151
|
Orij R, Urbanus ML, Vizeacoumar FJ, Giaever G, Boone C, Nislow C, Brul S, Smits GJ. Genome-wide analysis of intracellular pH reveals quantitative control of cell division rate by pH(c) in Saccharomyces cerevisiae. Genome Biol 2012; 13:R80. [PMID: 23021432 PMCID: PMC3506951 DOI: 10.1186/gb-2012-13-9-r80] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 09/10/2012] [Accepted: 09/26/2012] [Indexed: 01/20/2023] Open
Abstract
Background Because protonation affects the properties of almost all molecules in cells, cytosolic pH (pHc) is usually assumed to be constant. In the model organism yeast, however, pHc changes in response to the presence of nutrients and varies during growth. Since small changes in pHc can lead to major changes in metabolism, signal transduction, and phenotype, we decided to analyze pHc control. Results Introducing a pH-sensitive reporter protein into the yeast deletion collection allowed quantitative genome-wide analysis of pHc in live, growing yeast cultures. pHc is robust towards gene deletion; no single gene mutation led to a pHc of more than 0.3 units lower than that of wild type. Correct pHc control required not only vacuolar proton pumps, but also strongly relied on mitochondrial function. Additionally, we identified a striking relationship between pHc and growth rate. Careful dissection of cause and consequence revealed that pHc quantitatively controls growth rate. Detailed analysis of the genetic basis of this control revealed that the adequate signaling of pHc depended on inositol polyphosphates, a set of relatively unknown signaling molecules with exquisitely pH sensitive properties. Conclusions While pHc is a very dynamic parameter in the normal life of yeast, genetically it is a tightly controlled cellular parameter. The coupling of pHc to growth rate is even more robust to genetic alteration. Changes in pHc control cell division rate in yeast, possibly as a signal. Such a signaling role of pHc is probable, and may be central in development and tumorigenesis.
Collapse
Affiliation(s)
- Rick Orij
- Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Taylor R, Chen PH, Chou CC, Patel J, Jin SV. KCS1 deletion in Saccharomyces cerevisiae leads to a defect in translocation of autophagic proteins and reduces autophagosome formation. Autophagy 2012; 8:1300-11. [PMID: 22889849 DOI: 10.4161/auto.20681] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Inositol phosphates are implicated in the regulation of autophagy; however, the exact role of each inositol phosphate species is unclear. In this study, we systematically analyzed the highly conserved inositol polyphosphate synthesis pathway in S. cerevisiae for its role in regulating autophagy. Using yeast mutants that harbored a deletion in each of the genes within the inositol polyphosphate synthesis pathway, we found that deletion of KCS1, and to a lesser degree IPK2, led to a defect in autophagy. KCS1 encodes an inositol hexakisphosphate/heptakisposphate kinase that synthesizes 5-IP(7) and IP(8); and IPK2 encodes an inositol polyphosphate multikinase required for synthesis of IP(4) and IP(5). We characterized the kcs1Δ mutant strain in detail. The kcs1Δ yeast exhibited reduced autophagic flux, which might be caused by both the reduction in autophagosome number and autophagosome size as observed under nitrogen starvation. The autophagy defect in kcs1Δ strain was associated with mislocalization of the phagophore assembly site (PAS) and a defect in Atg18 release from the vacuole membrane under nitrogen deprivation conditions. Interestingly, formation of autophagosome-like vesicles was commonly observed to originate from the plasma membrane in the kcs1Δ strain. Our results indicate that lack of KCS1 interferes with proper localization of the PAS, leads to reduction of autophagosome formation, and causes the formation of autophagosome-like structure in abnormal subcellular locations.
Collapse
Affiliation(s)
- Robert Taylor
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | | | | | | | | |
Collapse
|
153
|
Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 2012; 190:885-929. [PMID: 22419079 DOI: 10.1534/genetics.111.133306] [Citation(s) in RCA: 377] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ever since the beginning of biochemical analysis, yeast has been a pioneering model for studying the regulation of eukaryotic metabolism. During the last three decades, the combination of powerful yeast genetics and genome-wide approaches has led to a more integrated view of metabolic regulation. Multiple layers of regulation, from suprapathway control to individual gene responses, have been discovered. Constitutive and dedicated systems that are critical in sensing of the intra- and extracellular environment have been identified, and there is a growing awareness of their involvement in the highly regulated intracellular compartmentalization of proteins and metabolites. This review focuses on recent developments in the field of amino acid, nucleotide, and phosphate metabolism and provides illustrative examples of how yeast cells combine a variety of mechanisms to achieve coordinated regulation of multiple metabolic pathways. Importantly, common schemes have emerged, which reveal mechanisms conserved among various pathways, such as those involved in metabolite sensing and transcriptional regulation by noncoding RNAs or by metabolic intermediates. Thanks to the remarkable sophistication offered by the yeast experimental system, a picture of the intimate connections between the metabolomic and the transcriptome is becoming clear.
Collapse
|
154
|
Saiardi A. How inositol pyrophosphates control cellular phosphate homeostasis? Adv Biol Regul 2012; 52:351-9. [PMID: 22781748 DOI: 10.1016/j.jbior.2012.03.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
Phosphorus in his phosphate PO(4)(3-) configuration is an essential constituent of all life forms. Phosphate diesters are at the core of nucleic acid structure, while phosphate monoester transmits information under the control of protein kinases and phosphatases. Due to these fundamental roles in biology it is not a surprise that phosphate cellular homeostasis is under tight control. Inositol pyrophosphates are organic molecules with the highest proportion of phosphate groups, and they are capable of regulating many biological processes, possibly by controlling energetic metabolism and adenosine triphosphate (ATP) production. Furthermore, inositol pyrophosphates influence inorganic polyphosphates (polyP) synthesis. The polymer polyP is solely constituted by phosphate groups and beside other known functions, it also plays a role in buffering cellular free phosphate [Pi] levels, an event that is ultimately necessary to generate ATP and inositol pyrophosphate. Although it is not yet clear how inositol pyrophosphates regulate cellular metabolism, understanding how inositol pyrophosphates influence phosphates homeostasis will help to clarify this important link. In this review I will describe the recent literature on this topic, with in the hope of inspiring further research in this fascinating area of biology.
Collapse
Affiliation(s)
- Adolfo Saiardi
- Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology, Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
155
|
Synaptic polarity depends on phosphatidylinositol signaling regulated by myo-inositol monophosphatase in Caenorhabditis elegans. Genetics 2012; 191:509-21. [PMID: 22446320 PMCID: PMC3374314 DOI: 10.1534/genetics.111.137844] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Although neurons are highly polarized, how neuronal polarity is generated remains poorly understood. An evolutionarily conserved inositol-producing enzyme myo-inositol monophosphatase (IMPase) is essential for polarized localization of synaptic molecules in Caenorhabditis elegans and can be inhibited by lithium, a drug for bipolar disorder. The synaptic defect of IMPase mutants causes defects in sensory behaviors including thermotaxis. Here we show that the abnormalities of IMPase mutants can be suppressed by mutations in two enzymes, phospholipase Cβ or synaptojanin, which presumably reduce the level of membrane phosphatidylinositol 4,5-bisphosphate (PIP2). We also found that mutations in phospholipase Cβ conferred resistance to lithium treatment. Our results suggest that reduction of PIP2 on plasma membrane is a major cause of abnormal synaptic polarity in IMPase mutants and provide the first in vivo evidence that lithium impairs neuronal PIP2 synthesis through inhibition of IMPase. We propose that the PIP2 signaling regulated by IMPase plays a novel and fundamental role in the synaptic polarity.
