151
|
Li F, Zhao X, Li M, He K, Huang C, Zhou Y, Li Z, Walters JR. Insect genomes: progress and challenges. INSECT MOLECULAR BIOLOGY 2019; 28:739-758. [PMID: 31120160 DOI: 10.1111/imb.12599] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/22/2019] [Accepted: 05/14/2019] [Indexed: 05/24/2023]
Abstract
In the wake of constant improvements in sequencing technologies, numerous insect genomes have been sequenced. Currently, 1219 insect genome-sequencing projects have been registered with the National Center for Biotechnology Information, including 401 that have genome assemblies and 155 with an official gene set of annotated protein-coding genes. Comparative genomics analysis showed that the expansion or contraction of gene families was associated with well-studied physiological traits such as immune system, metabolic detoxification, parasitism and polyphagy in insects. Here, we summarize the progress of insect genome sequencing, with an emphasis on how this impacts research on pest control. We begin with a brief introduction to the basic concepts of genome assembly, annotation and metrics for evaluating the quality of draft assemblies. We then provide an overview of genome information for numerous insect species, highlighting examples from prominent model organisms, agricultural pests and disease vectors. We also introduce the major insect genome databases. The increasing availability of insect genomic resources is beneficial for developing alternative pest control methods. However, many opportunities remain for developing data-mining tools that make maximal use of the available insect genome resources. Although rapid progress has been achieved, many challenges remain in the field of insect genomics.
Collapse
Affiliation(s)
- F Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - X Zhao
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - M Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - K He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - C Huang
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Y Zhou
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - Z Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, China
| | - J R Walters
- Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
152
|
Corbett-Detig RB, Said I, Calzetta M, Genetti M, McBroome J, Maurer NW, Petrarca V, Della Torre A, Besansky NJ. Fine-Mapping Complex Inversion Breakpoints and Investigating Somatic Pairing in the Anopheles gambiae Species Complex Using Proximity-Ligation Sequencing. Genetics 2019; 213:1495-1511. [PMID: 31666292 PMCID: PMC6893396 DOI: 10.1534/genetics.119.302385] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/21/2019] [Indexed: 11/18/2022] Open
Abstract
Chromosomal inversions are fundamental drivers of genome evolution. In the main Afrotropical malaria vector species, belonging to the Anopheles gambiae species complex, inversions play an important role in local adaptation and have a rich history of cytological study. Despite the importance and ubiquity of some chromosomal inversions across the species complex, inversion breakpoints are often challenging to map molecularly due to the presence of large repetitive regions. Here, we develop an approach that uses Hi-C sequencing data to molecularly fine-map the breakpoints of inversions. We demonstrate that this approach is robust and likely to be widely applicable for both identification and fine-mapping inversion breakpoints in species whose inversions have heretofore been challenging to characterize. We apply our method to interrogate the previously unknown inversion breakpoints of 2Rbc and 2Rd in An. coluzzii We found that inversion breakpoints occur in large repetitive regions, and, strikingly, among three inversions analyzed, two breakpoints appear to be reused in two separate inversions. These breakpoint-adjacent regions are strongly enriched for the presence of a 30 bp satellite repeat sequence. Because low frequency inversion breakpoints are not correlated with genomic regions containing this satellite, we suggest that interrupting this particular repeat may result in arrangements with higher relative fitness. Additionally, we use heterozygous individuals to quantitatively investigate the impacts of somatic pairing in the regions immediately surrounding inversion breakpoints. Finally, we discuss important considerations for possible applications of this approach for inversion breakpoint identification in a range of organisms.
Collapse
Affiliation(s)
- Russell B Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, California 95064
- Genomics Institute, University of California Santa Cruz, California 95064
| | - Iskander Said
- Department of Biomolecular Engineering, University of California Santa Cruz, California 95064
| | - Maria Calzetta
- Dipartimento di Sanità Pubblica e Malattie Infettive and Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza", 00185 Rome, Italy
| | - Max Genetti
- Department of Biomolecular Engineering, University of California Santa Cruz, California 95064
| | - Jakob McBroome
- Department of Biomolecular Engineering, University of California Santa Cruz, California 95064
| | - Nicholas W Maurer
- Department of Biomolecular Engineering, University of California Santa Cruz, California 95064
| | - Vincenzo Petrarca
- Dipartimento di Sanità Pubblica e Malattie Infettive and Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza", 00185 Rome, Italy
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive and Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza", 00185 Rome, Italy
| | - Nora J Besansky
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, Indiana 46556
| |
Collapse
|
153
|
Blair CD. Deducing the Role of Virus Genome-Derived PIWI-Associated RNAs in the Mosquito-Arbovirus Arms Race. Front Genet 2019; 10:1114. [PMID: 31850054 PMCID: PMC6901949 DOI: 10.3389/fgene.2019.01114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/16/2019] [Indexed: 01/26/2023] Open
Abstract
The P-element-induced wimpy testis (PIWI)-associated RNA (piRNA) pathway is known for its role in the protection of genome integrity in the germline of Drosophila melanogaster by silencing transposable elements. The piRNAs that target transposons originate from piRNA clusters in transposon-rich regions of the Drosophila genome and are processed by three PIWI family proteins. In Aedes aegypti and Aedes albopictus mosquitoes, which are two of the most important vectors of arthropod-borne viruses (arboviruses), the number of PIWI family genes has expanded and some are expressed in somatic, as well as germline, tissues. These discoveries have led to active research to explore the possible expanded functional roles of the piRNA pathway in vector mosquitoes. Virus genome-derived piRNAs (which will be referred to as (virus name) vpiRNAs) have been demonstrated in Aedes spp. cultured cells and mosquitoes after infection by arthropod-borne alpha-, bunya-, and flaviviruses. However, although Culex quinquefasciatus also is an important arbovirus vector and has an expansion of PIWI family genes, vpiRNAs have seldom been documented in this genus after arbovirus infection. Generation of complementary DNA (cDNA) fragments from RNA genomes of alpha-, bunya-, and flaviviruses (viral-derived cDNAs, vDNAs) has been demonstrated in cultured Aedes spp. cells and mosquitoes, and endogenous viral elements (EVEs), cDNA fragments of non-retroviral RNA virus genomes, are found more abundantly in genomes of Ae. aegypti and Ae. albopictus than other vector mosquitoes. These observations have led to speculation that vDNAs are integrated into vector genomes to form EVEs, which serve as templates for the transcription of antiviral vpiRNA precursors. However, no EVEs derived from alphavirus genomes have been demonstrated in genomes of any vector mosquito. In addition, although EVEs have been shown to be a source of piRNAs, the preponderance of EVEs described in Aedes spp. vectors are more closely related to the genomes of persistently infecting insect-specific viruses than to acutely infecting arboviruses. Furthermore, the signature patterns of the “ping-pong” amplification cycle that maintains transposon-targeting piRNAs in Drosophila are also evident in alphavirus and bunyavirus vpiRNAs, but not in vpiRNAs of flaviviruses. These divergent observations have rendered deciphering the mechanism(s) of biogenesis and potential role of vpiRNAs in the mosquito–arbovirus arms race difficult, and the focus of this review will be to assemble major findings regarding vpiRNAs and antiviral immunity in the important arbovirus vectors from Aedes and Culex genera.
Collapse
Affiliation(s)
- Carol D Blair
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
154
|
Narula AK, Azad CS, Nainwal LM. New dimensions in the field of antimalarial research against malaria resurgence. Eur J Med Chem 2019; 181:111353. [DOI: 10.1016/j.ejmech.2019.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
|
155
|
Love RR, Redmond SN, Pombi M, Caputo B, Petrarca V, Della Torre A, Besansky NJ. In Silico Karyotyping of Chromosomally Polymorphic Malaria Mosquitoes in the Anopheles gambiae Complex. G3 (BETHESDA, MD.) 2019; 9:3249-3262. [PMID: 31391198 PMCID: PMC6778791 DOI: 10.1534/g3.119.400445] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 01/13/2023]
Abstract
Chromosomal inversion polymorphisms play an important role in adaptation to environmental heterogeneities. For mosquito species in the Anopheles gambiae complex that are significant vectors of human malaria, paracentric inversion polymorphisms are abundant and are associated with ecologically and epidemiologically important phenotypes. Improved understanding of these traits relies on determining mosquito karyotype, which currently depends upon laborious cytogenetic methods whose application is limited both by the requirement for specialized expertise and for properly preserved adult females at specific gonotrophic stages. To overcome this limitation, we developed sets of tag single nucleotide polymorphisms (SNPs) inside inversions whose biallelic genotype is strongly correlated with inversion genotype. We leveraged 1,347 fully sequenced An. gambiae and Anopheles coluzzii genomes in the Ag1000G database of natural variation. Beginning with principal components analysis (PCA) of population samples, applied to windows of the genome containing individual chromosomal rearrangements, we classified samples into three inversion genotypes, distinguishing homozygous inverted and homozygous uninverted groups by inclusion of the small subset of specimens in Ag1000G that are associated with cytogenetic metadata. We then assessed the correlation between candidate tag SNP genotypes and PCA-based inversion genotypes in our training sets, selecting those candidates with >80% agreement. Our initial tests both in held-back validation samples from Ag1000G and in data independent of Ag1000G suggest that when used for in silico inversion genotyping of sequenced mosquitoes, these tags perform better than traditional cytogenetics, even for specimens where only a small subset of the tag SNPs can be successfully ascertained.
Collapse
Affiliation(s)
- R Rebecca Love
- Eck Institute for Global Health & Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Seth N Redmond
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza," Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Beniamino Caputo
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza," Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Vincenzo Petrarca
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza," Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Alessandra Della Torre
- Dipartimento di Sanità Pubblica e Malattie Infettive, Istituto Pasteur Italia-Fondazione Cenci-Bolognetti, Università di Roma "La Sapienza," Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - Nora J Besansky
- Eck Institute for Global Health & Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
156
|
Kingan SB, Urban J, Lambert CC, Baybayan P, Childers AK, Coates B, Scheffler B, Hackett K, Korlach J, Geib SM. A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system. Gigascience 2019; 8:giz122. [PMID: 31609423 PMCID: PMC6791401 DOI: 10.1093/gigascience/giz122] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/08/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. RESULTS The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ∼20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ∼36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. CONCLUSIONS We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.
