient affected by Autosomal Recessive Hypercholesterolemia (ARH). J Clin Lipidol 2015; 9:103-6. [PMID: 25670367 DOI: 10.1016/j.jacl.2014.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 05/24/2014] [Accepted: 08/26/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND AIM Previous studies have shown that patients with autosomal recessive hypercholesterolemia (ARH) resulting from mutations in LDLRAP1 gene have a less severe cardiovascular involvement than familial hypercholesterolemia homozygotes, lower levels of low-density lipoprotein cholesterol (LDL-C), and higher levels of high-density lipoprotein cholesterol (HDL-C). In addition, ARH patients seem to be more responsive to the lipid-lowering drugs. The aim was to test the effect of a combined drug treatment in an ARH patient in the absence of plasmapheresis. METHODS AND RESULTS Here we report the lipid-lowering effect of rosuvastatin (60 mg/day) associated with ezetimibe (10 mg/day) in a single ARH patient. The sequencing of LDLRAP1 gene showed that the patient was homozygous for the c.432insA mutation. During a 6-month treatment, we observed an 80% reduction of LDL-C and a significant increase of HDL-C and ApoA-I. Some sequence variations in PCSK9 and NPC1L1 genes found in this patient may have contributed to the success of drug treatment. CONCLUSIONS Our findings, although limited to a single case, suggest that in many ARH patients the LDL-C goal may be reached with the more potent statins associated with ezetimibe in the absence of extracorporeal procedures.
Collapse
Affiliation(s)
- Sandro Muntoni
- Oncology and Molecular Pathology Unit, Department of Biomedical Sciences, University of Cagliari, Italy; Centre for Metabolic Diseases and Atherosclerosis, The ME.DI.CO. Association, Cagliari, Italy.
| | - Livia Pisciotta
- Department of Internal Medicine, University of Genova, Italy
| | - Sergio Muntoni
- Centre for Metabolic Diseases and Atherosclerosis, The ME.DI.CO. Association, Cagliari, Italy
| | | |
Collapse
|
172
|
Lahtinen AM, Havulinna AS, Jula A, Salomaa V, Kontula K. Prevalence and clinical correlates of familial hypercholesterolemia founder mutations in the general population. Atherosclerosis 2015; 238:64-9. [DOI: 10.1016/j.atherosclerosis.2014.11.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/27/2014] [Accepted: 11/10/2014] [Indexed: 11/26/2022]
|
173
|
Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature 2014; 518:102-6. [PMID: 25487149 PMCID: PMC4319990 DOI: 10.1038/nature13917] [Citation(s) in RCA: 504] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 10/03/2014] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI), a leading cause of death around the world, displays a complex pattern of inheritance. When MI occurs early in life, genetic inheritance is a major component to risk. Previously, rare mutations in low-density lipoprotein (LDL) genes have been shown to contribute to MI risk in individual families, whereas common variants at more than 45 loci have been associated with MI risk in the population. Here we evaluate how rare mutations contribute to early-onset MI risk in the population. We sequenced the protein-coding regions of 9,793 genomes from patients with MI at an early age (≤50 years in males and ≤60 years in females) along with MI-free controls. We identified two genes in which rare coding-sequence mutations were more frequent in MI cases versus controls at exome-wide significance. At low-density lipoprotein receptor (LDLR), carriers of rare non-synonymous mutations were at 4.2-fold increased risk for MI; carriers of null alleles at LDLR were at even higher risk (13-fold difference). Approximately 2% of early MI cases harbour a rare, damaging mutation in LDLR; this estimate is similar to one made more than 40 years ago using an analysis of total cholesterol. Among controls, about 1 in 217 carried an LDLR coding-sequence mutation and had plasma LDL cholesterol > 190 mg dl(-1). At apolipoprotein A-V (APOA5), carriers of rare non-synonymous mutations were at 2.2-fold increased risk for MI. When compared with non-carriers, LDLR mutation carriers had higher plasma LDL cholesterol, whereas APOA5 mutation carriers had higher plasma triglycerides. Recent evidence has connected MI risk with coding-sequence mutations at two genes functionally related to APOA5, namely lipoprotein lipase and apolipoprotein C-III (refs 18, 19). Combined, these observations suggest that, as well as LDL cholesterol, disordered metabolism of triglyceride-rich lipoproteins contributes to MI risk.
Collapse
|
174
|
Wei J, Fu ZY, Li PS, Miao HH, Li BL, Ma YT, Song BL. The clathrin adaptor proteins ARH, Dab2, and numb play distinct roles in Niemann-Pick C1-Like 1 versus low density lipoprotein receptor-mediated cholesterol uptake. J Biol Chem 2014; 289:33689-700. [PMID: 25331956 PMCID: PMC4246119 DOI: 10.1074/jbc.m114.593764] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 10/08/2014] [Indexed: 12/21/2022] Open
Abstract
The uptake of circulating low density lipoproteins (LDL) is mediated by LDL receptor (LDLR) through clathrin-dependent endocytosis. At the early stage of this process, adaptor proteins ARH and Dab2 specifically bind the endocytic signal motif in LDLR and recruit clathrin/AP2 to initiate internalization. On the other hand, intestinal cholesterol is absorbed by Niemann-Pick C1-Like 1 (NPC1L1) through clathrin-dependent endocytosis. Another adaptor protein, Numb recognizes the endocytic motif in NPC1L1 C terminus and couples NPC1L1 to endocytic machinery. The ARH, Dab2, and Numb proteins contain a homogeneous phosphotyrosine binding (PTB) domain that directly binds endocytic motifs. Because ARH, Dab2, and Numb are all PTB domain family members, the emerging mystery is whether these adaptors act complementally in LDLR and NPC1L1 endocytosis. Here, we found that ARH and Dab2 did not bind NPC1L1 and were not required for NPC1L1 internalization. Similarly, Numb lacked the ability to interact with the LDLR C terminus and was dispensable for LDL uptake. Only the Numb isoforms with shorter PTB domain could facilitate NPC1L1 endocytosis. Besides the reported function in intestinal cholesterol absorption, Numb also mediated cholesterol reabsorption from bile in liver. We further identified a Numb variant with G595D substitution in humans of low blood LDL-cholesterol. The G595D substitution impaired NPC1L1 internalization and cholesterol reabsorption, due to attenuating affinity of Numb to clathrin/AP2. These results demonstrate that Numb specifically regulates NPC1L1-mediated cholesterol absorption both in human intestine and liver, distinct from ARH and Dab2, which selectively participate in LDLR-mediated LDL uptake.
