151
|
Doktor TK, Hua Y, Andersen HS, Brøner S, Liu YH, Wieckowska A, Dembic M, Bruun GH, Krainer AR, Andresen BS. RNA-sequencing of a mouse-model of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns. Nucleic Acids Res 2016; 45:395-416. [PMID: 27557711 PMCID: PMC5224493 DOI: 10.1093/nar/gkw731] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/21/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by insufficient levels of the Survival of Motor Neuron (SMN) protein. SMN is expressed ubiquitously and functions in RNA processing pathways that include trafficking of mRNA and assembly of snRNP complexes. Importantly, SMA severity is correlated with decreased snRNP assembly activity. In particular, the minor spliceosomal snRNPs are affected, and some U12-dependent introns have been reported to be aberrantly spliced in patient cells and animal models. SMA is characterized by loss of motor neurons, but the underlying mechanism is largely unknown. It is likely that aberrant splicing of genes expressed in motor neurons is involved in SMA pathogenesis, but increasing evidence indicates that pathologies also exist in other tissues. We present here a comprehensive RNA-seq study that covers multiple tissues in an SMA mouse model. We show elevated U12-intron retention in all examined tissues from SMA mice, and that U12-dependent intron retention is induced upon siRNA knock-down of SMN in HeLa cells. Furthermore, we show that retention of U12-dependent introns is mitigated by ASO treatment of SMA mice and that many transcriptional changes are reversed. Finally, we report on missplicing of several Ca2+ channel genes that may explain disrupted Ca2+ homeostasis in SMA and activation of Cdk5.
Collapse
Affiliation(s)
- Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Yimin Hua
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Henriette Skovgaard Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Sabrina Brøner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Ying Hsiu Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Anna Wieckowska
- Department of Gamete and Embryo Biology, Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-243 Olsztyn, Poland
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Gitte Hoffmann Bruun
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark .,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
152
|
Poole AR, Enwerem II, Vicino IA, Coole JB, Smith SV, Hebert MD. Identification of processing elements and interactors implicate SMN, coilin and the pseudogene-encoded coilp1 in telomerase and box C/D scaRNP biogenesis. RNA Biol 2016; 13:955-972. [PMID: 27419845 DOI: 10.1080/15476286.2016.1211224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Many cellular functions, such as translation, require ribonucleoproteins (RNPs). The biogenesis of RNPs is a multi-step process that, depending on the RNP, can take place in many cellular compartments. Here we examine 2 different RNPs: telomerase and small Cajal body-specific RNPs (scaRNPs). Both of these RNPs are enriched in the Cajal body (CB), which is a subnuclear domain that also has high concentrations of another RNP, small nuclear RNPs (snRNPs). SnRNPs are essential components of the spliceosome, and scaRNPs modify the snRNA component of the snRNP. The CB contains many proteins, including WRAP53, SMN and coilin, the CB marker protein. We show here that coilin, SMN and coilp1, a newly identified protein encoded by a pseudogene in human, associate with telomerase RNA and a subset of scaRNAs. We also have identified a processing element within box C/D scaRNA. Our findings thus further strengthen the connection between the CB proteins coilin and SMN in the biogenesis of telomeras e and box C/D scaRNPs, and reveal a new player, coilp1, that likely participates in this process.
Collapse
Affiliation(s)
- Aaron R Poole
- a Department of Biochemistry , The University of Mississippi Medical Center , Jackson , MS , USA
| | - Isioma I Enwerem
- a Department of Biochemistry , The University of Mississippi Medical Center , Jackson , MS , USA
| | - Ian A Vicino
- a Department of Biochemistry , The University of Mississippi Medical Center , Jackson , MS , USA
| | - Jackson B Coole
- a Department of Biochemistry , The University of Mississippi Medical Center , Jackson , MS , USA
| | - Stanley V Smith
- b Department of Pharmacology and Toxicology , The University of Mississippi Medical Center , Jackson , MS , USA
| | - Michael D Hebert
- a Department of Biochemistry , The University of Mississippi Medical Center , Jackson , MS , USA
| |
Collapse
|
153
|
Abstract
Telomerase is a ribonucleoprotein comprising telomerase RNA and associated proteins. The formation of the telomerase holoenzyme takes place in the Cajal body (CB), a subnuclear domain that participates in the formation of ribonucleoproteins. CBs also contribute to the delivery of telomerase to telomeres. The protein WRAP53 is enriched within the CB and is instrumental for the targeting of telomerase RNA to CBs. Two other CB proteins, SMN and coilin, are also suspected of taking part in some aspect of telomerase biogenesis. Here we demonstrate newly discovered associations between SMN and coilin with telomerase components, and further show that reduction of SMN or coilin is correlated with increased association of telomerase RNA with one these components, dyskerin. These findings argue that SMN and coilin may negatively regulate the formation of telomerase. Furthermore, clinically defined SMN mutants found in individuals with spinal muscular atrophy are altered in their association with telomerase complex proteins. Additionally, we observe that a coilin derivative also associates with dyskerin, and the amount of this protein in the complex is regulated by SMN, WRAP53 and coilin levels. Collectively, our findings bolster the link between SMN, coilin and the coilin derivative in the biogenesis of telomerase.
Collapse
Affiliation(s)
- Aaron R Poole
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| | - Michael D Hebert
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216-4505, USA
| |
Collapse
|
154
|
Gallotta I, Mazzarella N, Donato A, Esposito A, Chaplin JC, Castro S, Zampi G, Battaglia GS, Hilliard MA, Bazzicalupo P, Di Schiavi E. Neuron-specific knock-down of SMN1 causes neuron degeneration and death through an apoptotic mechanism. Hum Mol Genet 2016; 25:2564-2577. [PMID: 27260405 PMCID: PMC5181630 DOI: 10.1093/hmg/ddw119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/31/2022] Open
Abstract
Spinal muscular atrophy is a devastating disease that is characterized by degeneration and death of a specific subclass of motor neurons in the anterior horn of the spinal cord. Although the gene responsible, survival motor neuron 1 (SMN1), was identified 20 years ago, it has proven difficult to investigate its effects in vivo. Consequently, a number of key questions regarding the molecular and cellular functions of this molecule have remained unanswered. We developed a Caenorhabditis elegans model of smn-1 loss-of-function using a neuron-specific RNA interference strategy to knock-down smn-1 selectively in a subclass of motor neurons. The transgenic animals presented a cell-autonomous, age-dependent degeneration of motor neurons detected as locomotory defects and the disappearance of presynaptic and cytoplasmic fluorescent markers in targeted neurons. This degeneration led to neuronal death as revealed by positive reactivity to genetic and chemical cell-death markers. We show that genes of the classical apoptosis pathway are involved in the smn-1-mediated neuronal death, and that this phenotype can be rescued by the expression of human SMN1, indicating a functional conservation between the two orthologs. Finally, we determined that Plastin3/plst-1 genetically interacts with smn-1 to prevent degeneration, and that treatment with valproic acid is able to rescue the degenerative phenotype. These results provide novel insights into the cellular and molecular mechanisms that lead to the loss of motor neurons when SMN1 function is reduced.
Collapse
Affiliation(s)
- Ivan Gallotta
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy.,Institute of Bioscience and Bioresources (IBBR), Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy
| | - Nadia Mazzarella
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy.,Institute of Bioscience and Bioresources (IBBR), Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy
| | - Alessandra Donato
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy.,Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alessandro Esposito
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy
| | - Justin C Chaplin
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Silvana Castro
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy
| | - Giuseppina Zampi
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy.,Institute of Bioscience and Bioresources (IBBR), Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy
| | | | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paolo Bazzicalupo
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy.,Institute of Bioscience and Bioresources (IBBR), Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy
| | - Elia Di Schiavi
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy .,Institute of Bioscience and Bioresources (IBBR), Consiglio Nazionale delle Ricerche (CNR), Via P. Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
155
|
Donlin-Asp PG, Bassell GJ, Rossoll W. A role for the survival of motor neuron protein in mRNP assembly and transport. Curr Opin Neurobiol 2016; 39:53-61. [PMID: 27131421 DOI: 10.1016/j.conb.2016.04.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/27/2016] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Localization and local translation of mRNA plays a key role in neuronal development and function. While studies in various systems have provided insights into molecular mechanisms of mRNA transport and local protein synthesis, the factors that control the assembly of mRNAs and mRNA binding proteins into messenger ribonucleoprotein (mRNP) transport granules remain largely unknown. In this review we will discuss how insights on a motor neuron disease, spinal muscular atrophy (SMA), is advancing our understanding of regulated assembly of transport competent mRNPs and how defects in their assembly and delivery may contribute to the degeneration of motor neurons observed in SMA and other neurological disorders.
Collapse
Affiliation(s)
- Paul G Donlin-Asp
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Wilfried Rossoll
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
156
|
So BR, Wan L, Zhang Z, Li P, Babiash E, Duan J, Younis I, Dreyfuss G. A U1 snRNP-specific assembly pathway reveals the SMN complex as a versatile hub for RNP exchange. Nat Struct Mol Biol 2016; 23:225-30. [PMID: 26828962 PMCID: PMC4834709 DOI: 10.1038/nsmb.3167] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/04/2016] [Indexed: 02/01/2023]
Abstract
Despite equal snRNP stoichiometry in spliceosomes, U1 snRNP (U1) is typically the most abundant vertebrate snRNP. Mechanisms regulating U1 overabundance and snRNP repertoire are unknown. In Sm-core assembly, a key snRNP-biogenesis step mediated by the SMN complex, the snRNA-specific RNA-binding protein (RBP) Gemin5 delivers pre-snRNAs, which join SMN-Gemin2-recruited Sm proteins. We show that the human U1-specific RBP U1-70K can bridge pre-U1 to SMN-Gemin2-Sm, in a Gemin5-independent manner, thus establishing an additional and U1-exclusive Sm core-assembly pathway. U1-70K hijacks SMN-Gemin2-Sm, enhancing Sm-core assembly on U1s and inhibiting that on other snRNAs, thereby promoting U1 overabundance and regulating snRNP repertoire. SMN-Gemin2's ability to facilitate transactions between different RBPs and RNAs explains its multi-RBP valency and the myriad transcriptome perturbations associated with SMN deficiency in neurodegenerative spinal muscular atrophy. We propose that SMN-Gemin2 is a versatile hub for RNP exchange that functions broadly in RNA metabolism.