Collapse
Affiliation(s)
- Sarah B Kingan
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | - Julie Urban
- Department of Entomology, 501 ASI Building, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Primo Baybayan
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | - Anna K Childers
- USDA-ARS, Bee Research Laboratory, 10300 Baltimore Avenue, Building 306, Room 315, BARC-East, Beltsville, MD 20705, USA
| | - Brad Coates
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, 2333 Genetics Laboratory, 819 Wallace Road, Ames, IA 50011, USA
| | - Brian Scheffler
- USDA-ARS, Genomics and Bioinformatics Research, 141 Experiment Station Road, Stoneville, MS 38776, USA
| | - Kevin Hackett
- USDA-ARS, Office of National Programs, George Washington Carver Center, 5601 Sunnyside Avenue, Beltsville, MD 20705, USA
| | - Jonas Korlach
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA
| | - Scott M Geib
- USDA-ARS, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, 64 Nowelo St., Hilo, HI 96720, USA
| |
Collapse
|
157
|
Wang Y, White MM, Moncalvo JM. Diversification of the gut fungi Smittium and allies (Harpellales) co-occurred with the origin of complete metamorphosis of their symbiotic insect hosts (lower Diptera). Mol Phylogenet Evol 2019; 139:106550. [DOI: 10.1016/j.ympev.2019.106550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 05/30/2019] [Accepted: 06/28/2019] [Indexed: 01/26/2023]
|
158
|
Martin SL, Parent JS, Laforest M, Page E, Kreiner JM, James T. Population Genomic Approaches for Weed Science. PLANTS (BASEL, SWITZERLAND) 2019; 8:E354. [PMID: 31546893 PMCID: PMC6783936 DOI: 10.3390/plants8090354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/16/2022]
Abstract
Genomic approaches are opening avenues for understanding all aspects of biological life, especially as they begin to be applied to multiple individuals and populations. However, these approaches typically depend on the availability of a sequenced genome for the species of interest. While the number of genomes being sequenced is exploding, one group that has lagged behind are weeds. Although the power of genomic approaches for weed science has been recognized, what is needed to implement these approaches is unfamiliar to many weed scientists. In this review we attempt to address this problem by providing a primer on genome sequencing and provide examples of how genomics can help answer key questions in weed science such as: (1) Where do agricultural weeds come from; (2) what genes underlie herbicide resistance; and, more speculatively, (3) can we alter weed populations to make them easier to control? This review is intended as an introduction to orient weed scientists who are thinking about initiating genome sequencing projects to better understand weed populations, to highlight recent publications that illustrate the potential for these methods, and to provide direction to key tools and literature that will facilitate the development and execution of weed genomic projects.
Collapse
Affiliation(s)
- Sara L Martin
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Jean-Sebastien Parent
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Martin Laforest
- Saint-Jean-sur-Richelieu Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada.
| | - Eric Page
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON N0R 1G0, Canada.
| | - Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| | - Tracey James
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| |
Collapse
|
159
|
|
160
|
Wang X, Zhang Y, Qiao L, Chen B. Comparative analyses of simple sequence repeats (SSRs) in 23 mosquito species genomes: Identification, characterization and distribution (Diptera: Culicidae). INSECT SCIENCE 2019; 26:607-619. [PMID: 29484820 PMCID: PMC7379697 DOI: 10.1111/1744-7917.12577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 05/28/2023]
Abstract
Simple sequence repeats (SSRs) exist in both eukaryotic and prokaryotic genomes and are the most popular genetic markers, but the SSRs of mosquito genomes are still not well understood. In this study, we identified and analyzed the SSRs in 23 mosquito species using Drosophila melanogaster as reference at the whole-genome level. The results show that SSR numbers (33 076-560 175/genome) and genome sizes (574.57-1342.21 Mb) are significantly positively correlated (R2 = 0.8992, P < 0.01), but the correlation in individual species varies in these mosquito species. In six types of SSR, mono- to trinucleotide SSRs are dominant with cumulative percentages of 95.14%-99.00% and densities of 195.65/Mb-787.51/Mb, whereas tetra- to hexanucleotide SSRs are rare with 1.12%-4.22% and 3.76/Mb-40.23/Mb. The (A/T)n, (AC/GT)n and (AGC/GCT)n are the most frequent motifs in mononucleotide, dinucleotide and trinucleotide SSRs, respectively, and the motif frequencies of tetra- to hexanucleotide SSRs appear to be species-specific. The 10-20 bp length of SSRs are dominant with the number of 110 561 ± 93 482 and the frequency of 87.25% ± 5.73% on average, and the number and frequency decline with the increase of length. Most SSRs (83.34% ± 7.72%) are located in intergenic regions, followed by intron regions (11.59% ± 5.59%), exon regions (3.74% ± 1.95%), and untranslated regions (1.32% ± 1.39%). The mono-, di- and trinucleotide SSRs are the main SSRs in both gene regions (98.55% ± 0.85%) and exon regions (99.27% ± 0.52%). An average of 42.52% of total genes contains SSRs, and the preference for SSR occurrence in different gene subcategories are species-specific. The study provides useful insights into the SSR diversity, characteristics and distribution in 23 mosquito species of genomes.
Collapse
Affiliation(s)
- Xiao‐Ting Wang
- Chongqing Key Laboratory of Vector Insects; Chongqing Key Laboratory of Animal Biology; Institute of Entomology and Molecular BiologyChongqing Normal UniversityChongqingChina
| | - Yu‐Juan Zhang
- Chongqing Key Laboratory of Vector Insects; Chongqing Key Laboratory of Animal Biology; Institute of Entomology and Molecular BiologyChongqing Normal UniversityChongqingChina
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects; Chongqing Key Laboratory of Animal Biology; Institute of Entomology and Molecular BiologyChongqing Normal UniversityChongqingChina
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects; Chongqing Key Laboratory of Animal Biology; Institute of Entomology and Molecular BiologyChongqing Normal UniversityChongqingChina
| |
Collapse
|
161
|
Garczynski SF, Hendrickson CA, Harper A, Unruh TR, Dhingra A, Ahn SJ, Choi MY. Neuropeptides and peptide hormones identified in codling moth, Cydia pomonella (Lepidoptera: Tortricidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21587. [PMID: 31271487 DOI: 10.1002/arch.21587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
The codling moth, Cydia pomonella, is a worldwide pest of pome fruits. Neuropeptides regulate most physiological functions in insects and represent new targets for the development of control agents. The only neuropeptides reported from the codling moth to date are the allatostatin A family peptides. To identify other neuropeptides and peptide hormones from codling moth, we analyzed head transcriptomes, identified 50 transcripts, and predicted 120 prepropeptides for the codling moth neuropeptides and peptide hormones. All transcripts were amplified, and these sequences were verified. One of the notable findings in this study is that diapause hormones (DHs) reported from Tortricid moths, including the codling moth, do not have the WFGPRL sequence in C-terminal ends in the pban genes. The C-terminal motif is critical to characterize insect DH peptides, and always conserved in pban/dh genes in Lepidoptera and many insect orders. Interestingly, the WFGPRL sequence was produced only from the capa gene in the codling moth. The allatostatin A-family encoding transcript predicted nine peptides, seven of which, as expected, are identical to those previously isolated from the moth. We also identified new codling moth orthologs of insect neuropeptides including CCHamides, allatostatin CC, RYamides, and natalisins. The information provided in this study will benefit future codling moth investigations using peptidoproteomics to determine peptide presence and functions.
Collapse
Affiliation(s)
| | | | - Artemus Harper
- Department of Horticulture, Washington State University, Pullman, Washington
| | - Thomas R Unruh
- Yakima Agricultural Research Laboratory, USDA-ARS, Wapato, Washington
| | - Amit Dhingra
- Department of Horticulture, Washington State University, Pullman, Washington
| | - Seung-Joon Ahn
- Department of Crop and Soil Science, Oregon State University, Corvallis, Oregon
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, Oregon
| | - Man-Yeon Choi
- Horticultural Crops Research Unit, USDA-ARS, Corvallis, Oregon
| |
Collapse
|
162
|
Ekechukwu NE, Tripet F. Current versus future reproductive investment adaptive responses in adult Anopheles coluzzii malaria mosquitoes: hydric-stressed males give it all. Parasit Vectors 2019; 12:377. [PMID: 31358037 PMCID: PMC6664720 DOI: 10.1186/s13071-019-3608-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 07/08/2019] [Indexed: 11/25/2022] Open
Abstract
Background Life history theory predicts that an individualʼs current reproductive investment should depend on its future reproductive value. A variety of intrinsic biotic and extrinsic factors influence reproductive value, including age, health status and current environmental conditions. Phenotypic plastic reproductive decisions are particularly crucial in species with limited mating and breeding opportunities. In the malaria mosquito Anopheles coluzzii, the combination of male-male competition and female monandry results in male reproductive success being dependent on limited mating opportunities and sperm reserves. Short life spans combined with 3–4 day gonotrophic cycles imply that females can produce only a limited number of egg-batches in their lifetime and rely on a single maleʼs insemination to do so. Here we experimentally tested the effect of hydric stress on male sperm transfer and female sperm maintenance in this important vector species. Methods Virgin males and females were stressed prior to mating to simulate environmental uncertainty, hence the prospect of a decreased lifespan. They were then paired overnight with non-stressed mates in standardized mating assays. Sperm transfer, uptake and maintenance were quantified using qPCR, and sperm activity determined via video recording. Results When exposed to hydric stress, males responded by increasing their current reproductive investment and transferred significantly larger amounts of sperm to females. There was no significant increase in the mean number of females inseminated overnight by stressed males. In contrast, females did not significantly change their sperm uptake following stress nor did they alter their sperm maintenance strategy after 7-day post-mating hydric stress as measured through sperm activity level and sperm cells quantification. Conclusions As predicted by life-history theory, pre-mating hydric stress was associated with an increase in male current reproductive effort in the form of increased sperm transfer. In contrast, pre and post-mating hydric stress had no impact on sperm uptake and maintenance by females, which is compatible with the prediction that females maximize their reproductive value by withstanding stress periods until a blood meal opportunity and maintain sperm quality towards future egg production.
Collapse
Affiliation(s)
- Nkiru E Ekechukwu
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, ST5 5BG, UK.,Department of Zoology and Environmental Biology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Frédéric Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
163
|
The chromosomes of Drosophila suzukii (Diptera: Drosophilidae): detailed photographic polytene chromosomal maps and in situ hybridization data. Mol Genet Genomics 2019; 294:1535-1546. [PMID: 31346719 DOI: 10.1007/s00438-019-01595-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/15/2019] [Indexed: 01/25/2023]
Abstract
The spotted wing drosophila, D. suzukii, is a serious agricultural pest attacking a variety of soft fruits and vegetables. Although originating from East Asia it has recently invaded America and Europe raising major concern about its expansion potential and the consequent economic losses. Since cytogenetic information on the species is scarce, we report here the mitotic karyotype and detailed photographic maps of the salivary gland polytene chromosomes of D. suzukii. The mitotic metaphase complement contains three pairs of autosomes, one of which is dot-like, and one pair of heteromorphic (XX/XY) sex chromosomes. The salivary gland polytene complement consists of five long polytene arms, representing the two metacentric autosomes and the acrocentric X chromosome, and one very short polytene element, which corresponds to the dot-like autosome. Banding pattern as well as the most characteristic features and prominent landmarks of each polytene chromosome arm are presented and discussed. Furthermore, twelve gene markers have been mapped on the polytene chromosomes of D. suzukii by in situ hybridization. Their distribution pattern was found quite similar to that of D. melanogaster revealing conservation of synteny although the relative position within each chromosome arm for most of the genes differed significantly between D. suzukii and D. melanogaster. The chromosome information presented here is suitable for comparative cytogenetic studies and phylogenetic exploration, while it could also facilitate the assembly of the genome sequence and support the development of genetic tools for species-specific and environment-friendly biological control applications such as the sterile insect technique.