Collapse
Affiliation(s)
- Jian Wei
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Zhen-Yan Fu
- the Department of Cardiovascular Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, and
| | - Pei-Shan Li
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Hong-Hua Miao
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Bo-Liang Li
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031
| | - Yi-Tong Ma
- the Department of Cardiovascular Medicine, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, and
| | - Bao-Liang Song
- From the State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, the College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
175
|
Tada H, Kawashiri MA, Nohara A, Inazu A, Kobayashi J, Mabuchi H, Yamagishi M. Autosomal recessive hypercholesterolemia: a mild phenotype of familial hypercholesterolemia: insight from the kinetic study using stable isotope and animal studies. J Atheroscler Thromb 2014; 22:1-9. [PMID: 25399932 DOI: 10.5551/jat.27227] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Autosomal recessive hypercholesterolemia (ARH) is an extremely rare inherited disorder, the cause of which is mutations in the low-density lipoprotein (LDL) receptor adaptor protein 1 (LDLRAP1) gene. Only 36 families with 14 different mutations have been reported in the literature to date. The clinical phenotype of ARH is milder than that of homozygous familial hypercholesterolemia (FH) caused by LDL receptor gene mutations. Recently, the lipoprotein metabolism of ARH was investigated in both humans and mice by several investigators, including ourselves. Based on these findings the preserved clearance of LDL receptor-dependent very-LDL (VLDL) may be a possible mechanism underlying the responsiveness to statins and the milder phenotype of ARH. Although ARH has been described as being "recessive," several studies, including ours, have indicated that a heterozygous carrier status of the LDLRAP1 gene is associated with mild hypercholesterolemia and exacerbates the phenotype of FH resulting from LDL receptor gene mutations. This review summarizes current understanding regarding ARH and its causative gene, LDLRAP1, and attempts to provide new insight into novel pharmacological targets for treating dyslipidemic patients.
Collapse
Affiliation(s)
- Hayato Tada
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine
| | | | | | | | | | | | | |
Collapse
|
176
|
Guay SP, Brisson D, Munger J, Lamarche B, Gaudet D, Bouchard L. ABCA1gene promoter DNA methylation is associated with HDL particle profile and coronary artery disease in familial hypercholesterolemia. Epigenetics 2014; 7:464-72. [DOI: 10.4161/epi.19633] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
177
|
Umasankar PK, Ma L, Thieman JR, Jha A, Doray B, Watkins SC, Traub LM. A clathrin coat assembly role for the muniscin protein central linker revealed by TALEN-mediated gene editing. eLife 2014; 3. [PMID: 25303365 PMCID: PMC4215538 DOI: 10.7554/elife.04137] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/08/2014] [Indexed: 12/12/2022] Open
Abstract
Clathrin-mediated endocytosis is an evolutionarily ancient membrane transport system regulating cellular receptivity and responsiveness. Plasmalemma clathrin-coated structures range from unitary domed assemblies to expansive planar constructions with internal or flanking invaginated buds. Precisely how these morphologically-distinct coats are formed, and whether all are functionally equivalent for selective cargo internalization is still disputed. We have disrupted the genes encoding a set of early arriving clathrin-coat constituents, FCHO1 and FCHO2, in HeLa cells. Endocytic coats do not disappear in this genetic background; rather clustered planar lattices predominate and endocytosis slows, but does not cease. The central linker of FCHO proteins acts as an allosteric regulator of the prime endocytic adaptor, AP-2. By loading AP-2 onto the plasma membrane, FCHO proteins provide a parallel pathway for AP-2 activation and clathrin-coat fabrication. Further, the steady-state morphology of clathrin-coated structures appears to be a manifestation of the availability of the muniscin linker during lattice polymerization. DOI:http://dx.doi.org/10.7554/eLife.04137.001 Cells can take proteins and other molecules that are either embedded in, or attached to, their surface membrane and move them inside via a process called endocytosis. This process often involves a protein called clathrin working together with numerous other proteins. Early on, a complex of four proteins, called the adaptor protein-2 complex, interacts with both the ‘cargo’ molecules that are to be taken into the cell, and the cell membrane. Clathrin molecules then assemble into an ordered lattice-like coat, on top of the adaptor protein complex layer. This deforms a small patch of the cell membrane and curves it inwards. The clathrin molecules coat this pocket as it grows in size, until it engulfs the cargo. The pocket quickly pinches off from the membrane to form a bubble-like structure called a vesicle, which is brought into the cell. A family of proteins termed Muniscins were thought to be involved in the early stages of endocytosis and have to arrive at the membrane before the adaptor protein-2 complex and clathrin. But experiments to test this idea—that reduced, or ‘knocked-down’, the production of Muniscins—had given conflicting results. As such, it remained unclear how the small patches of membrane carrying cargo molecules are marked as being destined to become clathrin-coated vesicles. Now Umasankar et al. have studied the role that these proteins play in the early stages of endocytosis in human cells grown in a laboratory. A gene-editing approach was used to precisely disrupt a gene that codes for a Muniscin protein called FCHO2. Umasankar et al. observed that these ‘edited’ cells formed clathrin coats that were more irregular compared with those that form in normal cells. Nevertheless, clathrin-mediated vesicles still formed when this protein was absent, though the process of endocytosis was slower. Similar results were seen when Umasankar et al. used the same approach to disrupt the gene for a related protein called FCHO1 in the same cells. A short fragment of the Muniscin proteins, called the linker, was shown to bind to, and activate, the adaptor protein-2 complex. The linker then recruits this complex to the specific regions of the cell membrane where clathrin-coated vesicles will form. Several dozen other proteins also accumulate where clathrin pockets form; as such, one of the next challenges will be to investigate if this mechanism of locally activating the cargo-gathering machinery is common in living cells. DOI:http://dx.doi.org/10.7554/eLife.04137.002
Collapse
Affiliation(s)
| | - Li Ma
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - James R Thieman
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Anupma Jha
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Balraj Doray
- Department of Medicine, Washington University School of Medicine, St. Louis, United States
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Linton M Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| |
Collapse
|
178
|
Genetic, anatomic, and clinical determinants of human serum sterol and vitamin D levels. Proc Natl Acad Sci U S A 2014; 111:E4006-14. [PMID: 25201972 DOI: 10.1073/pnas.1413561111] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An unknown fraction of the genome participates in the metabolism of sterols and vitamin D, two classes of lipids with diverse physiological and pathophysiological roles. Here, we used mass spectrometry to measure the abundance of >60 sterol and vitamin D derivatives in 3,230 serum samples from a well-phenotyped patient population. Twenty-nine of these lipids were detected in a majority of samples at levels that varied over thousands of fold in different individuals. Pairwise correlations between sterol and vitamin D levels revealed evidence for shared metabolic pathways, additional substrates for known enzymes, and transcriptional regulatory networks. Serum levels of multiple sterols and vitamin D metabolites varied significantly by sex, ethnicity, and age. A genome-wide association study identified 16 loci that were associated with levels of 19 sterols and 25-hydroxylated derivatives of vitamin D (P < 10(-7)). Resequencing, expression analysis, and biochemical experiments focused on one such locus (CYP39A1), revealed multiple loss-of-function alleles with additive effects on serum levels of the oxysterol, 24S-hydroxycholesterol, a substrate of the encoded enzyme. Body mass index, serum lipid levels, and hematocrit were strong phenotypic correlates of interindividual variation in multiple sterols and vitamin D metabolites. We conclude that correlating population-based analytical measurements with genotype and phenotype provides productive insight into human intermediary metabolism.
