151
|
Pereira PL, Magnol L, Sahún I, Brault V, Duchon A, Prandini P, Gruart A, Bizot JC, Chadefaux-Vekemans B, Deutsch S, Trovero F, Delgado-García JM, Antonarakis SE, Dierssen M, Herault Y. A new mouse model for the trisomy of the Abcg1-U2af1 region reveals the complexity of the combinatorial genetic code of down syndrome. Hum Mol Genet 2009; 18:4756-69. [PMID: 19783846 PMCID: PMC2778371 DOI: 10.1093/hmg/ddp438] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mental retardation in Down syndrome (DS), the most frequent trisomy in humans, varies from moderate to severe. Several studies both in human and based on mouse models identified some regions of human chromosome 21 (Hsa21) as linked to cognitive deficits. However, other intervals such as the telomeric region of Hsa21 may contribute to the DS phenotype but their role has not yet been investigated in detail. Here we show that the trisomy of the 12 genes, found in the 0.59 Mb (Abcg1–U2af1) Hsa21 sub-telomeric region, in mice (Ts1Yah) produced defects in novel object recognition, open-field and Y-maze tests, similar to other DS models, but induces an improvement of the hippocampal-dependent spatial memory in the Morris water maze along with enhanced and longer lasting long-term potentiation in vivo in the hippocampus. Overall, we demonstrate the contribution of the Abcg1–U2af1 genetic region to cognitive defect in working and short-term recognition memory in DS models. Increase in copy number of the Abcg1–U2af1 interval leads to an unexpected gain of cognitive function in spatial learning. Expression analysis pinpoints several genes, such as Ndufv3, Wdr4, Pknox1 and Cbs, as candidates whose overexpression in the hippocampus might facilitate learning and memory in Ts1Yah mice. Our work unravels the complexity of combinatorial genetic code modulating different aspect of mental retardation in DS patients. It establishes definitely the contribution of the Abcg1–U2af1 orthologous region to the DS etiology and suggests new modulatory pathways for learning and memory.
Collapse
Affiliation(s)
- Patricia Lopes Pereira
- Molecular Embryology and Immunology, Université d'Orléans, UMR6218, Orléans Cedex 2, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Upregulation of three Drosophila homologs of human chromosome 21 genes alters synaptic function: implications for Down syndrome. Proc Natl Acad Sci U S A 2009; 106:17117-22. [PMID: 19805187 DOI: 10.1073/pnas.0904397106] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
At the neuronal level of Down syndrome (DS) brains, there are evidences of altered shape, number, and density of synapses, as well as aberrant endocytosis associated with accumulation of enlarged endosomes, suggesting that proteins involved in synaptic vesicle recycling may play key roles in DS neurons. However, the exact mechanism underlying those anomalies is not well understood. We hypothesize that overexpression of three genes, dap160/itsn1, synj/synj1, and nla/dscr1, located on human chromosome 21 play important roles in DS neurons. Here, we systematically investigate the effects of multiple gene overexpression on synaptic morphology and endocytosis to identify possible dominant gene or genes. We found that overexpression of individual genes lead to abnormal synaptic morphology, but all three genes are necessary to cause impaired vesicle recycling and affect locomotor vigor. Furthermore, we report that dap160 overexpression alters the subcellular distribution of synaptojanin, and overexpression of nla regulates the phosphoinositol 5' phosphatase activity of synaptojanin. These findings imply that restoring the level of any one of these genes may reduce endocytic defects seen in DS.
Collapse
|
153
|
Delom F, Burt E, Hoischen A, Veltman J, Groet J, Cotter FE, Nizetic D. Transchromosomic cell model of Down syndrome shows aberrant migration, adhesion and proteome response to extracellular matrix. Proteome Sci 2009; 7:31. [PMID: 19715584 PMCID: PMC2745369 DOI: 10.1186/1477-5956-7-31] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 08/28/2009] [Indexed: 11/20/2022] Open
Abstract
Background Down syndrome (DS), caused by trisomy of human chromosome 21 (HSA21), is the most common genetic birth defect. Congenital heart defects (CHD) are seen in 40% of DS children, and >50% of all atrioventricular canal defects in infancy are caused by trisomy 21, but the causative genes remain unknown. Results Here we show that aberrant adhesion and proliferation of DS cells can be reproduced using a transchromosomic model of DS (mouse fibroblasts bearing supernumerary HSA21). We also demonstrate a deacrease of cell migration in transchromosomic cells independently of their adhesion properties. We show that cell-autonomous proteome response to the presence of Collagen VI in extracellular matrix is strongly affected by trisomy 21. Conclusion This set of experiments establishes a new model system for genetic dissection of the specific HSA21 gene-overdose contributions to aberrant cell migration, adhesion, proliferation and specific proteome response to collagen VI, cellular phenotypes linked to the pathogenesis of CHD.
Collapse
Affiliation(s)
- Frédéric Delom
- Queen Mary University of London, Institute of Cell and Molecular Science, UK.
| | | | | | | | | | | | | |
Collapse
|
154
|
Dierssen M, Herault Y, Estivill X. Aneuploidy: from a physiological mechanism of variance to Down syndrome. Physiol Rev 2009; 89:887-920. [PMID: 19584316 DOI: 10.1152/physrev.00032.2007] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Quantitative differences in gene expression emerge as a significant source of variation in natural populations, representing an important substrate for evolution and accounting for a considerable fraction of phenotypic diversity. However, perturbation of gene expression is also the main factor in determining the molecular pathogenesis of numerous aneuploid disorders. In this review, we focus on Down syndrome (DS) as the prototype of "genomic disorder" induced by copy number change. The understanding of the pathogenicity of the extra genomic material in trisomy 21 has accelerated in the last years due to the recent advances in genome sequencing, comparative genome analysis, functional genome exploration, and the use of model organisms. We present recent data on the role of genome-altering processes in the generation of diversity in DS neural phenotypes focusing on the impact of trisomy on brain structure and mental retardation and on biological pathways and cell types in target brain regions (including prefrontal cortex, hippocampus, cerebellum, and basal ganglia). We also review the potential that genetically engineered mouse models of DS bring into the understanding of the molecular biology of human learning disorders.
Collapse
Affiliation(s)
- Mara Dierssen
- Genes and Disease Program, Genomic Regulation Center-CRG, Pompeu Fabra University, Barcelona Biomedical Research Park, Dr Aiguader 88, PRBB building E, Barcelona 08003, Catalonia, Spain.
| | | | | |
Collapse
|
155
|
The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc Natl Acad Sci U S A 2009; 106:12031-6. [PMID: 19597142 DOI: 10.1073/pnas.0813248106] [Citation(s) in RCA: 288] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Down syndrome (DS), or trisomy 21, is a common disorder associated with several complex clinical phenotypes. Although several hypotheses have been put forward, it is unclear as to whether particular gene loci on chromosome 21 (HSA21) are sufficient to cause DS and its associated features. Here we present a high-resolution genetic map of DS phenotypes based on an analysis of 30 subjects carrying rare segmental trisomies of various regions of HSA21. By using state-of-the-art genomics technologies we mapped segmental trisomies at exon-level resolution and identified discrete regions of 1.8-16.3 Mb likely to be involved in the development of 8 DS phenotypes, 4 of which are congenital malformations, including acute megakaryocytic leukemia, transient myeloproliferative disorder, Hirschsprung disease, duodenal stenosis, imperforate anus, severe mental retardation, DS-Alzheimer Disease, and DS-specific congenital heart disease (DSCHD). Our DS-phenotypic maps located DSCHD to a <2-Mb interval. Furthermore, the map enabled us to present evidence against the necessary involvement of other loci as well as specific hypotheses that have been put forward in relation to the etiology of DS-i.e., the presence of a single DS consensus region and the sufficiency of DSCR1 and DYRK1A, or APP, in causing several severe DS phenotypes. Our study demonstrates the value of combining advanced genomics with cohorts of rare patients for studying DS, a prototype for the role of copy-number variation in complex disease.
Collapse
|
156
|
Baek KH, Zaslavsky A, Lynch RC, Britt C, Okada Y, Siarey RJ, Lensch MW, Park IH, Yoon SS, Minami T, Korenberg JR, Folkman J, Daley GQ, Aird WC, Galdzicki Z, Ryeom S. Down's syndrome suppression of tumour growth and the role of the calcineurin inhibitor DSCR1. Nature 2009; 459:1126-30. [PMID: 19458618 PMCID: PMC2724004 DOI: 10.1038/nature08062] [Citation(s) in RCA: 274] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 04/16/2009] [Indexed: 12/24/2022]
Abstract
The incidence of many cancer types is significantly reduced in individuals with Down's syndrome, and it is thought that this broad cancer protection is conferred by the increased expression of one or more of the 231 supernumerary genes on the extra copy of chromosome 21. One such gene is Down's syndrome candidate region-1 (DSCR1, also known as RCAN1), which encodes a protein that suppresses vascular endothelial growth factor (VEGF)-mediated angiogenic signalling by the calcineurin pathway. Here we show that DSCR1 is increased in Down's syndrome tissues and in a mouse model of Down's syndrome. Furthermore, we show that the modest increase in expression afforded by a single extra transgenic copy of Dscr1 is sufficient to confer significant suppression of tumour growth in mice, and that such resistance is a consequence of a deficit in tumour angiogenesis arising from suppression of the calcineurin pathway. We also provide evidence that attenuation of calcineurin activity by DSCR1, together with another chromosome 21 gene Dyrk1a, may be sufficient to markedly diminish angiogenesis. These data provide a mechanism for the reduced cancer incidence in Down's syndrome and identify the calcineurin signalling pathway, and its regulators DSCR1 and DYRK1A, as potential therapeutic targets in cancers arising in all individuals.