Collapse
|
156
|
Secco D, Wang C, Arpat BA, Wang Z, Poirier Y, Tyerman SD, Wu P, Shou H, Whelan J. The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. THE NEW PHYTOLOGIST 2012; 193:842-51. [PMID: 22403821 DOI: 10.1111/j.1469-8137.2011.04002.x] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plant growth and development are strongly influenced by the availability of nutrients in the soil solution. Among them, phosphorus (P) is one of the most essential and most limiting macro-elements for plants. In the environment, plants are often confronted with P starvation as a result of extremely low concentrations of soluble inorganic phosphate (Pi) in the soil. To cope with these conditions, plants have developed a wide spectrum of mechanisms aimed at increasing P use efficiency. At the molecular level, recent studies have shown that several proteins carrying the SPX domain are essential for maintaining Pi homeostasis in plants. The SPX domain is found in numerous eukaryotic proteins, including several proteins from the yeast PHO regulon, involved in maintaining Pi homeostasis. In plants, proteins harboring the SPX domain are classified into four families based on the presence of additional domains in their structure, namely the SPX, SPX-EXS, SPX-MFS and SPX-RING families. In this review, we highlight the recent findings regarding the key roles of the proteins containing the SPX domain in phosphate signaling, as well as providing further research directions in order to improve our knowledge on P nutrition in plants, thus enabling the generation of plants with better P use efficiency.
Collapse
Affiliation(s)
- David Secco
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, WA 6009, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Phosphate homeostasis in the yeast Saccharomyces cerevisiae, the key role of the SPX domain-containing proteins. FEBS Lett 2012; 586:289-95. [PMID: 22285489 DOI: 10.1016/j.febslet.2012.01.036] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 12/27/2022]
Abstract
In the yeast Saccharomyces cerevisiae, a working model for nutrient homeostasis in eukaryotes, inorganic phosphate (Pi) homeostasis is regulated by the PHO pathway, a set of phosphate starvation induced genes, acting to optimize Pi uptake and utilization. Among these, a subset of proteins containing the SPX domain has been shown to be key regulators of Pi homeostasis. In this review, we summarize the recent progresses in elucidating the mechanisms controlling Pi homeostasis in yeast, focusing on the key roles of the SPX domain-containing proteins in these processes, as well as describing the future challenges and opportunities in this fast-moving field.
Collapse
|
158
|
Levy S, Kafri M, Carmi M, Barkai N. The competitive advantage of a dual-transporter system. Science 2012; 334:1408-12. [PMID: 22158820 DOI: 10.1126/science.1207154] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cells use transporters of different affinities to regulate nutrient influx. When nutrients are depleted, low-affinity transporters are replaced by high-affinity ones. High-affinity transporters are helpful when concentrations of nutrients are low, but the advantage of reducing their abundance when nutrients are abundant is less clear. When we eliminated such reduced production of the Saccharomyces cerevisiae high-affinity transporters for phosphate and zinc, the elapsed time from the initiation of the starvation program until the lack of nutrients limited growth was shortened, and recovery from starvation was delayed. The latter phenotype was rescued by constitutive activation of the starvation program. Dual-transporter systems appear to prolong preparation for starvation and to facilitate subsequent recovery, which may optimize sensing of nutrient depletion by integrating internal and external information about nutrient availability.
Collapse
Affiliation(s)
- Sagi Levy
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
159
|
Rosenfeld L, Culotta VC. Phosphate disruption and metal toxicity in Saccharomyces cerevisiae: effects of RAD23 and the histone chaperone HPC2. Biochem Biophys Res Commun 2012; 418:414-9. [PMID: 22281500 DOI: 10.1016/j.bbrc.2012.01.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 01/10/2012] [Indexed: 11/26/2022]
Abstract
In cells, there exists a delicate balance between accumulation of charged metal cations and abundant anionic complexes such as phosphate. When phosphate metabolism is disrupted, cell-wide spread disturbances in metal homeostasis may ensue. The best example is a yeast pho80 mutant that hyperaccumulates phosphate and as result, also hyperaccumulates metal cations from the environment and shows exquisite sensitive to toxicity from metals such as manganese. In this study, we sought to identify genes that when over-expressed would suppress the manganese toxicity of pho80 mutants. Two classes of suppressors were isolated, including the histone chaperones SPT16 and HPC2, and RAD23, a well-conserved protein involved in DNA repair and proteosomal degradation. The histone chaperone gene HPC2 reversed the elevated manganese and phosphate of pho80 mutants by specifically repressing PHO84, encoding a metal-phosphate transporter. RAD23 also reduced manganese toxicity by lowering manganese levels, but RAD23 did not alter phosphate nor repress PHO84. We observed that the RAD23-reversal of manganese toxicity reflected its role in protein quality control, not DNA repair. Our studies are consistent with a model in which Rad23p partners with the deglycosylating enzyme Png1p to reduce manganese toxicity through proteosomal degradation of glycosylated substrate(s).
Collapse
Affiliation(s)
- Leah Rosenfeld
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | | |
Collapse
|
160
|
Romanowski K, Zaborin A, Valuckaite V, Rolfes RJ, Babrowski T, Bethel C, Olivas A, Zaborina O, Alverdy JC. Candida albicans isolates from the gut of critically ill patients respond to phosphate limitation by expressing filaments and a lethal phenotype. PLoS One 2012; 7:e30119. [PMID: 22253901 PMCID: PMC3258262 DOI: 10.1371/journal.pone.0030119] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/09/2011] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is an opportunistic pathogen that proliferates in the intestinal tract of critically ill patients where it continues to be a major cause of infectious-related mortality. The precise cues that shift intestinal C. albicans from its ubiquitous indolent colonizing yeast form to an invasive and lethal filamentous form remain unknown. We have previously shown that severe phosphate depletion develops in the intestinal tract during extreme physiologic stress and plays a major role in shifting intestinal Pseudomonas aeruginosa to express a lethal phenotype via conserved phosphosensory-phosphoregulatory systems. Here we studied whether phosphate dependent virulence expression could be similarly demonstrated for C. albicans. C. albicans isolates from the stool of critically ill patients and laboratory prototype strains (SC5314, BWP17, SN152) were evaluated for morphotype transformation and lethality against C. elegans and mice during exposure to phosphate limitation. Isolates ICU1 and ICU12 were able to filament and kill C. elegans in a phosphate dependent manner. In a mouse model of intestinal phosphate depletion (30% hepatectomy), direct intestinal inoculation of C. albicans caused mortality that was prevented by oral phosphate supplementation. Prototype strains displayed limited responses to phosphate limitation; however, the pho4Δ mutant displayed extensive filamentation during low phosphate conditions compared to its isogenic parent strain SN152, suggesting that mutation in the transcriptional factor Pho4p may sensitize C. albicans to phosphate limitation. Extensive filamentation was also observed in strain ICU12 suggesting that this strain is also sensitized to phosphate limitation. Analysis of the sequence of PHO4 in strain ICU12, its transcriptional response to phosphate limitation, and phosphatase assays confirmed that ICU12 demonstrates a profound response to phosphate limitation. The emergence of strains of C. albicans with marked responsiveness to phosphate limitation may represent a fitness adaptation to the complex and nutrient scarce environment typical of the gut of a critically ill patient.