Collapse
|
179
|
Tiwari V, Khokhar M. Mechanism of action of anti-hypercholesterolemia drugs and their resistance. Eur J Pharmacol 2014; 741:156-70. [PMID: 25151024 DOI: 10.1016/j.ejphar.2014.07.048] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/05/2023]
Abstract
Coronary artery disease is one of the leading causes of death worldwide. One of the significant causes of this disease is hypercholesterolemia which is the result of various genetic alterations that are associated with the accumulation of specific classes of lipoprotein particles in plasma. A number of drugs are used to treat hypercholesterolemia like statin, fibrate, bile acid sequestrants, niacin, ezetimibe, omega-3 fatty acids and natural extracts. It has been observed that these drugs show diverse response in different individuals. The present review explains the mechanism of action of these drugs as well as mechanism of its lesser effectiveness or resistance in some individuals. There are various identified genetic variations that are associated with diversity in the drugs response. Therefore, present study helps to understand the ethiology of drug mechanism and resistance developed against drugs used to treat hypercholesterolemia.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305801, Rajasthan, India.
| | - Manoj Khokhar
- Department of Biochemistry, Central University of Rajasthan, Ajmer 305801, Rajasthan, India
| |
Collapse
|
180
|
Talmud PJ, Futema M, Humphries SE. The genetic architecture of the familial hyperlipidaemia syndromes: rare mutations and common variants in multiple genes. Curr Opin Lipidol 2014; 25:274-81. [PMID: 24977977 DOI: 10.1097/mol.0000000000000090] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Genome-Wide Association Studies have provided robust identification of approximately 100 genetic loci determining plasma lipid parameters. Using these multiple common genetic lipid-determining variants in a 'gene score' has thrown new light on the mode of inheritance of familial lipid disorders. RECENT FINDINGS Different hypertriglyceridaemia states have been explained by the polygenic coinheritance of triglyceride-raising alleles. Taking this gene score approach with 12 LDL-cholesterol-raising alleles, we reported that for patients with a clinical diagnosis of familial hypercholesterolaemia, but no identified rare mutation in the familial hypercholesterolaemia-causing genes, LDL receptor, apolipoprotein B and PCSK9, the most likely explanation for their elevated LDL-C levels was a polygenic, not a monogenic, cause of the disease. SUMMARY These findings have wider implications for understanding complex disorders, and may very well explain the genetic basis of familial combined hyperlipidaemia, another familial lipid disorder in which the genetic cause(s) has remained elusive.
Collapse
Affiliation(s)
- Philippa J Talmud
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
| | | | | |
Collapse
|
181
|
De S, Kuwahara S, Saito A. The endocytic receptor megalin and its associated proteins in proximal tubule epithelial cells. MEMBRANES 2014; 4:333-55. [PMID: 25019425 PMCID: PMC4194038 DOI: 10.3390/membranes4030333] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 06/23/2014] [Accepted: 07/01/2014] [Indexed: 02/08/2023]
Abstract
Receptor-mediated endocytosis in renal proximal tubule epithelial cells (PTECs) is important for the reabsorption and metabolization of proteins and other substances, including carrier-bound vitamins and trace elements, in glomerular filtrates. Impairment of this endocytic process results in the loss of such substances and development of proteinuria, which is an important clinical indicator of kidney diseases and is also a risk marker for cardiovascular disease. Megalin, a member of the low-density lipoprotein receptor gene family, is a multiligand receptor expressed in the apical membrane of PTECs and plays a central role in the endocytic process. Megalin interacts with various intracellular adaptor proteins for intracellular trafficking and cooperatively functions with other membrane molecules, including the cubilin-amnionless complex. Evidence suggests that megalin and the cubilin-amnionless complex are involved in the uptake of toxic substances into PTECs, which leads to the development of kidney disease. Studies of megalin and its associated molecules will be useful for future development of novel strategies for the diagnosis and treatment of kidney diseases.
Collapse
Affiliation(s)
- Shankhajit De
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| | - Shoji Kuwahara
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata 951-8510, Japan.
| |
Collapse
|
182
|
Futema M, Plagnol V, Li K, Whittall RA, Neil HAW, Seed M, Bertolini S, Calandra S, Descamps OS, Graham CA, Hegele RA, Karpe F, Durst R, Leitersdorf E, Lench N, Nair DR, Soran H, Van Bockxmeer FM, Humphries SE. Whole exome sequencing of familial hypercholesterolaemia patients negative for LDLR/APOB/PCSK9 mutations. J Med Genet 2014; 51:537-44. [PMID: 24987033 PMCID: PMC4112429 DOI: 10.1136/jmedgenet-2014-102405] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Familial hypercholesterolaemia (FH) is an autosomal dominant disease of lipid metabolism, which leads to early coronary heart disease. Mutations in LDLR, APOB and PCSK9 can be detected in 80% of definite FH (DFH) patients. This study aimed to identify novel FH-causing genetic variants in patients with no detectable mutation. Methods and results Exomes of 125 unrelated DFH patients were sequenced, as part of the UK10K project. First, analysis of known FH genes identified 23 LDLR and two APOB mutations, and patients with explained causes of FH were excluded from further analysis. Second, common and rare variants in genes associated with low-density lipoprotein cholesterol (LDL-C) levels in genome-wide association study (GWAS) meta-analysis were examined. There was no clear rare variant association in LDL-C GWAS hits; however, there were 29 patients with a high LDL-C SNP score suggestive of polygenic hypercholesterolaemia. Finally, a gene-based burden test for an excess of rare (frequency <0.005) or novel variants in cases versus 1926 controls was performed, with variants with an unlikely functional effect (intronic, synonymous) filtered out. Conclusions No major novel locus for FH was detected, with no gene having a functional variant in more than three patients; however, an excess of novel variants was found in 18 genes, of which the strongest candidates included CH25H and INSIG2 (p<4.3×10−4 and p<3.7×10−3, respectively). This suggests that the genetic cause of FH in these unexplained cases is likely to be very heterogeneous, which complicates the diagnostic and novel gene discovery process.