Collapse
Affiliation(s)
- Kwan-Hyuck Baek
- Vascular Biology Program, Department of Surgery, Children's Hospital Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Patterson D. Molecular genetic analysis of Down syndrome. Hum Genet 2009; 126:195-214. [PMID: 19526251 DOI: 10.1007/s00439-009-0696-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 05/29/2009] [Indexed: 12/18/2022]
Abstract
Down syndrome (DS) is caused by trisomy of all or part of human chromosome 21 (HSA21) and is the most common genetic cause of significant intellectual disability. In addition to intellectual disability, many other health problems, such as congenital heart disease, Alzheimer's disease, leukemia, hypotonia, motor disorders, and various physical anomalies occur at an elevated frequency in people with DS. On the other hand, people with DS seem to be at a decreased risk of certain cancers and perhaps of atherosclerosis. There is wide variability in the phenotypes associated with DS. Although ultimately the phenotypes of DS must be due to trisomy of HSA21, the genetic mechanisms by which the phenotypes arise are not understood. The recent recognition that there are many genetically active elements that do not encode proteins makes the situation more complex. Additional complexity may exist due to possible epigenetic changes that may act differently in DS. Numerous mouse models with features reminiscent of those seen in individuals with DS have been produced and studied in some depth, and these have added considerable insight into possible genetic mechanisms behind some of the phenotypes. These mouse models allow experimental approaches, including attempts at therapy, that are not possible in humans. Progress in understanding the genetic mechanisms by which trisomy of HSA21 leads to DS is the subject of this review.
Collapse
Affiliation(s)
- David Patterson
- Eleanor Roosevelt Institute, University of Denver, 2101 E. Wesley Avenue, Denver, CO 80208-6600, USA.
| |
Collapse
|
158
|
Belichenko NP, Belichenko PV, Kleschevnikov AM, Salehi A, Reeves RH, Mobley WC. The "Down syndrome critical region" is sufficient in the mouse model to confer behavioral, neurophysiological, and synaptic phenotypes characteristic of Down syndrome. J Neurosci 2009; 29:5938-48. [PMID: 19420260 PMCID: PMC3849469 DOI: 10.1523/jneurosci.1547-09.2009] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 04/03/2009] [Indexed: 11/21/2022] Open
Abstract
Down syndrome (DS) can be modeled in mice segmentally trisomic for mouse chromosome 16. Ts65Dn and Ts1Cje mouse models have been used to study DS neurobiological phenotypes including changes in cognitive ability, induction of long-term potentiation (LTP) in the fascia dentata (FD), the density and size of dendritic spines, and the structure of synapses. To explore the genetic basis for these phenotypes, we examined Ts1Rhr mice that are trisomic for a small subset of the genes triplicated in Ts65Dn and Ts1Cje mice. The 33 trisomic genes in Ts1Rhr represent a "DS critical region" that was once predicted to be sufficient to produce most DS phenotypes. We discovered significant alterations in an open field test, a novel object recognition test and in a T-maze task. As in Ts65Dn and Ts1Cje mice, LTP in FD of Ts1Rhr could be induced only after blocking GABA(A)-dependent inhibitory neurotransmission. In addition, widespread enlargement of dendritic spines and decreased density of spines in FD were preserved in Ts1Rhr. Twenty of 48 phenotypes showed significant differences between Ts1Rhr and 2N controls. We conclude that important neurobiological phenotypes characteristic of DS are conserved in Ts1Rhr mice. The data support the view that biologically significant trisomic phenotypes occur because of dosage effects of genes in the Ts1Rhr trisomic segment and that increased dosage is sufficient to produce these changes. The stage is now set for studies to decipher the gene(s) that play a conspicuous role in creating these phenotypes.
Collapse
Affiliation(s)
- Nadia P. Belichenko
- Department of Neurology and Neurological Sciences and the Center for Research and Treatment of Down Syndrome, Stanford University Medical Center, Stanford, California 94305-5489, and
| | - Pavel V. Belichenko
- Department of Neurology and Neurological Sciences and the Center for Research and Treatment of Down Syndrome, Stanford University Medical Center, Stanford, California 94305-5489, and
| | - Alexander M. Kleschevnikov
- Department of Neurology and Neurological Sciences and the Center for Research and Treatment of Down Syndrome, Stanford University Medical Center, Stanford, California 94305-5489, and
| | - Ahmad Salehi
- Department of Neurology and Neurological Sciences and the Center for Research and Treatment of Down Syndrome, Stanford University Medical Center, Stanford, California 94305-5489, and
| | - Roger H. Reeves
- Department of Physiology and McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21025
| | - William C. Mobley
- Department of Neurology and Neurological Sciences and the Center for Research and Treatment of Down Syndrome, Stanford University Medical Center, Stanford, California 94305-5489, and
| |
Collapse
|
159
|
Wiseman FK, Alford KA, Tybulewicz VLJ, Fisher EMC. Down syndrome--recent progress and future prospects. Hum Mol Genet 2009; 18:R75-83. [PMID: 19297404 PMCID: PMC2657943 DOI: 10.1093/hmg/ddp010] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 12/19/2008] [Accepted: 01/05/2009] [Indexed: 01/13/2023] Open
Abstract
Down syndrome (DS) is caused by trisomy of chromosome 21 (Hsa21) and is associated with a number of deleterious phenotypes, including learning disability, heart defects, early-onset Alzheimer's disease and childhood leukaemia. Individuals with DS are affected by these phenotypes to a variable extent; understanding the cause of this variation is a key challenge. Here, we review recent research progress in DS, both in patients and relevant animal models. In particular, we highlight exciting advances in therapy to improve cognitive function in people with DS and the significant developments in understanding the gene content of Hsa21. Moreover, we discuss future research directions in light of new technologies. In particular, the use of chromosome engineering to generate new trisomic mouse models and large-scale studies of genotype-phenotype relationships in patients are likely to significantly contribute to the future understanding of DS.
Collapse
Affiliation(s)
- Frances K Wiseman
- Department of Neurodegenerative Disease, Institute of Neurology, Queen Square, London, UK.
| | | | | | | |
Collapse
|
160
|
Abstract
The concept of reversing the characteristics of differentiated tissues to pluripotency through reprogramming was introduced over 50 years ago in the first somatic cell nuclear transfer (SCNT) experiments. More recently, direct reprogramming of differentiated somatic cells by gene transfer of a small number of defined transcription factors has been shown to yield cells that are indistinguishable from inner cell mass-derived embryonic stem (ES) cells. These cells, termed induced pluripotent stem (iPS) cells, offer exciting possibilities for studying mechanism of pluripotency, establishing models for disease-specific investigations, and enabling future applications in regenerative medicine. In this review, we discuss the basic foundation of reestablishing pluripotency and recent progress toward enhancing the efficiency and safety of the process through optimization of the reprogramming factor combination, identification of small molecules that augment efficiency, and assessment of distinct target cells in reprogramming efficiency. We also highlight recent advances that eliminate stable genetic modification from the reprogramming process, and summarize preclinical models that provide proof-of-concept for ES/iPS cell-based regenerative medicine.
Collapse
|
161
|
Malinge S, Izraeli S, Crispino JD. Insights into the manifestations, outcomes, and mechanisms of leukemogenesis in Down syndrome. Blood 2009; 113:2619-28. [PMID: 19139078 PMCID: PMC2661853 DOI: 10.1182/blood-2008-11-163501] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 12/23/2008] [Indexed: 11/20/2022] Open
Abstract
Children with Down syndrome (DS) show a spectrum of clinical anomalies, including cognitive impairment, cardiac malformations, and craniofacial dysmorphy. Moreover, hematologists have also noted that these children commonly show macrocytosis, abnormal platelet counts, and an increased incidence of transient myeloproliferative disease (TMD), acute megakaryocytic leukemia (AMKL), and acute lymphoid leukemia (ALL). In this review, we summarize the clinical manifestations and characteristics of these leukemias, provide an update on therapeutic strategies and patient outcomes, and discuss the most recent advances in DS-leukemia research. With the increased knowledge of the way in which trisomy 21 affects hematopoiesis and the specific genetic mutations that are found in DS-associated leukemias, we are well on our way toward designing improved strategies for treating both myeloid and lymphoid malignancies in this high-risk population.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Transformation, Neoplastic/genetics
- Chromosomes, Human, Pair 21/genetics
- Disease Models, Animal
- Disease Progression
- Down Syndrome/blood
- Down Syndrome/complications
- Down Syndrome/genetics
- GATA1 Transcription Factor/genetics
- Gene Expression Regulation, Leukemic
- Genetic Predisposition to Disease
- Hematopoiesis, Extramedullary/genetics
- Humans
- Incidence
- Janus Kinases/genetics
- Leukemia, Megakaryoblastic, Acute/drug therapy
- Leukemia, Megakaryoblastic, Acute/epidemiology
- Leukemia, Megakaryoblastic, Acute/etiology
- Leukemia, Megakaryoblastic, Acute/genetics
- Liver/embryology
- Liver/pathology
- Mice
- MicroRNAs/genetics
- Mutation
- Myeloproliferative Disorders/congenital
- Myeloproliferative Disorders/drug therapy
- Myeloproliferative Disorders/epidemiology
- Myeloproliferative Disorders/etiology
- Myeloproliferative Disorders/genetics
- Neoplasm Proteins/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/etiology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Preleukemia/congenital
- Preleukemia/drug therapy
- Preleukemia/epidemiology
- Preleukemia/etiology
- Preleukemia/genetics
- RNA, Neoplasm/genetics
Collapse
Affiliation(s)
- Sébastien Malinge
- Division of Hematology/Oncology, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
162
|
Buchanan AV, Sholtis S, Richtsmeier J, Weiss KM. What are genes "for" or where are traits "from"? What is the question? Bioessays 2009; 31:198-208. [PMID: 19204992 PMCID: PMC2807122 DOI: 10.1002/bies.200800133] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
For at least a century it has been known that multiple factors play a role in the development of complex traits, and yet the notion that there are genes "for" such traits, which traces back to Mendel, is still widespread. In this paper, we illustrate how the Mendelian model has tacitly encouraged the idea that we can explain complexity by reducing it to enumerable genes. By this approach many genes associated with simple as well as complex traits have been identified. But the genetic architecture of biological traits, or how they are made, remains largely unknown. In essence, this reflects the tension between reductionism as the current "modus operandi" of science, and the emerging knowledge of the nature of complex traits. Recent interest in systems biology as a unifying approach indicates a reawakened acceptance of the complexity of complex traits, though the temptation is to replace "gene for" thinking by comparably reductionistic "network for" concepts. Both approaches implicitly mix concepts of variants and invariants in genetics. Even the basic question is unclear: what does one need to know to "understand" the genetic basis of complex traits? New operational ideas about how to deal with biological complexity are needed.