Collapse
Affiliation(s)
- Kathleen Romanowski
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Alexander Zaborin
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Vesta Valuckaite
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Ronda J. Rolfes
- Department of Biology, Georgetown University, Washington, D. C., United States of America
| | - Trissa Babrowski
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Cindy Bethel
- Clinical Microbiology/Immunology Laboratories, University of Chicago, Chicago, Illinois, United States of America
| | - Andrea Olivas
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Olga Zaborina
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - John C. Alverdy
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
161
|
Abstract
Chromatin remodeling is a key mode of transcriptional regulation, and studying the nucleosome positioning at promoters is an important means to understand how genes are regulated. Nucleosome scanning is a convenient method to study nucleosome positioning. Yeast cells are converted to spheroplasts and nuclei are isolated. The nuclei are then digested by micrococcal nuclease to yield mononucleosome-sized DNA. Using a set of overlapping primers that cover the entire promoter, quantitative real-time PCR is performed using the mononucleosome DNA as the template. The nucleosome enrichment for each primer is calculated to yield a map of nucleosome occupancy across the promoter.
Collapse
|
162
|
Abstract
Inositol serves as a module for the generation of a high level of molecular diversity through the combinatorial attachment and removal of phosphate groups. The array of potential inositol-containing molecules is further expanded by the generation of diphospho inositol polyphosphates, commonly referred as inositol pyrophosphates. All eukaryotic cells possess inositol pyrophosphates containing one or more diphospho- moieties. The metabolism of this class of molecules is highly dynamic, and the enzymes responsible for their metabolism are evolutionary conserved. This new, exciting class of molecules are uniquely chracterized by a high energetic diphospho- bound that is able to participate in phosphotrasfer reactions thereby generating pyrophosphorylation of protein. However, allosteric mechanisms of action have been also proposed. In the past decade several disparate nuclear and cytoplasmic functions have been attributed to inositol pyrophosphates, ranging from intracellular trafficking to telomere length control and from regulating apoptotic process to stimulating insulin secretion. The extraordinary range of cellular function controlled by inositol pyrophosphate underline their great importance.
Collapse
Affiliation(s)
- Adolfo Saiardi
- MRC-LMCB, Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT, London, UK,
| |
Collapse
|
163
|
Fiume R, Keune WJ, Faenza I, Bultsma Y, Ramazzotti G, Jones DR, Martelli AM, Somner L, Follo MY, Divecha N, Cocco L. Nuclear phosphoinositides: location, regulation and function. Subcell Biochem 2012; 59:335-361. [PMID: 22374096 DOI: 10.1007/978-94-007-3015-1_11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lipid signalling in human disease is an important field of investigation and stems from the fact that phosphoinositide signalling has been implicated in the control of nearly all the important cellular pathways including metabolism, cell cycle control, membrane trafficking, apoptosis and neuronal conduction. A distinct nuclear inositide signalling metabolism has been identified, thus defining a new role for inositides in the nucleus, which are now considered essential co-factors for several nuclear processes, including DNA repair, transcription regulation, and RNA dynamics. Deregulation of phoshoinositide metabolism within the nuclear compartment may contribute to disease progression in several disorders, such as chronic inflammation, cancer, metabolic, and degenerative syndromes. In order to utilize these very druggable pathways for human benefit there is a need to identify how nuclear inositides are regulated specifically within this compartment and what downstream nuclear effectors process and integrate inositide signalling cascades in order to specifically control nuclear function. Here we describe some of the facets of nuclear inositide metabolism with a focus on their relationship to cell cycle control and differentiation.
Collapse
Affiliation(s)
- Roberta Fiume
- Cellular Signalling Laboratory, Department of Human Anatomical Sciences, University of Bologna, Bologna, Italy,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
He Y, Swaminathan A, Lopes JM. Transcription regulation of the Saccharomyces cerevisiae PHO5 gene by the Ino2p and Ino4p basic helix-loop-helix proteins. Mol Microbiol 2011; 83:395-407. [PMID: 22182244 DOI: 10.1111/j.1365-2958.2011.07941.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Saccharomyces cerevisiae PHO5 gene product accounts for a majority of the acid phosphatase activity. Its expression is induced by the basic helix-loop-helix (bHLH) protein, Pho4p, in response to phosphate depletion. Pho4p binds predominantly to two UAS elements (UASp1 at -356 and UASp2 at -247) in the PHO5 promoter. Previous studies from our lab have shown cross-regulation of different biological processes by bHLH proteins. This study tested the ability of all yeast bHLH proteins to regulate PHO5 expression and identified inositol-mediated regulation via the Ino2p/Ino4p bHLH proteins. Ino2p/Ino4p are known regulators of phospholipid biosynthetic genes. Genetic epistasis experiments showed that regulation by inositol required a third UAS site (UASp3 at -194). ChIP assays showed that Ino2p:Ino4p bind the PHO5 promoter and that this binding is dependent on Pho4p binding. These results demonstrate that phospholipid biosynthesis is co-ordinated with phosphate utilization via the bHLH proteins.
Collapse
Affiliation(s)
- Ying He
- Department of Microbiology, and Molecular Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
165
|
Inositol phosphate kinase Vip1p interacts with histone chaperone Asf1p in Saccharomyces cerevisiae. Mol Biol Rep 2011; 39:4989-96. [PMID: 22160571 DOI: 10.1007/s11033-011-1295-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Accepted: 11/30/2011] [Indexed: 12/25/2022]
Abstract
Histone eviction and deposition are critical steps in many nuclear processes. The histone H3/H4 chaperone Asf1p is highly conserved and is involved in DNA replication, DNA repair, and transcription. To identify the factors concerned with anti-silencing function 1 (ASF1), we purified Asf1p-associated factors from the yeast Saccharomyces cerevisiae by a GST pull-down experiment, and mass spectrometry analysis was performed. Several factors are specifically associated with Asf1p, including Vip1p. VIP1 is conserved from yeast to humans and encodes inositol hexakisphoshate and inositol heptakisphosphate kinase. Vip1p interacted with Asf1p as a dimer or in a complex with another protein(s). Deletion of VIP1 did not affect the interaction between Asf1p and other Asf1p-associated factors. An in vitro GST pull-down assay indicated a direct interaction between Asf1p and Vip1p, and the interaction between the two factors in vivo was detected by an immunoprecipitation experiment. Furthermore, genetic experiments revealed that VIP1 disruption increased sensitivity to 6-azauracil (6-AU), but not to DNA-damaging reagents in wild-type and ASF1-deleted strains. It is thought that 6-AU decreases nucleotide levels and reduces transcription elongation. These observations suggest that the association of Asf1p and Vip1p may be implicated in transcription elongation.