Collapse
Affiliation(s)
- Marta Futema
- British Heart Foundation Laboratories, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, the Rayne Building University College London, London, UK
| | - Vincent Plagnol
- Department of Genetics, Environment and Evolution, UCL Genetics Institute, University College London, London, UK
| | - KaWah Li
- British Heart Foundation Laboratories, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, the Rayne Building University College London, London, UK
| | - Ros A Whittall
- British Heart Foundation Laboratories, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, the Rayne Building University College London, London, UK
| | - H Andrew W Neil
- Department of Primary Care Health Sciences, NIHR School of Primary Care Research, University of Oxford, Oxford, UK
| | - Mary Seed
- Department of Cardiology, Imperial College Health Services, Charing Cross Hospital, London, UK
| | | | | | - Sebastiano Calandra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Colin A Graham
- Queens University Belfast & Regional Genetics Centre, Belfast Health and Social Care Trust/City Hospital Belfast BT9 7AB Northern Ireland UK
| | | | - Fredrik Karpe
- OCDEM, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, UK
| | - Ronen Durst
- Cardiology Department, Hadassah Hebrew University Medical Center, Jerusalem, Israel Department of Medicine, Center for Research, Prevention and Treatment of Atherosclerosis, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Eran Leitersdorf
- Department of Medicine, Center for Research, Prevention and Treatment of Atherosclerosis, Hadassah Hebrew University Medical Centre, Jerusalem, Israel
| | - Nicholas Lench
- North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children, London, UK
| | - Devaki R Nair
- Consultant Lipidologist and Chemical Pathologist Director SAS Laboratory for Cardiac Biomarkers, Royal Free Hospital, London, UK
| | - Handrean Soran
- Cardiovascular Trials Unit, University Department of Medicine, Central Manchester University Hospital NHS Foundation Trust, Manchester, UK
| | - Frank M Van Bockxmeer
- Division of Laboratory Medicine, Department of Biochemistry, Royal Perth Hospital, Perth, Australia
| | | | - Steve E Humphries
- British Heart Foundation Laboratories, Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, the Rayne Building University College London, London, UK
| |
Collapse
|
183
|
Chu HC, Tseng WL, Lee HY, Cheng JC, Chang SS, Yung BYM, Tseng CP. Distinct effects of Disabled-2 on transferrin uptake in different cell types and culture conditions. Cell Biol Int 2014; 38:1252-9. [PMID: 24889971 DOI: 10.1002/cbin.10316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 05/06/2014] [Indexed: 11/10/2022]
Abstract
Iron uptake by the transferrin (Tf)-transferrin receptor (TfR) complex is critical for erythroid differentiation. The mechanisms of TfR trafficking have been examined, but the adaptor proteins involved in this process are not fully elucidated. We have investigated the role of the adaptor protein, Disabled-2 (Dab2), in erythroid differentiation and Tf uptake in the cells of hematopoietic lineage. Dab2 was upregulated in a time-dependent manner during erythroid differentiation of mouse embryonic stem cells and human K562 erythroleukemic cells. Attenuating Dab2 expression in K562 cells diminished TfR internalization and increased surface levels of TfR concomitantly with a decrease in Tf uptake and erythroid differentiation. Dab2 regulated Tf uptake of the suspended, but not adherent, cultures of K562 cells. In contrast, Dab2 is not involved in TfR trafficking in the HeLa cells with epithelial origin. These differential effects are Dab2-specific because attenuating the expression of adaptor protein 2 μ subunit inhibited the uptake of Tf regardless of culture condition. We offer novel insight of Dab2 function in iron uptake and TfR internalization for the suspended culture of hematopoietic lineage cells.
Collapse
Affiliation(s)
- Hui-Chun Chu
- Graduate Institute of Biomedical Science, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan, 333, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
184
|
Vuorio A, Tikkanen MJ, Kovanen PT. Inhibition of hepatic microsomal triglyceride transfer protein - a novel therapeutic option for treatment of homozygous familial hypercholesterolemia. Vasc Health Risk Manag 2014; 10:263-70. [PMID: 24851052 PMCID: PMC4018418 DOI: 10.2147/vhrm.s36641] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Familial hypercholesterolemia (FH) is an autosomal dominant disease caused by mutations in the low-density lipoprotein (LDL)-receptor gene (LDLR). Patients with homozygous FH (hoFH) have inherited a mutated LDLR gene from both parents, and therefore all their LDL-receptors are incapable of functioning normally. In hoFH, serum LDL levels often exceed 13 mmol/L and tendon and cutaneous xanthomata appear early (under 10 years of age). If untreated, this extremely severe form of hypercholesterolemia may cause death in childhood or in early adulthood. Based on recent data, it can be estimated that the prevalence of hoFH is about 1:500,000 or even 1:400,000. Until now, the treatment of hoFH has been based on high-dose statin treatment combined with LDL apheresis. Since the LDL cholesterol-lowering effect of statins is weak in this disease, and apheresis is a cumbersome treatment and not available at all centers, alternative novel pharmaceutical therapies are needed. Lomitapide is a newly introduced drug, capable of effectively decreasing serum LDL cholesterol concentration in hoFH. It inhibits the microsomal triglyceride transfer protein (MTTP). By inhibiting in hepatocytes the transfer of triglycerides into very low density lipoprotein particles, the drug blocks their assembly and secretion into the circulating blood. Since the very low density lipoprotein particles are precursors of LDL particles in the circulation, the reduced secretion of the former results in lower plasma concentration of the latter. The greatest concern in lomitapide treatment has been the increase in liver fat, which can be, however, counteracted by strictly adhering to a low-fat diet. Lomitapide is a welcome addition to the meager selection of drugs currently available for the treatment of refractory hypercholesterolemia in hoFH patients.