Collapse
Affiliation(s)
- Byung Ran So
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Lili Wan
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Zhenxi Zhang
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Pilong Li
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Eric Babiash
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jingqi Duan
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ihab Younis
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Gideon Dreyfuss
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
157
|
Han KJ, Foster D, Harhaj EW, Dzieciatkowska M, Hansen K, Liu CW. Monoubiquitination of survival motor neuron regulates its cellular localization and Cajal body integrity. Hum Mol Genet 2016; 25:1392-405. [PMID: 26908624 DOI: 10.1093/hmg/ddw021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/25/2016] [Indexed: 12/13/2022] Open
Abstract
Low levels of the survival motor neuron (SMN) protein cause spinal muscular atrophy, the leading genetic disorder for infant mortality. SMN is ubiquitously expressed in various cell types and localizes in both the cytoplasm and the nucleus, where it concentrates in two subnuclear structures termed Cajal body (CB) and gems. In addition, SMN can also be detected in the nucleolus of neurons. Mechanisms that control SMN sorting in the cell remain largely unknown. Here, we report that the ubiquitin (Ub) ligase Itch directly interacts with and monoubiquitinates SMN. Monoubiquitination of SMN has a mild effect on promoting proteasomal degradation of SMN. We generated two SMN mutants, SMN(K0), in which all lysines are mutated to arginines and thereby abolishing SMN ubiquitination, and Ub-SMN(K0), in which a single Ub moiety is fused at the N-terminus of SMN(K0) and thereby mimicking SMN monoubiquitination. Immunostaining assays showed that SMN(K0) mainly localizes in the nucleus, whereas Ub-SMN(K0) localizes in both the cytoplasm and the nucleolus in neuronal SH-SY5Y cells. Interestingly, canonical CB foci and coilin/small nuclear ribonucleoprotein (snRNP) co-localization are significantly impaired in SH-SY5Y cells stably expressing SMN(K0) or Ub-SMN(K0). Thus, our studies discover that Itch monoubiquitinates SMN and monoubiquitination of SMN plays an important role in regulating its cellular localization. Moreover, mislocalization of SMN disrupts CB integrity and likely impairs snRNP maturation.
Collapse
Affiliation(s)
- Ke-Jun Han
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| | - Daniel Foster
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| | - Edward W Harhaj
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| | - Chang-Wei Liu
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80015, USA and
| |
Collapse
|
158
|
Gabanella F, Pisani C, Borreca A, Farioli-Vecchioli S, Ciotti MT, Ingegnere T, Onori A, Ammassari-Teule M, Corbi N, Canu N, Monaco L, Passananti C, Di Certo MG. SMN affects membrane remodelling and anchoring of the protein synthesis machinery. J Cell Sci 2016; 129:804-16. [PMID: 26743087 DOI: 10.1242/jcs.176750] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/29/2015] [Indexed: 12/31/2022] Open
Abstract
Disconnection between membrane signalling and actin networks can have catastrophic effects depending on cell size and polarity. The survival motor neuron (SMN) protein is ubiquitously involved in assembly of spliceosomal small nuclear ribonucleoprotein particles. Other SMN functions could, however, affect cellular activities driving asymmetrical cell surface expansions. Genes able to mitigate SMN deficiency operate within pathways in which SMN can act, such as mRNA translation, actin network and endocytosis. Here, we found that SMN accumulates at membrane protrusions during the dynamic rearrangement of the actin filaments. In addition to localization data, we show that SMN interacts with caveolin-1, which mediates anchoring of translation machinery components. Importantly, SMN deficiency depletes the plasma membrane of ribosomes, and this correlates with the failure of fibroblasts to extend membrane protrusions. These findings strongly support a relationship between SMN and membrane dynamics. We propose that SMN could assembly translational platforms associated with and governed by the plasma membrane. This activity could be crucial in cells that have an exacerbated interdependence of membrane remodelling and local protein synthesis.
Collapse
Affiliation(s)
- Francesca Gabanella
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| | - Cinzia Pisani
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Antonella Borreca
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| | - Stefano Farioli-Vecchioli
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| | - Maria Teresa Ciotti
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy European Brain Research Institute (EBRI) Rita Levi-Montalcini, Rome 00143, Italy
| | - Tiziano Ingegnere
- Department of Ecological and Biological Sciences, Tuscia University, Viterbo 01100, Italy
| | - Annalisa Onori
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Martine Ammassari-Teule
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| | - Nicoletta Corbi
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Nadia Canu
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy Department of System Medicine, University of 'Tor Vergata', Rome 00137, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome 00185, Italy
| | - Claudio Passananti
- CNR-IBPM, Department of Molecular Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Maria Grazia Di Certo
- CNR-Institute of Cell Biology and Neurobiology, Rome 00143, Italy IRCCS Fondazione Santa Lucia, Rome 00143, Italy
| |
Collapse
|
159
|
Hyjek M, Wojciechowska N, Rudzka M, Kołowerzo-Lubnau A, Smoliński DJ. Spatial regulation of cytoplasmic snRNP assembly at the cellular level. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7019-30. [PMID: 26320237 PMCID: PMC4765780 DOI: 10.1093/jxb/erv399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Small nuclear ribonucleoproteins (snRNPs) play a crucial role in pre-mRNA splicing in all eukaryotic cells. In contrast to the relatively broad knowledge on snRNP assembly within the nucleus, the spatial organization of the cytoplasmic stages of their maturation remains poorly understood. Nevertheless, sparse research indicates that, similar to the nuclear steps, the crucial processes of cytoplasmic snRNP assembly may also be strictly spatially regulated. In European larch microsporocytes, it was determined that the cytoplasmic assembly of snRNPs within a cell might occur in two distinct spatial manners, which depend on the rate of de novo snRNP formation in relation to the steady state of these particles within the nucleus. During periods of moderate expression of splicing elements, the cytoplasmic assembly of snRNPs occurred diffusely throughout the cytoplasm. Increased expression of both Sm proteins and U snRNA triggered the accumulation of these particles within distinct, non-membranous RNP-rich granules, which are referred to as snRNP-rich cytoplasmic bodies.
Collapse
Affiliation(s)
- Malwina Hyjek
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń Poland
| | - Natalia Wojciechowska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Department of General Botany, Institute of Experimental Biology, Faculty of Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Magda Rudzka
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń Poland
| | - Agnieszka Kołowerzo-Lubnau
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń Poland
| | - Dariusz Jan Smoliński
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń Poland
| |
Collapse
|
160
|
Li H, Custer SK, Gilson T, Hao LT, Beattie CE, Androphy EJ. α-COP binding to the survival motor neuron protein SMN is required for neuronal process outgrowth. Hum Mol Genet 2015; 24:7295-307. [PMID: 26464491 DOI: 10.1093/hmg/ddv428] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/06/2015] [Indexed: 01/30/2023] Open
Abstract
Spinal muscular atrophy (SMA), a heritable neurodegenerative disease, results from insufficient levels of the survival motor neuron (SMN) protein. α-COP binds to SMN, linking the COPI vesicular transport pathway to SMA. Reduced levels of α-COP restricted development of neuronal processes in NSC-34 cells and primary cortical neurons. Remarkably, heterologous expression of human α-COP restored normal neurite length and morphology in SMN-depleted NSC-34 cells in vitro and zebrafish motor neurons in vivo. We identified single amino acid mutants of α-COP that selectively abrogate SMN binding, retain COPI-mediated Golgi-ER trafficking functionality, but were unable to support neurite outgrowth in cellular and zebrafish models of SMA. Taken together, these demonstrate the functional role of COPI association with the SMN protein in neuronal development.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA and
| | - Sara K Custer
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA and
| | - Timra Gilson
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA and
| | - Le Thi Hao
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Christine E Beattie
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Elliot J Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN 46202, USA and
| |
Collapse
|
161
|
Dhanraj S, Gunja SMR, Deveau AP, Nissbeck M, Boonyawat B, Coombs AJ, Renieri A, Mucciolo M, Marozza A, Buoni S, Turner L, Li H, Jarrar A, Sabanayagam M, Kirby M, Shago M, Pinto D, Berman JN, Scherer SW, Virtanen A, Dror Y. Bone marrow failure and developmental delay caused by mutations in poly(A)-specific ribonuclease (PARN). J Med Genet 2015; 52:738-48. [DOI: 10.1136/jmedgenet-2015-103292] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/18/2015] [Indexed: 12/11/2022]
|
162
|
Abstract
Motor neuron diseases are neurological disorders characterized primarily by the degeneration of spinal motor neurons, skeletal muscle atrophy, and debilitating and often fatal motor dysfunction. Spinal muscular atrophy (SMA) is an autosomal-recessive motor neuron disease of high incidence and severity and the most common genetic cause of infant mortality. SMA is caused by homozygous mutations in the survival motor neuron 1 (SMN1) gene and retention of at least one copy of the hypomorphic gene paralog SMN2. Early studies established a loss-of-function disease mechanism involving ubiquitous SMN deficiency and suggested SMN upregulation as a possible therapeutic approach. In recent years, greater knowledge of the central role of SMN in RNA processing combined with deep characterization of animal models of SMA has significantly advanced our understanding of the cellular and molecular basis of the disease. SMA is emerging as an RNA disease not limited to motor neurons, but one that involves dysfunction of motor circuits that comprise multiple neuronal subpopulations and possibly other cell types. Advances in SMA research have also led to the development of several potential therapeutics shown to be effective in animal models of SMA that are now in clinical trials. These agents offer unprecedented promise for the treatment of this still incurable neurodegenerative disease.