Collapse
|
166
|
Kazemi Seresht A, Palmqvist EA, Olsson L. The impact of phosphate scarcity on pharmaceutical protein production in S. cerevisiae: linking transcriptomic insights to phenotypic responses. Microb Cell Fact 2011; 10:104. [PMID: 22151908 PMCID: PMC3265430 DOI: 10.1186/1475-2859-10-104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 12/07/2011] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The adaptation of unicellular organisms like Saccharomyces cerevisiae to alternating nutrient availability is of great fundamental and applied interest, as understanding how eukaryotic cells respond to variations in their nutrient supply has implications spanning from physiological insights to biotechnological applications. RESULTS The impact of a step-wise restricted supply of phosphate on the physiological state of S. cerevisiae cells producing human Insulin was studied. The focus was to determine the changes within the global gene expression of cells being cultured to an industrially relevant high cell density of 33 g/l cell dry weight and under six distinct phosphate concentrations, ranging from 33 mM (unlimited) to 2.6 mM (limited). An increased flux through the secretory pathway, being induced by the PHO circuit during low P(i) supplementation, proved to enhance the secretory production of the heterologous protein. The re-distribution of the carbon flux from biomass formation towards increased glycerol production under low phosphate led to increased transcript levels of the insulin gene, which was under the regulation of the TPI1 promoter. CONCLUSIONS Our study underlines the dynamic character of adaptive responses of cells towards a change in their nutrient access. The gradual decrease of the phosphate supply resulted in a step-wise modulated phenotypic response, thereby alternating the specific productivity and the secretory flux. Our work emphasizes the importance of reduced phosphate supply for improved secretory production of heterologous proteins.
Collapse
Affiliation(s)
- Ali Kazemi Seresht
- Protein Expression, Novo Nordisk A/S, Novo Nordisk Park 1, 2760-Måløv, Denmark
| | | | | |
Collapse
|
167
|
Valluru R, Van den Ende W. Myo-inositol and beyond--emerging networks under stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 181:387-400. [PMID: 21889044 DOI: 10.1016/j.plantsci.2011.07.009] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/18/2011] [Accepted: 07/19/2011] [Indexed: 05/18/2023]
Abstract
Myo-inositol is a versatile compound that generates diversified derivatives upon phosphorylation by lipid-dependent and -independent pathways. Phosphatidylinositols form one such group of myo-inositol derivatives that act both as membrane structural lipid molecules and as signals. The significance of these compounds lies in their dual functions as signals as well as key metabolites under stress. Several stress- and non-stress related pathways regulated by phosphatidylinositol isoforms and associated enzymes, kinases and phosphatases, appear to function in parallel to coordinatively adapt growth and stress responses in plants. Recent evidence also postulates their crucial roles in nuclear functions as they interact with the key players of chromatin structure, yet other nuclear functions remain largely unknown. Phosphatidylinositol monophosphate 5-kinase interacts with and represses a cytosolic neutral invertase, a key enzyme of sugar metabolism suggesting a crosstalk between lipid and sugar signaling. Besides phosphatidylinositol, myo-inositol derived galactinol and associated raffinose-family oligosaccharides are emerging as antioxidants and putative signaling compounds too. Importantly, myo-inositol polyphosphate 5-phosphatase (5PTase) acts, depending on sugar status, as a positive or negative regulator of a global energy sensor, SnRK1. This implies that both myo-inositol- and sugar-derived (e.g. trehalose 6-phosphate) molecules form part of a broad regulatory network with SnRK1 as the central regulator. Recently, it was shown that the transcription factor bZIP11 also takes part in this network. Moreover, a functional coordination between neutral invertase and hexokinase is emerging as a sweet network that contributes to oxidative stress homeostasis in plants. In this review, we focus on myo-inositol, its direct and more downstream derivatives (galactinol, raffinose), and the contribution of their associated networks to plant stress tolerance.
Collapse
Affiliation(s)
- Ravi Valluru
- Ecophysiology of Plants Under Environmental Stress, INRA-SUPAGRO, Institute of Integrative Plant Biology, 2 Place Viala, Montpellier, France
| | | |
Collapse
|
168
|
Regulation of manganese antioxidants by nutrient sensing pathways in Saccharomyces cerevisiae. Genetics 2011; 189:1261-70. [PMID: 21926297 DOI: 10.1534/genetics.111.134007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In aerobic organisms, protection from oxidative damage involves the combined action of enzymatic and nonproteinaceous cellular factors that collectively remove harmful reactive oxygen species. One class of nonproteinaceous antioxidants includes small molecule complexes of manganese (Mn) that can scavenge superoxide anion radicals and provide a backup for superoxide dismutase enzymes. Such Mn antioxidants have been identified in diverse organisms; however, nothing regarding their physiology in the context of cellular adaptation to stress was known. Using a molecular genetic approach in Bakers' yeast, Saccharomyces cerevisiae, we report that the Mn antioxidants can fall under control of the same pathways used for nutrient sensing and stress responses. Specifically, a serine/threonine PAS-kinase, Rim15p, that is known to integrate phosphate, nitrogen, and carbon sensing, can also control Mn antioxidant activity in yeast. Rim15p is negatively regulated by the phosphate-sensing kinase complex Pho80p/Pho85p and by the nitrogen-sensing Akt/S6 kinase homolog, Sch9p. We observed that loss of either of these upstream kinase sensors dramatically inhibited the potency of Mn as an antioxidant. Downstream of Rim15p are transcription factors Gis1p and the redundant Msn2/Msn4p pair that typically respond to nutrient and stress signals. Both transcription factors were found to modulate the potency of the Mn antioxidant but in opposing fashions: loss of Gis1p was seen to enhance Mn antioxidant activity whereas loss of Msn2/4p greatly suppressed it. Our observed roles for nutrient and stress response kinases and transcription factors in regulating the Mn antioxidant underscore its physiological importance in aerobic fitness.
Collapse
|
169
|
Abstract
Inositol pyrophosphates are highly energetic inositol polyphosphate molecules present in organisms from slime molds and yeast to mammals. Distinct classes of enzymes generate different forms of inositol pyrophosphates. The biosynthesis of these substances principally involves phosphorylation of inositol hexakisphosphate (IP₆) to generate the pyrophosphate IP₇. Initial insights into functions of these substances derived primarily from yeast, which contain a single isoform of IP₆ kinase (yIP₆K), as well as from the slime mold Dictyostelium. Mammalian functions for inositol pyrophosphates have been investigated by using cell lines to establish roles in various processes, including insulin secretion and apoptosis. More recently, mice with targeted deletion of IP₆K isoforms as well as the related inositol polyphosphate multikinase (IPMK) have substantially enhanced our understanding of inositol polyphosphate physiology. Phenotypic alterations in mice lacking inositol hexakisphosphate kinase 1 (IP₆K1) reveal signaling roles for these molecules in insulin homeostasis, obesity, and immunological functions. Inositol pyrophosphates regulate these processes at least in part by inhibiting activation of the serine-threonine kinase Akt. Similar studies of IP₆K2 establish this enzyme as a cell death inducer acting by stimulating the proapoptotic protein p53. IPMK is responsible for generating the inositol phosphate IP₅ but also has phosphatidylinositol 3-kinase activity--that participates in activation of Akt. Here, we discuss recent advances in understanding the physiological functions of the inositol pyrophosphates based in substantial part on studies in mice with deletion of IP₆K isoforms. These findings highlight the interplay of IPMK and IP₆K in regulating growth factor and nutrient-mediated cell signaling.