Collapse
|
164
|
The relationship between genome size, morphological parameters and diet breadth in insect species. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
165
|
Zhu S, Emrich SJ, Chen DZ. Predicting Local Inversions Using Rectangle Clustering and Representative Rectangle Prediction. IEEE Trans Nanobioscience 2019; 18:316-323. [PMID: 31180865 PMCID: PMC6606370 DOI: 10.1109/tnb.2019.2915060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
As a specific type of structural variation, inversions are enjoying particular traction as a result of their established role in evolution. Using third-generation sequencing technology to predict inversions is growing in interest, but many such methods focus on improving sensitivity, giving rise to either too many false positives or very long running times. In this paper, we propose a new framework for inversion detection based on a combination of two novel theoretical models: rectangle clustering and representative rectangle prediction. This combination can automatically filter out false positive inversion predictions while retaining correct ones, leading to a method that has both high sensitivity and high positive prediction values (PPV). Further, this new framework can run very fast on available data. Our software can be freely obtained at https://github.com/UTbioinf/RigInv.
Collapse
|
166
|
Houé V, Bonizzoni M, Failloux AB. Endogenous non-retroviral elements in genomes of Aedes mosquitoes and vector competence. Emerg Microbes Infect 2019; 8:542-555. [PMID: 30938223 PMCID: PMC6455143 DOI: 10.1080/22221751.2019.1599302] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent extensive (re)emergences of arthropod-borne viruses (arboviruses) such as chikungunya (CHIKV), zika (ZIKV) and dengue (DENV) viruses highlight the role of the epidemic vectors, Aedes aegypti and Aedes albopictus, in their spreading. Differences of vector competence to arboviruses highlight different virus/vector interactions. While both are highly competent to transmit CHIKV (Alphavirus,Togaviridae), only Ae. albopictus is considered as a secondary vector for DENV (Flavivirus, Flaviviridae). Among other factors such as environmental temperature, mosquito antiviral immunity and microbiota, the presence of non-retroviral integrated RNA virus sequences (NIRVS) in both mosquito genomes may modulate the vector competence. Here we review the current knowledge on these elements, highlighting the mechanisms by which they are produced and endogenized into Aedes genomes. Additionally, we describe their involvement in antiviral immunity as a stimulator of the RNA interference pathways and in some rare cases, as producer of viral-interfering proteins. Finally, we mention NIRVS as a tool for understanding virus/vector co-evolution. The recent discovery of endogenized elements shows that virus/vector interactions are more dynamic than previously thought, and genetic markers such as NIRVS could be one of the potential targets to reduce arbovirus transmission.
Collapse
Affiliation(s)
- Vincent Houé
- a Department of Virology, Arboviruses and Insect Vectors , Institut Pasteur , Paris , France.,b Collège Doctoral , Sorbonne Université , Paris , France
| | | | - Anna-Bella Failloux
- a Department of Virology, Arboviruses and Insect Vectors , Institut Pasteur , Paris , France
| |
Collapse
|
167
|
Russo AG, Kelly AG, Enosi Tuipulotu D, Tanaka MM, White PA. Novel insights into endogenous RNA viral elements in Ixodes scapularis and other arbovirus vector genomes. Virus Evol 2019; 5:vez010. [PMID: 31249694 PMCID: PMC6580184 DOI: 10.1093/ve/vez010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Many emerging arboviruses are not transmitted by traditional mosquito vectors, but by lesser-studied arthropods such as ticks, midges, and sand flies. Small RNA (sRNA) silencing pathways are the main antiviral defence mechanism for arthropods, which lack adaptive immunity. Non-retroviral integrated RNA virus sequences (NIRVS) are one potential source of sRNAs which comprise these pathways. NIRVS are remnants of past germline RNA viral infections, where viral cDNA integrates into the host genome and is vertically transmitted. In Aedes mosquitoes, NIRVS are widespread and produce PIWI-interacting RNAs (piRNAs). These are hypothesised to target incoming viral transcripts to modulate viral titre, perhaps rendering the organism a more efficient arbovirus vector. To explore the NIRVS landscape in alternative arbovirus vectors, we validated the NIRVS landscape in Aedes spp. and then identified novel NIRVS in six medically relevant arthropods and also in Drosophila melanogaster. We identified novel NIRVS in Phlebotomus papatasi, Culicoides sonorensis, Rhipicephalus microplus, Anopheles gambiae, Culex quinquefasciatus, and Ixodes scapularis. Due to their unexpected abundance, we further characterised NIRVS in the blacklegged tick I. scapularis (n = 143). Interestingly, NIRVS are not enriched in R. microplus, another hard tick, suggesting this is an Ixodes-specific adaptation. I. scapularis NIRVS are enriched in bunya- and orthomyxo-like sequences, reflecting that ticks are a dominant host for these virus groups. Unlike in mosquitoes, I. scapularis NIRVS are more commonly derived from the non-structural region (replicase) of negative-sense viruses, as opposed to structural regions (e.g. glycoprotein). Like other arthropods, I. scapularis NIRVS preferentially integrate into genomic piRNA clusters, and serve as a template for primary piRNA production in the commonly used embryonic I. scapularis ISE6 cell line. Interestingly, we identified a two-fold enrichment of non-long terminal repeat (non-LTR) retrotransposons, in genomic proximity to NIRVS, contrasting with studeis in Ae. aegypti, where LTR retrotransposons are instead associated with NIRVS formation. We characterised NIRVS phylogeny and integration patterns in the important vector, I. scapularis, revealing they are distinct from those in Aedes spp. Future studies will explore the possible antiviral mechanism conferred by NIRVS to I. scapularis,which may help the transmission of pathogenic arboviruses. Finally, this study explored NIRVS as an untapped wealth of viral diversity in arthropods.
Collapse
Affiliation(s)
- Alice G Russo
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew G Kelly
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel Enosi Tuipulotu
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter A White
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
168
|
Bryant JM, Baumgarten S, Glover L, Hutchinson S, Rachidi N. CRISPR in Parasitology: Not Exactly Cut and Dried! Trends Parasitol 2019; 35:409-422. [DOI: 10.1016/j.pt.2019.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/26/2022]
|
169
|
Shafee T, Mitchell ML, Norton RS. Mapping the chemical and sequence space of the ShKT superfamily. Toxicon 2019; 165:95-102. [PMID: 31063742 DOI: 10.1016/j.toxicon.2019.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/22/2019] [Accepted: 04/22/2019] [Indexed: 10/26/2022]
Abstract
The ShKT superfamily is widely distributed throughout nature and encompasses a wide range of documented functions and processes, from modulation of potassium channels to involvement in morphogenesis pathways. Cysteine-rich secretory proteins (CRISPs) contain a cysteine-rich domain (CRD) at the C-terminus that is similar in structure to the ShK fold. Despite the structural similarity of the CRD and ShK-like domains, we know little of the sequence-function relationships in these families. Here, for the first time, we examine the evolution of the biophysical properties of sequences within the ShKT superfamily in relation to function, with a focus on the ShK-like superfamily. ShKT data were sourced from published sequences in the protein family database, in addition to new ShK-like sequences from the Australian speckled anemone (Oulactis sp.). Our analysis clearly delineates the ShK-like family from the CRDs of CRISP proteins. The four CRISP subclusters separate out into the main phyla of Mammalia, Insecta and Reptilia. The ShK-like family is in turn composed of seven subclusters, the largest of which contains members from across the eukaryotes, with a continuum of intermediate properties. Smaller sub-clusters contain specialised members such as nematode ShK-like sequences. Several of these ShKT sub-clusters contain no functionally characterised sequences. This chemical space analysis should be useful as a guide to select sequences for functional studies and to gain insight into the evolution of these highly divergent sequences with an ancient conserved fold.
Collapse
Affiliation(s)
- Thomas Shafee
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia; Department of Animal, Plant, and Soil Science, AgriBio, La Trobe University, Melbourne, Victoria, 3086, Australia.
| | - Michela L Mitchell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia; Bioinformatics Division, Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia; Marine Invertebrates, Museum Victoria, GPO Box 666, Melbourne, Vic, 3001, Australia; Biodiversity & Geosciences, Queensland Museum, PO Box 3300, South Brisbane, Queensland, 4101, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| |
Collapse
|
170
|
Antunes S, Couto J, Ferrolho J, Sanches GS, Merino Charrez JO, De la Cruz Hernández N, Mazuz M, Villar M, Shkap V, de la Fuente J, Domingos A. Transcriptome and Proteome Response of Rhipicephalus annulatus Tick Vector to Babesia bigemina Infection. Front Physiol 2019; 10:318. [PMID: 31001128 PMCID: PMC6454348 DOI: 10.3389/fphys.2019.00318] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
A system biology approach was used to gain insight into tick biology and interactions between vector and pathogen. Rhipicephalus annulatus is one of the main vectors of Babesia bigemina which has a massive impact on animal health. It is vital to obtain more information about this relationship, to better understand tick and pathogen biology, pathogen transmission dynamics, and new potential control approaches. In ticks, salivary glands (SGs) play a key role during pathogen infection and transmission. RNA sequencing obtained from uninfected and B. bigemina infected SGs obtained from fed female ticks resulted in 6823 and 6475 unigenes, respectively. From these, 360 unigenes were found to be differentially expressed (p < 0.05). Reversed phase liquid chromatography-mass spectrometry identified a total of 3679 tick proteins. Among them 406 were differently represented in response to Babesia infection. The omics data obtained suggested that Babesia infection lead to a reduction in the levels of mRNA and proteins (n = 237 transcripts, n = 212 proteins) when compared to uninfected controls. Integrated transcriptomics and proteomics datasets suggested a key role for stress response and apoptosis pathways in response to infection. Thus, six genes coding for GP80, death-associated protein kinase (DAPK-1), bax inhibitor-1 related (BI-1), heat shock protein (HSP), heat shock transcription factor (PHSTF), and queuine trna-ribosyltransferase (QtRibosyl) were selected and RNA interference (RNAi) performed. Gene silencing was obtained for all genes except phstf. Knockdown of gp80, dapk-1, and bi-1 led to a significant increase in Babesia infection levels while hsp and QtRibosyl knockdown resulted in a non-significant decrease of infection levels when compared to the respective controls. Gene knockdown did not affect tick survival, but engorged female weight and egg production were affected in the gp80, dapk-1, and QtRibosyl-silenced groups in comparison to controls. These results advanced our understanding of tick-Babesia molecular interactions, and suggested new tick antigens as putative targets for vaccination to control tick infestations and pathogen infection/transmission.
Collapse
Affiliation(s)
- Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Ferrolho
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Gustavo Seron Sanches
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | | | - Ned De la Cruz Hernández
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | | | - Margarita Villar
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Varda Shkap
- Kimron Veterinary Institute, Bet Dagan, Israel
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos, IREC, CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
171
|
Abstract
Teneurins were first discovered and published in 1993 and 1994, in Drosophila melanogaster as Ten-a and Ten-m. They were initially described as cell surface proteins, and as pair-rule genes. Later, they proved to be type II transmembrane proteins, and not to be pair-rule genes. Ten-m might nonetheless have had an ancestral function in clock-based segmentation as a Ten-m oscillator. The turn of the millennium saw a watershed of vertebrate Teneurin discovery, which was soon complemented by Teneurin protein annotations from whole genome sequence publications. Teneurins encode proteins with essentially invariant domain order and size. The first years of Teneurin studies in many experimental systems led to key insights, and a unified picture, of Teneurin proteins.