Collapse
|
163
|
Iyer CC, McGovern VL, Murray JD, Gombash SE, Zaworski PG, Foust KD, Janssen PML, Burghes AHM. Low levels of Survival Motor Neuron protein are sufficient for normal muscle function in the SMNΔ7 mouse model of SMA. Hum Mol Genet 2015; 24:6160-73. [PMID: 26276812 DOI: 10.1093/hmg/ddv332] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/10/2015] [Indexed: 11/14/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is an autosomal recessive disorder characterized by loss of lower motor neurons. SMA is caused by deletion or mutation of the Survival Motor Neuron 1 (SMN1) gene and retention of the SMN2 gene. The loss of SMN1 results in reduced levels of the SMN protein. SMN levels appear to be particularly important in motor neurons; however SMN levels above that produced by two copies of SMN2 have been suggested to be important in muscle. Studying the spatial requirement of SMN is important in both understanding how SMN deficiency causes SMA and in the development of effective therapies. Using Myf5-Cre, a muscle-specific Cre driver, and the Cre-loxP recombination system, we deleted mouse Smn in the muscle of mice with SMN2 and SMNΔ7 transgenes in the background, thus providing low level of SMN in the muscle. As a reciprocal experiment, we restored normal levels of SMN in the muscle with low SMN levels in all other tissues. We observed that decreasing SMN in the muscle has no phenotypic effect. This was corroborated by muscle physiology studies with twitch force, tetanic and eccentric contraction all being normal. In addition, electrocardiogram and muscle fiber size distribution were also normal. Replacement of Smn in muscle did not rescue SMA mice. Thus the muscle does not appear to require high levels of SMN above what is produced by two copies of SMN2 (and SMNΔ7).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Arthur H M Burghes
- Department of Molecular and Cellular Biochemistry, Department of Neurology, Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA and
| |
Collapse
|
164
|
Locatelli D, Terao M, Kurosaki M, Zanellati MC, Pletto DR, Finardi A, Colciaghi F, Garattini E, Battaglia GS. Different Stability and Proteasome-Mediated Degradation Rate of SMN Protein Isoforms. PLoS One 2015. [PMID: 26214005 PMCID: PMC4516248 DOI: 10.1371/journal.pone.0134163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The key pathogenic steps leading to spinal muscular atrophy (SMA), a genetic disease characterized by selective motor neuron degeneration, are not fully clarified. The full-length SMN protein (FL-SMN), the main protein product of the disease gene SMN1, plays an established role in the cytoplasm in snRNP biogenesis ultimately leading to mRNA splicing within the nucleus. It is also involved in the mRNA axonal transport. However, to what extent the impairment of these two SMN functions contributes to SMA pathogenesis remains unknown. A shorter SMN isoform, axonal-SMN or a-SMN, with more specific axonal localization, has been discovered, but whether it might act in concert with FL-SMN in SMA pathogenesis is not known. As a first step in defining common or divergent intracellular roles of FL-SMN vs a-SMN proteins, we here characterized the turn-over of both proteins and investigated which pathway contributed to a-SMN degradation. We performed real time western blot and confocal immunofluorescence analysis in easily controllable in vitro settings. We analyzed co-transfected NSC34 and HeLa cells and cell clones stably expressing both a-SMN and FL-SMN proteins after specific blocking of transcript or protein synthesis and inhibition of known intracellular degradation pathways. Our data indicated that whereas the stability of both FL-SMN and a-SMN transcripts was comparable, the a-SMN protein was characterized by a much shorter half-life than FL-SMN. In addition, as already demonstrated for FL-SMN, the Ub/proteasome pathway played a major role in the a-SMN protein degradation. We hypothesize that the faster degradation rate of a-SMN vs FL-SMN is related to the protection provided by the protein complex in which FL-SMN is assembled. The diverse a-SMN vs FL-SMN C-terminus may dictate different protein interactions and complex formation explaining the different localization and role in the neuronal compartment, and the lower expression and stability of a-SMN.
Collapse
Affiliation(s)
- Denise Locatelli
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
- * E-mail:
| | - Mineko Terao
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Maria Clara Zanellati
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Daniela Rita Pletto
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Adele Finardi
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Francesca Colciaghi
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Giorgio Stefano Battaglia
- Molecular Neuroanatomy and Pathogenesis Unit, IRCCS Neurological Institute “C. Besta”, Milano, Italy
| |
Collapse
|
165
|
Tsalikis J, Tattoli I, Ling A, Sorbara MT, Croitoru DO, Philpott DJ, Girardin SE. Intracellular Bacterial Pathogens Trigger the Formation of U Small Nuclear RNA Bodies (U Bodies) through Metabolic Stress Induction. J Biol Chem 2015; 290:20904-20918. [PMID: 26134566 DOI: 10.1074/jbc.m115.659466] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 12/30/2022] Open
Abstract
Invasive bacterial pathogens induce an amino acid starvation (AAS) response in infected host cells that controls host defense in part by promoting autophagy. However, whether AAS has additional significant effects on the host response to intracellular bacteria remains poorly characterized. Here we showed that Shigella, Salmonella, and Listeria interfere with spliceosomal U snRNA maturation in the cytosol. Bacterial infection resulted in the rerouting of U snRNAs and their cytoplasmic escort, the survival motor neuron (SMN) complex, to processing bodies, thus forming U snRNA bodies (U bodies). This process likely contributes to the decline in the cytosolic levels of U snRNAs and of the SMN complex proteins SMN and DDX20 that we observed in infected cells. U body formation was triggered by membrane damage in infected cells and was associated with the induction of metabolic stresses, such as AAS or endoplasmic reticulum stress. Mechanistically, targeting of U snRNAs to U bodies was regulated by translation initiation inhibition and the ATF4/ATF3 pathway, and U bodies rapidly disappeared upon removal of the stress, suggesting that their accumulation represented an adaptive response to metabolic stress. Importantly, this process likely contributed to shape the host response to invasive bacteria because down-regulation of DDX20 expression using short hairpin RNA (shRNA) amplified ATF3- and NF-κB-dependent signaling. Together, these results identify a critical role for metabolic stress and invasive bacterial pathogens in U body formation and suggest that this process contributes to host defense.
Collapse
Affiliation(s)
- Jessica Tsalikis
- Departments of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M6G 2T6, Canada
| | - Ivan Tattoli
- Departments of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M6G 2T6, Canada; Departments of Immunology, University of Toronto, Toronto M6G 2T6, Canada
| | - Arthur Ling
- Departments of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M6G 2T6, Canada
| | - Matthew T Sorbara
- Departments of Immunology, University of Toronto, Toronto M6G 2T6, Canada
| | - David O Croitoru
- Departments of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M6G 2T6, Canada
| | - Dana J Philpott
- Departments of Immunology, University of Toronto, Toronto M6G 2T6, Canada
| | - Stephen E Girardin
- Departments of Laboratory Medicine and Pathobiology, University of Toronto, Toronto M6G 2T6, Canada.
| |
Collapse
|
166
|
Neuenkirchen N, Englbrecht C, Ohmer J, Ziegenhals T, Chari A, Fischer U. Reconstitution of the human U snRNP assembly machinery reveals stepwise Sm protein organization. EMBO J 2015; 34:1925-41. [PMID: 26069323 DOI: 10.15252/embj.201490350] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/12/2015] [Indexed: 11/09/2022] Open
Abstract
The assembly of spliceosomal U snRNPs depends on the coordinated action of PRMT5 and SMN complexes in vivo. These trans-acting factors enable the faithful delivery of seven Sm proteins onto snRNA and the formation of the common core of snRNPs. To gain mechanistic insight into their mode of action, we reconstituted the assembly machinery from recombinant sources. We uncover a stepwise and ordered formation of distinct Sm protein complexes on the PRMT5 complex, which is facilitated by the assembly chaperone pICln. Upon completion, the formed pICln-Sm units are displaced by new pICln-Sm protein substrates and transferred onto the SMN complex. The latter acts as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to prevent mis-assembly and to ensure the transfer of Sm proteins to cognate RNA. Investigation of mutant SMN complexes provided insight into the contribution of individual proteins to these activities. The biochemical reconstitution presented here provides a basis for a detailed molecular dissection of the U snRNP assembly reaction.
Collapse
Affiliation(s)
- Nils Neuenkirchen
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Clemens Englbrecht
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Ohmer
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thomas Ziegenhals
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ashwin Chari
- Research Group of 3D Electron Cryomicroscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Utz Fischer
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany Department of Radiation Medicine and Applied Sciences, University of California, San Diego, San Diego, CA, USA
| |
Collapse
|
167
|
Stopa N, Krebs JE, Shechter D. The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci 2015; 72:2041-59. [PMID: 25662273 PMCID: PMC4430368 DOI: 10.1007/s00018-015-1847-9] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/10/2015] [Accepted: 01/29/2015] [Indexed: 10/24/2022]
Abstract
Post-translational arginine methylation is responsible for regulation of many biological processes. The protein arginine methyltransferase 5 (PRMT5, also known as Hsl7, Jbp1, Skb1, Capsuleen, or Dart5) is the major enzyme responsible for mono- and symmetric dimethylation of arginine. An expanding literature demonstrates its critical biological function in a wide range of cellular processes. Histone and other protein methylation by PRMT5 regulate genome organization, transcription, stem cells, primordial germ cells, differentiation, the cell cycle, and spliceosome assembly. Metazoan PRMT5 is found in complex with the WD-repeat protein MEP50 (also known as Wdr77, androgen receptor coactivator p44, or Valois). PRMT5 also directly associates with a range of other protein factors, including pICln, Menin, CoPR5 and RioK1 that may alter its subcellular localization and protein substrate selection. Protein substrate and PRMT5-MEP50 post-translation modifications induce crosstalk to regulate PRMT5 activity. Crystal structures of C. elegans PRMT5 and human and frog PRMT5-MEP50 complexes provide substantial insight into the mechanisms of substrate recognition and procession to dimethylation. Enzymological studies of PRMT5 have uncovered compelling insights essential for future development of specific PRMT5 inhibitors. In addition, newly accumulating evidence implicates PRMT5 and MEP50 expression levels and their methyltransferase activity in cancer tumorigenesis, and, significantly, as markers of poor clinical outcome, marking them as potential oncogenes. Here, we review the substantial new literature on PRMT5 and its partners to highlight the significance of understanding this essential enzyme in health and disease.
Collapse
Affiliation(s)
- Nicole Stopa
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - Jocelyn E. Krebs
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
168
|
Valsecchi V, Boido M, De Amicis E, Piras A, Vercelli A. Expression of Muscle-Specific MiRNA 206 in the Progression of Disease in a Murine SMA Model. PLoS One 2015; 10:e0128560. [PMID: 26030275 PMCID: PMC4450876 DOI: 10.1371/journal.pone.0128560] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/28/2015] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe neuromuscular disease, the most common in infancy, and the third one among young people under 18 years. The major pathological landmark of SMA is a selective degeneration of lower motor neurons, resulting in progressive skeletal muscle denervation, atrophy, and paralysis. Recently, it has been shown that specific or general changes in the activity of ribonucleoprotein containing micro RNAs (miRNAs) play a role in the development of SMA. Additionally miRNA-206 has been shown to be required for efficient regeneration of neuromuscular synapses after acute nerve injury in an ALS mouse model. Therefore, we correlated the morphology and the architecture of the neuromuscular junctions (NMJs) of quadriceps, a muscle affected in the early stage of the disease, with the expression levels of miRNA-206 in a mouse model of intermediate SMA (SMAII), one of the most frequently used experimental model. Our results showed a decrease in the percentage of type II fibers, an increase in atrophic muscle fibers and a remarkable accumulation of neurofilament (NF) in the pre-synaptic terminal of the NMJs in the quadriceps of SMAII mice. Furthermore, molecular investigation showed a direct link between miRNA-206-HDAC4-FGFBP1, and in particular, a strong up-regulation of this pathway in the late phase of the disease. We propose that miRNA-206 is activated as survival endogenous mechanism, although not sufficient to rescue the integrity of motor neurons. We speculate that early modulation of miRNA-206 expression might delay SMA neurodegenerative pathway and that miRNA-206 could be an innovative, still relatively unexplored, therapeutic target for SMA.