Collapse
Affiliation(s)
- Anne V Buchanan
- Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | |
Collapse
|
163
|
|
164
|
Abstract
Chromosomal rearrangements, such as deletions, duplications, inversions and translocations, occur frequently in humans and can be disease-associated or phenotypically neutral. To understand the genetic consequences of such genomic changes, these mutations need to be modelled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, the ease with which its genome can be manipulated and the similarity of observed affects. Through chromosome engineering, defined rearrangements can be introduced into the mouse genome. The resulting mouse models are leading to a better understanding of the molecular and cellular basis of dosage alterations in human disease phenotypes, in turn opening new diagnostic and therapeutic opportunities.
Collapse
Affiliation(s)
- Louise van der Weyden
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, UK
| | | | | |
Collapse
|
165
|
Lyle R, Béna F, Gagos S, Gehrig C, Lopez G, Schinzel A, Lespinasse J, Bottani A, Dahoun S, Taine L, Doco-Fenzy M, Cornillet-Lefèbvre P, Pelet A, Lyonnet S, Toutain A, Colleaux L, Horst J, Kennerknecht I, Wakamatsu N, Descartes M, Franklin JC, Florentin-Arar L, Kitsiou S, Aït Yahya-Graison E, Costantine M, Sinet PM, Delabar JM, Antonarakis SE. Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy chromosome 21. Eur J Hum Genet 2008; 17:454-66. [PMID: 19002211 DOI: 10.1038/ejhg.2008.214] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Down syndrome (DS) is one of the most frequent congenital birth defects, and the most common genetic cause of mental retardation. In most cases, DS results from the presence of an extra copy of chromosome 21. DS has a complex phenotype, and a major goal of DS research is to identify genotype-phenotype correlations. Cases of partial trisomy 21 and other HSA21 rearrangements associated with DS features could identify genomic regions associated with specific phenotypes. We have developed a BAC array spanning HSA21q and used array comparative genome hybridization (aCGH) to enable high-resolution mapping of pathogenic partial aneuploidies and unbalanced translocations involving HSA21. We report the identification and mapping of 30 pathogenic chromosomal aberrations of HSA21 consisting of 19 partial trisomies and 11 partial monosomies for different segments of HSA21. The breakpoints have been mapped to within approximately 85 kb. The majority of the breakpoints (26 of 30) for the partial aneuploidies map within a 10-Mb region. Our data argue against a single DS critical region. We identify susceptibility regions for 25 phenotypes for DS and 27 regions for monosomy 21. However, most of these regions are still broad, and more cases are needed to narrow down the phenotypic maps to a reasonable number of candidate genomic elements per phenotype.
Collapse
Affiliation(s)
- Robert Lyle
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ. Disease-specific induced pluripotent stem cells. Cell 2008; 134:877-86. [PMID: 18691744 PMCID: PMC2633781 DOI: 10.1016/j.cell.2008.07.041] [Citation(s) in RCA: 1605] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 07/14/2008] [Accepted: 07/30/2008] [Indexed: 12/16/2022]
Abstract
Tissue culture of immortal cell strains from diseased patients is an invaluable resource for medical research but is largely limited to tumor cell lines or transformed derivatives of native tissues. Here we describe the generation of induced pluripotent stem (iPS) cells from patients with a variety of genetic diseases with either Mendelian or complex inheritance; these diseases include adenosine deaminase deficiency-related severe combined immunodeficiency (ADA-SCID), Shwachman-Bodian-Diamond syndrome (SBDS), Gaucher disease (GD) type III, Duchenne (DMD) and Becker muscular dystrophy (BMD), Parkinson disease (PD), Huntington disease (HD), juvenile-onset, type 1 diabetes mellitus (JDM), Down syndrome (DS)/trisomy 21, and the carrier state of Lesch-Nyhan syndrome. Such disease-specific stem cells offer an unprecedented opportunity to recapitulate both normal and pathologic human tissue formation in vitro, thereby enabling disease investigation and drug development.
Collapse
Affiliation(s)
- In-Hyun Park
- Department of Medicine, Division of Pediatric Hematology Oncology, Children's Hospital Boston, and Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Liu F, Liang Z, Wegiel J, Hwang YW, Iqbal K, Grundke-Iqbal I, Ramakrishna N, Gong CX. Overexpression of Dyrk1A contributes to neurofibrillary degeneration in Down syndrome. FASEB J 2008; 22:3224-33. [PMID: 18509201 PMCID: PMC2518253 DOI: 10.1096/fj.07-104539] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 05/02/2008] [Indexed: 11/11/2022]
Abstract
Adults with Down syndrome (DS) develop Alzheimer neurofibrillary degeneration in the brain, but the underlying molecular mechanism is unknown. Here, we report that the presence of an extra copy of the dual-specificity tyrosine-phosphorylated and regulated kinase 1A (Dyrk1A) gene due to trisomy 21 resulted in overexpression of Dyrk1A and elevated kinase activity in DS brain. Dyrk1A phosphorylated tau at several sites, and these sites were hyperphosphorylated in adult DS brains. Phosphorylation of tau by Dyrk1A primed its further phosphorylation by glycogen synthase kinase-3beta (GSK-3beta). Dyrk1A-induced tau phosphorylation inhibited tau's biological activity and promoted its self-aggregation. In Ts65Dn mouse brain, an extra copy of the Dyrk1A gene caused increased expression and activity of Dyrk1A and resulted in increased tau phosphorylation. These findings strongly suggest a novel mechanism by which the overexpression of Dyrk1A in DS brain causes neurofibrillary degeneration via hyperphosphorylating tau.
Collapse
Affiliation(s)
- Fei Liu
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Rd., Staten Island, New York 10314, USA
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Chou CY, Liu LY, Chen CY, Tsai CH, Hwa HL, Chang LY, Lin YS, Hsieh FJ. Gene expression variation increase in trisomy 21 tissues. Mamm Genome 2008; 19:398-405. [PMID: 18594911 DOI: 10.1007/s00335-008-9121-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2008] [Accepted: 05/27/2008] [Indexed: 12/26/2022]
Abstract
Congenital development disorders with variable severity occur in trisomy 21. However, how these phenotypic abnormalities develop with variations remains elusive. We hypothesize that the differences in euploid gene expression variation among trisomy 21 tissues are caused by the presence of an extra copy of chromosome 21 and may contribute to the phenotypic variations in Down syndrome. We used DNA microarray to measure the differences in gene expression variance between four human trisomy 21 and six euploid amniocytes. The three publicly available data sets of fetal brains, adult brains, and fetal hearts were also analyzed. The numbers of euploid genes with greater variance were significantly higher in all four kinds of trisomy 21 tissues (p<0.01) than in the corresponding euploid tissues. Seventeen euploid genes with significantly different variance between trisomy 21 and euploid amniocytes were found using the F test. In summary, there is a set of euploid genes that shows greater variance of expression in human trisomy 21 tissues than in euploid tissues. This change may contribute to producing the variable phenotypic abnormalities observed in Down syndrome.
Collapse
Affiliation(s)
- Ching Yu Chou
- Department of Obstetrics and Gynecology, Cathay General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Williams AD, Mjaatvedt CH, Moore CS. Characterization of the cardiac phenotype in neonatal Ts65Dn mice. Dev Dyn 2008; 237:426-35. [PMID: 18161058 DOI: 10.1002/dvdy.21416] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ts65Dn mouse is the most-studied of murine models for Down syndrome. Homology between the triplicated murine genes and those on human chromosome 21 correlates with shared anomalies of Ts65Dn mice and Down syndrome patients, including congenital heart defects. Lethality is associated with inheritance of the T65Dn chromosome, and anomalies such as right aortic arch with Kommerell's diverticulum and interrupted aortic arch were found in trisomic neonates. The incidence of gross vascular abnormalities was 17% in the trisomic population. Histological analyses revealed interventricular septal defects and broad foramen ovale, while immunohistochemistry showed abnormal muscle composition in the cardiac valves of trisomic neonates. These findings confirm that the gene imbalance present in Ts65Dn disrupts crucial pathways during cardiac development. The candidate genes for congenital heart defects that are among the 104 triplicated genes in Ts65Dn mice are, therefore, implicated in the dysregulation of normal cardiogenic pathways in this model.