Collapse
Affiliation(s)
- Alpo Vuorio
- Health Center Mehiläinen, Vantaa, Finland ; Finnish Institute of Occupational Health, Lappeenranta, Finland
| | - Matti J Tikkanen
- Heart and Lung Center, Helsinki University Central Hospital, Folkhälsan Research Center, Biomedicum, Helsinki, Finland
| | | |
Collapse
|
185
|
Kuivenhoven JA, Hegele RA. Mining the genome for lipid genes. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1993-2009. [PMID: 24798233 DOI: 10.1016/j.bbadis.2014.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/22/2014] [Accepted: 04/27/2014] [Indexed: 12/12/2022]
Abstract
Mining of the genome for lipid genes has since the early 1970s helped to shape our understanding of how triglycerides are packaged (in chylomicrons), repackaged (in very low density lipoproteins; VLDL), and hydrolyzed, and also how remnant and low-density lipoproteins (LDL) are cleared from the circulation. Gene discoveries have also provided insights into high-density lipoprotein (HDL) biogenesis and remodeling. Interestingly, at least half of these key molecular genetic studies were initiated with the benefit of prior knowledge of relevant proteins. In addition, multiple important findings originated from studies in mouse, and from other types of non-genetic approaches. Although it appears by now that the main lipid pathways have been uncovered, and that only modulators or adaptor proteins such as those encoded by LDLRAP1, APOA5, ANGPLT3/4, and PCSK9 are currently being discovered, genome wide association studies (GWAS) in particular have implicated many new loci based on statistical analyses; these may prove to have equally large impacts on lipoprotein traits as gene products that are already known. On the other hand, since 2004 - and particularly since 2010 when massively parallel sequencing has become de rigeur - no major new insights into genes governing lipid metabolism have been reported. This is probably because the etiologies of true Mendelian lipid disorders with overt clinical complications have been largely resolved. In the meantime, it has become clear that proving the importance of new candidate genes is challenging. This could be due to very low frequencies of large impact variants in the population. It must further be emphasized that functional genetic studies, while necessary, are often difficult to accomplish, making it hazardous to upgrade a variant that is simply associated to being definitively causative. Also, it is clear that applying a monogenic approach to dissect complex lipid traits that are mostly of polygenic origin is the wrong way to proceed. The hope is that large-scale data acquisition combined with sophisticated computerized analyses will help to prioritize and select the most promising candidate genes for future research. We suggest that at this point in time, investment in sequence technology driven candidate gene discovery could be recalibrated by refocusing efforts on direct functional analysis of the genes that have already been discovered. This article is part of a Special Issue entitled: From Genome to Function.
Collapse
Affiliation(s)
- Jan Albert Kuivenhoven
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Section Molecular Genetics, Antonius Deusinglaan 1, 9713GZ Groningen, The Netherlands
| | - Robert A Hegele
- Blackburn Cardiovascular Genetics Laboratory, Robarts Research Institute, 4288A-1151 Richmond Street North, London, ON N6A 5B7, Canada
| |
Collapse
|
186
|
Abstract
A new understanding of renal potassium balance has emerged as the molecular underpinnings of potassium secretion have become illuminated, highlighting the key roles of apical potassium channels, renal outer medullary potassium channel (ROMK) and Big Potassium (BK), in the aldosterone-sensitive distal nephron and collecting duct. These channels act as the final-regulated components of the renal potassium secretory machinery. Their activity, number, and driving forces are precisely modulated to ensure potassium excretion matches dietary potassium intake. Recent identification of the underlying regulatory mechanisms at the molecular level provides a new appreciation of the physiology and reveals a molecular insight to explain the paradoxic actions of aldosterone on potassium secretion. Here, we review the current state of knowledge in the field.
Collapse
Affiliation(s)
- Paul A Welling
- Department of Physiology, University of Maryland Medical School, Baltimore, MD, USA.
| |
Collapse
|
187
|
Sniderman AD, Tsimikas S, Fazio S. The severe hypercholesterolemia phenotype: clinical diagnosis, management, and emerging therapies. J Am Coll Cardiol 2014; 63:1935-47. [PMID: 24632267 DOI: 10.1016/j.jacc.2014.01.060] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/05/2014] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
The severe hypercholesterolemia phenotype includes all patients with marked elevation of low-density lipoprotein cholesterol (LDL-C) levels. The most common cause is autosomal dominant hypercholesterolemia, an inherited disorder caused by mutations either in LDL receptor, apolipoprotein B (APOB), or proprotein convertase subtilisin kexin type 9 (PCSK9) genes. However, it is now known that many subjects with severe inherited hypercholesterolemia have no defects in these genes. These cases are caused either by mutations in genes yet to be identified or are consequences of polygenic, epigenetic, or acquired defects. Because the clinical consequences of extreme hypercholesterolemia are the same no matter the cause, the focus should be on the identification of subjects with severe hypercholesterolemia, followed by phenotypic screening of family members. Genetic screening is not necessary to diagnose or initiate treatment for the severe hypercholesterolemia phenotype. Management of severe hypercholesterolemia is based on risk factor modification and use of multiple lipid-lowering medications. Lipoprotein apheresis is indicated for coronary artery disease (CAD) patients taking maximally tolerated therapy and with LDL-C levels >200 mg/dl (>300 mg/dl if without CAD). A microsomal triglyceride transfer protein inhibitor and an antisense oligonucleotide against APOB have recently been approved for use in subjects with clinically diagnosed homozygous familial hypercholesterolemia. PCSK9 inhibitors, currently in phase II and III trials, lower LDL-C up to an additional 70% in the setting of maximally tolerated medical therapy and have the potential to reduce LDL-C to <70 mg/dl in most patients. Early identification of affected individuals and aggressive treatment should significantly reduce the burden of cardiovascular disease in society.
Collapse
Affiliation(s)
- Allan D Sniderman
- Division of Cardiology, Department of Medicine, Royal Victoria Hospital, McGill University Health Centre, Montreal, Quebec, Canada.
| | - Sotirios Tsimikas
- Department of Medicine, University of California San Diego, La Jolla, California.
| | - Sergio Fazio
- Section of Cardiovascular Disease Prevention, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
188
|
France M, Schofield J, Kwok S, Soran H. Treatment of homozygous familial hypercholesterolemia. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/clp.13.79] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
189
|
Stitziel NO, Fouchier SW, Sjouke B, Peloso GM, Moscoso AM, Auer PL, Goel A, Gigante B, Barnes TA, Melander O, Orho-Melander M, Duga S, Sivapalaratnam S, Nikpay M, Martinelli N, Girelli D, Jackson RD, Kooperberg C, Lange LA, Ardissino D, McPherson R, Farrall M, Watkins H, Reilly MP, Rader DJ, de Faire U, Schunkert H, Erdmann J, Samani NJ, Charnas L, Altshuler D, Gabriel S, Kastelein JJ, Defesche JC, Nederveen AJ, Kathiresan S, Hovingh GK. Exome sequencing and directed clinical phenotyping diagnose cholesterol ester storage disease presenting as autosomal recessive hypercholesterolemia. Arterioscler Thromb Vasc Biol 2013; 33:2909-14. [PMID: 24072694 PMCID: PMC4002172 DOI: 10.1161/atvbaha.113.302426] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/10/2013] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Autosomal recessive hypercholesterolemia is a rare inherited disorder, characterized by extremely high total and low-density lipoprotein cholesterol levels, that has been previously linked to mutations in LDLRAP1. We identified a family with autosomal recessive hypercholesterolemia not explained by mutations in LDLRAP1 or other genes known to cause monogenic hypercholesterolemia. The aim of this study was to identify the molecular pathogenesis of autosomal recessive hypercholesterolemia in this family. APPROACH AND RESULTS We used exome sequencing to assess all protein-coding regions of the genome in 3 family members and identified a homozygous exon 8 splice junction mutation (c.894G>A, also known as E8SJM) in LIPA that segregated with the diagnosis of hypercholesterolemia. Because homozygosity for mutations in LIPA is known to cause cholesterol ester storage disease, we performed directed follow-up phenotyping by noninvasively measuring hepatic cholesterol content. We observed abnormal hepatic accumulation of cholesterol in the homozygote individuals, supporting the diagnosis of cholesterol ester storage disease. Given previous suggestions of cardiovascular disease risk in heterozygous LIPA mutation carriers, we genotyped E8SJM in >27 000 individuals and found no association with plasma lipid levels or risk of myocardial infarction, confirming a true recessive mode of inheritance. CONCLUSIONS By integrating observations from Mendelian and population genetics along with directed clinical phenotyping, we diagnosed clinically unapparent cholesterol ester storage disease in the affected individuals from this kindred and addressed an outstanding question about risk of cardiovascular disease in LIPA E8SJM heterozygous carriers.