Collapse
Affiliation(s)
- Valeria Valsecchi
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| | - Marina Boido
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| | - Elena De Amicis
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| | - Antonio Piras
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| | - Alessandro Vercelli
- Neuroscience Institute Cavalieri Ottolenghi, Department of Neuroscience, University of Turin, Turin, Italy
| |
Collapse
|
169
|
Ripolone M, Ronchi D, Violano R, Vallejo D, Fagiolari G, Barca E, Lucchini V, Colombo I, Villa L, Berardinelli A, Balottin U, Morandi L, Mora M, Bordoni A, Fortunato F, Corti S, Parisi D, Toscano A, Sciacco M, DiMauro S, Comi GP, Moggio M. Impaired Muscle Mitochondrial Biogenesis and Myogenesis in Spinal Muscular Atrophy. JAMA Neurol 2015; 72:666-75. [PMID: 25844556 PMCID: PMC4944827 DOI: 10.1001/jamaneurol.2015.0178] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE The important depletion of mitochondrial DNA (mtDNA) and the general depression of mitochondrial respiratory chain complex levels (including complex II) have been confirmed, implying an increasing paucity of mitochondria in the muscle from patients with types I, II, and III spinal muscular atrophy (SMA-I, -II, and -III, respectively). OBJECTIVE To investigate mitochondrial dysfunction in a large series of muscle biopsy samples from patients with SMA. DESIGN, SETTING, AND PARTICIPANTS We studied quadriceps muscle samples from 24 patients with genetically documented SMA and paraspinal muscle samples from 3 patients with SMA-II undergoing surgery for scoliosis correction. Postmortem muscle samples were obtained from 1 additional patient. Age-matched controls consisted of muscle biopsy specimens from healthy children aged 1 to 3 years who had undergone analysis for suspected myopathy. Analyses were performed at the Neuromuscular Unit, Istituto di Ricovero e Cura a Carattere Scientifico Foundation Ca' Granda Ospedale Maggiore Policlinico-Milano, from April 2011 through January 2015. EXPOSURES We used histochemical, biochemical, and molecular techniques to examine the muscle samples. MAIN OUTCOMES AND MEASURES Respiratory chain activity and mitochondrial content. RESULTS Results of histochemical analysis revealed that cytochrome-c oxidase (COX) deficiency was more evident in muscle samples from patients with SMA-I and SMA-II. Residual activities for complexes I, II, and IV in muscles from patients with SMA-I were 41%, 27%, and 30%, respectively, compared with control samples (P < .005). Muscle mtDNA content and cytrate synthase activity were also reduced in all 3 SMA types (P < .05). We linked these alterations to downregulation of peroxisome proliferator-activated receptor coactivator 1α, the transcriptional activators nuclear respiratory factor 1 and nuclear respiratory factor 2, mitochondrial transcription factor A, and their downstream targets, implying depression of the entire mitochondrial biogenesis. Results of Western blot analysis confirmed the reduced levels of the respiratory chain subunits that included mitochondrially encoded COX1 (47.5%; P = .004), COX2 (32.4%; P < .001), COX4 (26.6%; P < .001), and succinate dehydrogenase complex subunit A (65.8%; P = .03) as well as the structural outer membrane mitochondrial porin (33.1%; P < .001). Conversely, the levels of expression of 3 myogenic regulatory factors-muscle-specific myogenic factor 5, myoblast determination 1, and myogenin-were higher in muscles from patients with SMA compared with muscles from age-matched controls (P < .05). CONCLUSIONS AND RELEVANCE Our results strongly support the conclusion that an altered regulation of myogenesis and a downregulated mitochondrial biogenesis contribute to pathologic change in the muscle of patients with SMA. Therapeutic strategies should aim at counteracting these changes.
Collapse
Affiliation(s)
- Michela Ripolone
- Neuromuscular Unit, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Dario Ronchi
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Raffaella Violano
- Neuromuscular Unit, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Dionis Vallejo
- Sien-Servicios Integrales en Neurologia, Universidad de Antioquia, Medellin, Colombia
| | - Gigliola Fagiolari
- Neuromuscular Unit, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Emanuele Barca
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Valeria Lucchini
- Neuromuscular Unit, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Irene Colombo
- Neuromuscular Unit, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Luisa Villa
- Neuromuscular Unit, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Angela Berardinelli
- Child Neuropsychiatry Unit, C. Mondino National Neurological Institute, Pavia, Italy
| | - Umberto Balottin
- Child Neuropsychiatry Unit, C. Mondino National Neurological Institute, Pavia, Italy
| | - Lucia Morandi
- Neuromuscular Diseases and Neuroimmunology Unit, Department of Clinical Neurosciences, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Department of Clinical Neurosciences, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Andreina Bordoni
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Francesco Fortunato
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Stefania Corti
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Daniela Parisi
- Reference Center for Rare Neuromuscular Disorders, Department of Neurosciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico G. Martino, Messina, Italy
| | - Antonio Toscano
- Reference Center for Rare Neuromuscular Disorders, Department of Neurosciences, University of Messina, Azienda Ospedaliera Universitaria Policlinico G. Martino, Messina, Italy
| | - Monica Sciacco
- Neuromuscular Unit, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Giacomo P Comi
- Neurology Unit, Neuroscience Section, Department of Pathophysiology and Transplantation, Dino Ferrari Centre, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular Unit, Dino Ferrari Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Foundation Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
170
|
Faravelli I, Nizzardo M, Comi GP, Corti S. Spinal muscular atrophy--recent therapeutic advances for an old challenge. Nat Rev Neurol 2015; 11:351-9. [PMID: 25986506 DOI: 10.1038/nrneurol.2015.77] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the past decade, improved understanding of spinal muscular atrophy (SMA) aetiopathogenesis has brought us to a historical turning point: we are at the verge of development of disease-modifying treatments for this hitherto incurable disease. The increasingly precise delineation of molecular targets within the survival of motor neuron (SMN) gene locus has led to the development of promising therapeutic strategies. These novel avenues in treatment for SMA include gene therapy, molecular therapy with antisense oligonucleotides, and small molecules that aim to increase expression of SMN protein. Stem cell studies of SMA have provided an in vitro model for SMA, and stem cell transplantation could be used as a complementary strategy with a potential to treat the symptomatic phases of the disease. Here, we provide an overview of established data and novel insights into SMA pathogenesis, including discussion of the crucial function of the SMN protein. Preclinical evidence and recent advances from ongoing clinical trials are thoroughly reviewed. The final remarks are dedicated to future clinical perspectives in this rapidly evolving field, with a broad discussion on the comparison between the outlined therapeutic approaches and the remaining open questions.
Collapse
Affiliation(s)
- Irene Faravelli
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, University of Milan, via Francesco Sforza 35, 20122 Milan, Italy
| | - Monica Nizzardo
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, University of Milan, via Francesco Sforza 35, 20122 Milan, Italy
| | - Giacomo P Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, University of Milan, via Francesco Sforza 35, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, Neurology Unit, IRCCS Foundation Ca'Granda Ospedale Maggiore Policlinico, University of Milan, via Francesco Sforza 35, 20122 Milan, Italy
| |
Collapse
|
171
|
Linder B, Fischer U, Gehring NH. mRNA metabolism and neuronal disease. FEBS Lett 2015; 589:1598-606. [DOI: 10.1016/j.febslet.2015.04.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 12/12/2022]
|
172
|
Cherry JJ, Kobayashi DT, Lynes MM, Naryshkin NN, Tiziano FD, Zaworski PG, Rubin LL, Jarecki J. Assays for the identification and prioritization of drug candidates for spinal muscular atrophy. Assay Drug Dev Technol 2015; 12:315-41. [PMID: 25147906 DOI: 10.1089/adt.2014.587] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder resulting in degeneration of α-motor neurons of the anterior horn and proximal muscle weakness. It is the leading cause of genetic mortality in children younger than 2 years. It affects ∼1 in 11,000 live births. In 95% of cases, SMA is caused by homozygous deletion of the SMN1 gene. In addition, all patients possess at least one copy of an almost identical gene called SMN2. A single point mutation in exon 7 of the SMN2 gene results in the production of low levels of full-length survival of motor neuron (SMN) protein at amounts insufficient to compensate for the loss of the SMN1 gene. Although no drug treatments are available for SMA, a number of drug discovery and development programs are ongoing, with several currently in clinical trials. This review describes the assays used to identify candidate drugs for SMA that modulate SMN2 gene expression by various means. Specifically, it discusses the use of high-throughput screening to identify candidate molecules from primary screens, as well as the technical aspects of a number of widely used secondary assays to assess SMN messenger ribonucleic acid (mRNA) and protein expression, localization, and function. Finally, it describes the process of iterative drug optimization utilized during preclinical SMA drug development to identify clinical candidates for testing in human clinical trials.
Collapse
|
173
|
Piñeiro D, Fernandez-Chamorro J, Francisco-Velilla R, Martinez-Salas E. Gemin5: A Multitasking RNA-Binding Protein Involved in Translation Control. Biomolecules 2015; 5:528-44. [PMID: 25898402 PMCID: PMC4496684 DOI: 10.3390/biom5020528] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 04/01/2015] [Accepted: 04/09/2015] [Indexed: 12/31/2022] Open
Abstract
Gemin5 is a RNA-binding protein (RBP) that was first identified as a peripheral component of the survival of motor neurons (SMN) complex. This predominantly cytoplasmic protein recognises the small nuclear RNAs (snRNAs) through its WD repeat domains, allowing assembly of the SMN complex into small nuclear ribonucleoproteins (snRNPs). Additionally, the amino-terminal end of the protein has been reported to possess cap-binding capacity and to interact with the eukaryotic initiation factor 4E (eIF4E). Gemin5 was also shown to downregulate translation, to be a substrate of the picornavirus L protease and to interact with viral internal ribosome entry site (IRES) elements via a bipartite non-canonical RNA-binding site located at its carboxy-terminal end. These features link Gemin5 with translation control events. Thus, beyond its role in snRNPs biogenesis, Gemin5 appears to be a multitasking protein cooperating in various RNA-guided processes. In this review, we will summarise current knowledge of Gemin5 functions. We will discuss the involvement of the protein on translation control and propose a model to explain how the proteolysis fragments of this RBP in picornavirus-infected cells could modulate protein synthesis.