Collapse
Affiliation(s)
- Austin D Williams
- Biology Department, Franklin and Marshall College, Lancaster, Pennsylvania 17604-3003, USA
| | | | | |
Collapse
|
170
|
Kuhn DE, Nuovo GJ, Martin MM, Malana GE, Pleister AP, Jiang J, Schmittgen TD, Terry AV, Gardiner K, Head E, Feldman DS, Elton TS. Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts. Biochem Biophys Res Commun 2008; 370:473-7. [PMID: 18387358 PMCID: PMC2585520 DOI: 10.1016/j.bbrc.2008.03.120] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 03/23/2008] [Indexed: 01/01/2023]
Abstract
Down syndrome (DS), or Trisomy 21, is the most common genetic cause of cognitive impairment and congenital heart defects in the human population. To date, the contribution of microRNAs (miRNAs) in DS has not been investigated. Bioinformatic analyses demonstrate that human chromosome 21 (Hsa21) harbors five miRNA genes; miR-99a, let-7c, miR-125b-2, miR-155, and miR-802. MiRNA expression profiling, miRNA RT-PCR, and miRNA in situ hybridization experiments demonstrate that these miRNAs are overexpressed in fetal brain and heart specimens from individuals with DS when compared with age- and sex-matched controls. We hypothesize that trisomic 21 gene dosage overexpression of Hsa21-derived miRNAs results in the decreased expression of specific target proteins and contribute, in part, to features of the neuronal and cardiac DS phenotype. Importantly, Hsa21-derived miRNAs may provide novel therapeutic targets in the treatment of individuals with DS.
Collapse
Affiliation(s)
- Donald E Kuhn
- Davis Heart and Lung Research Institute, The Ohio State University, DHLRI 515, 473 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Mental retardation and associated neurological dysfunctions in Down syndrome: a consequence of dysregulation in critical chromosome 21 genes and associated molecular pathways. Eur J Paediatr Neurol 2008; 12:168-82. [PMID: 17933568 DOI: 10.1016/j.ejpn.2007.08.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 08/19/2007] [Accepted: 08/21/2007] [Indexed: 12/11/2022]
Abstract
Down syndrome (DS), affecting 1/700 live births, is the major genetic cause of mental retardation (MR), a cognitive disorder with hard impact on public health. DS brain is characterized by a reduced cerebellar volume and number of granular cells, defective cortical lamination and reduced cortical neurons, malformed dendritic trees and spines, and abnormal synapses. These neurological alterations, also found in trisomic mouse models, result from gene-dosage effects of Human Chromosome 21 (HC21) on the expression of critical developmental genes. HC21 sequencing, mouse ortholog gene identification and DS mouse model generation lead to determine HC21 gene functions and the effects of protein-dosage alterations in neurodevelopmental and metabolic pathways in DS individuals. Trisomic brain transcriptome of DS patients and trisomic mouse models identified some molecular changes determined by gene-overdosage and associated dysregulation of some disomic gene expression in DS brains. These transcriptional variations cause developmental alterations in neural patterning and signal transduction pathways that may lead to defective neuronal circuits responsible for the pathogenesis of MR in DS. Recently, the first altered molecular pathway responsible of some DS phenotypes, including neurological and cognitive disorders has been identified. In this pathway, two critical HC21 genes (DYRK1A and DSCR1) act synergistically to control the phosphorylation levels of NFATc and NFATc-regulated gene expression. Interestingly, the NFATc mice show neurological dysfunctions similar to those seen in DS patients and trisomic mouse models. Treatment of DS mouse model Ts65Dn with GABA(A) antagonists allowed post-drug rescue of cognitive defects, indicating a hopeful direction in clinical therapies for MR in children with DS.
Collapse
|
172
|
Sommer CA, Henrique-Silva F. Trisomy 21 and Down syndrome: a short review. BRAZ J BIOL 2008; 68:447-52. [DOI: 10.1590/s1519-69842008000200031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 08/20/2007] [Indexed: 11/21/2022] Open
Abstract
Even though the molecular mechanisms underlying the Down syndrome (DS) phenotypes remain obscure, the characterization of the genes and conserved non-genic sequences of HSA21 together with large-scale gene expression studies in DS tissues are enhancing our understanding of this complex disorder. Also, mouse models of DS provide invaluable tools to correlate genes or chromosome segments to specific phenotypes. Here we discuss the possible contribution of HSA21 genes to DS and data from global gene expression studies of trisomic samples.
Collapse
Affiliation(s)
- CA. Sommer
- Universidade Federal de São Carlos, Brazil
| | | |
Collapse
|
173
|
Abstract
Chromosomal rearrangements are frequently in humans and can be disease-associated or phenotypically neutral. Recent technological advances have led to the discovery of copy-number changes previously undetected by cytogenetic techniques. To understand the genetic consequences of such genomic changes, these mutations need to be modeled in experimentally tractable systems. The mouse is an excellent organism for this analysis because of its biological and genetic similarity to humans, and the ease with which its genome can be manipulated. Through chromosome engineering, defined rearrangements can be introduced into the mouse genome. The resulting mouse models are leading to a better understanding of the molecular and cellular basis of dosage alterations in human disease phenotypes, in turn opening new diagnostic and therapeutic opportunities.
Collapse
Affiliation(s)
- Louise van der Weyden
- Mouse Genomics Lab, Wellcome Trust Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom.
| | | |
Collapse
|
174
|
Reeves RH, Garner CC. A year of unprecedented progress in Down syndrome basic research. ACTA ACUST UNITED AC 2008; 13:215-20. [PMID: 17910083 DOI: 10.1002/mrdd.20165] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The years 2006 and 2007 saw the publication of three new and different approaches to prevention or amelioration of Down syndrome effects on the brain and cognition. We describe the animal model systems that were critical to this progress, review these independent breakthrough studies, and discuss the implications for therapeutic approaches suggested by each.
Collapse
Affiliation(s)
- Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
175
|
Trisomy represses Apc(Min)-mediated tumours in mouse models of Down's syndrome. Nature 2008; 451:73-5. [PMID: 18172498 DOI: 10.1038/nature06446] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 10/31/2007] [Indexed: 11/08/2022]
Abstract
Epidemiological studies spanning more than 50 yr reach conflicting conclusions as to whether there is a lower incidence of solid tumours in people with trisomy 21 (Down's syndrome). We used mouse models of Down's syndrome and of cancer in a biological approach to investigate the relationship between trisomy and the incidence of intestinal tumours. Apc(Min)-mediated tumour number was determined in aneuploid mouse models Ts65Dn, Ts1Rhr and Ms1Rhr. Trisomy for orthologues of about half of the genes on chromosome 21 (Hsa21) in Ts65Dn mice or just 33 of these genes in Ts1Rhr mice resulted in a significant reduction in the number of intestinal tumours. In Ms1Rhr, segmental monosomy for the same 33 genes that are triplicated in Ts1Rhr resulted in an increased number of tumours. Further studies demonstrated that the Ets2 gene contributed most of the dosage-sensitive effect on intestinal tumour number. The action of Ets2 as a repressor when it is overexpressed differs from tumour suppression, which requires normal gene function to prevent cellular transformation. Upregulation of Ets2 and, potentially, other genes involved in this kind of protective effect may provide a prophylactic effect in all individuals, regardless of ploidy.
Collapse
|
176
|
Altug-Teber O, Bonin M, Walter M, Mau-Holzmann UA, Dufke A, Stappert H, Tekesin I, Heilbronner H, Nieselt K, Riess O. Specific transcriptional changes in human fetuses with autosomal trisomies. Cytogenet Genome Res 2008; 119:171-84. [PMID: 18253026 DOI: 10.1159/000112058] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2007] [Indexed: 02/03/2023] Open
Abstract
Among full autosomal trisomies, only trisomies of chromosome 21 (Down syndrome), 18 (Edwards syndrome) and 13 (Patau syndrome) are compatible with postnatal survival. But the mechanisms, how a supernumerary chromosome disrupts the normal development and causes specific phenotypes, are still not fully explained. As an alternative to gene dosage effect due to the trisomic chromosome a genome-wide transcriptional dysregulation has been postulated. The aim of this study was to define the transcriptional changes in trisomy 13, 18, and 21 during early fetal development in order to obtain more insights into the molecular etiopathology of aneuploidy. Using oligonucleotide microarrays, we analyzed whole genome expression profiles in cultured amniocytes (AC) and chorionic villus cells (CV) from pregnancies with a normal karyotype and with trisomies of human chromosomes 13, 18 and 21. We observed a low to moderate up-regulation for a subset of genes of the trisomic chromosomes. Transcriptional levels of most of the genes on the supernumerary chromosome appeared similar to the respective chromosomal pair in normal karyotypes. A subset of chromosome 21 genes including the DSCR1 gene involved in fetal heart development was consistently up-regulated in different prenatal tissues (AC, CV) of trisomy 21 fetuses whereas only minor changes were found for genes of all other chromosomes. In contrast, in trisomy 18 vigorous downstream transcriptional changes were found. Global transcriptome analysis for autosomal trisomies 13, 18, and 21 supported a combination of the two major hypotheses.