Collapse
Affiliation(s)
- Stefan Baumgartner
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Ron Wides
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
172
|
Pederson T. The Malaria News Beat: “This Just In”. FASEB J 2019; 33:3082-3083. [DOI: 10.1096/fj.190301ufm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
173
|
Arcà B, Colantoni A, Fiorillo C, Severini F, Benes V, Di Luca M, Calogero RA, Lombardo F. MicroRNAs from saliva of anopheline mosquitoes mimic human endogenous miRNAs and may contribute to vector-host-pathogen interactions. Sci Rep 2019; 9:2955. [PMID: 30814633 PMCID: PMC6393464 DOI: 10.1038/s41598-019-39880-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/04/2019] [Indexed: 12/31/2022] Open
Abstract
During blood feeding haematophagous arthropods inject into their hosts a cocktail of salivary proteins whose main role is to counteract host haemostasis, inflammation and immunity. However, animal body fluids are known to also carry miRNAs. To get insights into saliva and salivary gland miRNA repertoires of the African malaria vector Anopheles coluzzii we used small RNA-Seq and identified 214 miRNAs, including tissue-enriched, sex-biased and putative novel anopheline miRNAs. Noteworthy, miRNAs were asymmetrically distributed between saliva and salivary glands, suggesting that selected miRNAs may be preferentially directed toward mosquito saliva. The evolutionary conservation of a subset of saliva miRNAs in Anopheles and Aedes mosquitoes, and in the tick Ixodes ricinus, supports the idea of a non-random occurrence pointing to their possible physiological role in blood feeding by arthropods. Strikingly, eleven of the most abundant An. coluzzi saliva miRNAs mimicked human miRNAs. Prediction analysis and search for experimentally validated targets indicated that miRNAs from An. coluzzii saliva may act on host mRNAs involved in immune and inflammatory responses. Overall, this study raises the intriguing hypothesis that miRNAs injected into vertebrates with vector saliva may contribute to host manipulation with possible implication for vector-host interaction and pathogen transmission.
Collapse
Affiliation(s)
- Bruno Arcà
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Alessio Colantoni
- Department of Biology and Biotechnology, "Sapienza University", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Carmine Fiorillo
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Severini
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Marco Di Luca
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Fabrizio Lombardo
- Department of Public Health and Infectious Diseases, "Sapienza" University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| |
Collapse
|
174
|
Zhang RB, Liu Y, Yan SC, Wang GR. Identification and functional characterization of an odorant receptor in pea aphid, Acyrthosiphon pisum. INSECT SCIENCE 2019; 26:58-67. [PMID: 28730637 DOI: 10.1111/1744-7917.12510] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 05/27/2017] [Accepted: 06/08/2017] [Indexed: 06/07/2023]
Abstract
The sensitive olfactory system is necessary for survival of insects. Odorant receptors (ORs) are located on the dendrites of olfactory receptor neurons and play a critical role in odor detection. Insect ORs are functionally analyzed via heterologous expression in a Xenopus oocyte system using a two-electrode voltage-clamp (TEVC) electrophysiological recording. Here, we have identified a novel OR in the pea aphid, Acyrthosiphon pisum, then we cloned and named it ApisOR4. We analyzed the ApisOR4 tissue expression patterns and found expression only in antennae tissues. Further functional analysis using TEVC revealed that ApisOR4 is broadly tuned to eight volatiles, which elicit electrophysiological response in pea aphid antennae. This study provides an initial functional analysis of aphid ORs and identifies candidate volatiles to be used in developing new strategies for aphid control.
Collapse
Affiliation(s)
- Rui-Bin Zhang
- The College of Forestry, Northeast Forestry University, Harbin, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shan-Chun Yan
- The College of Forestry, Northeast Forestry University, Harbin, China
| | - Gui-Rong Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
175
|
Ruel DM, Yakir E, Bohbot JD. Supersensitive Odorant Receptor Underscores Pleiotropic Roles of Indoles in Mosquito Ecology. Front Cell Neurosci 2019; 12:533. [PMID: 30733668 PMCID: PMC6353850 DOI: 10.3389/fncel.2018.00533] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/31/2018] [Indexed: 11/13/2022] Open
Abstract
Mosquitoes exhibit highly diverse and fast evolving odorant receptors (ORs). The indole-sensitive OR gene clade, comprised of Or2 and Or10 is a notable exception on account of its conservation in both mosquito subfamilies. This group of paralogous genes exhibits a complex developmental expression pattern in Aedes aegypti: AaegOr2 is expressed in both adults and larvae, AaegOr10 is adult-specific and a third member named AaegOr9 is larva-specific. OR2 and OR10 have been deorphanized and are selectively activated by indole and skatole, respectively. Using the two-electrode voltage clamp of Xenopus oocytes expressing Ae. aegypti ORs, we show that AaegOR9 is supersensitive and narrowly tuned to skatole. Our findings suggest that Ae. aegypti has evolved two distinct molecular strategies to detect skatole in aquatic and terrestrial environments, highlighting the central ecological roles of indolic compounds in the evolutionary and life histories of these insects.
Collapse
Affiliation(s)
| | | | - Jonathan D. Bohbot
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
176
|
Kingan SB, Heaton H, Cudini J, Lambert CC, Baybayan P, Galvin BD, Durbin R, Korlach J, Lawniczak MKN. A High-Quality De novo Genome Assembly from a Single Mosquito Using PacBio Sequencing. Genes (Basel) 2019; 10:E62. [PMID: 30669388 PMCID: PMC6357164 DOI: 10.3390/genes10010062] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
A high-quality reference genome is a fundamental resource for functional genetics, comparative genomics, and population genomics, and is increasingly important for conservation biology. PacBio Single Molecule, Real-Time (SMRT) sequencing generates long reads with uniform coverage and high consensus accuracy, making it a powerful technology for de novo genome assembly. Improvements in throughput and concomitant reductions in cost have made PacBio an attractive core technology for many large genome initiatives, however, relatively high DNA input requirements (~5 µg for standard library protocol) have placed PacBio out of reach for many projects on small organisms that have lower DNA content, or on projects with limited input DNA for other reasons. Here we present a high-quality de novo genome assembly from a single Anopheles coluzzii mosquito. A modified SMRTbell library construction protocol without DNA shearing and size selection was used to generate a SMRTbell library from just 100 ng of starting genomic DNA. The sample was run on the Sequel System with chemistry 3.0 and software v6.0, generating, on average, 25 Gb of sequence per SMRT Cell with 20 h movies, followed by diploid de novo genome assembly with FALCON-Unzip. The resulting curated assembly had high contiguity (contig N50 3.5 Mb) and completeness (more than 98% of conserved genes were present and full-length). In addition, this single-insect assembly now places 667 (>90%) of formerly unplaced genes into their appropriate chromosomal contexts in the AgamP4 PEST reference. We were also able to resolve maternal and paternal haplotypes for over 1/3 of the genome. By sequencing and assembling material from a single diploid individual, only two haplotypes were present, simplifying the assembly process compared to samples from multiple pooled individuals. The method presented here can be applied to samples with starting DNA amounts as low as 100 ng per 1 Gb genome size. This new low-input approach puts PacBio-based assemblies in reach for small highly heterozygous organisms that comprise much of the diversity of life.
Collapse
Affiliation(s)
- Sarah B Kingan
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA.
| | - Haynes Heaton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.
| | - Juliana Cudini
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.
| | | | - Primo Baybayan
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA.
| | - Brendan D Galvin
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA.
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK.
| | - Jonas Korlach
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, CA 94025, USA.
| | - Mara K N Lawniczak
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK.
| |
Collapse
|
177
|
Identification and characterization of a mosquito-specific eggshell organizing factor in Aedes aegypti mosquitoes. PLoS Biol 2019; 17:e3000068. [PMID: 30620728 PMCID: PMC6324781 DOI: 10.1371/journal.pbio.3000068] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
Mosquito-borne diseases are responsible for several million human deaths annually around the world. One approach to controlling mosquito populations is to disrupt molecular processes or antagonize novel metabolic targets required for the production of viable eggs. To this end, we focused our efforts on identifying proteins required for completion of embryonic development that are mosquito selective and represent potential targets for vector control. We performed bioinformatic analyses to identify putative protein-coding sequences that are specific to mosquito genomes. Systematic RNA interference (RNAi) screening of 40 mosquito-specific genes was performed by injecting double-stranded RNA (dsRNA) into female Aedes aegypti mosquitoes. This experimental approach led to the identification of eggshell organizing factor 1 (EOF1, AAEL012336), which plays an essential role in the formation and melanization of the eggshell. Eggs deposited by EOF1-deficient mosquitoes have nonmelanized fragile eggshells, and all embryos are nonviable. Scanning electron microscopy (SEM) analysis identified that exochorionic eggshell structures are strongly affected in EOF1-deficient mosquitoes. EOF1 is a potential novel target, to our knowledge, for exploring the identification and development of mosquito-selective and biosafe small-molecule inhibitors. An RNAi functional screen of 40 Aedes aegypti genes specific to the mosquito lineage helped to identify EOF1, a protein that plays an essential role in mosquito eggshell formation and melanization. Mosquito-borne pathogens infect millions of people worldwide, and the rise in insecticide resistance is exacerbating this problem. A new generation of environmentally safe insecticides will be essential to control insecticide-resistant mosquitoes. One potential route to such novel insecticide targets is the identification of proteins specifically needed for mosquito reproduction. Female mosquitoes feed on blood to produce eggs, which are covered with an eggshell; using RNA interference screening of mosquito-specific genes in Aedes aegypti (the mosquito that transmits yellow fever), we identified the eggshell organizing factor 1 (EOF1) protein that plays an essential role in eggshell melanization and embryonic development. Nearly 100% of eggs laid by EOF1-deficient females had a defective eggshell and were not viable. Bleach assays on eggs further confirmed that mosquito-specific EOF1 is required for embryonic development in A. aegypti. Additional experiments revealed that EOF1 also plays an essential role in eggshell formation in Aedes albopictus (the tiger mosquito, a carrier of Zika virus and dengue fever). We hypothesize that EOF1 has evolved within the Culicidae family to effect eggshell formation and therefore maximize egg survival. The results provide new insights, to our knowledge, into mosquito egg maturation and eggshell synthesis and could lead to key advances in the field of mosquito vector control.