Collapse
Affiliation(s)
- David Piñeiro
- Medical Research Council Toxicology Unit, Lancaster Rd, Leicester LE1 9HN, UK.
| | - Javier Fernandez-Chamorro
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolas Cabrera 1, Madrid 28049, Spain.
| | - Rosario Francisco-Velilla
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolas Cabrera 1, Madrid 28049, Spain.
| | - Encarna Martinez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolas Cabrera 1, Madrid 28049, Spain.
| |
Collapse
|
174
|
Enwerem II, Wu G, Yu YT, Hebert MD. Cajal body proteins differentially affect the processing of box C/D scaRNPs. PLoS One 2015; 10:e0122348. [PMID: 25875178 PMCID: PMC4395269 DOI: 10.1371/journal.pone.0122348] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/13/2015] [Indexed: 11/19/2022] Open
Abstract
Small nuclear ribonucleoproteins (snRNPs), which are required for pre-mRNA splicing, contain extensively modified snRNA. Small Cajal body-specific ribonucleoproteins (scaRNPs) mediate these modifications. It is unknown how the box C/D class of scaRNPs localizes to Cajal Bodies (CBs). The processing of box C/D scaRNA is also unclear. Here, we explore the processing of box C/D scaRNA 2 and 9 by coilin. We also broaden our investigation to include WRAP53 and SMN, which accumulate in CBs, play a role in RNP biogenesis and associate with coilin. These studies demonstrate that the processing of an ectopically expressed scaRNA2 is altered upon the reduction of coilin, WRAP53 or SMN, but the extent and direction of this change varies depending on the protein reduced. We also show that box C/D scaRNP activity is reduced in a cell line derived from coilin knockout mice. Collectively, the findings presented here further implicate coilin as being a direct participant in the formation of box C/D scaRNPs, and demonstrate that WRAP53 and SMN may also play a role, but the activity of these proteins is divergent to coilin.
Collapse
Affiliation(s)
- Isioma I. Enwerem
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, Mississippi 39216–4505, United States of America
| | - Guowei Wu
- Department of Biochemistry and Biophysics, The University of Rochester Medical Center, Rochester, New York 14642, United States of America
| | - Yi Tao Yu
- Department of Biochemistry and Biophysics, The University of Rochester Medical Center, Rochester, New York 14642, United States of America
| | - Michael D. Hebert
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, Mississippi 39216–4505, United States of America
- * E-mail:
| |
Collapse
|
175
|
Phan HC, Taylor JL, Hannon H, Howell R. Newborn screening for spinal muscular atrophy: Anticipating an imminent need. Semin Perinatol 2015; 39:217-29. [PMID: 25979781 DOI: 10.1053/j.semperi.2015.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality. Children with type I SMA typically die by the age of 2 years. Recent progress in gene modification and other innovative therapies suggest that improved outcomes may soon be forthcoming. In animal models, therapeutic intervention initiated before the loss of motor neurons alters SMA phenotype and increases lifespan. Presently, supportive care including respiratory, nutritional, physiatry, and orthopedic management can ameliorate clinical symptoms and improve survival rates if SMA is diagnosed early in life. Newborn screening could help optimize these potential benefits. A recent report demonstrated that SMA detection can be multiplexed at minimal additional cost with the assay for severe combined immunodeficiency, already implemented by many newborn screening programs. The public health community should remain alert to the rapidly changing developments in early detection and treatment of SMA.
Collapse
Affiliation(s)
- Han C Phan
- Department of Pediatrics, Emory University, Atlanta, GA.
| | | | - Harry Hannon
- Newborn Screening Consensus Committee, Clinical and Laboratory Standards Institute (CLSI), Wayne, PA
| | - Rodney Howell
- Miller School of Medicine, University of Miami, Miami, FL
| |
Collapse
|
176
|
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder pathologically characterized by the degeneration of motor neurons in the spinal cord and muscle atrophy. Motor neuron loss often results in severe muscle weakness causing affected infants to die before reaching 2 years of age. Patients with milder forms of SMA exhibit slowly progressive muscle weakness over many years. SMA is caused by the loss of SMN1 and the retention of at least 1 copy of a highly homologous SMN2. An alternative splicing event in the pre-mRNA arising from SMN2 results in the production of low levels of functional SMN protein. To date, there are no effective treatments available to treat patients with SMA. However, over the last 2 decades, the development of SMA mouse models and the identification of therapeutic targets have resulted in a promising drug pipeline for SMA. Here, we highlight some of the therapeutic strategies that have been developed to activate SMN2 expression, modulate splicing of the SMN2 pre-mRNA, or replace SMN1 by gene therapy. After 2 decades of translational research, we now stand within reach of a treatment for SMA.
Collapse
Affiliation(s)
- Constantin d’Ydewalle
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe St., Baltimore, MD 21205 USA
| | - Charlotte J. Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, 855 North Wolfe St., Baltimore, MD 21205 USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, 855 North Wolfe St., Baltimore, MD 21205 USA
| |
Collapse
|
177
|
Abstract
Spinal muscular atrophies (SMAs) are a group of inherited disorders characterized by motor neuron loss in the spinal cord and lower brainstem, muscle weakness, and atrophy. The clinical and genetic phenotypes incorporate a wide spectrum that is differentiated based on age of onset, pattern of muscle involvement, and inheritance pattern. Over the past several years, rapid advances in genetic technology have accelerated the identification of causative genes and provided important advances in understanding the molecular and biological basis of SMA and insights into the selective vulnerability of the motor neuron. Common pathophysiological themes include defects in RNA metabolism and splicing, axonal transport, and motor neuron development and connectivity. Together these have revealed potential novel treatment strategies, and extensive efforts are being undertaken towards expedited therapeutics. While a number of promising therapies for SMA are emerging, defining therapeutic windows and developing sensitive and relevant biomarkers are critical to facilitate potential success in clinical trials. This review incorporates an overview of the clinical manifestations and genetics of SMA, and describes recent advances in the understanding of mechanisms of disease pathogenesis and development of novel treatment strategies.
Collapse
Affiliation(s)
- Michelle A. Farrar
- />Discipline of Paediatrics, School of Women’s and Children’s Health, UNSW Medicine, The University of New South Wales, Sydney, Australia
- />Neurosciences Research Australia, Randwick, NSW Australia
- />Department of Neurology, Sydney Children’s Hospital, Randwick, NSW 2031 Australia
| | - Matthew C. Kiernan
- />Neurosciences Research Australia, Randwick, NSW Australia
- />Brain & Mind Research Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
178
|
Yang J, Fuller PJ, Morgan J, Shibata H, Clyne CD, Young MJ. GEMIN4 functions as a coregulator of the mineralocorticoid receptor. J Mol Endocrinol 2015; 54:149-60. [PMID: 25555524 DOI: 10.1530/jme-14-0078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The mineralocorticoid receptor (MR) is a member of the nuclear receptor superfamily. Pathological activation of the MR causes cardiac fibrosis and heart failure, but clinical use of MR antagonists is limited by the renal side effect of hyperkalemia. Coregulator proteins are known to be critical for nuclear receptor-mediated gene expression. Identification of coregulators, which mediate MR activity in a tissue-specific manner, may allow for the development of novel tissue-selective MR modulators that confer cardiac protection without adverse renal effects. Our earlier studies identified a consensus motif among MR-interacting peptides, MPxLxxLL. Gem (nuclear organelle)-associated protein 4 (GEMIN4) is one of the proteins that contain this motif. Transient transfection experiments in HEK293 and H9c2 cells demonstrated that GEMIN4 repressed agonist-induced MR transactivation in a cell-specific manner. Furthermore, overexpression of GEMIN4 significantly decreased, while knockdown of GEMIN4 increased, the mRNA expression of specific endogenous MR target genes. A physical interaction between GEMIN4 and MR is suggested by their nuclear co-localization upon agonist treatment. These findings indicate that GEMIN4 functions as a novel coregulator of the MR.
Collapse
Affiliation(s)
- Jun Yang
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Peter J Fuller
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - James Morgan
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Hirotaka Shibata
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Colin D Clyne
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| | - Morag J Young
- MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan MIMR-PHI InstitutePO Box 5152, Clayton, Victoria 3168, AustraliaDepartment of MedicineMonash University, Clayton, Victoria 3168, AustraliaDepartment of EndocrinologyMetabolism, Rheumatology and Nephrology, Oita University, Yufu 879-5593, Japan
| |
Collapse
|
179
|
Edens BM, Ajroud-Driss S, Ma L, Ma YC. Molecular mechanisms and animal models of spinal muscular atrophy. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1852:685-92. [PMID: 25088406 DOI: 10.1016/j.bbadis.2014.07.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/21/2014] [Accepted: 07/23/2014] [Indexed: 12/27/2022]
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, is characterized by the degeneration of spinal motor neurons and muscle atrophy. Although the genetic cause of SMA has been mapped to the Survival Motor Neuron1 (SMN1) gene, mechanisms underlying selective motor neuron degeneration in SMA remain largely unknown. Here we review the latest developments and our current understanding of the molecular mechanisms underlying SMA pathogenesis, focusing on the animal model systems that have been developed, as well as new diagnostic and treatment strategies that have been identified using these model systems. This article is part of a special issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.
Collapse
Affiliation(s)
- Brittany M Edens
- Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Lurie Children's Hospital of Chicago Research Center, IL 60611, Chicago
| | | | - Long Ma
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan 410078, China
| | - Yong-Chao Ma
- Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Lurie Children's Hospital of Chicago Research Center, IL 60611, Chicago.
| |
Collapse
|
180
|
Yu Y, Chi B, Xia W, Gangopadhyay J, Yamazaki T, Winkelbauer-Hurt ME, Yin S, Eliasse Y, Adams E, Shaw CE, Reed R. U1 snRNP is mislocalized in ALS patient fibroblasts bearing NLS mutations in FUS and is required for motor neuron outgrowth in zebrafish. Nucleic Acids Res 2015; 43:3208-18. [PMID: 25735748 PMCID: PMC4381066 DOI: 10.1093/nar/gkv157] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 12/12/2022] Open
Abstract
Mutations in FUS cause amyotrophic lateral sclerosis (ALS), but the molecular pathways leading to neurodegeneration remain obscure. We previously found that U1 snRNP is the most abundant FUS interactor. Here, we report that components of the U1 snRNP core particle (Sm proteins and U1 snRNA), but not the mature U1 snRNP-specific proteins (U1-70K, U1A and U1C), co-mislocalize with FUS to the cytoplasm in ALS patient fibroblasts harboring mutations in the FUS nuclear localization signal (NLS). Similar results were obtained in HeLa cells expressing the ALS-causing FUS R495X NLS mutation, and mislocalization of Sm proteins is RRM-dependent. Moreover, as observed with FUS, knockdown of any of the U1 snRNP-specific proteins results in a dramatic loss of SMN-containing Gems. Significantly, knockdown of U1 snRNP in zebrafish results in motor axon truncations, a phenotype also observed with FUS, SMN and TDP-43 knockdowns. Our observations linking U1 snRNP to ALS patient cells with FUS mutations, SMN-containing Gems, and motor neurons indicate that U1 snRNP is a component of a molecular pathway associated with motor neuron disease. Linking an essential canonical splicing factor (U1 snRNP) to this pathway provides strong new evidence that splicing defects may be involved in pathogenesis and that this pathway is a potential therapeutic target.