Collapse
Affiliation(s)
- Anutosh Chakraborty
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
170
|
Lonetti A, Szijgyarto Z, Bosch D, Loss O, Azevedo C, Saiardi A. Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases. J Biol Chem 2011; 286:31966-74. [PMID: 21775424 DOI: 10.1074/jbc.m111.266320] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inorganic polyphosphate (poly-P) consists of just a chain of phosphate groups linked by high energy bonds. It is found in every organism and is implicated in a wide variety of cellular processes (e.g. phosphate storage, blood coagulation, and pathogenicity). Its metabolism has been studied mainly in bacteria while remaining largely uncharacterized in eukaryotes. It has recently been suggested that poly-P metabolism is connected to that of highly phosphorylated inositol species (inositol pyrophosphates). Inositol pyrophosphates are molecules in which phosphate groups outnumber carbon atoms. Like poly-P they contain high energy bonds and play important roles in cell signaling. Here, we show that budding yeast mutants unable to produce inositol pyrophosphates have undetectable levels of poly-P. Our results suggest a prominent metabolic parallel between these two highly phosphorylated molecules. More importantly, we demonstrate that DDP1, encoding diadenosine and diphosphoinositol phosphohydrolase, possesses a robust poly-P endopolyphosphohydrolase activity. In addition, we prove that this is an evolutionarily conserved feature because mammalian Nudix hydrolase family members, the three Ddp1 homologues in human cells (DIPP1, DIPP2, and DIPP3), are also capable of degrading poly-P.
Collapse
Affiliation(s)
- Annalisa Lonetti
- Medical Research Council Cell Biology Unit, Laboratory for Molecular Cell Biology, Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | | | |
Collapse
|
171
|
Sambuk EV, Fizikova AY, Savinov VA, Padkina MV. Acid phosphatases of budding yeast as a model of choice for transcription regulation research. Enzyme Res 2011; 2011:356093. [PMID: 21785706 PMCID: PMC3137970 DOI: 10.4061/2011/356093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 04/26/2011] [Indexed: 11/20/2022] Open
Abstract
Acid phosphatases of budding yeast have been studied for more than forty years. This paper covers biochemical characteristics of acid phosphatases and different aspects in expression regulation of eukaryotic genes, which were researched using acid phosphatases model. A special focus is devoted to cyclin-dependent kinase Pho85p, a negative transcriptional regulator, and its role in maintaining mitochondrial genome stability and to pleiotropic effects of pho85 mutations.
Collapse
Affiliation(s)
- Elena V Sambuk
- Genetics and Breeding Department, Biology and Soil Sciences Faculty, Saint Petersburg State University, Universitetskaya emb. 7-9, Saint Petersburg 199034, Russia
| | | | | | | |
Collapse
|
172
|
Prasad A, Jia Y, Chakraborty A, Li Y, Jain SK, Zhong J, Roy SG, Loison F, Mondal S, Sakai J, Blanchard C, Snyder SH, Luo HR. Inositol hexakisphosphate kinase 1 regulates neutrophil function in innate immunity by inhibiting phosphatidylinositol-(3,4,5)-trisphosphate signaling. Nat Immunol 2011; 12:752-60. [PMID: 21685907 PMCID: PMC3140608 DOI: 10.1038/ni.2052] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 05/12/2011] [Indexed: 11/11/2022]
Abstract
Inositol phosphates are widely produced throughout animal and plant tissues. Diphosphoinositol pentakisphosphate (InsP7) contains an energetic pyrophosphate bond. Here we demonstrate that disruption of inositol hexakisphosphate kinase 1 (InsP6K1), one of the three mammalian inositol hexakisphosphate kinases (InsP6Ks) that convert inositol hexakisphosphate (InsP6) to InsP7, conferred enhanced phosphatidylinositol-(3,4,5)-trisphosphate (PtdIns(3,4,5)P3)-mediated membrane translocation of the pleckstrin homology domain of the kinase Akt and thus augmented downstream PtdIns(3,4,5)P3 signaling in mouse neutrophils. Consequently, these neutrophils had greater phagocytic and bactericidal ability and amplified NADPH oxidase-mediated production of superoxide. These phenotypes were replicated in human primary neutrophils with pharmacologically inhibited InsP6Ks. In contrast, an increase in intracellular InsP7 blocked chemoattractant-elicited translocation of the pleckstrin homology domain to the membrane and substantially suppressed PtdIns(3,4,5)P3-mediated cellular events in neutrophils. Our findings establish a role for InsP7 in signal transduction and provide a mechanism for modulating PtdIns(3,4,5)P3 signaling in neutrophils.