Collapse
|
178
|
O'Brochta DA, Alford R, Harrell R, Aluvihare C, Eappen AG, Li T, Chakravarty S, Sim BKL, Hoffman SL, Billingsley PF. Is Saglin a mosquito salivary gland receptor for Plasmodium falciparum? Malar J 2019; 18:2. [PMID: 30602380 PMCID: PMC6317240 DOI: 10.1186/s12936-018-2634-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saglin, a 100 kDa protein composed of two 50 kDa homodimers, is present in the salivary glands of Anopheles gambiae and has been considered an essential receptor for sporozoites (SPZ) of Plasmodium berghei and Plasmodium falciparum (Pf), allowing SPZ to recognize, bind to, and infect mosquito salivary glands. Spatial and temporal patterns of Saglin expression reported here, however, suggest that this model does not fully describe the Saglin-SPZ interaction. RESULTS Saglin protein was detected by indirect immunofluorescence microscopy only in the medial and proximal-lateral lobes, but not in the distal-lateral lobes, of the salivary glands of An. gambiae; the pattern of expression was independent of mosquito age or physiological state. These results were confirmed by steady-state Saglin transcript and protein expression using qRT-PCR and Western-blot analysis, respectively. Saglin was localized to the basal surface of the cells of the medial lobes and was undetectable elsewhere (intracellularly, on the lateral or apical membranes, the cells' secretory vacuoles, or in the salivary duct). In the cells of the proximal lateral lobes of the salivary glands, Saglin was distinctly intracellular and was not localized to any of the cell surfaces. Transgenic Anopheles stephensi were produced that expressed An. gambiae Saglin in the distal lateral lobes of the salivary gland. Additional Saglin expression did not enhance infection by PfSPZ compared to non-transgenic siblings fed on the same gametocyte-containing blood meal. CONCLUSIONS The absence of Saglin in the distal lateral lobes of the salivary glands, a primary destination for SPZ, suggests Saglin is not an essential receptor for Plasmodium SPZ. The lack of any correlation between increased Saglin expression in the distal lateral lobes of the salivary glands of transgenic An. stephensi and PfSPZ infection is also consistent with Saglin not being an essential salivary gland receptor for Plasmodium SPZ.
Collapse
Affiliation(s)
- David A O'Brochta
- Department of Entomology and The Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD, 20850, USA.,Foundation for the National Institutes of Health, 11400 Rockville Pike, Suite 600, North Bethesda, MD, 20852, USA
| | - Robert Alford
- Department of Entomology and The Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Robert Harrell
- University of Maryland Insect Transformation Facility, The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Channa Aluvihare
- University of Maryland Insect Transformation Facility, The Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, MD, 20850, USA
| | - Abraham G Eappen
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Tao Li
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Sumana Chakravarty
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - B Kim Lee Sim
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Stephen L Hoffman
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA
| | - Peter F Billingsley
- Sanaria Inc., 9800 Medical Center Drive, Suite A209, Rockville, MD, 20850, USA.
| |
Collapse
|
179
|
Abstract
The increasing affordability of sequencing technologies offers many new and exciting opportunities to address a diverse array of biological questions. This is evidenced in entomological research by numerous genomics and transcriptomics studies that attempt to decipher the often complex relationships among different species or orders and to build "omics" resources to drive advancement of the molecular understanding of insect biology. Being able to gauge the quality of the sequencing data is of critical importance to understanding the potential limitations on the types of questions that these data can be reliably used to address. This chapter details the use of the Benchmarking Universal Single-Copy Orthologue (BUSCO) assessment tool to estimate the completeness of transcriptomes, genome assemblies, and annotated gene sets in terms of their expected gene content.
Collapse
|
180
|
Ruzzante L, Reijnders MJ, Waterhouse RM. Of Genes and Genomes: Mosquito Evolution and Diversity. Trends Parasitol 2019; 35:32-51. [DOI: 10.1016/j.pt.2018.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/07/2018] [Accepted: 10/08/2018] [Indexed: 12/16/2022]
|
181
|
Wasserlauf IE, Alekseeva SS, Andreeva YV, Sibataev AK, Stegniy VN. A comparative analysis of the metaphase karyotypes of Aedes excrucians, Ae. behningi, and Ae. euedes (Diptera: Culicidae) imaginal disсs. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2018; 43:245-251. [PMID: 30408286 DOI: 10.1111/jvec.12308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/08/2018] [Indexed: 06/08/2023]
Abstract
Karyotypes of Aedes (Culicidae) mosquitoes (Ae. excrucians, Ae. behningi, and Ae. euedes) have been analyzed using the metaphase chromosomes of imaginal discs. Lacto-aceto-orcein, C-banding, and DAPI staining have detected species-specific features in the morphology and lengths of these chromosomes in the examined species. Species-specific features of chromosome 1 in the location of heterochromatin blocks have been shown. Thus, the metaphase chromosomes in the imaginal discs of Ae. excrucians, Ae. behningi, and Ae. euedes are a characteristic for species identification of mosquito species.
Collapse
Affiliation(s)
- Irina E Wasserlauf
- Tomsk State University, Lenin st., 36, Tomsk, 634050, Russian Federation
| | | | - Yulia V Andreeva
- Tomsk State University, Lenin st., 36, Tomsk, 634050, Russian Federation
| | | | - Vladimir N Stegniy
- Tomsk State University, Lenin st., 36, Tomsk, 634050, Russian Federation
| |
Collapse
|
182
|
Souvannaseng L, Hun LV, Baker H, Klyver JM, Wang B, Pakpour N, Bridgewater JM, Napoli E, Giulivi C, Riehle MA, Luckhart S. Inhibition of JNK signaling in the Asian malaria vector Anopheles stephensi extends mosquito longevity and improves resistance to Plasmodium falciparum infection. PLoS Pathog 2018; 14:e1007418. [PMID: 30496310 PMCID: PMC6264519 DOI: 10.1371/journal.ppat.1007418] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
Malaria is a global health concern caused by infection with Plasmodium parasites. With rising insecticide and drug resistance, there is a critical need to develop novel control strategies, including strategies to block parasite sporogony in key mosquito vector species. MAPK signaling pathways regulated by extracellular signal-regulated kinases (ERKs) and the stress-activated protein kinases (SAPKs) c-Jun N-terminal kinases (JNKs) and p38 MAPKs are highly conserved across eukaryotes, including mosquito vectors of the human malaria parasite Plasmodium falciparum. Some of these pathways in mosquitoes have been investigated in detail, but the mechanisms of integration of parasite development and mosquito fitness by JNK signaling have not been elucidated. To this end, we engineered midgut-specific overexpression of MAPK phosphatase 4 (MKP4), which targets the SAPKs, and used two potent and specific JNK small molecule inhibitors (SMIs) to assess the effects of JNK signaling manipulations on Anopheles stephensi fecundity, lifespan, intermediary metabolism, and P. falciparum development. MKP4 overexpression and SMI treatment reduced the proportion of P. falciparum-infected mosquitoes and decreased oocyst loads relative to controls. SMI-treated mosquitoes exhibited no difference in lifespan compared to controls, whereas genetically manipulated mosquitoes exhibited extended longevity. Metabolomics analyses of SMI-treated mosquitoes revealed insights into putative resistance mechanisms and the physiology behind lifespan extension, suggesting for the first time that P. falciparum-induced JNK signaling reduces mosquito longevity and increases susceptibility to infection, in contrast to previously published reports, likely via a critical interplay between the invertebrate host and parasite for nutrients that play essential roles during sporogonic development. Malaria is a global health concern caused by infection with Plasmodium parasites. With rising insecticide and drug resistance, there is a critical need to develop novel control strategies. One strategy is to develop a Plasmodium-resistant mosquito through the manipulation of key signaling pathways and processes in the mosquito midgut, a critical tissue for parasite development. MAPK signaling pathways are highly conserved among eukaryotes and regulate development of the human malaria parasite Plasmodium falciparum in the mosquito vector. Here, we investigated how manipulation of Anopheles stephensi JNK signaling affects development of P. falciparum and key mosquito life history traits. We used multiple, complementary approaches to demonstrate that malaria parasite infection activates mosquito JNK signaling for its own benefit at a cost to host lifespan. Notably, these combined effects derive from networked signaling with other transduction pathways and alterations to intermediary metabolism in the mosquito host.
Collapse
Affiliation(s)
- Lattha Souvannaseng
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
- Department of Pathobiology, St. George's University, School of Veterinary Medicine, True Blue, St. George, Grenada, West Indies
| | - Lewis Vibul Hun
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Heather Baker
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - John M. Klyver
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Bo Wang
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Nazzy Pakpour
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States of America
| | - Jordan M. Bridgewater
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Eleonora Napoli
- Department of Molecular Biosciences, University of California, Davis, Davis, CA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, University of California, Davis, Davis, CA
- M.I.N.D. Institute, Sacramento, CA, United States of America
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ, United States of America
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology and Department of Biological Sciences, University of Idaho, Moscow, ID, United States of America
- * E-mail:
| |
Collapse
|
183
|
Jeffries CL, Lawrence GG, Golovko G, Kristan M, Orsborne J, Spence K, Hurn E, Bandibabone J, Tantely LM, Raharimalala FN, Keita K, Camara D, Barry Y, Wat'senga F, Manzambi EZ, Afrane YA, Mohammed AR, Abeku TA, Hedge S, Khanipov K, Pimenova M, Fofanov Y, Boyer S, Irish SR, Hughes GL, Walker T. Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa. Wellcome Open Res 2018; 3:113. [PMID: 30483601 PMCID: PMC6234743 DOI: 10.12688/wellcomeopenres.14765.2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2018] [Indexed: 12/31/2022] Open
Abstract
Background: Wolbachia, a common insect endosymbiotic bacterium that can influence pathogen transmission and manipulate host reproduction, has historically been considered absent from the Anopheles (An.) genera, but has recently been found in An. gambiae s.l. populations in West Africa. As there are numerous Anopheles species that have the capacity to transmit malaria, we analysed a range of species across five malaria endemic countries to determine Wolbachia prevalence rates, characterise novel Wolbachia strains and determine any correlation between the presence of Plasmodium, Wolbachia and the competing bacterium Asaia. Methods: Anopheles adult mosquitoes were collected from five malaria-endemic countries: Guinea, Democratic Republic of the Congo (DRC), Ghana, Uganda and Madagascar, between 2013 and 2017. Molecular analysis was undertaken using quantitative PCR, Sanger sequencing, Wolbachia multilocus sequence typing (MLST) and high-throughput amplicon sequencing of the bacterial 16S rRNA gene. Results: Novel Wolbachia strains were discovered in five species: An. coluzzii, An. gambiae s.s., An. arabiensis, An. moucheti and An. species A, increasing the number of Anopheles species known to be naturally infected. Variable prevalence rates in different locations were observed and novel strains were phylogenetically diverse, clustering with Wolbachia supergroup B strains. We also provide evidence for resident strain variants within An. species A. Wolbachia is the dominant member of the microbiome in An. moucheti and An. species A but present at lower densities in An. coluzzii. Interestingly, no evidence of Wolbachia/Asaia co-infections was seen and Asaia infection densities were shown to be variable and location dependent. Conclusions: The important discovery of novel Wolbachia strains in Anopheles provides greater insight into the prevalence of resident Wolbachia strains in diverse malaria vectors. Novel Wolbachia strains (particularly high-density strains) are ideal candidate strains for transinfection to create stable infections in other Anopheles mosquito species, which could be used for population replacement or suppression control strategies.