Collapse
Affiliation(s)
- Nathan O. Stitziel
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, Saint Louis MO 63110, USA
- Division of Statistical Genomics, Washington University School of Medicine, Saint Louis MO 63110, USA
| | - Sigrid W. Fouchier
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Barbara Sjouke
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Gina M. Peloso
- Center for Human Genetic Research, Boston MA, 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge MA 02142, USA
| | - Alessa M. Moscoso
- Center for Human Genetic Research, Boston MA, 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge MA 02142, USA
| | - Paul L. Auer
- Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA
- School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, 53201
| | - Anuj Goel
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Bruna Gigante
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Timothy A. Barnes
- Department of Cardiovascular Sciences, University of Leicester and Leicester NIHR Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Olle Melander
- Department of Clinical Sciences, Hypertension and Cardiovascular Diseases, Skania University Hospital, Lund University, Malmö, Sweden
| | - Marju Orho-Melander
- Diabetes and Cardiovascular Disease Genetic Epidemiology, Skania University Hospital, Lund University, Malmö, Sweden
| | - Stefano Duga
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano
| | - Suthesh Sivapalaratnam
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Majid Nikpay
- Atherogenomics Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | | | | | - Rebecca D. Jackson
- Division of Endocrinology, Diabetes and Metabolism, Ohio State University, Columbus, OH 43210, USA
| | | | - Leslie A. Lange
- Departments of Epidemiology, Genetics and Biostatistics, Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Diego Ardissino
- Division of Cardiology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Ruth McPherson
- The John & Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Martin Farrall
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Muredach P. Reilly
- The Institute for Translational Medicine and Therapeutics and The Cardiovascular Institute, Perleman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Daniel J. Rader
- The Institute for Translational Medicine and Therapeutics and The Cardiovascular Institute, Perleman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ulf de Faire
- Division of Cardiovascular Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Heribert Schunkert
- Deutsches Herzzentrum München, München, Germany
- Technische Universität München, München, Germany
- DZHK (German Research Centre for Cardiovascular Research), partner site München, München, Germany
| | - Jeanette Erdmann
- Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Lübeck, Germany
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester and Leicester NIHR Biomedical Research Unit in Cardiovascular Disease, Glenfield Hospital, Leicester, LE3 9QP, UK
| | | | | | - David Altshuler
- Center for Human Genetic Research, Boston MA, 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge MA 02142, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Stacey Gabriel
- Program in Medical and Population Genetics, Broad Institute, Cambridge MA 02142, USA
| | - John J.P. Kastelein
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Joep C. Defesche
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Aart J. Nederveen
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| | - Sekar Kathiresan
- Center for Human Genetic Research, Boston MA, 02114, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge MA 02142, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - G. Kees Hovingh
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
- Department of Experimental Vascular Medicine, Academic Medical Center, Amsterdam, 1105 AZ, The Netherlands
| |
Collapse
|
190
|
Pieper-Fürst U, Lammert F. Low-density lipoprotein receptors in liver: old acquaintances and a newcomer. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1191-8. [PMID: 24046859 DOI: 10.1016/j.bbalip.2013.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The lipoprotein receptors low-density lipoprotein receptor (LDLR), the low-density lipoprotein receptor-related protein 1 (LRP1) and megalin/LRP2 share characteristic structural elements. In addition to their well-known roles in endocytosis of lipoproteins and systemic lipid homeostasis, it has been established that LRP1 mediates the endocytotic clearance of a multitude of extracellular ligands and regulates diverse signaling processes such as growth factor signaling, inflammatory signaling pathways, apoptosis, and phagocytosis in liver. Here, possible functions of LRP1 expression in hepatocytes and non-parenchymal cells in healthy and injured liver are discussed. Recent studies indicate the expression of megalin (LRP2) by hepatic stellate cells, myofibroblasts and Kupffer cells and hypothesize that LRP2 might represent another potential regulator of hepatic inflammatory processes. These observations provide the experimental framework for the systematic and dynamic analysis of the LDLR family during chronic liver injury and fibrogenesis.
Collapse
|
191
|
Traub LM, Bonifacino JS. Cargo recognition in clathrin-mediated endocytosis. Cold Spring Harb Perspect Biol 2013; 5:a016790. [PMID: 24186068 DOI: 10.1101/cshperspect.a016790] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The endosomal system is expansive and complex, characterized by swift morphological transitions, dynamic remodeling of membrane constituents, and intracellular positioning changes. To properly navigate this ever-altering membrane labyrinth, transmembrane protein cargoes typically require specific sorting signals that are decoded by components of protein coats. The best-characterized sorting process within the endosomal system is the rapid internalization of select transmembrane proteins within clathrin-coated vesicles. Endocytic signals consist of linear motifs, conformational determinants, or covalent modifications in the cytosolic domains of transmembrane cargo. These signals are interpreted by a diverse set of clathrin-associated sorting proteins (CLASPs) that translocate from the cytosol to the inner face of the plasma membrane. Signal recognition by CLASPs is highly cooperative, involving additional interactions with phospholipids, Arf GTPases, other CLASPs, and clathrin, and is regulated by large conformational changes and covalent modifications. Related sorting events occur at other endosomal sorting stations.