Collapse
Affiliation(s)
- Amit Prasad
- Department of Pathology, Harvard Medical School Dana-Farber/Harvard Cancer Center Department of Lab Medicine; Children's Hospital Boston Karp Family Research Building, Room 10214 Boston, MA 02115, USA
| | - Yonghui Jia
- Department of Pathology, Harvard Medical School Dana-Farber/Harvard Cancer Center Department of Lab Medicine; Children's Hospital Boston Karp Family Research Building, Room 10214 Boston, MA 02115, USA
| | - Anutosh Chakraborty
- Departments of Neuroscience, Pharmacology and Molecular Sciences, and Psychiatry School of Medicine, The Johns Hopkins University Baltimore, Maryland 21205, USA
| | - Yitang Li
- Department of Pathology, Harvard Medical School Dana-Farber/Harvard Cancer Center Department of Lab Medicine; Children's Hospital Boston Karp Family Research Building, Room 10214 Boston, MA 02115, USA
| | - Supriya K. Jain
- Department of Pathology, Harvard Medical School Dana-Farber/Harvard Cancer Center Department of Lab Medicine; Children's Hospital Boston Karp Family Research Building, Room 10214 Boston, MA 02115, USA
| | - Jia Zhong
- Department of Pathology, Harvard Medical School Dana-Farber/Harvard Cancer Center Department of Lab Medicine; Children's Hospital Boston Karp Family Research Building, Room 10214 Boston, MA 02115, USA
| | - Saurabh Ghosh Roy
- Department of Pathology, Harvard Medical School Dana-Farber/Harvard Cancer Center Department of Lab Medicine; Children's Hospital Boston Karp Family Research Building, Room 10214 Boston, MA 02115, USA
| | - Fabien Loison
- Department of Pathology, Harvard Medical School Dana-Farber/Harvard Cancer Center Department of Lab Medicine; Children's Hospital Boston Karp Family Research Building, Room 10214 Boston, MA 02115, USA
| | - Subhanjan Mondal
- Department of Pathology, Harvard Medical School Dana-Farber/Harvard Cancer Center Department of Lab Medicine; Children's Hospital Boston Karp Family Research Building, Room 10214 Boston, MA 02115, USA
| | - Jiro Sakai
- Department of Pathology, Harvard Medical School Dana-Farber/Harvard Cancer Center Department of Lab Medicine; Children's Hospital Boston Karp Family Research Building, Room 10214 Boston, MA 02115, USA
| | - Catlyn Blanchard
- Department of Pathology, Harvard Medical School Dana-Farber/Harvard Cancer Center Department of Lab Medicine; Children's Hospital Boston Karp Family Research Building, Room 10214 Boston, MA 02115, USA
| | - Solomon H. Snyder
- Departments of Neuroscience, Pharmacology and Molecular Sciences, and Psychiatry School of Medicine, The Johns Hopkins University Baltimore, Maryland 21205, USA
| | - Hongbo R. Luo
- Department of Pathology, Harvard Medical School Dana-Farber/Harvard Cancer Center Department of Lab Medicine; Children's Hospital Boston Karp Family Research Building, Room 10214 Boston, MA 02115, USA
| |
Collapse
|
173
|
Tu WY, Huang YC, Liu LF, Chang LH, Tam MF. Rpl12p affects the transcription of the PHO pathway high-affinity inorganic phosphate transporters and repressible phosphatases. Yeast 2011; 28:481-93. [DOI: 10.1002/yea.1852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/22/2011] [Indexed: 11/08/2022] Open
|
174
|
Gokhale NA, Zaremba A, Shears SB. Receptor-dependent compartmentalization of PPIP5K1, a kinase with a cryptic polyphosphoinositide binding domain. Biochem J 2011; 434:415-26. [PMID: 21222653 PMCID: PMC3962999 DOI: 10.1042/bj20101437] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The inositol pyrophosphates are multifunctional signalling molecules. One of the families of enzymes that synthesize the inositol pyrophosphates are the Vip1/PPIP5Ks (PP-InsP5 kinases). The kinase domains in Vip1/PPIP5Ks have been mapped to their N-terminus. Each of these proteins also possess a phosphatase-like domain of unknown significance. In the present study, we show that this phosphatase-like domain is not catalytically active. Instead, by using SPR (surface plasmon resonance) to study protein binding to immobilized lipid vesicles, we show that this domain is specialized for binding PtdIns(3,4,5)P3 (PPIP5K1 K(d)=96 nM; PPIP5K2 K(d)=705 nM). Both PtdIns(3,4)P2 and PtdIns(4,5)P2 are significantly weaker ligands, and no significant binding of PtdIns(3,5)P2 was detected. We confirm the functional importance of this domain in inositol lipid binding by site-directed mutagenesis. We present evidence that the PtdIns(3,4,5)P3-binding domain is an unusual hybrid, in which a partial PH (pleckstrin homology) consensus sequence is spliced into the phosphatase-like domain. Agonist-dependent activation of the PtdIns 3-kinase pathway in NIH 3T3 cells drives translocation of PPIP5K1 from the cytosol to the plasma membrane. We have therefore demonstrated receptor-regulated compartmentalization of inositol pyrophosphate synthesis in mammalian cells.
Collapse
Affiliation(s)
| | | | - Stephen B. Shears
- Inositol Signaling Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, PO Box 12233, NC 27709, U.S.A
| |
Collapse
|
175
|
Bergwitz C, Jüppner H. Phosphate sensing. Adv Chronic Kidney Dis 2011; 18:132-44. [PMID: 21406298 PMCID: PMC3059779 DOI: 10.1053/j.ackd.2011.01.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/10/2011] [Accepted: 01/17/2011] [Indexed: 02/07/2023]
Abstract
Human phosphate homeostasis is regulated at the level of intestinal absorption of phosphate from the diet, release of phosphate through bone resorption, and renal phosphate excretion, and involves the actions of parathyroid hormone, 1,25-dihydroxy-vitamin D, and fibroblast growth factor 23 to maintain circulating phosphate levels within a narrow normal range, which is essential for numerous cellular functions, for the growth of tissues and for bone mineralization. Prokaryotic and single cellular eukaryotic organisms such as bacteria and yeast "sense" ambient phosphate with a multi-protein complex located in their plasma membrane, which modulates the expression of genes important for phosphate uptake and metabolism (pho pathway). Database searches based on amino acid sequence conservation alone have been unable to identify metazoan orthologs of the bacterial and yeast phosphate sensors. Thus, little is known about how human and other metazoan cells sense inorganic phosphate to regulate the effects of phosphate on cell metabolism ("metabolic" sensing) or to regulate the levels of extracellular phosphate through feedback system(s) ("endocrine" sensing). Whether the "metabolic" and the "endocrine" sensor use the same or different signal transduction cascades is unknown. This article will review the bacterial and yeast phosphate sensors, and then discuss what is currently known about the metabolic and endocrine effects of phosphate in multicellular organisms and human beings.
Collapse
Affiliation(s)
- Clemens Bergwitz
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
176
|
Lu SP, Lin SJ. Phosphate-responsive signaling pathway is a novel component of NAD+ metabolism in Saccharomyces cerevisiae. J Biol Chem 2011; 286:14271-81. [PMID: 21349851 DOI: 10.1074/jbc.m110.217885] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD(+)) is an essential cofactor involved in various cellular biochemical reactions. To date the signaling pathways that regulate NAD(+) metabolism remain unclear due to the dynamic nature and complexity of the NAD(+) metabolic pathways and the difficulty of determining the levels of the interconvertible pyridine nucleotides. Nicotinamide riboside (NmR) is a key pyridine metabolite that is excreted and re-assimilated by yeast and plays important roles in the maintenance of NAD(+) pool. In this study we establish a NmR-specific reporter system and use it to identify yeast mutants with altered NmR/NAD(+) metabolism. We show that the phosphate-responsive signaling (PHO) pathway contributes to control NAD(+) metabolism. Yeast strains with activated PHO pathway show increases in both the release rate and internal concentration of NmR. We further identify Pho8, a PHO-regulated vacuolar phosphatase, as a potential NmR production factor. We also demonstrate that Fun26, a homolog of human ENT (equilibrative nucleoside transporter), localizes to the vacuolar membrane and establishes the size of the vacuolar and cytosolic NmR pools. In addition, the PHO pathway responds to depletion of cellular nicotinic acid mononucleotide (NaMN) and mediates nicotinamide mononucleotide (NMN) catabolism, thereby contributing to both NmR salvage and phosphate acquisition. Therefore, NaMN is a putative molecular link connecting the PHO signaling and NAD(+) metabolic pathways. Our findings may contribute to the understanding of the molecular basis and regulation of NAD(+) metabolism in higher eukaryotes.