Collapse
Affiliation(s)
- Claire L Jeffries
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Gena G Lawrence
- Entomology Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, 30033, USA
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Mojca Kristan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - James Orsborne
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Kirstin Spence
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Eliot Hurn
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Janvier Bandibabone
- Laboratoire d'entomologie médicale et parasitologie, Centre de Recherche en Sciences Naturelles (CRSN/LWIRO), Sud-Kivu, Congo, Democratic Republic
| | - Luciano M Tantely
- Unité d'Entomologie Médicale, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Fara N Raharimalala
- Unité d'Entomologie Médicale, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Kalil Keita
- Nationale de Lutte contre le Paludisme, Ministere de la Sante, Conakry, Guinea
| | - Denka Camara
- Nationale de Lutte contre le Paludisme, Ministere de la Sante, Conakry, Guinea
| | - Yaya Barry
- Nationale de Lutte contre le Paludisme, Ministere de la Sante, Conakry, Guinea
| | - Francis Wat'senga
- National Institute of Biomedical Research, Kinshasa, Congo, Democratic Republic
| | - Emile Z Manzambi
- National Institute of Biomedical Research, Kinshasa, Congo, Democratic Republic
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana, Accra, Ghana
| | - Abdul R Mohammed
- Department of Medical Microbiology, University of Ghana, Accra, Ghana
| | | | - Shivanand Hedge
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Maria Pimenova
- Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Sebastien Boyer
- Unité d'Entomologie Médicale, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Seth R Irish
- The US President's Malaria Initiative and Entomology Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, 30329-4027, USA
| | - Grant L Hughes
- Department of Pathology, Institute for Human Infections and Immunity, Center for Tropical Diseases, Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas Walker
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|
184
|
Deitz KC, Takken W, Slotman MA. The Effect of Hybridization on Dosage Compensation in Member Species of the Anopheles gambiae Species Complex. Genome Biol Evol 2018; 10:1663-1672. [PMID: 29860336 PMCID: PMC6037052 DOI: 10.1093/gbe/evy108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 12/17/2022] Open
Abstract
Dosage compensation has evolved in concert with Y-chromosome degeneration in many taxa that exhibit heterogametic sex chromosomes. Dosage compensation overcomes the biological challenge of a “half dose” of X chromosome gene transcripts in the heterogametic sex. The need to equalize gene expression of a hemizygous X with that of autosomes arises from the fact that the X chromosomes retain hundreds of functional genes that are actively transcribed in both sexes and interact with genes expressed on the autosomes. Sex determination and heterogametic sex chromosomes have evolved multiple times in Diptera, and in each case the genetic control of dosage compensation is tightly linked to sex determination. In the Anopheles gambiae species complex (Culicidae), maleness is conferred by the Y-chromosome gene Yob, which despite its conserved role between species is polymorphic in its copy number between them. Previous work demonstrated that male An. gambiae s.s. males exhibit complete dosage compensation in pupal and adult stages. In the present study, we have extended this analysis to three sister species in the An. gambiae complex: An. coluzzii, An. arabiensis, and An. quadriannulatus. In addition, we analyzed dosage compensation in bi-directional F1 hybrids between these species to determine if hybridization results in the mis-regulation and disruption of dosage compensation. Our results confirm that dosage compensation operates in the An. gambiae species complex through the hypertranscription of the male X chromosome. Additionally, dosage compensation in hybrid males does not differ from parental males, indicating that hybridization does not result in the mis-regulation of dosage compensation.
Collapse
Affiliation(s)
- Kevin C Deitz
- Department of Entomology, Texas A&M University.,Department of Ecology and Evolutionary Biology and The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Willem Takken
- Laboratory of Entomology, Department of Plant Sciences, Wageningen University, The Netherlands
| | | |
Collapse
|
185
|
Hugo RLE, Birrell GW. Proteomics of Anopheles Vectors of Malaria. Trends Parasitol 2018; 34:961-981. [DOI: 10.1016/j.pt.2018.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
|
186
|
Hecht LBB, Thompson PC, Rosenthal BM. Comparative demography elucidates the longevity of parasitic and symbiotic relationships. Proc Biol Sci 2018; 285:rspb.2018.1032. [PMID: 30282650 PMCID: PMC6191686 DOI: 10.1098/rspb.2018.1032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/12/2018] [Indexed: 12/18/2022] Open
Abstract
Parasitic and symbiotic relationships govern vast nutrient and energy flows, yet controversy surrounds their longevity. Enduring relationships may engender parallel phylogenies among hosts and parasites, but so may ephemeral relationships when parasites colonize related hosts. An understanding of whether symbiont and host populations have grown and contracted in concert would be useful when considering the temporal durability of these relationships. Here, we devised methods to compare demographic histories derived from genomic data. We compared the historical growth of the agent of severe human malaria, Plasmodium falciparum, and its mosquito vector, Anopheles gambiae, to human and primate histories, thereby discerning long-term parallels and anthropogenic population explosions. The growth history of Trichinella spiralis, a zoonotic parasite disseminated by swine, proved regionally specific, paralleling distinctive growth histories for wild boar in Asia and Europe. Parallel histories were inferred for an anemone and its algal symbiont (Exaiptasia pallida and Symbiodinium minutum). Concerted growth in potatoes and the agent of potato blight (Solanum tuberosum and Phytophthora infestans) did not commence until the age of potato domestication. Through these examples, we illustrate the utility of comparative historical demography as a new exploratory tool by which to interrogate the origins and durability of myriad ecological relationships. To facilitate future use of this approach, we introduce a tool called C-PSMC to align and evaluate the similarity of demographic history curves.
Collapse
Affiliation(s)
- Luke B B Hecht
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.,US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Peter C Thompson
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.,US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| | - Benjamin M Rosenthal
- US Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, Beltsville, MD 20705, USA
| |
Collapse
|
187
|
Elmogy M, Mohamed AA, Tufail M, Uno T, Takeda M. Molecular and functional characterization of the American cockroach, Periplaneta americana, Rab5: the first exopterygotan low molecular weight ovarian GTPase during oogenesis. INSECT SCIENCE 2018; 25:751-764. [PMID: 28548451 DOI: 10.1111/1744-7917.12485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 03/22/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
The small Rab GTPases are key regulators of membrane vesicle trafficking. Ovaries of Periplaneta americana (Linnaeus) (Blattodea: Blattidae) have small molecular weight GTP/ATP-binding proteins during early and late vitellogenic periods of oogenesis. However, the identification and characterization of the detected proteins have not been yet reported. Herein, we cloned a cDNA encoding Rab5 from the American cockroach, P. americana, ovaries (PamRab5). It comprises 796 bp, encoding a protein of 213 amino acid residues with a predicted molecular weight of 23.5 kDa. PamRab5 exists as a single-copy gene in the P. americana genome, as revealed by Southern blot analysis. An approximate 2.6 kb ovarian mRNA was transcribed especially at high levels in the previtellogenic ovaries, detected by Northern blot analysis. The muscle and head tissues also showed high levels of PamRab5 transcript. PamRab5 protein was localized, via immunofluorescence labeling, to germline-derived cells of the oocytes, very early during oocyte differentiation. Immunoblotting detected a ∼25 kDa signal as a membrane-associated form revealed after application of detergent in the extraction buffer, and 23 kDa as a cytosolic form consistent with the predicted molecular weight from amino acid sequence in different tissues including ovary, muscles and head. The PamRab5 during late vitellogenic periods is required to regulate the endocytotic machinery during oogenesis in this cockroach. This is the first report on Rab5 from a hemimetabolan, and presents an inaugural step in probing the molecular premises of insect oocyte endocytotic trafficking important for oogenesis and embryonic development.
Collapse
Affiliation(s)
- Mohamed Elmogy
- Department of Entomology, Faculty of Science, Cairo University, Orman, Giza, Egypt
| | - Amr A Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Orman, Giza, Egypt
| | - Muhammad Tufail
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| | - Tomohide Uno
- Laboratory of Biological Chemistry, Faculty of Agriculture, Department of Biofunctional Chemistry, Kobe University, Nada-ku, Hyogo, Japan
| | - Makio Takeda
- Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan
| |
Collapse
|
188
|
Nouzova M, Rivera-Pérez C, Noriega FG. Omics approaches to study juvenile hormone synthesis. CURRENT OPINION IN INSECT SCIENCE 2018; 29:49-55. [PMID: 30551825 PMCID: PMC6470398 DOI: 10.1016/j.cois.2018.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/23/2018] [Indexed: 05/04/2023]
Abstract
The juvenile hormones (JHs) are a family of insect acyclic sesquiterpenoids produced by the corpora allata (CA), a pair of endocrine glands connected to the brain. They are involved in the regulation of development, reproduction, behavior, caste determination, diapause, stress response, and numerous polyphenisms. In the post-genomics era, comprehensive analyses using functional 'omics' technologies such as transcriptomics, proteomics and metabolomics have increased our understanding of the activity of the minute CA. This review attempts to summarize some of the 'omics' studies that have contributed to further understand JH synthesis in insects, with an emphasis on our own research on the mosquito Aedes aegypti.
Collapse
Affiliation(s)
- Marcela Nouzova
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA
| | | | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
189
|
Ding YR, Li B, Zhang YJ, Mao QM, Chen B. Complete mitogenome of Anopheles sinensis and mitochondrial insertion segments in the nuclear genomes of 19 mosquito species. PLoS One 2018; 13:e0204667. [PMID: 30261042 PMCID: PMC6160108 DOI: 10.1371/journal.pone.0204667] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 09/12/2018] [Indexed: 11/19/2022] Open
Abstract
Anopheles sinensis is a major malarial vector in China and Southeast Asia. The mitochondria is involved in many important biological functions. Nuclear mitochondrial DNA segments (NUMTs) are common in eukaryotic organisms, but their characteristics are poorly understood. We sequenced and analyzed the complete mitochondrial (mt) genome of An. sinensis. The mt genome is 15,418 bp long and contains 13 protein-coding genes (PCGs), two rRNAs, 22 tRNAs and a large non-coding region. Its gene arrangement is similar to previously published mosquito mt genomes. We identified and analyzed the NUMTs of 19 mosquito species with both nuclear genomes and mt genome sequences. The number, total length and density of NUMTs are significantly correlated with genome size. About half of NUMTs are short (< 200 bp), but larger genomes can house longer NUMTs. NUMTs may help explain genome size expansion in mosquitoes. The expansion due to mitochondrial insertion segments is variable in different insect groups. PCGs are transferred to nuclear genomes at a higher frequency in mosquitoes, but NUMT origination is more different than in mammals. Larger-sized nuclear genomes have longer mt genome sequences in both mosquitoes and mammals. The study provides a foundation for the functional research of mitochondrial genes in An. sinensis and helps us understand the characteristics and origin of NUMTs and the potential contribution to genome expansion.