Collapse
Affiliation(s)
- Linton M Traub
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | |
Collapse
|
192
|
Shah M, Baterina OY, Taupin V, Farquhar MG. ARH directs megalin to the endocytic recycling compartment to regulate its proteolysis and gene expression. ACTA ACUST UNITED AC 2013; 202:113-27. [PMID: 23836931 PMCID: PMC3704979 DOI: 10.1083/jcb.201211110] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ARH is required for the trafficking of megalin from early endosomes to the endocytic recycling compartment, where megalin undergoes intramembrane proteolysis, releasing a tail fragment that represses megalin transcription. Receptors internalized by endocytosis can return to the plasma membrane (PM) directly from early endosomes (EE; fast recycling) or they can traffic from EE to the endocytic recycling compartment (ERC) and recycle from there (slow recycling). How receptors are sorted for trafficking along these two pathways remains unclear. Here we show that autosomal recessive hypercholesterolemia (ARH) is required for trafficking of megalin, a member of the LDL receptor family, from EE to the ERC by coupling it to dynein; in the absence of ARH, megalin returns directly to the PM from EE via the connecdenn2/Rab35 fast recycling pathway. Binding of ARH to the endocytic adaptor AP-2 prevents fast recycling of megalin. ARH-mediated trafficking of megalin to the ERC is necessary for γ-secretase mediated cleavage of megalin and release of a tail fragment that mediates transcriptional repression. These results identify a novel mechanism for sorting receptors for trafficking to the ERC and link ERC trafficking to regulated intramembrane proteolysis (RIP) and expression of megalin.
Collapse
Affiliation(s)
- Mehul Shah
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
193
|
Abstract
PURPOSE OF REVIEW Mutations in lysosomal acid lipase A (LIPA) result in two phenotypes depending on the extent of lysosomal acid lipase (LAL) deficiency: the severe, early-onset Wolman disease or the less severe cholesteryl ester storage disease (CESD). In CESD, the severity of the symptoms, hepatomegaly and hypercholesterolaemia, can be highly variable, presenting in childhood or adulthood. Therefore, it is likely that many patients are undiagnosed or misdiagnosed. Nevertheless, LAL deficiency has been recognized for more than 25 years, but adequate therapeutic strategies are limited. RECENT FINDINGS CESD has an estimated prevalence of one in 90,000 to 170,000 individuals in the general population, confirming the likelihood that this disease is currently underdiagnosed. A number of studies have shown that in LIPA deficient patients the hypercholesterolaemic phenotype can be attenuated using statin therapy, and favourable effects on reduction of lipid accumulation in lysosomes have been reported. Targeting lysosomal exocytosis with LAL replacement therapy was shown to be successful in animal models and recently a phase I/II study demonstrated its safety and its potential metabolic efficacy on transaminase levels. SUMMARY The hypercholesterolaemic phenotype in CESD can be difficult to distinguish from other known hypercholesterolaemic disorders. In the majority of CESD cases with hypercholesterolaemia favourable responses on statin treatment are observed, but the effect on reduction of lipid accumulation in lysosomes needs to be further evaluated. Combining statins with LAL replacement therapy may provide a promising approach for optimal treatment of LIPA deficiencies in the future.
Collapse
Affiliation(s)
- Sigrid W Fouchier
- Department of Vascular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
194
|
Sorrentino V, Nelson JK, Maspero E, Marques ARA, Scheer L, Polo S, Zelcer N. The LXR-IDOL axis defines a clathrin-, caveolae-, and dynamin-independent endocytic route for LDLR internalization and lysosomal degradation. J Lipid Res 2013; 54:2174-2184. [PMID: 23733886 DOI: 10.1194/jlr.m037713] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Low density lipoprotein (LDL) cholesterol is taken up into cells via clathrin-mediated endocytosis of the LDL receptor (LDLR). Following dissociation of the LDLR-LDL complex, LDL is directed to lysosomes whereas the LDLR recycles to the plasma membrane. Activation of the sterol-sensing nuclear receptors liver X receptors (LXRs) enhances degradation of the LDLR. This depends on the LXR target gene inducible degrader of the LDLR (IDOL), an E3-ubiquitin ligase that promotes ubiquitylation and lysosomal degradation of the LDLR. How ubiquitylation of the LDLR by IDOL controls its endocytic trafficking is currently unknown. Using genetic- and pharmacological-based approaches coupled to functional assessment of LDL uptake, we show that the LXR-IDOL axis targets a LDLR pool present in lipid rafts. IDOL-dependent internalization of the LDLR is independent of clathrin, caveolin, macroautophagy, and dynamin. Rather, it depends on the endocytic protein epsin. Consistent with LDLR ubiquitylation acting as a sorting signal, degradation of the receptor can be blocked by perturbing the endosomal sorting complex required for transport (ESCRT) or by USP8, a deubiquitylase implicated in sorting ubiquitylated cargo to multivesicular bodies. In summary, we provide evidence for the existence of an LXR-IDOL-mediated internalization pathway for the LDLR that is distinct from that used for lipoprotein uptake.
Collapse
Affiliation(s)
- Vincenzo Sorrentino
- Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Jessica K Nelson
- Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Elena Maspero
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy; and
| | - André R A Marques
- Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Lilith Scheer
- Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy; and; Dipartimento di Scienze della Salute, Universita' degli Studi di Milano, 20122 Milan, Italy
| | - Noam Zelcer
- Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
195
|
Guay SP, Voisin G, Brisson D, Munger J, Lamarche B, Gaudet D, Bouchard L. Epigenome-wide analysis in familial hypercholesterolemia identified new loci associated with high-density lipoprotein cholesterol concentration. Epigenomics 2013; 4:623-39. [PMID: 23244308 DOI: 10.2217/epi.12.62] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AIM This study aims to assess whether epigenetic changes may account for high-density lipoprotein cholesterol (HDL-C) level variability in familial hypercholesterolemia (FH), a recognized human model to study cardiovascular disease risk modulators. MATERIALS & METHODS A genome-wide DNA methylation analysis (Infinium HumanMethylation27 BeadChip, Illumina) was performed on peripheral blood DNA samples obtained from men with FH with low (n = 10) or high (n = 11) HDL-C concentrations. The initial association with one of the top differentially methylated loci located in the promoter of the TNNT1 gene was replicated in a cohort of 276 FH subjects using pyrosequencing. RESULTS According to the Ingenuity Pathway Analysis software, the HDL-C differentially methylated loci identified were significantly associated with pathways related to lipid metabolism and cardiovascular disease. TNNT1 DNA methylation levels were positively correlated with mean HDL particle size, HDL-phospholipid, HDL-apolipoprotein AI, HDL-C and TNNT1 expression levels. CONCLUSION These results suggest that epigenome-wide changes account for interindividual variations in HDL particle metabolism and that TNNT1 is a new candidate gene for dyslipidemia.