Collapse
Affiliation(s)
- Shu-Ping Lu
- Department of Microbiology, College of Biological Sciences, University of California, Davis, California 95616, USA
| | | |
Collapse
|
177
|
Casein kinase-2 mediates cell survival through phosphorylation and degradation of inositol hexakisphosphate kinase-2. Proc Natl Acad Sci U S A 2011; 108:2205-9. [PMID: 21262846 DOI: 10.1073/pnas.1019381108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The inositol pyrophosphate, diphosphoinositol pentakisphosphate, regulates p53 and protein kinase Akt signaling, and its aberrant increase in cells has been implicated in apoptosis and insulin resistance. Inositol hexakisphosphate kinase-2 (IP6K2), one of the major inositol pyrophosphate synthesizing enzymes, mediates p53-linked apoptotic cell death. Casein kinase-2 (CK2) promotes cell survival and is upregulated in tumors. We show that CK2 mediated cell survival involves IP6K2 destabilization. CK2 physiologically phosphorylates IP6K2 at amino acid residues S347 and S356 contained within a PEST sequence, a consensus site for ubiquitination. HCT116 cells depleted of IP6K2 are resistant to cell death elicited by CK2 inhibitors. CK2 phosphorylation at the degradation motif of IP6K2 enhances its ubiquitination and subsequent degradation. IP6K2 mutants at the CK2 sites that are resistant to CK2 phosphorylation are metabolically stable.
Collapse
|
178
|
Wilson WA, Roach PJ, Montero M, Baroja-Fernández E, Muñoz FJ, Eydallin G, Viale AM, Pozueta-Romero J. Regulation of glycogen metabolism in yeast and bacteria. FEMS Microbiol Rev 2011; 34:952-85. [PMID: 20412306 DOI: 10.1111/j.1574-6976.2010.00220.x] [Citation(s) in RCA: 279] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microorganisms have the capacity to utilize a variety of nutrients and adapt to continuously changing environmental conditions. Many microorganisms, including yeast and bacteria, accumulate carbon and energy reserves to cope with the starvation conditions temporarily present in the environment. Glycogen biosynthesis is a main strategy for such metabolic storage, and a variety of sensing and signaling mechanisms have evolved in evolutionarily distant species to ensure the production of this homopolysaccharide. At the most fundamental level, the processes of glycogen synthesis and degradation in yeast and bacteria share certain broad similarities. However, the regulation of these processes is sometimes quite distinct, indicating that they have evolved separately to respond optimally to the habitat conditions of each species. This review aims to highlight the mechanisms, both at the transcriptional and at the post-transcriptional level, that regulate glycogen metabolism in yeast and bacteria, focusing on selected areas where the greatest increase in knowledge has occurred during the last few years. In the yeast system, we focus particularly on the various signaling pathways that control the activity of the enzymes of glycogen storage. We also discuss our recent understanding of the important role played by the vacuole in glycogen metabolism. In the case of bacterial glycogen, special emphasis is placed on aspects related to the genetic regulation of glycogen metabolism and its connection with other biological processes.
Collapse
Affiliation(s)
- Wayne A Wilson
- Biochemistry and Nutrition Department, Des Moines University, Des Moines, IA, USA
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Chiou TJ, Lin SI. Signaling network in sensing phosphate availability in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:185-206. [PMID: 21370979 DOI: 10.1146/annurev-arplant-042110-103849] [Citation(s) in RCA: 454] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants acquire phosphorus in the form of phosphate (Pi), the concentration of which is often limited for plant uptake. Plants have developed diverse responses to conserve and remobilize internal Pi and to enhance Pi acquisition to secure them against Pi deficiency. These responses are achieved by the coordination of an elaborate signaling network comprising local and systemic machineries. Recent advances have revealed several important components involved in this network. Pi functions as a signal to report its own availability. miR399 and sugars act as systemic signals to regulate responses occurring in roots. Hormones also play crucial roles in modulating gene expression and in altering root system architecture. Transcription factors function as a hub to perceive the signals and to elicit steady outputs. In this review, we outline the current knowledge on this subject and present hypotheses pertaining to other potential signals and to the organization and coordination of signaling.
Collapse
Affiliation(s)
- Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| | | |
Collapse
|
180
|
Systematic screen of Schizosaccharomyces pombe deletion collection uncovers parallel evolution of the phosphate signal transduction pathway in yeasts. EUKARYOTIC CELL 2010; 10:198-206. [PMID: 21169418 DOI: 10.1128/ec.00216-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The phosphate signal transduction (PHO) pathway, which regulates genes in response to phosphate starvation, is well defined in Saccharomyces cerevisiae. We asked whether the PHO pathway was the same in the distantly related fission yeast Schizosaccharomyces pombe. We screened a deletion collection for mutants aberrant in phosphatase activity, which is primarily a consequence of pho1(+) transcription. We identified a novel zinc finger-containing protein (encoded by spbc27b12.11c(+)), which we have named pho7(+), that is essential for pho1(+) transcriptional induction during phosphate starvation. Few of the S. cerevisiae genes involved in the PHO pathway appear to be involved in the regulation of the phosphate starvation response in S. pombe. Only the most upstream genes in the PHO pathway in S. cerevisiae (ADO1, DDP1, and PPN1) share a similar role in both yeasts. Because ADO1 and DDP1 regulate ATP and IP(7) levels, we hypothesize that the ancestor of these yeasts must have sensed similar metabolites in response to phosphate starvation but have evolved distinct mechanisms in parallel to sense these metabolites and induce phosphate starvation genes.
Collapse
|
181
|
Chakraborty A, Koldobskiy MA, Bello NT, Maxwell M, Potter JJ, Juluri KR, Maag D, Kim S, Huang AS, Dailey MJ, Saleh M, Snowman AM, Moran TH, Mezey E, Snyder SH. Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 2010; 143:897-910. [PMID: 21145457 PMCID: PMC3052691 DOI: 10.1016/j.cell.2010.11.032] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 08/17/2010] [Accepted: 11/01/2010] [Indexed: 12/31/2022]
Abstract
The inositol pyrophosphate IP7 (5-diphosphoinositolpentakisphosphate), formed by a family of three inositol hexakisphosphate kinases (IP6Ks), modulates diverse cellular activities. We now report that IP7 is a physiologic inhibitor of Akt, a serine/threonine kinase that regulates glucose homeostasis and protein translation, respectively, via the GSK3β and mTOR pathways. Thus, Akt and mTOR signaling are dramatically augmented and GSK3β signaling reduced in skeletal muscle, white adipose tissue, and liver of mice with targeted deletion of IP6K1. IP7 affects this pathway by potently inhibiting the PDK1 phosphorylation of Akt, preventing its activation and thereby affecting insulin signaling. IP6K1 knockout mice manifest insulin sensitivity and are resistant to obesity elicited by high-fat diet or aging. Inhibition of IP6K1 may afford a therapeutic approach to obesity and diabetes.
Collapse
Affiliation(s)
- Anutosh Chakraborty
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
p53-mediated apoptosis requires inositol hexakisphosphate kinase-2. Proc Natl Acad Sci U S A 2010; 107:20947-51. [PMID: 21078964 DOI: 10.1073/pnas.1015671107] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Inositol pyrophosphates have been implicated in numerous biological processes. Inositol hexakisphosphate kinase-2 (IP6K2), which generates the inositol pyrophosphate, diphosphoinositol pentakisphosphate (IP7), influences apoptotic cell death. The tumor suppressor p53 responds to genotoxic stress by engaging a transcriptional program leading to cell-cycle arrest or apoptosis. We demonstrate that IP6K2 is required for p53-mediated apoptosis and modulates the outcome of the p53 response. Gene disruption of IP6K2 in colorectal cancer cells selectively impairs p53-mediated apoptosis, instead favoring cell-cycle arrest. IP6K2 acts by binding directly to p53 and decreasing expression of proarrest gene targets such as the cyclin-dependent kinase inhibitor p21.