Collapse
Affiliation(s)
- O Altug-Teber
- Department of Medical Genetics, University of Tuebingen, Tuebingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Kirsammer G, Jilani S, Liu H, Davis E, Gurbuxani S, Le Beau MM, Crispino JD. Highly penetrant myeloproliferative disease in the Ts65Dn mouse model of Down syndrome. Blood 2008; 111:767-75. [PMID: 17901249 PMCID: PMC2200841 DOI: 10.1182/blood-2007-04-085670] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 09/12/2007] [Indexed: 11/20/2022] Open
Abstract
Children with Down syndrome (DS) display macrocytosis, thrombocytosis, and a 500-fold increased risk of developing megakaryocytic leukemia; however, the specific effects of trisomy 21 on hematopoiesis remain poorly defined. To study this question, we analyzed blood cell development in the Ts65Dn mouse model of DS. Ts65Dn mice are trisomic for 104 orthologs of Hsa21 genes and are the most widely used mouse model for DS. We discovered that Ts65Dn mice display persistent macrocytosis and develop a myeloproliferative disease (MPD) characterized by profound thrombocytosis, megakaryocyte hyperplasia, dysplastic megakaryocyte morphology, and myelofibrosis. In addition, these animals bear distorted hematopoietic stem and myeloid progenitor cell compartments compared with euploid control littermates. Of the 104 trisomic genes in Ts65Dn mice, Aml1/Runx1 attracts considerable attention as a candidate oncogene in DS-acute megakaryoblastic leukemia (DS-AMKL). To determine whether trisomy for Aml1/Runx1 is essential for MPD, we restored disomy at the Aml1/Runx1 locus in the Ts65Dn strain. Surprisingly, trisomy for Aml1/Runx1 is not required for megakaryocyte hyperplasia and myelofibrosis, suggesting that trisomy for one or more of the remaining genes can promote this disease. Our studies demonstrate the potential of DS mouse models to improve our understanding of chromosome 21 gene dosage effects in human hematologic malignancies.
Collapse
Affiliation(s)
- Gina Kirsammer
- Ben May Department for Cancer Research, University of Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Rachidi M, Lopes C. Mental retardation in Down syndrome: From gene dosage imbalance to molecular and cellular mechanisms. Neurosci Res 2007; 59:349-69. [PMID: 17897742 DOI: 10.1016/j.neures.2007.08.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 08/02/2007] [Accepted: 08/10/2007] [Indexed: 11/25/2022]
Abstract
Down syndrome (DS), the most frequent genetic disorder leading to mental retardation (MR), is caused by three copies of human chromosome 21 (HC21). Trisomic and transgenic mouse models for DS allow genetic dissection of DS neurological and cognitive disorders in view to identify genes responsible for these phenotypes. The effects of the gene dosage imbalance on DS phenotypes are explained by two hypotheses: the "gene dosage effect" hypothesis claims that a DS critical region, containing a subset of dosage-sensitive genes, determines DS phenotypes, and the "amplified developmental instability" hypothesis holds that HC21 trisomy determines general alteration in developmental homeostasis. Transcriptome and expression studies showed different up- or down-expression levels of genes located on HC21 and the other disomic chromosomes. HC21 genes, characterized by their overexpression in brain regions affected in DS patients and by their contribution to neurological and cognitive defects when overexpressed in mouse models, are proposed herein as good candidates for MR. In this article, we propose a new molecular and cellular mechanism explaining MR pathogenesis in DS. In this model, gene dosage imbalance effects on transcriptional variations are described considering the nature of gene products and their functional relationships. These transcriptional variations may affect different aspects of neuronal differentiation and metabolism and finally, determine the brain neuropathologies and mental retardation in DS.
Collapse
|
179
|
New cerebellar phenotypes in YAC transgenic mouse in vivo library of human Down syndrome critical region-1. Biochem Biophys Res Commun 2007; 364:488-94. [PMID: 17963726 DOI: 10.1016/j.bbrc.2007.10.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 10/06/2007] [Indexed: 11/22/2022]
Abstract
Down syndrome (DS) is the most frequent genetic cause of mental retardation (MR) associated with neurological alterations. To allow a genetic dissection of DS phenotype, we studied eight transgenic mouse lines carrying YACs containing human DNA fragments covering DS critical region (DCR-1), as an in vivo library. Herein, we found an increased brain size in the 152F7-mice containing DYRK1A gene. We also identified a new cerebellar alteration in two independent lines carrying 230E8-YAC. These mice showed significant elongation of the cerebellar antero-posterior axis (p<0.001), determined by increased length of rostral folia of the vermis (lobule II-V, p<0.0001; lobule VI, p<0.001). In addition, we identified a major neurological defect in culmen and declivus lobules in the 230E8-mice. We analyzed P30, P12, and P9 stages and detected high significant increased lengths of anterior lobules (II-VI) of 230E8-mice at P30 and P12 (lobule II-V, p<0.0001; lobule VI, p<0.05), but not at P9, indicating that this new phenotype appears between P9 and P12. Interestingly, 230E8-mice also present increased cortical cell density and mild learning defects. 230E8-YAC contains seven genes, some of which could be potentially responsible for this phenotype. Between them, we proposed DOPEY2 as potential candidate gene for these cerebellar alterations considering its high expression in the brain and that its homologous genes in yeast, Caenorhabditis elegans and Drosophila are involved in morphogenesis, suggesting a conserved role of DOPEY2 as a patterning gene.
Collapse
|
180
|
Abstract
Adult craniofacial morphology results from complex interactions among genetic, epigenetic and environmental factors. Trisomy causes perturbations in the genetic programmes that control development and these are reflected in morphology that can either ameliorate or worsen with time and growth. Many of the specific changes that occur in Down syndrome can be studied in the Ts65Dn trisomic mouse, which shows direct parallels with specific aspects of adult craniofacial dysmorphology associated with trisomy 21. This study investigates patterns of craniofacial growth in Ts65Dn mice and their euploid littermates to assess how the adult dysmorphology develops. Three-dimensional coordinate data were collected from microcomputed tomography scans of the face, cranial base, palate and mandible of newborn (P0) and adult trisomic and euploid mice. Growth patterns were analysed using Euclidean distance matrix analysis. P0 trisomic mice show significant differences in craniofacial shape. Growth is reduced along the rostro-caudal axis of the Ts65Dn face and palate relative to euploid littermates and Ts65Dn mandibles demonstrate reduced growth local to the mandibular processes. Thus, the features of Down syndrome that are reflected in the mature Ts65Dn skull are established early in development and growth does not appear to ameliorate them. Differences in growth may in fact contribute to many of the morphological differences that are evident at birth in trisomic mice and humans.
Collapse
Affiliation(s)
- Cheryl A Hill
- Department of Anthropology, The Pennsylvania State University, PA 16801, USA
| | | | | |
Collapse
|
181
|
Sultan M, Piccini I, Balzereit D, Herwig R, Saran NG, Lehrach H, Reeves RH, Yaspo ML. Gene expression variation in Down's syndrome mice allows prioritization of candidate genes. Genome Biol 2007; 8:R91. [PMID: 17531092 PMCID: PMC1929163 DOI: 10.1186/gb-2007-8-5-r91] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 02/23/2007] [Accepted: 05/25/2007] [Indexed: 11/23/2022] Open
Abstract
RNA from eight Ts65Dn mice (a model of Down syndrome) and eight euploid mice were analysed by real-time PCR to examine inter-individual gene expression levels as a function of trisomy. Background Down's syndrome (DS), or trisomy 21, is a complex developmental disorder that exhibits many clinical signs that vary in occurrence and severity among patients. The molecular mechanisms responsible for DS have thus far remained elusive. We argue here that normal variation in gene expression in the population contributes to the heterogeneous clinical picture of DS, and we estimated the amplitude of this variation in 50 mouse orthologs of chromosome 21 genes in brain regions of Ts65Dn (a mouse model of DS). We analyzed the RNAs of eight Ts65Dn and eight euploid mice by real-time polymerase chain reaction. Results In pooled RNAs, we confirmed that trisomic/euploid gene expression ratios were close to 1.5. However, we observed that inter-individual gene expression levels spanned a broad range of values. We identified three categories of genes: genes with expression levels consistently higher in Ts65Dn than in euploids (9, 17, and 7 genes in cerebellum, cortex, and midbrain, respectively); genes whose expression levels partially overlap between the two groups (10, 9, and 14 genes); and genes with intermingled expression, which cannot be used to differentiate trisomics from euploids (12, 5 and 9 genes). Of the genes in the first category, App, Cbr1, and Mrps6 exhibited tight regulation in the three tissues and are therefore attractive candidates for further research. Conclusion This is the first analysis addressing inter-individual gene expression levels as a function of trisomy. We propose a strategy allowing discrimination between candidates for the constant features of DS and those genes that may contribute to the partially penetrant signs of DS.
Collapse
Affiliation(s)
- Marc Sultan
- Max Planck Institute for Molecular Genetics, Ihnestr.63/73, 14195, Berlin, Germany
| | - Ilaria Piccini
- Max Planck Institute for Molecular Genetics, Ihnestr.63/73, 14195, Berlin, Germany
| | - Daniela Balzereit
- Max Planck Institute for Molecular Genetics, Ihnestr.63/73, 14195, Berlin, Germany
| | - Ralf Herwig
- Max Planck Institute for Molecular Genetics, Ihnestr.63/73, 14195, Berlin, Germany
| | - Nidhi G Saran
- Department of Physiology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, Maryland 21205, USA
| | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Ihnestr.63/73, 14195, Berlin, Germany
| | - Roger H Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, Maryland 21205, USA
- McKusick-Nathans Institute of Genetic Medicine, 733 Nth. Broadway, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Marie-Laure Yaspo
- Max Planck Institute for Molecular Genetics, Ihnestr.63/73, 14195, Berlin, Germany
| |
Collapse
|
182
|
Olson LE, Tien J, South S, Reeves RH. Long-range chromosomal engineering is more efficient in vitro than in vivo. Transgenic Res 2007; 14:325-32. [PMID: 16145840 DOI: 10.1007/s11248-005-0389-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Cre/LoxP mediated chromosomal engineering in embryonic stem (ES) cells has a variety of applications, including the creation of model systems for studying aneuploidy. Targeted meiotic recombination (TAMERE) was proposed as a high efficiency in vivo alternative to effect Cre-mediated recombination, in which Cre recombinase under control of the Synaptonemal Complex 1 promoter is expressed during male meiosis in transgenic mice. TAMERE has been successfully used with LoxP sites up to 100 kb apart. We tested TAMERE for a chromosome engineering application in which LoxP sequences were integrated into sites 3.9 Mb apart on the same (cis) or opposite (trans) copies of mouse Chromosome 16 (MMU16). TAMERE was ineffective in generating either a deletion or a translocation in vivo. The TAMERE method may be of limited use for large genomic rearrangements. The desired translocation was achieved with an in vitro method that can be used in any ES cell line. Mice produced from the reciprocal duplication/deletion of MMU16 in a region homologous to human chromosome 21 provide models that are useful in studies of Down syndrome.