Collapse
Affiliation(s)
- Yi-Ran Ding
- Chongqing Key Laboratory of Vector Insects, Chongqing Normal University, Chongqing, P.R. China
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| | - Bo Li
- Chongqing Key Laboratory of Vector Insects, Chongqing Normal University, Chongqing, P.R. China
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| | - Yu-Juan Zhang
- Chongqing Key Laboratory of Vector Insects, Chongqing Normal University, Chongqing, P.R. China
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| | - Qi-Meng Mao
- Chongqing Key Laboratory of Vector Insects, Chongqing Normal University, Chongqing, P.R. China
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects, Chongqing Normal University, Chongqing, P.R. China
- Institute of Entomology and Molecular Biology, Chongqing Normal University, Chongqing, P.R. China
| |
Collapse
|
190
|
Jeffries CL, Lawrence GG, Golovko G, Kristan M, Orsborne J, Spence K, Hurn E, Bandibabone J, Tantely LM, Raharimalala FN, Keita K, Camara D, Barry Y, Wat’senga F, Manzambi EZ, Afrane YA, Mohammed AR, Abeku TA, Hedge S, Khanipov K, Pimenova M, Fofanov Y, Boyer S, Irish SR, Hughes GL, Walker T. Novel Wolbachia strains in Anopheles malaria vectors from Sub-Saharan Africa. Wellcome Open Res 2018; 3:113. [DOI: 10.12688/wellcomeopenres.14765.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2018] [Indexed: 01/09/2023] Open
Abstract
Background: Wolbachia, a common insect endosymbiotic bacterium that can influence pathogen transmission and manipulate host reproduction, has historically been considered absent from the Anopheles (An.) genera, but has recently been found in An. gambiae s.l. populations. As there are numerous Anopheles species that have the capacity to transmit malaria, we analysed a range of species to determine Wolbachia prevalence rates, characterise novel Wolbachia strains and determine any correlation between the presence of Plasmodium, Wolbachia and the competing endosymbiotic bacterium Asaia. Methods: Anopheles adult mosquitoes were collected from five malaria-endemic countries: Guinea, Democratic Republic of the Congo (DRC), Ghana, Uganda and Madagascar, between 2013 and 2017. Molecular analysis of samples was undertaken using quantitative PCR, Sanger sequencing, Wolbachia multilocus sequence typing (MLST) and high-throughput amplicon sequencing of the bacterial 16S rRNA gene. Results: Novel Wolbachia strains were discovered in five species: An. coluzzii, An. gambiae s.s., An. arabiensis, An. moucheti and An. species ‘A’, increasing the number of Anopheles species known to be naturally infected. Variable prevalence rates in different locations were observed and novel strains were phylogenetically diverse, clustering with Wolbachia supergroup B strains. We also provide evidence for resident strain variants within An. species ‘A’. Wolbachia is the dominant member of the microbiome in An. moucheti and An. species ‘A’, but present at lower densities in An. coluzzii. Interestingly, no evidence of Wolbachia/Asaia co-infections was seen and Asaia infection densities were also shown to be variable and location dependent. Conclusions: The important discovery of novel Wolbachia strains in Anopheles provides greater insight into the prevalence of resident Wolbachia strains in diverse malaria vectors. Novel Wolbachia strains (particularly high-density strains) are ideal candidate strains for transinfection to create stable infections in other Anopheles mosquito species, which could be used for population replacement or suppression control strategies.
Collapse
|
191
|
Pascar J, Chandler CH. A bioinformatics approach to identifying Wolbachia infections in arthropods. PeerJ 2018; 6:e5486. [PMID: 30202647 PMCID: PMC6126470 DOI: 10.7717/peerj.5486] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 07/30/2018] [Indexed: 11/20/2022] Open
Abstract
Wolbachia is the most widespread endosymbiont, infecting >20% of arthropod species, and capable of drastically manipulating the host's reproductive mechanisms. Conventionally, diagnosis has relied on PCR amplification; however, PCR is not always a reliable diagnostic technique due to primer specificity, strain diversity, degree of infection and/or tissue sampled. Here, we look for evidence of Wolbachia infection across a wide array of arthropod species using a bioinformatic approach to detect the Wolbachia genes ftsZ, wsp, and the groE operon in next-generation sequencing samples available through the NCBI Sequence Read Archive. For samples showing signs of infection, we attempted to assemble entire Wolbachia genomes, and in order to better understand the relationships between hosts and symbionts, phylogenies were constructed using the assembled gene sequences. Out of the 34 species with positively identified infections, eight species of arthropod had not previously been recorded to harbor Wolbachia infection. All putative infections cluster with known representative strains belonging to supergroup A or B, which are known to only infect arthropods. This study presents an efficient bioinformatic approach for post-sequencing diagnosis and analysis of Wolbachia infection in arthropods.
Collapse
Affiliation(s)
- Jane Pascar
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
- Department of Biology, Syracuse University, Syracuse, NY, United States of America
| | - Christopher H. Chandler
- Department of Biological Sciences, State University of New York at Oswego, Oswego, NY, United States of America
| |
Collapse
|
192
|
Determination of mosquito Larvicidal potential of Bacillus thuringiensis Cry11Ba fusion protein through molecular docking. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0103-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
193
|
Wiltshire RM, Bergey CM, Kayondo JK, Birungi J, Mukwaya LG, Emrich SJ, Besansky NJ, Collins FH. Reduced-representation sequencing identifies small effective population sizes of Anopheles gambiae in the north-western Lake Victoria basin, Uganda. Malar J 2018; 17:285. [PMID: 30081911 PMCID: PMC6080216 DOI: 10.1186/s12936-018-2432-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 07/30/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Malaria is the leading cause of global paediatric mortality in children below 5 years of age. The number of fatalities has reduced significantly due to an expansion of control interventions but the development of new technologies remains necessary in order to achieve elimination. Recent attention has been focused on the release of genetically modified (GM) mosquitoes into natural vector populations as a mechanism of interrupting parasite transmission but despite successful in vivo laboratory studies, a detailed population genetic assessment, which must first precede any proposed field trial, has yet to be undertaken systematically. Here, the genetic structure of Anopheles gambiae populations in north-western Lake Victoria is explored to assess their suitability as candidates for a pilot field study release of GM mosquitoes. METHODS 478 Anopheles gambiae mosquitoes were collected from six locations and a subset (N = 96) was selected for restriction site-associated DNA sequencing (RADseq). The resulting single nucleotide polymorphism (SNP) marker set was analysed for effective size (Ne), connectivity and population structure (PCA, FST). RESULTS 5175 high-quality genome-wide SNPs were identified. A principal components analysis (PCA) of the collinear genomic regions illustrated that individuals clustered in concordance with geographic origin with some overlap between sites. Genetic differentiation between populations was varied with inter-island comparisons having the highest values (median FST 0.0480-0.0846). Ne estimates were generally small (124.2-1920.3). CONCLUSIONS A reduced-representation SNP marker set for genome-wide An. gambiae genetic analysis in the north-western Lake Victoria basin is reported. Island populations demonstrated low to moderate genetic differentiation and greater structure suggesting some limitation to migration. Smaller estimates of Ne indicate that an introduced effector transgene will be more susceptible to genetic drift but to ensure that it is driven to fixation a robust gene drive mechanism will likely be needed. These findings, together with their favourable location and suitability for frequent monitoring, indicate that the Ssese Islands contain several candidate field locations, which merit further evaluation as potential GM mosquito pilot release sites.
Collapse
Affiliation(s)
- Rachel M Wiltshire
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Christina M Bergey
- Departments of Anthropology and Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jonathan K Kayondo
- Division of Entomology and Vector Biology, Uganda Virus Research Institute, Plot No. 51-59, Nakiwogo Road, Entebbe 49, Uganda
| | - Josephine Birungi
- Division of Entomology and Vector Biology, Uganda Virus Research Institute, Plot No. 51-59, Nakiwogo Road, Entebbe 49, Uganda
| | - Louis G Mukwaya
- Division of Entomology and Vector Biology, Uganda Virus Research Institute, Plot No. 51-59, Nakiwogo Road, Entebbe 49, Uganda
| | - Scott J Emrich
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Nora J Besansky
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Frank H Collins
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
194
|
Artemov GN, Velichevskaya AI, Bondarenko SM, Karagyan GH, Aghayan SA, Arakelyan MS, Stegniy VN, Sharakhov IV, Sharakhova MV. A standard photomap of the ovarian nurse cell chromosomes for the dominant malaria vector in Europe and Middle East Anopheles sacharovi. Malar J 2018; 17:276. [PMID: 30060747 PMCID: PMC6065146 DOI: 10.1186/s12936-018-2428-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 08/10/2023] Open
Abstract
Background Anopheles sacharovi is a dominant malaria vector species in South Europe and the Middle East which has a highly plastic behaviour at both adult and larval stages. Such plasticity has prevented this species from eradication by several anti-vector campaigns. The development of new genome-based strategies for vector control will benefit from genome sequencing and physical chromosome mapping of this mosquito. Although a cytogenetic photomap for chromosomes from salivary glands of An. sacharovi has been developed, no cytogenetic map suitable for physical genome mapping is available. Methods Mosquitoes for this study were collected at adult stage in animal shelters in Armenia. Polytene chromosome preparations were prepared from ovarian nurse cells. Fluorescent in situ hybridization (FISH) was performed using PCR amplified probes. Results This study constructed a high-quality standard photomap for polytene chromosomes from ovarian nurse cells of An. sacharovi. Following the previous nomenclature, chromosomes were sub-divided into 39 numbered and 119 lettered sub-divisions. Chromosomal landmarks for the chromosome recognition were described. Using FISH, 4 PCR-amplified genic probes were mapped to the chromosomes. The positions of the probes demonstrated gene order reshuffling between An. sacharovi and Anopheles atroparvus which has not been seen cytologically. In addition, this study described specific chromosomal landmarks that can be used for the cytotaxonomic diagnostics of An. sacharovi based on the banding pattern of its polytene chromosomes. Conclusions This study constructed a high-quality standard photomap for ovarian nurse cell chromosomes of An. sacharovi and validated its utility for physical genome mapping. Based on the map, cytotaxonomic features for identification of An. sacharovi have been described. The cytogenetic map constructed in this study will assist in creating a chromosome-based genome assembly for this mosquito and in developing cytotaxonomic tools for identification of other species from the Maculipennis group.