Collapse
Affiliation(s)
- Simon-Pierre Guay
- Department of Biochemistry, Université de Sherbrooke, 225 St-Vallier Street, Chicoutimi, QC, G7H 7P2, Canada
| | | | | | | | | | | | | |
Collapse
|
196
|
Wang L, Yang Y, Hong B. Advances in the role of microRNAs in lipid metabolism-related anti-atherosclerotic drug discovery. Expert Opin Drug Discov 2013; 8:977-90. [DOI: 10.1517/17460441.2013.798639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
197
|
Canuel M, Sun X, Asselin MC, Paramithiotis E, Prat A, Seidah NG. Proprotein convertase subtilisin/kexin type 9 (PCSK9) can mediate degradation of the low density lipoprotein receptor-related protein 1 (LRP-1). PLoS One 2013; 8:e64145. [PMID: 23675525 PMCID: PMC3652815 DOI: 10.1371/journal.pone.0064145] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 04/08/2013] [Indexed: 02/07/2023] Open
Abstract
Elevated LDL-cholesterol (LDLc) levels are a major risk factor for cardiovascular disease and atherosclerosis. LDLc is cleared from circulation by the LDL receptor (LDLR). Proprotein convertase subtilisin/kexin 9 (PCSK9) enhances the degradation of the LDLR in endosomes/lysosomes, resulting in increased circulating LDLc. PCSK9 can also mediate the degradation of LDLR lacking its cytosolic tail, suggesting the presence of as yet undefined lysosomal-targeting factor(s). Herein, we confirm this, and also eliminate a role for the transmembrane-domain of the LDLR in mediating its PCSK9-induced internalization and degradation. Recent findings from our laboratory also suggest a role for PCSK9 in enhancing tumor metastasis. We show herein that while the LDLR is insensitive to PCSK9 in murine B16F1 melanoma cells, PCSK9 is able to induce degradation of the low density lipoprotein receptor-related protein 1 (LRP-1), suggesting distinct targeting mechanisms for these receptors. Furthermore, PCSK9 is still capable of acting upon the LDLR in CHO 13-5-1 cells lacking LRP-1. Conversely, PCSK9 also acts on LRP-1 in the absence of the LDLR in CHO-A7 cells, where re-introduction of the LDLR leads to reduced PCSK9-mediated degradation of LRP-1. Thus, while PCSK9 is capable of inducing degradation of LRP-1, the latter is not an essential factor for LDLR regulation, but the LDLR effectively competes with LRP-1 for PCSK9 activity. Identification of PCSK9 targets should allow a better understanding of the consequences of PCSK9 inhibition for lowering LDLc and tumor metastasis.
Collapse
Affiliation(s)
- Maryssa Canuel
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, Quebec, Canada
| | - Xiaowei Sun
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, Quebec, Canada
| | - Marie-Claude Asselin
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, Quebec, Canada
| | | | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, Quebec, Canada
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, affiliated to the University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
198
|
Soufi M, Rust S, Walter M, Schaefer JR. A combined LDL receptor/LDL receptor adaptor protein 1 mutation as the cause for severe familial hypercholesterolemia. Gene 2013; 521:200-3. [DOI: 10.1016/j.gene.2013.03.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 12/23/2012] [Accepted: 03/07/2013] [Indexed: 01/24/2023]
|
199
|
Zhao Z, Pompey S, Dong H, Weng J, Garuti R, Michaely P. S-nitrosylation of ARH is required for LDL uptake by the LDL receptor. J Lipid Res 2013; 54:1550-1559. [PMID: 23564733 DOI: 10.1194/jlr.m033167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The LDL receptor (LDLR) relies upon endocytic adaptor proteins for internalization of lipoproteins. The results of this study show that the LDLR adaptor autosomal recessive hypercholesterolemia protein (ARH) requires nitric oxide to support LDL uptake. Nitric oxide nitrosylates ARH at C199 and C286, and these posttranslational modifications are necessary for association of ARH with the adaptor protein 2 (AP-2) component of clathrin-coated pits. In the absence of nitrosylation, ARH is unable to target LDL-LDLR complexes to coated pits, resulting in poor LDL uptake. The role of nitric oxide on LDLR function is specific for ARH because inhibition of nitric oxide synthase activity impairs ARH-supported LDL uptake but has no effect on other LDLR-dependent lipoprotein uptake processes, including VLDL remnant uptake and dab2-supported LDL uptake. These findings suggest that cells that depend upon ARH for LDL uptake can control which lipoproteins are internalized by their LDLRs through changes in nitric oxide.
Collapse
Affiliation(s)
- Zhenze Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Shanica Pompey
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Hongyun Dong
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Jian Weng
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Rita Garuti
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX
| | - Peter Michaely
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX.
| |
Collapse
|
200
|
Futema M, Plagnol V, Whittall RA, Neil HAW, Humphries SE. Use of targeted exome sequencing as a diagnostic tool for Familial Hypercholesterolaemia. J Med Genet 2013; 49:644-9. [PMID: 23054246 PMCID: PMC3475071 DOI: 10.1136/jmedgenet-2012-101189] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Familial Hypercholesterolaemia (FH) is an autosomal dominant disease, caused by mutations in LDLR, APOB or PCSK9, which results in high levels of LDL-cholesterol (LDL-C) leading to early coronary heart disease. An autosomal recessive form of FH is also known, due to homozygous mutations in LDLRAP1. This study assessed the utility of an exome capture method and deep sequencing in FH diagnosis. METHODS Exomes of 48 definite FH patients, with no mutation detected by current methods, were captured by Agilent Human All Exon 50Mb assay and sequenced on the Illumina HiSeq 2000 platform. Variants were called by GATK and SAMtools. RESULTS The mean coverage of FH genes varied considerably (PCSK9=23x, LDLRAP1=36x, LDLR=56x and APOB=93x). Exome sequencing detected 17 LDLR mutations, including three copy number variants, two APOB mutations, missed by the standard techniques, two LDLR novel variants likely to be FH-causing, and five APOB variants of uncertain effect. Two variants called in PCSK9 were not confirmed by Sanger sequencing. One heterozygous mutation was found in LDLRAP1. CONCLUSIONS High-throughput DNA sequencing demonstrated its efficiency in well-covered DNA regions, in particular LDLR. This highly automated technology is proving to be effective for heterogeneous diseases and may soon replace laborious conventional methods. However, the poor coverage of gene promoters and repetitive, or GC-rich sequences, remains problematic, and validation of all identified variants is currently required.
Collapse
Affiliation(s)
- Marta Futema
- Centre for Cardiovascular Genetics, British Heart Foundation Laboratories, Institute Cardiovascular Science, University College London Medicine School, London WC1E 6JF, UK
| | | | | | | | | | | | | |
Collapse
|