Collapse
Affiliation(s)
- Lisa E Olson
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
183
|
Conti A, Fabbrini F, D'Agostino P, Negri R, Greco D, Genesio R, D'Armiento M, Olla C, Paladini D, Zannini M, Nitsch L. Altered expression of mitochondrial and extracellular matrix genes in the heart of human fetuses with chromosome 21 trisomy. BMC Genomics 2007; 8:268. [PMID: 17683628 PMCID: PMC1964766 DOI: 10.1186/1471-2164-8-268] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 08/07/2007] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Down syndrome phenotype has been attributed to overexpression of chromosome 21 (Hsa21) genes. However, the expression profile of Hsa21 genes in trisomic human subjects as well as their effects on genes located on different chromosomes are largely unknown. Using oligonucleotide microarrays we compared the gene expression profiles of hearts of human fetuses with and without Hsa21 trisomy. RESULTS Approximately half of the 15,000 genes examined (87 of the 168 genes on Hsa21) were expressed in the heart at 18-22 weeks of gestation. Hsa21 gene expression was globally upregulated 1.5 fold in trisomic samples. However, not all genes were equally dysregulated and 25 genes were not upregulated at all. Genes located on other chromosomes were also significantly dysregulated. Functional class scoring and gene set enrichment analyses of 473 genes, differentially expressed between trisomic and non-trisomic hearts, revealed downregulation of genes encoding mitochondrial enzymes and upregulation of genes encoding extracellular matrix proteins. There were no significant differences between trisomic fetuses with and without heart defects. CONCLUSION We conclude that dosage-dependent upregulation of Hsa21 genes causes dysregulation of the genes responsible for mitochondrial function and for the extracellular matrix organization in the fetal heart of trisomic subjects. These alterations might be harbingers of the heart defects associated with Hsa21 trisomy, which could be based on elusive mechanisms involving genetic variability, environmental factors and/or stochastic events.
Collapse
Affiliation(s)
- Anna Conti
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, University Federico II, Napoli, Italy
| | - Floriana Fabbrini
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, University Federico II, Napoli, Italy
- BIOGEM, Biotechnology and Molecular Genetics, Italy
| | | | - Rosa Negri
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, University Federico II, Napoli, Italy
| | - Dario Greco
- Institute of Biotechnology, University of Helsinki, Finland
| | - Rita Genesio
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, University Federico II, Napoli, Italy
- BIOGEM, Biotechnology and Molecular Genetics, Italy
| | - Maria D'Armiento
- Dipartimento di Scienze Biomorfologiche e Funzionali, University Federico II, Napoli, Italy
| | - Carlo Olla
- Dipartimento di Scienze Biomorfologiche e Funzionali, University Federico II, Napoli, Italy
| | - Dario Paladini
- Dipartimento di Scienze Ostetriche, Ginecologiche ed Urologiche e Fisiopatologia della Riproduzione, University Federico II, Napoli, Italy
| | - Mariastella Zannini
- Istituto di Endocrinologia ed Oncologia Sperimentale (IEOS) del CNR, Napoli, Italy
| | - Lucio Nitsch
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, University Federico II, Napoli, Italy
- BIOGEM, Biotechnology and Molecular Genetics, Italy
| |
Collapse
|
184
|
Moore CS, Roper RJ. The power of comparative and developmental studies for mouse models of Down syndrome. Mamm Genome 2007; 18:431-43. [PMID: 17653795 PMCID: PMC1998891 DOI: 10.1007/s00335-007-9030-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 04/12/2007] [Indexed: 11/15/2022]
Abstract
Since the genetic basis for Down syndrome (DS) was described, understanding the causative relationship between genes at dosage imbalance and phenotypes associated with DS has been a principal goal of researchers studying trisomy 21 (Ts21). Though inferences to the gene-phenotype relationship in humans have been made, evidence linking a specific gene or region to a particular congenital phenotype has been limited. To further understand the genetic basis for DS phenotypes, mouse models with three copies of human chromosome 21 (Hsa21) orthologs have been developed. Mouse models offer access to every tissue at each stage of development, opportunity to manipulate genetic content, and ability to precisely quantify phenotypes. Numerous approaches to recreate trisomic composition and analyze phenotypes similar to DS have resulted in diverse trisomic mouse models. A murine intraspecies comparative analysis of different genetic models of Ts21 and specific DS phenotypes reveals the complexity of trisomy and important considerations to understand the etiology of and strategies for amelioration or prevention of trisomic phenotypes. By analyzing individual phenotypes in different mouse models throughout development, such as neurologic, craniofacial, and cardiovascular abnormalities, greater insight into the gene-phenotype relationship has been demonstrated. In this review we discuss how phenotype-based comparisons between DS mouse models have been useful in analyzing the relationship of trisomy and DS phenotypes.
Collapse
Affiliation(s)
- Clara S. Moore
- Department of Biology, Franklin and Marshall College, Lancaster, Pennsylvania 17604 USA
| | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, SL 306, Indianapolis, Indiana 46202 USA
| |
Collapse
|
185
|
Besson V, Brault V, Duchon A, Togbe D, Bizot JC, Quesniaux VFJ, Ryffel B, Hérault Y. Modeling the monosomy for the telomeric part of human chromosome 21 reveals haploinsufficient genes modulating the inflammatory and airway responses. Hum Mol Genet 2007; 16:2040-52. [PMID: 17591625 DOI: 10.1093/hmg/ddm152] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Monosomy 21 is a rare human disease due to gene dosage errors disturbing a variety of physiological and morphological systems including brain, skeletal, immune and respiratory functions. Most of the human condition corresponds to partial or mosaic monosomy suggesting that Monosomy 21 may be lethal. In order to search for dosage-sensitive genes involved in the human pathology, we generated by chromosomal engineering a monosomic mouse for the Prmt2-Col6a1 interval corresponding to the most telomeric part of human chromosome 21. Haploinsufficiency of the 13 genes, located in the 0.5 Mb genetic interval and conserved in man and mouse, caused apparently no morphological defect as observed in patients. However, monosomic mice displayed an enhanced inflammatory response after local intranasal lipopolysaccharide administration with enhanced recruitment of neutrophils and secretion of cytokines such as tumor necrosis factor-alpha (TNF-alpha), IL-1beta, IL-12p70 and IFN-gamma in the lung as well increased TNF-alpha production after systemic administration. Further analysis demonstrates that monosomic macrophages were involved and that a few genes, Prmt2, Pcnt2, Mcm3ap and Lss located in the region were candidate for the inflammatory response. Altogether, these results demonstrate the existence of dosage-sensitive genes in the Prmt2-Col6a1 region that control the inflammation and the lung function. Furthermore, they point out that similar partial Monosomies 21 in human might have eluded the diagnosis due to the very specific defects observed in this murine model.
Collapse
Affiliation(s)
- Vanessa Besson
- Institut de Tansgenose, Molecular Immunology and Embryology, Université Orléans, Férollerie, Orléans, France
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Aldridge K, Reeves RH, Olson LE, Richtsmeier JT. Differential effects of trisomy on brain shape and volume in related aneuploid mouse models. Am J Med Genet A 2007; 143A:1060-70. [PMID: 17431903 PMCID: PMC3246902 DOI: 10.1002/ajmg.a.31721] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Down syndrome (DS) results from inheritance of three copies of human chromosome 21 (Hsa21). Individuals with DS have a significantly smaller brain size overall and a disproportionately small cerebellum. The small cerebellum is seen in Ts65Dn mice, which have segmental trisomy for orthologs of about half the genes on Hsa21 and provide a genetic model for DS. While small cerebellar size is well-established in mouse and humans, much less is known about the shape of the brain in trisomy. Here we conduct a morphometric analysis of the whole brain and cerebellum in Ts65Dn mice and show that the differences with euploid littermates are largely a function of volume and not of shape. This is not the case in two aneuploid mouse models that have fewer genes orthologous to Hsa21 than Ts65Dn. Ts1Rhr is trisomic for genes corresponding to the so-called Down syndrome critical region (DSCR), which was purported to contain a dosage sensitive gene or genes responsible for many phenotypes of DS. Ms1Rhr is monosomic for the same segment. These models show effects on cerebellum and overall brain that are different from each other and from Ts65Dn. These models can help to identify the contributions of genes from different regions of the chromosome on this and other aspects of brain development in trisomy.