Collapse
Affiliation(s)
- Gleb N Artemov
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Alena I Velichevskaya
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Semen M Bondarenko
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Gayane H Karagyan
- Scientific Center of Zoology and Hydroecology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Sargis A Aghayan
- Scientific Center of Zoology and Hydroecology, The National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia.,Chair of Zoology, Yerevan State University, Yerevan, Armenia
| | | | - Vladimir N Stegniy
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia
| | - Igor V Sharakhov
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia. .,Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.
| | - Maria V Sharakhova
- Laboratory of Ecology, Genetics and Environment Protection, Tomsk State University, Tomsk, Russia. .,Department of Entomology, Fralin Life Science Institute, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
195
|
The C-Type Lectin Domain Gene Family in Aedes aegypti and Their Role in Arbovirus Infection. Viruses 2018; 10:v10070367. [PMID: 30002303 PMCID: PMC6070988 DOI: 10.3390/v10070367] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 12/15/2022] Open
Abstract
Several medically important flaviviruses that are transmitted by mosquitoes have been shown to bind to the C-type lectin fold that is present in either vertebrate or invertebrate proteins. While in some cases this interaction is part of a neutralizing anti-viral immune response, many reports have implicated this as critical for successful virus entry. Despite the establishment of mosquito C-type lectin domain containing proteins (CTLDcps) as known host factors in assisting the infectious process for flaviviruses, little is known about the structural characteristics of these proteins and their relationships to each other. In this report, we describe the manual annotation and structural characterization of 52 Aedes aegypti CTLDcps. Using existing RNAseq data, we establish that these genes can be subdivided into two classes: those highly conserved with expression primarily in development (embryo/early larvae) and those with no clear orthologs with expression primarily in late larvae/pupae or adults. The latter group contained all CTLDcps that are regulated by the Toll/Imd immune pathways, all known microbiome-regulating CTLDcps, and almost all CTLDcps that are implicated as flavivirus host factors in A. aegypti. Finally, we attempt to synthesize results from multiple conflicting gene expression profiling experiments in terms of how flavivirus infection changes steady-state levels of mRNA encoding CTLDcps.
Collapse
|
196
|
Alexander J, Oliphant A, Wilcockson DC, Webster SG. Functional Identification and Characterization of the Diuretic Hormone 31 (DH31) Signaling System in the Green Shore Crab, Carcinus maenas. Front Neurosci 2018; 12:454. [PMID: 30022930 PMCID: PMC6039563 DOI: 10.3389/fnins.2018.00454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/13/2018] [Indexed: 01/10/2023] Open
Abstract
The functional characterization of crustacean neuropeptides and their cognate receptors has not kept pace with the recent advances in sequence determination and, therefore, our understanding of the physiological roles of neuropeptides in this important arthropod sub-phylum is rather limited. We identified a candidate receptor-ligand pairing for diuretic hormone 31 (DH31) in a neural transcriptome of the crab, Carcinus maenas. In insects, DH31 plays species -specific but central roles in many facets of physiology, including fluid secretion, myoactivity, and gut peristalsis but little is known concerning its functions in crustaceans. The C. maenas DH31 transcript codes for a 147 amino acid prepropeptide, and a single receptor transcript translates to a secretin-like (Class B1) G protein-coupled receptor (GPCR). We used an in vitro aequorin luminescence Ca2+ mobilization assay to demonstrate that this candidate DH31R is activated byCarcinus and insect DH31s in a dose-dependent manner (EC50 15-30 nM). Whole mount immunohistochemical and in situ hybridization localization revealed extensive DH31 expressing neurons throughout the central nervous system, most notably in the abdominal ganglion where large, unpaired cells give rise to medial nerves, which terminate in extensive DH31 immunopositive dendritic fields intimately associated with oesophageal musculature. This system constitutes a large and hitherto undescribed neurohemal area adjacent to key muscle groups associated with the gastric system. DH31 expressing neurons were also seen in the cardiac, commissural, oesophageal, and stomatogastric ganglia and intense labeling was seen in dendrites innervating fore- and hindgut musculature but not with limb muscles. These labeling patterns, together with measurement of DH31R mRNA in the heart and hindgut, prompted us test the effects of DH31 on semi-isolated heart preparations. Cardiac superfusion with peptide evoked increased heart rates (10-100 nM). The neuroanatomical distribution of DH31 and its receptor transcripts, particularly that associated with gastric and cardiac musculature, coupled with the cardio- acceleratory effects of the peptide implicate this peptide in key myoactive roles, likely related to rhythmic coordination.
Collapse
Affiliation(s)
- Jodi Alexander
- Brambell Laboratories, School of Biological Sciences, Bangor University, Bangor, United Kingdom
| | - Andrew Oliphant
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - David C. Wilcockson
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Simon G. Webster
- Brambell Laboratories, School of Biological Sciences, Bangor University, Bangor, United Kingdom
| |
Collapse
|
197
|
Spencer CS, Yunta C, de Lima GPG, Hemmings K, Lian LY, Lycett G, Paine MJI. Characterisation of Anopheles gambiae heme oxygenase and metalloporphyrin feeding suggests a potential role in reproduction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 98:25-33. [PMID: 29729387 DOI: 10.1016/j.ibmb.2018.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/23/2018] [Accepted: 04/29/2018] [Indexed: 06/08/2023]
Abstract
The mosquito Anopheles gambiae is the principal vector for malaria in sub-Saharan Africa. The ability of A. gambiae to transmit malaria is strictly related to blood feeding and digestion, which releases nutrients for oogenesis, as well as substantial amounts of highly toxic free heme. Heme degradation by heme oxygenase (HO) is a common protective mechanism, and a gene for HO exists in the An. gambiae genome HO (AgHO), although it has yet to be functionally examined. Here, we have cloned and expressed An. gambiae HO (AgHO) in E. coli. Purified recombinant AgHO bound hemin stoichiometrically to form a hemin-enzyme complex similar to other HOs, with a KD of 3.9 ± 0.6 μM; comparable to mammalian and bacterial HOs, but 7-fold lower than that of Drosophila melanogaster HO. AgHO also degraded hemin to biliverdin and released CO and iron in the presence of NADPH cytochrome P450 oxidoreductase (CPR). Optimal AgHO activity was observed at 27.5 °C and pH 7.5. To investigate effects of AgHO inhibition, adult female A. gambiae were fed heme analogues Sn- and Zn-protoporphyrins (SnPP and ZnPP), known to inhibit HO. These led to a dose dependent decrease in oviposition. Cu-protoporphyrin (CuPP), which does not inhibit HO had no effect. These results demonstrate that AgHO is a catalytically active HO and that it may play a key role in egg production in mosquitoes. It also presents a potential target for the development of compounds aimed at sterilising mosquitoes for vector control.
Collapse
Affiliation(s)
| | - Cristina Yunta
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | | | - Kay Hemmings
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Lu-Yun Lian
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Gareth Lycett
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Mark J I Paine
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
198
|
Qu Z, Bendena WG, Nong W, Siggens KW, Noriega FG, Kai ZP, Zang YY, Koon AC, Chan HYE, Chan TF, Chu KH, Lam HM, Akam M, Tobe SS, Lam Hui JH. MicroRNAs regulate the sesquiterpenoid hormonal pathway in Drosophila and other arthropods. Proc Biol Sci 2018; 284:rspb.2017.1827. [PMID: 29237851 DOI: 10.1098/rspb.2017.1827] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Arthropods comprise the majority of all described animal species, and understanding their evolution is a central question in biology. Their developmental processes are under the precise control of distinct hormonal regulators, including the sesquiterpenoids juvenile hormone (JH) and methyl farnesoate. The control of the synthesis and mode of action of these hormones played important roles in the evolution of arthropods and their adaptation to diverse habitats. However, the precise roles of non-coding RNAs, such as microRNAs (miRNAs), controlling arthropod hormonal pathways are unknown. Here, we investigated the miRNA regulation of the expression of the juvenile hormone acid methyltransferase gene (JHAMT), which encodes a rate-determining sesquiterpenoid biosynthetic enzyme. Loss of function of the miRNA bantam in the fly Drosophila melanogaster increased JHAMT expression, while overexpression of the bantam repressed JHAMT expression and resulted in pupal lethality. The male genital organs of the pupae were malformed, and exogenous sesquiterpenoid application partially rescued the genital deformities. The role of the bantam in the regulation of sesquiterpenoid biosynthesis was validated by transcriptomic, qPCR and hormone titre (JHB3 and JH III) analyses. In addition, we found a conserved set of miRNAs that interacted with JHAMT, and the sesquiterpenoid receptor methoprene-tolerant (Met) in different arthropod lineages, including insects (fly, mosquito and beetle), crustaceans (water flea and shrimp), myriapod (centipede) and chelicerate (horseshoe crab). This suggests that these miRNAs might have conserved roles in the post-transcriptional regulation of genes in sesquiterpenoid pathways across the Panarthropoda. Some of the identified lineage-specific miRNAs are potential targets for the development of new strategies in aquaculture and agricultural pest control.
Collapse
Affiliation(s)
- Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | | | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | | | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Zhen-Peng Kai
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Yang-Yang Zang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, People's Republic of China
| | - Alex C Koon
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ka Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Hon Ming Lam
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Michael Akam
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada M5S 3G5
| | - Jerome Ho Lam Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| |
Collapse
|
199
|
Shi S, Zuo H, Gao L, Yi X, Zhong G. Silencing of Rieske Iron-Sulfur Protein Impacts Upon the Development and Reproduction of Spodoptera exigua by Regulating ATP Synthesis. Front Physiol 2018; 9:575. [PMID: 29881355 PMCID: PMC5977497 DOI: 10.3389/fphys.2018.00575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/01/2018] [Indexed: 01/24/2023] Open
Abstract
Rieske iron-sulfur protein (RISP) is a key protein subunit of mitochondrial complex III which plays an important role in the respiratory electron transport chain. The complete cDNA of RISP was cloned from Spodoptera exigua by real time quantitative PCR and rapid-amplification of cDNA ends (RACE) technology and named as SeRISP (GenBank Accession Number: JN992290). Multiple alignments and the creation of a phylogenetic tree revealed that RISPs are highly conserved among different insects, and the highly conserved region of RISPs is mainly located at the C-terminal which serves as the functional domain. Expression pattern analysis demonstrated that SeRISP is expressed in all developmental stages of S. exigua; the expression levels increased during larval growth, remained stable during development from fourth instar to pupa and reached a peak in the adult. In addition, SeRISP was significantly suppressed at both the mRNA and protein levels by feeding the instar stage with dsRNA; levels of suppression increased with increasing dsRNA concentration and continuous treatment time. The silencing of SeRISP in larvae led to the significant inhibition of ATP synthesis and larval growth, which could result in energy reserve deficiency in pupae and the suppression of fecundity and hatchability in adults. Our findings confirmed that it is possible to silence target genes in S. exigua by simple dsRNA feeding, and provided evidence of the essential role of RISP in the process of ATP synthesis, growth and reproduction.
Collapse
Affiliation(s)
- Song Shi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Hongliang Zuo
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Lu Gao
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.,Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
200
|
Wang YH, Chang MM, Wang XL, Zheng AH, Zou Z. The immune strategies of mosquito Aedes aegypti against microbial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:12-21. [PMID: 29217264 DOI: 10.1016/j.dci.2017.12.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
Yellow fever mosquito Aedes aegypti transmits many devastating arthropod-borne viruses (arboviruses), such as dengue virus, yellow fever virus, Chikungunya virus, and Zika virus, which cause great concern to human health. Mosquito control is an effective method to block the spread of infectious diseases. Ae. aegypti uses its innate immune system to fight against arboviruses, parasites, and fungi. In this review, we briefly summarize the recent findings in the immune response of Ae. aegypti against arboviral and entomopathogenic infections. This review enriches our understanding of the mosquito immune system and provides evidence to support the development of novel mosquito control strategies.
Collapse
Affiliation(s)
- Yan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Meng-Meng Chang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue-Li Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ai-Hua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|