Collapse
Affiliation(s)
- Yong Yu
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Binkai Chi
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Wei Xia
- Department of Marine Biotechnology, University of Maryland Baltimore County & Institute of Marine and Environmental Technology, Baltimore, MD 21042, USA
| | - Jaya Gangopadhyay
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Tomohiro Yamazaki
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | | | - Shanye Yin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Yoan Eliasse
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Edward Adams
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Christopher E Shaw
- King's College London and King's Health Partners, MRC Centre for Neurodegeneration Research, London SE5 8AF, UK
| | - Robin Reed
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| |
Collapse
|
181
|
Frege T, Uversky VN. Intrinsically disordered proteins in the nucleus of human cells. Biochem Biophys Rep 2015; 1:33-51. [PMID: 29124132 PMCID: PMC5668563 DOI: 10.1016/j.bbrep.2015.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/11/2015] [Indexed: 12/16/2022] Open
Abstract
Intrinsically disordered proteins are known to perform a variety of important functions such as macromolecular recognition, promiscuous binding, and signaling. They are crucial players in various cellular pathway and processes, where they often have key regulatory roles. Among vital cellular processes intimately linked to the intrinsically disordered proteins is transcription, an intricate biological performance predominantly developing inside the cell nucleus. With this work, we gathered information about proteins that exist in various compartments and sub-nuclear bodies of the nucleus of the human cells, with the goal of identifying which ones are highly disordered and which functions are ascribed to the disordered nuclear proteins.
Collapse
Affiliation(s)
- Telma Frege
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- GenomeNext LLC, 175 South 3rd Street, Suite 200, Columbus OH 43215, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- USF Health Byrd Alzheimer׳s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Biology, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
- Correspondence to: Department of Molecular, Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC07, Tampa, FL 33612, USA. Tel.: +1 813 974 5816; fax: +1 813 974 7357.
| |
Collapse
|
182
|
Henriksson S, Farnebo M. On the road with WRAP53β: guardian of Cajal bodies and genome integrity. Front Genet 2015; 6:91. [PMID: 25852739 PMCID: PMC4371746 DOI: 10.3389/fgene.2015.00091] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/19/2015] [Indexed: 12/16/2022] Open
Abstract
The WRAP53 gene encodes both an antisense transcript (WRAP53α) that stabilizes the tumor suppressor p53 and a protein (WRAP53β) involved in maintenance of Cajal bodies, telomere elongation and DNA repair. WRAP53β is one of many proteins containing WD40 domains, known to mediate a variety of cellular processes. These proteins lack enzymatic activity, acting instead as platforms for the assembly of large complexes of proteins and RNAs thus facilitating their interactions. WRAP53β mediates site-specific interactions between Cajal body factors and DNA repair proteins. Moreover, dysfunction of this protein has been linked to premature aging, cancer and neurodegeneration. Here we summarize the current state of knowledge concerning the multifaceted roles of WRAP53β in intracellular trafficking, formation of the Cajal body, DNA repair and maintenance of genomic integrity and discuss potential crosstalk between these processes.
Collapse
Affiliation(s)
- Sofia Henriksson
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet Stockholm, Sweden
| | - Marianne Farnebo
- Department of Oncology-Pathology, Cancer Centrum Karolinska, Karolinska Institutet Stockholm, Sweden
| |
Collapse
|
183
|
Abstract
Neuropathologic findings within the central and peripheral nervous systems in patients with spinal muscular atrophy type I (SMA-I) were examined in relation to genetic, clinical, and electrophysiologic features. Five infants representing the full clinical spectrum of SMA-I were examined clinically for compound motor action potential amplitude and SMN2 gene copy number; morphologic analyses of postmortem central nervous system, neuromuscular junction, and muscle tissue samples were performed and SMN protein was assessed in muscle samples. The 2 clinically most severely affected patients had a single copy of the SMN2 gene; in addition to anterior horn cells, dorsal root ganglia, and thalamus, neuronal degeneration in them was widespread in the cerebral cortex, basal ganglia, pigmented nuclei, brainstem, and cerebellum. Two typical SMA-I patients and a milder case each had 2 copies of the SMN2 gene and more restricted neuropathologic abnormalities. Maturation of acetylcholine receptor subunits was delayed and the neuromuscular junctions were abnormally formed in the SMA-I patients. Thus, the neuropathologic findings in human SMA-I are similar to many findings in animal models; factors other than SMN2 copy number modify disease severity. We present a pathophysiologic model for SMA-I as a protein deficiency disease affecting a neuronal network with variable clinical thresholds. Because new treatment strategies improve survival of infants with SMA-I, a better understanding of these factors will guide future treatments.
Collapse
|
184
|
Sharma S, Wongpalee SP, Vashisht A, Wohlschlegel JA, Black DL. Stem-loop 4 of U1 snRNA is essential for splicing and interacts with the U2 snRNP-specific SF3A1 protein during spliceosome assembly. Genes Dev 2015; 28:2518-31. [PMID: 25403181 PMCID: PMC4233244 DOI: 10.1101/gad.248625.114] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The pairing of 5′ and 3′ splice sites across an intron is a critical step in spliceosome formation and its regulation. Sharma et al. report a new interaction between stem–loop 4 (SL4) of the U1 snRNA, which recognizes the 5′ splice, and a component of the U2 snRNP complex, which assembles across the intron at the 3′ splice site. U1-SL4 interacts with the SF3A1 protein of the U2 snRNP, and this interaction occurs within prespliceosomal complexes assembled on the pre-mRNA. The pairing of 5′ and 3′ splice sites across an intron is a critical step in spliceosome formation and its regulation. Interactions that bring the two splice sites together during spliceosome assembly must occur with a high degree of specificity and fidelity to allow expression of functional mRNAs and make particular alternative splicing choices. Here, we report a new interaction between stem–loop 4 (SL4) of the U1 snRNA, which recognizes the 5′ splice site, and a component of the U2 small nuclear ribonucleoprotein particle (snRNP) complex, which assembles across the intron at the 3′ splice site. Using a U1 snRNP complementation assay, we found that SL4 is essential for splicing in vivo. The addition of free U1-SL4 to a splicing reaction in vitro inhibits splicing and blocks complex assembly prior to formation of the prespliceosomal A complex, indicating a requirement for a SL4 contact in spliceosome assembly. To characterize the interactions of this RNA structure, we used a combination of stable isotope labeling by amino acids in cell culture (SILAC), biotin/Neutravidin affinity pull-down, and mass spectrometry. We show that U1-SL4 interacts with the SF3A1 protein of the U2 snRNP. We found that this interaction between the U1 snRNA and SF3A1 occurs within prespliceosomal complexes assembled on the pre-mRNA. Thus, SL4 of the U1 snRNA is important for splicing, and its interaction with SF3A1 mediates contact between the 5′ and 3′ splice site complexes within the assembling spliceosome.
Collapse
Affiliation(s)
- Shalini Sharma
- Department of Basic Medical Sciences, University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona 85004, USA; Department of Microbiology, Immunology, and Molecular Genetics
| | | | | | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
185
|
Seng CO, Magee C, Young PJ, Lorson CL, Allen JP. The SMN structure reveals its crucial role in snRNP assembly. Hum Mol Genet 2015; 24:2138-46. [PMID: 25561692 DOI: 10.1093/hmg/ddu734] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The spliceosome plays a fundamental role in RNA metabolism by facilitating pre-RNA splicing. To understand how this essential complex is formed, we have used protein crystallography to determine the first complete structures of the key assembler protein, SMN, and the truncated isoform, SMNΔ7, which is found in patients with the disease spinal muscular atrophy (SMA). Comparison of the structures of SMN and SMNΔ7 shows many similar features, including the presence of two Tudor domains, but significant differences are observed in the C-terminal domain, including 12 additional amino acid residues encoded by exon 7 in SMN compared with SMNΔ7. Mapping of missense point mutations found in some SMA patients reveals clustering around three spatial locations, with the largest cluster found in the C-terminal domain. We propose a structural model of SMN binding with the Gemin2 protein and a heptameric Sm ring, revealing a critical assembly role of the residues 260-294, with the differences at the C-terminus of SMNΔ7 compared with SMN likely leading to loss of small nuclear ribonucleoprotein (snRNP) assembly. The SMN complex is proposed to form a dimer driven by formation of a glycine zipper involving α helix formed by amino acid residues 263-294. These results explain how structural changes of SMN give rise to loss of SMN-mediated snRNP assembly and support the hypothesis that this loss results in atrophy of neurons in SMA.
Collapse
Affiliation(s)
- Chenda O Seng
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA and
| | - Craig Magee
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA and
| | - Philip J Young
- Department of Veterinary Pathology, Bond Life Sciences Center, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Christian L Lorson
- Department of Veterinary Pathology, Bond Life Sciences Center, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - James P Allen
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287, USA and
| |
Collapse
|
186
|
Lee S, Lee TA, Lee E, Kang S, Park A, Kim SW, Park HJ, Yoon JH, Ha SJ, Park T, Lee JS, Cheon JH, Park B. Identification of a subnuclear body involved in sequence-specific cytokine RNA processing. Nat Commun 2015; 6:5791. [PMID: 25557830 DOI: 10.1038/ncomms6791] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/06/2014] [Indexed: 12/29/2022] Open
Abstract
Processing of interleukin RNAs must be tightly controlled during the immune response. Here we report that a subnuclear body called the interleukin-6 and -10 splicing activating compartment (InSAC) is a nuclear site of cytokine RNA production and stability. Tat-activating regulatory DNA-binding protein-43 (TDP-43) acts as an InSAC scaffold that selectively associates with IL-6 and IL-10 RNAs in a sequence-specific manner. TDP-43 also recruits key spliceosomal components from Cajal bodies. LPS induces posttranslational modifications of TDP-43; in particular, TDP-43 ubiquitination provides a driving force for InSAC formation. As a consequence, in vivo depletion of TDP-43 leads to a dramatic reduction in the RNA processing and the protein levels of IL-6 in serum. Collectively, our findings highlight the importance of TDP-43-mediated InSAC biogenesis in immune regulation.