Collapse
Affiliation(s)
- Kristina Aldridge
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania
| | - Roger H. Reeves
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lisa E. Olson
- Department of Biology, University of Redlands, Redlands, California
| | - Joan T. Richtsmeier
- Department of Anthropology, The Pennsylvania State University, University Park, Pennsylvania
- Center for Craniofacial Development and Disorders, The Johns Hopkins Hospital, Baltimore, Maryland
| |
Collapse
|
187
|
Li Z, Yu T, Morishima M, Pao A, LaDuca J, Conroy J, Nowak N, Matsui SI, Shiraishi I, Yu YE. Duplication of the entire 22.9 Mb human chromosome 21 syntenic region on mouse chromosome 16 causes cardiovascular and gastrointestinal abnormalities. Hum Mol Genet 2007; 16:1359-66. [PMID: 17412756 DOI: 10.1093/hmg/ddm086] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Down syndrome is caused by a genomic imbalance of human chromosome 21 which is mainly observed as trisomy 21. The regions on human chromosome 21 are syntenically conserved in three regions on mouse chromosomes 10, 16 and 17. Ts65Dn mice, the most widely used model for Down syndrome, are trisomic for approximately 56.5% of the human chromosome 21 syntenic region on mouse chromosome 16. To generate a more complete trisomic mouse model of Down syndrome, we have established a 22.9 Mb duplication spanning the entire human chromosome 21 syntenic region on mouse chromosome 16 in mice using Cre/loxP-mediated long-range chromosome engineering. The presence of the intact duplication in mice was confirmed by fluorescent in situ hybridization and BAC-based array comparative genomic hybridization. The expression levels of the genes within the duplication interval reflect gene-dosage effects in the mutant mice. The cardiovascular and gastrointestinal phenotypes of the mouse model were similar to those of patients with Down syndrome. This new mouse model represents a powerful tool to further understand the molecular and cellular mechanisms of Down syndrome.
Collapse
Affiliation(s)
- Zhongyou Li
- Department of Cancer Genetics and Center for Genetics and Pharmacology, Roswell Park Cancer Institute, Buffalo,NY 14263, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Olson LE, Roper RJ, Sengstaken CL, Peterson EA, Aquino V, Galdzicki Z, Siarey R, Pletnikov M, Moran TH, Reeves RH. Trisomy for the Down syndrome 'critical region' is necessary but not sufficient for brain phenotypes of trisomic mice. Hum Mol Genet 2007; 16:774-82. [PMID: 17339268 DOI: 10.1093/hmg/ddm022] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Trisomic Ts65Dn mice show direct parallels with many phenotypes of Down syndrome (DS), including effects on the structure of cerebellum and hippocampus. A small segment of Hsa21 known as the 'DS critical region' (DSCR) has been held to contain a gene or genes sufficient to cause impairment in learning and memory tasks involving the hippocampus. To test this hypothesis, we developed Ts1Rhr and Ms1Rhr mouse models that are, respectively, trisomic and monosomic for this region. Here, we show that trisomy for the DSCR alone is not sufficient to produce the structural and functional features of hippocampal impairment that are seen in the Ts65Dn mouse and DS. However, when the critical region is returned to normal dosage in trisomic Ms1Rhr/Ts65Dn mice, performance in the Morris water maze is identical to euploid, demonstrating that this region is necessary for the phenotype. Thus, although the prediction of the critical region hypothesis was disproved, novel gene dosage effects were identified, which help to define how trisomy for this segment of the chromosome contributes to phenotypes of DS.
Collapse
|
189
|
Dowjat WK, Adayev T, Kuchna I, Nowicki K, Palminiello S, Hwang YW, Wegiel J. Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neurosci Lett 2007; 413:77-81. [PMID: 17145134 PMCID: PMC1890010 DOI: 10.1016/j.neulet.2006.11.026] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/08/2006] [Accepted: 11/13/2006] [Indexed: 10/23/2022]
Abstract
Down syndrome (DS) is the most common genetic disorder associated with mental retardation (MR). It is believed that many of the phenotypic features of DS stem from enhanced expression of a set of genes located within the triplicated region on chromosome 21. Among those genes is DYRK1A encoding dual-specificity proline-directed serine/treonine kinase, which, as documented by animal studies, can potentially contribute to cognitive deficits in DS. Whether this contribution can be exerted through elevated levels of DYRK1A protein in the brain of DS subjects was the main goal of the present study. The levels of DYRK1A protein were measured by Western blotting in six brain structures that included cerebral and cerebellar cortices and white matter. The study involved large cohorts of DS subjects and age-matched controls representing infants and adults of different age, gender and ethnicity. Trisomic Ts65Dn mice, an animal model of DS, were also included in the study. Both in trisomic mice and in DS subjects, the brain levels of DYRK1A protein were increased approximately 1.5-fold, indicating that this protein is overexpressed in gene dosage-dependent manner. The exception was an infant group, in which there was no enhancement suggesting the existence of a developmentally regulated mechanism. We found DYRK1A to be present in every analyzed structure irrespective of age. This widespread occurrence and constitutive expression of DYRK1A in adult brain suggest an important, but diverse from developmental role played by this kinase in adult central nervous system. It also implies that overexpression of DYRK1A in DS may be potentially relevant to MR status of these individuals during their entire life span.
Collapse
Affiliation(s)
- Wieslaw K Dowjat
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | | | | | | | | | | | | |
Collapse
|
190
|
Dowjat WK, Adayev T, Kuchna I, Nowicki K, Palminiello S, Hwang YW, Wegiel J. Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neurosci Lett 2007. [PMID: 17145134 DOI: 10.1016/j.neulet.2006.11.02] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Down syndrome (DS) is the most common genetic disorder associated with mental retardation (MR). It is believed that many of the phenotypic features of DS stem from enhanced expression of a set of genes located within the triplicated region on chromosome 21. Among those genes is DYRK1A encoding dual-specificity proline-directed serine/treonine kinase, which, as documented by animal studies, can potentially contribute to cognitive deficits in DS. Whether this contribution can be exerted through elevated levels of DYRK1A protein in the brain of DS subjects was the main goal of the present study. The levels of DYRK1A protein were measured by Western blotting in six brain structures that included cerebral and cerebellar cortices and white matter. The study involved large cohorts of DS subjects and age-matched controls representing infants and adults of different age, gender and ethnicity. Trisomic Ts65Dn mice, an animal model of DS, were also included in the study. Both in trisomic mice and in DS subjects, the brain levels of DYRK1A protein were increased approximately 1.5-fold, indicating that this protein is overexpressed in gene dosage-dependent manner. The exception was an infant group, in which there was no enhancement suggesting the existence of a developmentally regulated mechanism. We found DYRK1A to be present in every analyzed structure irrespective of age. This widespread occurrence and constitutive expression of DYRK1A in adult brain suggest an important, but diverse from developmental role played by this kinase in adult central nervous system. It also implies that overexpression of DYRK1A in DS may be potentially relevant to MR status of these individuals during their entire life span.
Collapse
Affiliation(s)
- Wieslaw K Dowjat
- Department of Developmental Neurobiology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA.
| | | | | | | | | | | | | |
Collapse
|
191
|
Guzauskas GF, Ukadike K, Rimsky L, Srivastava AK. tSNP-based identification of allelic loss of gene expression in a patient with a balanced chromosomal rearrangement. Genomics 2007; 89:562-5. [PMID: 17241765 PMCID: PMC1880898 DOI: 10.1016/j.ygeno.2006.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 12/11/2006] [Accepted: 12/12/2006] [Indexed: 11/17/2022]
Abstract
Identification of genes affected by disease-associated rare chromosomal rearrangements has led to the cloning of several disease genes. Here we have used a simple approach involving allele-specific RT-PCR-based detection of gene expression to identify a gene affected by a balanced autosome;autosome translocation. We identified a transcribed SNP (tSNP), c.68G-->A, present in a novel untranslated exon of the CLDN14 gene in a male patient with mental retardation who had a balanced t(13;21) chromosomal translocation. We determined an allelic loss of expression of the CLDN14 gene isoform at the 21q22.1 chromosomal breakpoint. Although additional work is necessary to explore a possible function of the novel CLDN14 isoform in brain development and function and the potential pathogenic consequences of its disruption in this patient, the result clearly demonstrates the utility of a tSNP-based detection of allelic loss of gene expression in studies involving chromosomal rearrangements.
Collapse
Affiliation(s)
| | | | | | - Anand K. Srivastava
- * Corresponding author. J.C. Self Research Institute of Human Genetics, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA. Tel. 1 864 388 1806; Fax: 1 864 388 1808; E-mail: (A.K. Srivastava)
| |
Collapse
|
192
|
Salehi A, Faizi M, Belichenko PV, Mobley WC. Using mouse models to explore genotype–phenotype relationship in Down syndrome. ACTA ACUST UNITED AC 2007; 13:207-14. [PMID: 17910089 DOI: 10.1002/mrdd.20164] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Down Syndrome (DS) caused by trisomy 21 is characterized by a variety of phenotypes and involves multiple organs. Sequencing of human chromosome 21 (HSA21) and subsequently of its orthologues on mouse chromosome 16 have created an unprecedented opportunity to explore the complex relationship between various DS phenotypes and the extra copy of approximately 300 genes on HSA21. Advances in genetics together with the ability to generate genetically well-defined mouse models have been instrumental in understanding the relationships between genotype and phenotype in DS. Indeed, elucidation of these relationships will play an important role in understanding the pathophysiological basis of this disorder and helping to develop therapeutic interventions. A successful example of using such a strategy is our recent studies exploring the relationship between failed nerve growth factor (NGF) transport and amyloid precursor protein (App) overexpression. We found that increased dosage of the gene for App is linked to failed NGF signaling and cholinergic neurodegeneration in a mouse model of DS. Herein, we discuss several mouse models of DS and explore the emergence of exciting new insights into genotype-phenotype relationships, particularly those related to nervous system abnormalities. An important conclusion is that uncovering these relationships is enhanced by working from carefully defined phenotypes to the genes responsible.