Collapse
Affiliation(s)
- Sungwook Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Taeyun A Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Eunhye Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Sujin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Areum Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Seung Won Kim
- 1] Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 120-752, South Korea [2] Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Hyo Jin Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea
| | - Je-Hyun Yoon
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, Maryland 21224, USA
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749, South Korea
| | - Taesun Park
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul 120-749, South Korea
| | - Ju-Seog Lee
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Jae Hee Cheon
- 1] Department of Internal Medicine and Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 120-752, South Korea [2] Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| |
Collapse
|
187
|
Pluripotent stem cell-based models of spinal muscular atrophy. Mol Cell Neurosci 2014; 64:44-50. [PMID: 25511182 DOI: 10.1016/j.mcn.2014.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 12/03/2014] [Accepted: 12/11/2014] [Indexed: 01/01/2023] Open
Abstract
Motor neuron diseases, as the vast majority of neurodegenerative disorders in humans, are incurable conditions that are challenging to study in vitro, owing to the obstacles in obtaining the cell types majorly involved in the pathogenesis. Recent advances in stem cell research, especially in the development of induced pluripotent stem cell (iPSC) technology, have opened up the possibility of generating a substantial amount of disease-specific neuronal cells, including motor neurons and glial cells. The present review analyzes the practical implications of iPSCs, generated from fibroblasts of patients affected by spinal muscular atrophy (SMA), and discusses the challenges in the development and optimization of in vitro disease models. Research on patient-derived disease-specific cells may shed light on the pathological processes behind neuronal dysfunction and death in SMA, thus providing new insights for the development of novel effective therapies.
Collapse
|
188
|
Husedzinovic A, Neumann B, Reymann J, Draeger-Meurer S, Chari A, Erfle H, Fischer U, Gruss OJ. The catalytically inactive tyrosine phosphatase HD-PTP/PTPN23 is a novel regulator of SMN complex localization. Mol Biol Cell 2014; 26:161-71. [PMID: 25392300 PMCID: PMC4294665 DOI: 10.1091/mbc.e14-06-1151] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
This first systematic and comprehensive screen of human phosphatases for a regulatory role in the survival motor neuron (SMN) complex identifies the catalytically inactive, non–receptor-type tyrosine phosphatase PTPN23/HD-PTP as a novel SMN complex regulator. PTPN23 maintains a highly phosphorylated state of SMN, which is important for its function in snRNP assembly. The survival motor neuron (SMN) complex fulfils essential functions in the assembly of snRNPs, which are key components in the splicing of pre-mRNAs. Little is known about the regulation of SMN complex activity by posttranslational modification despite its complicated phosphorylation pattern. Several phosphatases had been implicated in the regulation of SMN, including the nuclear phosphatases PPM1G and PP1γ. Here we systematically screened all human phosphatase gene products for a regulatory role in the SMN complex. We used the accumulation of SMN in Cajal bodies of intact proliferating cells, which actively assemble snRNPs, as a readout for unperturbed SMN complex function. Knockdown of 29 protein phosphatases interfered with SMN accumulation in Cajal bodies, suggesting impaired SMN complex function, among those the catalytically inactive, non–receptor-type tyrosine phosphatase PTPN23/HD-PTP. Knockdown of PTPN23 also led to changes in the phosphorylation pattern of SMN without affecting the assembly of the SMN complex. We further show interaction between SMN and PTPN23 and document that PTPN23, like SMN, shuttles between nucleus and cytoplasm. Our data provide the first comprehensive screen for SMN complex regulators and establish a novel regulatory function of PTPN23 in maintaining a highly phosphorylated state of SMN, which is important for its proper function in snRNP assembly.
Collapse
Affiliation(s)
- Alma Husedzinovic
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Beate Neumann
- European Molecular Biology Laboratory, Advanced Light Microscopy Facility Programme, D-69117 Heidelberg, Germany
| | - Jürgen Reymann
- ViroQuant-CellNetworks RNAi Screening Facility, BioQuant Centre, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Stefanie Draeger-Meurer
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Ashwin Chari
- Theodor Boveri Institute, Biocenter of the University of Würzburg, D-97074 Würzburg, Germany
| | - Holger Erfle
- ViroQuant-CellNetworks RNAi Screening Facility, BioQuant Centre, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Utz Fischer
- Theodor Boveri Institute, Biocenter of the University of Würzburg, D-97074 Würzburg, Germany
| | - Oliver J Gruss
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Universität Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
189
|
Presynaptic localization of Smn and hnRNP R in axon terminals of embryonic and postnatal mouse motoneurons. PLoS One 2014; 9:e110846. [PMID: 25338097 PMCID: PMC4206449 DOI: 10.1371/journal.pone.0110846] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 09/23/2014] [Indexed: 11/19/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by deficiency of the ubiquitously expressed survival motoneuron (SMN) protein. SMN is crucial component of a complex for the assembly of spliceosomal small nuclear ribonucleoprotein (snRNP) particles. Other cellular functions of SMN are less characterized so far. SMA predominantly affects lower motoneurons, but the cellular basis for this relative specificity is still unknown. In contrast to nonneuronal cells where the protein is mainly localized in perinuclear regions and the nucleus, Smn is also present in dendrites, axons and axonal growth cones of isolated motoneurons invitro. However, this distribution has not been shown invivo and it is not clear whether Smn and hnRNP R are also present in presynaptic axon terminals of motoneurons in postnatal mice. Smn also associates with components not included in the classical SMN complex like RNA-binding proteins FUS, TDP43, HuD and hnRNP R which are involved in RNA processing, subcellular localization and translation. We show here that Smn and hnRNP R are present in presynaptic compartments at neuromuscular endplates of embryonic and postnatal mice. Smn and hnRNP R are localized in close proximity to each other in axons and axon terminals both invitro and invivo. We also provide new evidence for a direct interaction of Smn and hnRNP R invitro and invivo, particularly in the cytosol of motoneurons. These data point to functions of SMN beyond snRNP assembly which could be crucial for recruitment and transport of RNA particles into axons and axon terminals, a mechanism which may contribute to SMA pathogenesis.
Collapse
|
190
|
Abstract
Spinal muscular atrophy (SMA) is a frequently fatal neuromuscular disorder and the most common inherited cause of infant mortality. SMA results from reduced levels of the survival of motor neuron (SMN) protein. Although the disease was first described more than a century ago, a precise understanding of its genetics was not obtained until the SMA genes were cloned in 1995. This was followed in rapid succession by experiments that assigned a role to the SMN protein in the proper splicing of genes, novel animal models of the disease, and the eventual use of the models in the pre clinical development of rational therapies for SMA. These successes have led the scientific and clinical communities to the cusp of what are expected to be the first truly promising treatments for the human disorder. Yet, important questions remain, not the least of which is how SMN paucity triggers a predominantly neuromuscular phenotype. Here we review how our understanding of the disease has evolved since the SMA genes were identified. We begin with a brief description of the genetics of SMA and the proposed roles of the SMN protein. We follow with an examination of how the genetics of the disease was exploited to develop genetically faithful animal models, and highlight the insights gained from their analysis. We end with a discussion of ongoing debates, future challenges, and the most promising treatments to have emerged from our current knowledge of the disease.
Collapse
Affiliation(s)
- Tomoyuki Awano
- />Department of Pathology and Cell Biology, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
- />Center for Motor Neuron Biology and Disease, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
| | - Jeong-Ki Kim
- />Department of Pathology and Cell Biology, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
- />Center for Motor Neuron Biology and Disease, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
| | - Umrao R. Monani
- />Department of Pathology and Cell Biology, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
- />Center for Motor Neuron Biology and Disease, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
- />Department of Neurology, Columbia University Medical Center, 630 W. 168th St., New York, NY 10032 USA
| |
Collapse
|
191
|
Beta-lactam antibiotic offers neuroprotection in a spinal muscular atrophy model by multiple mechanisms: Experimental Neurology 2011; 229: 214-225. Ann Neurosci 2014; 18:156-7. [PMID: 25205947 PMCID: PMC4116957 DOI: 10.5214/ans.0972.7531.1118407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
192
|
Hao LT, Duy PQ, Jontes JD, Beattie CE. Motoneuron development influences dorsal root ganglia survival and Schwann cell development in a vertebrate model of spinal muscular atrophy. Hum Mol Genet 2014; 24:346-60. [PMID: 25180019 DOI: 10.1093/hmg/ddu447] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Low levels of the survival motor neuron protein (SMN) cause the disease spinal muscular atrophy. A primary characteristic of this disease is motoneuron dysfunction and paralysis. Understanding why motoneurons are affected by low levels of SMN will lend insight into this disease and to motoneuron biology in general. Motoneurons in zebrafish smn mutants develop abnormally; however, it is unclear where Smn is needed for motoneuron development since it is a ubiquitously expressed protein. We have addressed this issue by expressing human SMN in motoneurons in zebrafish maternal-zygotic (mz) smn mutants. First, we demonstrate that SMN is present in axons, but only during the period of robust motor axon outgrowth. We also conclusively demonstrate that SMN acts cell autonomously in motoneurons for proper motoneuron development. This includes the formation of both axonal and dendritic branches. Analysis of the peripheral nervous system revealed that Schwann cells and dorsal root ganglia (DRG) neurons developed abnormally in mz-smn mutants. Schwann cells did not wrap axons tightly and had expanded nodes of Ranvier. The majority of DRG neurons had abnormally short peripheral axons and later many of them failed to divide and died. Expressing SMN just in motoneurons rescued both of these cell types showing that their failure to develop was secondary to the developmental defects in motoneurons. Driving SMN just in motoneurons did not increase survival of the animal, suggesting that SMN is needed for motoneuron development and motor circuitry, but that SMN in other cells types factors into survival.
Collapse
Affiliation(s)
- Le Thi Hao
- Department of Neuroscience, The Ohio State University College of Medicine, 190 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, USA
| | - Phan Q Duy
- Department of Neuroscience, The Ohio State University College of Medicine, 190 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, USA
| | - James D Jontes
- Department of Neuroscience, The Ohio State University College of Medicine, 190 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, USA
| | - Christine E Beattie
- Department of Neuroscience, The Ohio State University College of Medicine, 190 Rightmire Hall, 1060 Carmack Rd, Columbus, OH 43210, USA
| |
Collapse
|
193
|
SMN is essential for the biogenesis of U7 small nuclear ribonucleoprotein and 3'-end formation of histone mRNAs. Cell Rep 2014; 5:1187-95. [PMID: 24332368 DOI: 10.1016/j.celrep.2013.11.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/14/2013] [Accepted: 11/07/2013] [Indexed: 02/06/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by a deficiency in the survival motor neuron (SMN) protein. SMN mediates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) and possibly other RNPs. Here, we investigated SMN requirement for the biogenesis and function of U7--an snRNP specialized in the 3'-end formation of replication-dependent histone mRNAs that normally are not polyadenylated. We show that SMN deficiency impairs U7 snRNP assembly and decreases U7 levels in mammalian cells. The SMN-dependent U7 reduction affects endonucleolytic cleavage of histone mRNAs leading to abnormal accumulation of 3'-extended and polyadenylated transcripts followed by downstream changes in histone gene expression. Importantly, SMN deficiency induces defects of histone mRNA 3'-end formation in both SMA mice and human patients. These findings demonstrate that SMN is essential for U7 biogenesis and histone mRNA processing in vivo and identify an additional RNA pathway disrupted in SMA.
Collapse
|
194
|
Quality control of assembly-defective U1 snRNAs by decapping and 5'-to-3' exonucleolytic digestion. Proc Natl Acad Sci U S A 2014; 111:E3277-86. [PMID: 25071210 DOI: 10.1073/pnas.1412614111] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The accurate biogenesis of RNA-protein complexes is a key aspect of eukaryotic cells. Defects in Sm protein complex binding to snRNAs are known to reduce levels of snRNAs, suggesting an unknown quality control system for small nuclear ribonucleoprotein (snRNP) assembly. snRNA quality control may also be relevant in spinal muscular atrophy, which is caused by defects in the survival motor neuron (SMN)1 gene, an assembly factor for loading the Sm complex on snRNAs and, when severely reduced, can lead to reduced levels of snRNAs and splicing defects. To determine how assembly-defective snRNAs are degraded, we first demonstrate that yeast U1 Sm-mutant snRNAs are degraded either by Rrp6- or by Dcp2-dependent decapping/5'-to-3' decay. Knockdown of the decapping enzyme DCP2 in mammalian cells also increases the levels of assembly-defective snRNAs and suppresses some splicing defects seen in SMN-deficient cells. These results identify a conserved mechanism of snRNA quality control, and also suggest a general paradigm wherein the phenotype of an "RNP assembly disease" might be suppressed by inhibition of a competing RNA quality control mechanism.
Collapse
|
195
|
Schwab AJ, Ebert AD. Sensory neurons do not induce motor neuron loss in a human stem cell model of spinal muscular atrophy. PLoS One 2014; 9:e103112. [PMID: 25054590 PMCID: PMC4108398 DOI: 10.1371/journal.pone.0103112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/27/2014] [Indexed: 11/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disorder leading to paralysis and early death due to reduced SMN protein. It is unclear why there is such a profound motor neuron loss, but recent evidence from fly and mouse studies indicate that cells comprising the whole sensory-motor circuit may contribute to motor neuron dysfunction and loss. Here, we used induced pluripotent stem cells derived from SMA patients to test whether sensory neurons directly contribute to motor neuron loss. We generated sensory neurons from SMA induced pluripotent stem cells and found no difference in neuron generation or survival, although there was a reduced calcium response to depolarizing stimuli. Using co-culture of SMA induced pluripotent stem cell derived sensory neurons with control induced pluripotent stem cell derived motor neurons, we found no significant reduction in motor neuron number or glutamate transporter boutons on motor neuron cell bodies or neurites. We conclude that SMA sensory neurons do not overtly contribute to motor neuron loss in this human stem cell system.
Collapse
Affiliation(s)
- Andrew J. Schwab
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Allison D. Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
196
|
Mulcahy PJ, Iremonger K, Karyka E, Herranz-Martín S, Shum KT, Tam JKV, Azzouz M. Gene therapy: a promising approach to treating spinal muscular atrophy. Hum Gene Ther 2014; 25:575-86. [PMID: 24845847 DOI: 10.1089/hum.2013.186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a severe autosomal recessive disease caused by a genetic defect in the survival motor neuron 1 (SMN1) gene, which encodes SMN, a protein widely expressed in all eukaryotic cells. Depletion of the SMN protein causes muscle weakness and progressive loss of movement in SMA patients. The field of gene therapy has made major advances over the past decade, and gene delivery to the central nervous system (CNS) by in vivo or ex vivo techniques is a rapidly emerging field in neuroscience. Despite Parkinson's disease, Alzheimer's disease, and amyotrophic lateral sclerosis being among the most common neurodegenerative diseases in humans and attractive targets for treatment development, their multifactorial origin and complicated genetics make them less amenable to gene therapy. Monogenic disorders resulting from modifications in a single gene, such as SMA, prove more favorable and have been at the fore of this evolution of potential gene therapies, and results to date have been promising at least. With the estimated number of monogenic diseases standing in the thousands, elucidating a therapeutic target for one could have major implications for many more. Recent progress has brought about the commercialization of the first gene therapies for diseases, such as pancreatitis in the form of Glybera, with the potential for other monogenic disease therapies to follow suit. While much research has been carried out, there are many limiting factors that can halt or impede translation of therapies from the bench to the clinic. This review will look at both recent advances and encountered impediments in terms of SMA and endeavor to highlight the promising results that may be applicable to various associated diseases and also discuss the potential to overcome present limitations.
Collapse
Affiliation(s)
- Pádraig J Mulcahy
- 1 Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield , Sheffield S10 2HQ, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
197
|
Mirabella F, Murison A, Aronson LI, Wardell CP, Thompson AJ, Hanrahan SJ, Fok JHL, Pawlyn C, Kaiser MF, Walker BA, Davies FE, Morgan GJ. A novel functional role for MMSET in RNA processing based on the link between the REIIBP isoform and its interaction with the SMN complex. PLoS One 2014; 9:e99493. [PMID: 24923560 PMCID: PMC4055699 DOI: 10.1371/journal.pone.0099493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/15/2014] [Indexed: 11/18/2022] Open
Abstract
The chromosomal translocation t(4;14) deregulates MMSET (WHSC1/NSD2) expression and is a poor prognostic factor in multiple myeloma (MM). MMSET encodes two major protein isoforms. We have characterized the role of the shorter isoform (REIIBP) in myeloma cells and identified a clear and novel interaction of REIIBP with members of the SMN (survival of motor neuron) complex that directly affects the assembly of the spliceosomal ribonucleic particles. Using RNA-seq we show that REIIBP influences the RNA splicing pattern of the cell. This new discovery provides novel insights into the understanding of MM pathology, and potential new leads for therapeutic targeting.
Collapse
Affiliation(s)
- Fabio Mirabella
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Alexander Murison
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Lauren I. Aronson
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Christopher P. Wardell
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Andrew J. Thompson
- Proteomics Core Facility, The Institute of Cancer Research, London, United Kingdom
| | - Sarah J. Hanrahan
- Proteomics Core Facility, The Institute of Cancer Research, London, United Kingdom
| | - Jacqueline H. L. Fok
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Charlotte Pawlyn
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Martin F. Kaiser
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Brian A. Walker
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Faith E. Davies
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| | - Gareth J. Morgan
- Centre for Myeloma Research, Division of Molecular Pathology, The Institute of Cancer Research, Sutton, United Kingdom
| |
Collapse
|
198
|
Weichenrieder O. RNA binding by Hfq and ring-forming (L)Sm proteins: a trade-off between optimal sequence readout and RNA backbone conformation. RNA Biol 2014; 11:537-49. [PMID: 24828406 PMCID: PMC4152361 DOI: 10.4161/rna.29144] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The eukaryotic Sm and the Sm-like (LSm) proteins form a large family that includes LSm proteins in archaea and the Hfq proteins in bacteria. Commonly referred to as the (L)Sm protein family, the various members play important roles in RNA processing, decay, and riboregulation. Particularly interesting from a structural point of view is their ability to assemble into doughnut-shaped rings, which allows them to bind preferentially the uridine-rich 3′-end of RNA oligonucleotides. With an emphasis on Hfq, this review compares the RNA-binding properties of the various (L)Sm rings that were recently co-crystallized with RNA substrates, and it discusses how these properties relate to physiological function.
Collapse
Affiliation(s)
- Oliver Weichenrieder
- Department of Biochemistry; Max Planck Institute for Developmental Biology; Tübingen, Germany
| |
Collapse
|
199
|
Li DK, Tisdale S, Lotti F, Pellizzoni L. SMN control of RNP assembly: from post-transcriptional gene regulation to motor neuron disease. Semin Cell Dev Biol 2014; 32:22-9. [PMID: 24769255 DOI: 10.1016/j.semcdb.2014.04.026] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/17/2014] [Indexed: 11/25/2022]
Abstract
At the post-transcriptional level, expression of protein-coding genes is controlled by a series of RNA regulatory events including nuclear processing of primary transcripts, transport of mature mRNAs to specific cellular compartments, translation and ultimately, turnover. These processes are orchestrated through the dynamic association of mRNAs with RNA binding proteins and ribonucleoprotein (RNP) complexes. Accurate formation of RNPs in vivo is fundamentally important to cellular development and function, and its impairment often leads to human disease. The survival motor neuron (SMN) protein is key to this biological paradigm: SMN is essential for the biogenesis of various RNPs that function in mRNA processing, and genetic mutations leading to SMN deficiency cause the neurodegenerative disease spinal muscular atrophy. Here we review the expanding role of SMN in the regulation of gene expression through its multiple functions in RNP assembly. We discuss advances in our understanding of SMN activity as a chaperone of RNPs and how disruption of SMN-dependent RNA pathways can cause motor neuron disease.
Collapse
Affiliation(s)
- Darrick K Li
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Sarah Tisdale
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
200
|
Abstract
One of the most amazing findings in molecular biology was the discovery that eukaryotic genes are discontinuous, with coding DNA being interrupted by stretches of non-coding sequence. The subsequent realization that the intervening regions are removed from pre-mRNA transcripts via the activity of a common set of small nuclear RNAs (snRNAs), which assemble together with associated proteins into a complex known as the spliceosome, was equally surprising. How do cells coordinate the assembly of this molecular machine? And how does the spliceosome accurately recognize exons and introns to carry out the splicing reaction? Insights into these questions have been gained by studying the life cycle of spliceosomal snRNAs from their transcription, nuclear export and re-import to their dynamic assembly into the spliceosome. This assembly process can also affect the regulation of alternative splicing and has implications for human disease.
Collapse
Affiliation(s)
- A Gregory Matera
- Department of Biology, Department of Genetics and Integrative Program for Biological and Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Zefeng Wang
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|