Collapse
Affiliation(s)
- Ahmad Salehi
- Department of Neurology and Neurological Sciences, Neuroscience Institute at Stanford, Stanford University, Stanford, California 94305, USA.
| | | | | | | |
Collapse
|
193
|
Brault V, Besson V, Magnol L, Duchon A, Hérault Y. Cre/loxP-mediated chromosome engineering of the mouse genome. Handb Exp Pharmacol 2007:29-48. [PMID: 17203650 DOI: 10.1007/978-3-540-35109-2_2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Together with numerous other genome modifications, chromosome engineering offers a very powerful tool to accelerate the functional analysis of the mammalian genome. The technology, based on the Cre/loxP system, is used more and more in the scientific community in order to generate new chromosomes carrying deletions, duplications, inversions and translocations in targeted regions of interest. In this review, we will present the basic principle of the technique either in vivo or in vitro and we will briefly describe some applications to provide highly valuable genetic tools, to decipher the mammalian genome organisation and to analyze human diseases in the mouse.
Collapse
Affiliation(s)
- V Brault
- Institut de Transgénose, IEM, UMR6812, CNRS Uni-Orléans, 3B rue de la Férollerie, 45071 Orleans 2, France
| | | | | | | | | |
Collapse
|
194
|
Sato D, Kawara H, Shimokawa O, Harada N, Tonoki H, Takahashi N, Imai Y, Kimura H, Matsumoto N, Ariga T, Niikawa N, Yoshiura KI. A girl with Down syndrome and partial trisomy for 21pter-q22.13: A clue to narrow the Down syndrome critical region. Am J Med Genet A 2007; 146A:124-7. [PMID: 18074380 DOI: 10.1002/ajmg.a.31974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daisuke Sato
- Department of Human Genetics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Parsons T, Ryan TM, Reeves RH, Richtsmeier JT. Microstructure of trabecular bone in a mouse model for down syndrome. Anat Rec (Hoboken) 2007; 290:414-21. [PMID: 17514765 DOI: 10.1002/ar.20494] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21) and results in a suite of dysmorphic phenotypes, including effects on the postcranial skeleton and the skull. We have previously demonstrated parallels in the patterns of craniofacial dysmorphology in DS and in the Ts65Dn mouse model for DS. The specific mechanisms underlying the production of these changes in craniofacial shape remain unknown. High-resolution computed tomography scan data were collected for the presphenoid bone of euploid and aneuploid mice. Three-dimensional morphometric parameters of trabecular bone were quantified and compared between euploid and aneuploid mice using nonparametric statistical tests. Aneuploid presphenoid bones were smaller than those of their euploid littermates and had lower bone volume fraction and fewer, more rod-like trabeculae. The differences in cancellous bone structure suggest that bone development, perhaps including bone modeling and remodeling, is affected by aneuploidy. These differences may contribute to the observed dysmorphology of skull and postcranial skeletal phenotypes in DS.
Collapse
Affiliation(s)
- Trish Parsons
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
196
|
Best TK, Siarey RJ, Galdzicki Z. Ts65Dn, a Mouse Model of Down Syndrome, Exhibits Increased GABAB-Induced Potassium Current. J Neurophysiol 2007; 97:892-900. [PMID: 17093127 DOI: 10.1152/jn.00626.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Down syndrome (DS) is the most common nonheritable cause of mental retardation. DS is the result of the presence of an extra chromosome 21 and its phenotype may be a consequence of overexpressed genes from that chromosome. One such gene is Kcnj6/Girk2, which encodes the G-protein-coupled inward rectifying potassium channel subunit 2 (GIRK2). We have recently shown that the DS mouse model, Ts65Dn, overexpresses GIRK2 throughout the brain and in particular the hippocampus. Here we report that this overexpression leads to a significant increase (∼2-fold) in GABAB-mediated GIRK current in primary cultured hippocampal neurons. The dose response curves for peak and steady-state GIRK current density is significantly shifted left toward lower concentrations of baclofen in Ts65Dn neurons compared with diploid controls, consistent with increased functional expression of GIRK channels. Stationary fluctuation analysis of baclofen-induced GIRK current from Ts65Dn neurons indicated no significant change in single-channel conductance compared with diploid. However, significant increases in GIRK channel density was found in Ts65Dn neurons. In normalized baclofen-induced GIRK current and GIRK current kinetics no difference was found between diploid and Ts65Dn neurons, which suggests unimpaired mechanisms of interaction between GIRK channel and GABAB receptor. These results indicate that increased expression of GIRK2 containing channels have functional consequences that likely affect the balance between excitatory and inhibitory neuronal transmission.
Collapse
Affiliation(s)
- Tyler K Best
- Neuroscience Graduate Program, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814, USA
| | | | | |
Collapse
|
197
|
Abstract
Down syndrome (DS) is the most common genetic cause of significant intellectual disability in the human population, occurring in roughly 1 in 700 live births. The ultimate cause of DS is trisomy of all or part of the set of genes located on chromosome 21. How this trisomy leads to the phenotype of DS is unclear. The completion of the DNA sequencing and annotation of the long arm of chromosome 21 was a critical step towards understanding the genetics of the phenotype. However, annotation of the chromosome continues and the functions of many genes on chromosome 21 remain uncertain. Recent findings about the structure of the human genome and of chromosome 21, in particular, and studies on mechanisms of gene regulation indicate that various genetic mechanisms may be contributors to the phenotype of DS and to the variability of the phenotype. These include variability of gene expression, the activity of transcription factors both encoded on chromosome 21 and encoded elsewhere in the genome, copy number polymorphisms, the function of conserved nongenic regions, microRNA activities, RNA editing, and perhaps DNA methylation. In this manuscript, we describe current knowledge about these genetic complexities and their likely importance in the context of DS. We identify gaps in current knowledge and suggest priorities to fill these gaps.
Collapse
Affiliation(s)
- David Patterson
- Eleanor Roosevelt Institute, University of Denver, Denver, Colorado 80206, USA.
| |
Collapse
|
198
|
Abstract
The impetus to develop useful models of human disease and toxicity has resulted in a number of large-scale mouse mutagenesis programmes. This, in turn, has stimulated considerable concern regarding the scientific validity and welfare of genetically altered mice, and the large numbers of mice that are required by such programmes. In this paper, the scientific advantages and limitations of genetically altered mice as models of several human diseases are discussed. We conclude that, while the use of some such mouse models has contributed considerably to an understanding of human disease and toxicity, other genetically altered mouse models have limited scientific relevance, and fewer have positively contributed to the development of novel human medicines. Suggestions for improving this unsatisfactory situation are made.
Collapse
Affiliation(s)
- Nirmala Bhogal
- FRAME, 96-98 North Sherwood Street, Nottingham, NG1 4EE, UK.
| | | |
Collapse
|
199
|
Furuyama H, Chiba S, Okabayashi T, Yokota SI, Nonaka M, Imai T, Fujii N, Matsumoto H. Single nucleotide polymorphisms and functional analysis of MxA promoter region in multiple sclerosis. J Neurol Sci 2006; 249:153-7. [PMID: 16843495 DOI: 10.1016/j.jns.2006.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 06/06/2006] [Accepted: 06/08/2006] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Interferons (IFNs)-inducible myxovirus resistance protein A (MxA) has recently been used as an indirect marker of neutralizing antibody against IFN in patients with multiple sclerosis (MS). On the other hand, MxA inhibits the replication of viruses by means of modifying cellular function, including apoptotic pathway. Our objective is to investigate the genetic and pathological role of MxA in patients with MS. METHODS We examined SNPs of MxA promoter region in 67 patients with MS. Moreover, to elucidate the functional roles of SNPs, we conducted Luciferase assay with pGL3-basic vector including patient-derived or artificially mutated MxA promoter region. RESULTS A significantly higher frequency of the haplotype with -88T and -123A, which correlates with over-expression of MxA, was observed in MS. Moreover, we elucidated novel findings showing that nt -88 played a leading part with type I IFNs and that nt -123 played the same role independently without type I IFNs, respectively. CONCLUSION SNPs on MxA promoter region may play an important role in the pathophysiology of MS and provide a novel strategy for the therapeutic resolutions of MS.
Collapse
Affiliation(s)
- Hiroyasu Furuyama
- Department of Neurology, School of Medicine, Sapporo Medical University, Minami 1-jo Nishi 16-chome, Sapporo 060-8543, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Satgé D, Sasco AJ, Vekemans MJJ, Portal ML, Fléjou JF. Aspects of digestive tract tumors in Down syndrome: a literature review. Dig Dis Sci 2006; 51:2053-61. [PMID: 17009117 DOI: 10.1007/s10620-006-9131-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 11/08/2005] [Indexed: 12/09/2022]
Abstract
The purpose of this study was to describe the digestive neoplasms found in persons with Down syndrome. Due to intellectual disability, persons with Down syndrome do not convey their symptoms and pain, leading to delayed diagnosis and potentially worse outcome. It is thus important to know which organs are at risk for tumors and possible tumor risk factors. In a review of the literature, we found 13 benign tumors and 127 cancers in 1 fetus, 8 children, and 131 adults with Down syndrome. The review suggests a decreased incidence of digestive cancer, however, with a possible increased incidence of neoplasms of the pancreas and gallbladder. The distribution of cancers is distinct from that in the general population and that in persons with other intellectual disabilities who share the same life conditions, suggesting that constitutional protective factors exist. This review may allow a more specific, adapted medical follow-up for persons with Down syndrome and could help to elucidate the oncogenesis of digestive neoplasms.
Collapse
Affiliation(s)
- Daniel Satgé
- Laboratoire d'Anatomie Pathologique, Centre Hospitalier, 19 000, Tulle, France.
| | | | | | | | | |
Collapse
|