Collapse
|
183
|
Li X, Gianoulis TA, Yip KY, Gerstein M, Snyder M. Extensive in vivo metabolite-protein interactions revealed by large-scale systematic analyses. Cell 2010; 143:639-50. [PMID: 21035178 PMCID: PMC3005334 DOI: 10.1016/j.cell.2010.09.048] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 08/12/2010] [Accepted: 09/20/2010] [Indexed: 01/09/2023]
Abstract
Natural small compounds comprise most cellular molecules and bind proteins as substrates, products, cofactors, and ligands. However, a large-scale investigation of in vivo protein-small metabolite interactions has not been performed. We developed a mass spectrometry assay for the large-scale identification of in vivo protein-hydrophobic small metabolite interactions in yeast and analyzed compounds that bind ergosterol biosynthetic proteins and protein kinases. Many of these proteins bind small metabolites; a few interactions were previously known, but the vast majority are new. Importantly, many key regulatory proteins such as protein kinases bind metabolites. Ergosterol was found to bind many proteins and may function as a general regulator. It is required for the activity of Ypk1, a mammalian AKT/SGK kinase homolog. Our study defines potential key regulatory steps in lipid biosynthetic pathways and suggests that small metabolites may play a more general role as regulators of protein activity and function than previously appreciated.
Collapse
Affiliation(s)
- Xiyan Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Tara A. Gianoulis
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06520
| | - Kevin Y. Yip
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Mark Gerstein
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
- Department of Computer Science, Yale University, New Haven CT 06520
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305-5120
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| |
Collapse
|
184
|
Azevedo C, Szijgyarto Z, Saiardi A. The signaling role of inositol hexakisphosphate kinases (IP6Ks). ADVANCES IN ENZYME REGULATION 2010; 51:74-82. [PMID: 21035498 DOI: 10.1016/j.advenzreg.2010.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 08/27/2010] [Indexed: 12/01/2022]
Abstract
The past ten years have seen a contained explosion of interest in inositol pyrophosphates. The early cloning of the IP6Ks and the more recent identification of the PP-IP5Ks have allowed the development of essential experimental tools to investigate the physiological role of inositol pyrophosphates. However, for this exciting field of research to gain momentum, simpler and more reliable research protocols need to be further developed. The ability to resolve and quantify inositol pyrophosphates using gel electrophoresis (Losito et al., 2009) has dramatically altered the way we are studying this class of molecules, opening new avenues for research. The use of this technology to resolve, detect and characterize inositol pyrophosphates extracted from cells certainly represents one desirable aim. The most crucial objective, however, is to obtain definite proof of the new mechanism of post-translational modification by identifying with biophysical methods the presence in vivo of pyrophosphorylated serines. This will hopefully precipitate the development of new ways to detect this modification, for example through the production of antibodies that specifically recognize pyrophosphorylated serines.
Collapse
Affiliation(s)
- Cristina Azevedo
- Cell Biology Unit, Medical Research Council Laboratory for Molecular Cell Biology (MRC-LMCB), University College London, London, UK
| | | | | |
Collapse
|
185
|
Shears SB, Gokhale NA, Wang H, Zaremba A. Diphosphoinositol polyphosphates: what are the mechanisms? ADVANCES IN ENZYME REGULATION 2010; 51:13-25. [PMID: 21035493 PMCID: PMC3507380 DOI: 10.1016/j.advenzreg.2010.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 09/17/2010] [Indexed: 12/30/2022]
Abstract
In countries where adulthood is considered to be attained at age eighteen, 2011 can be the point at which the diphosphoinositol polyphosphates might formally be described as "coming of age", since these molecules were first fully defined in 1993 (Menniti et al., 1993; Stephens et al., 1993b). But from a biological perspective, these polyphosphates cannot quite be considered to have matured into the status of being independently-acting intracellular signals. This review has discussed several of the published proposals for mechanisms by which the diphosphoinositol polyphosphates might act. We have argued that all of these hypotheses need further development.We also still do not know a single molecular mechanism by which a change in the levels of a particular diphosphoinositol polyphosphate can be controlled. Yet, despite all these gaps in our understanding, there is an enduring anticipation that these molecules have great potential in the signaling field. Reflecting our expectations of all teenagers, it should be our earnest hope that in the near future the diphosphoinositol polyphosphates will finally grow up.
Collapse
Affiliation(s)
- Stephen B Shears
- Inositol Signaling Group, Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.
| | | | | | | |
Collapse
|
186
|
Abstract
Lipid-derived inositol phosphates (InsPs) comprise a family of second messengers that arise through the action of six classes of InsP kinases, generally referred to as IPKs. Genetic studies have indicated that InsPs play critical roles in embryonic development, but the mechanisms of action for InsPs in mammalian cellular function are largely unknown. This chapter outlines a method for manipulating cellular InsP profiles through the coexpression of a constitutively active G protein and various IPKs. It provides a mechanism by which the metabolism of a variety of InsPs can be upregulated, enabling the evaluation of the effects of these InsPs on cellular functions.
Collapse
|
187
|
Discovery of mutations in Saccharomyces cerevisiae by pooled linkage analysis and whole-genome sequencing. Genetics 2010; 186:1127-37. [PMID: 20923977 DOI: 10.1534/genetics.110.123232] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many novel and important mutations arise in model organisms and human patients that can be difficult or impossible to identify using standard genetic approaches, especially for complex traits. Working with a previously uncharacterized dominant Saccharomyces cerevisiae mutant with impaired vacuole inheritance, we developed a pooled linkage strategy based on next-generation DNA sequencing to specifically identify functional mutations from among a large excess of polymorphisms, incidental mutations, and sequencing errors. The VAC6-1 mutation was verified to correspond to PHO81-R701S, the highest priority candidate reported by VAMP, the new software platform developed for these studies. Sequence data further revealed the large extent of strain background polymorphisms and structural alterations present in the host strain, which occurred by several mechanisms including a novel Ty insertion. The results provide a snapshot of the ongoing genomic changes that ultimately result in strain divergence and evolution, as well as a general model for the discovery of functional mutations in many organisms.
Collapse
|
188
|
Liu X, Tang WH, Zhao XM, Chen L. A network approach to predict pathogenic genes for Fusarium graminearum. PLoS One 2010; 5:e13021. [PMID: 20957229 PMCID: PMC2949387 DOI: 10.1371/journal.pone.0013021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 08/17/2010] [Indexed: 11/18/2022] Open
Abstract
Fusarium graminearum is the pathogenic agent of Fusarium head blight (FHB), which is a destructive disease on wheat and barley, thereby causing huge economic loss and health problems to human by contaminating foods. Identifying pathogenic genes can shed light on pathogenesis underlying the interaction between F. graminearum and its plant host. However, it is difficult to detect pathogenic genes for this destructive pathogen by time-consuming and expensive molecular biological experiments in lab. On the other hand, computational methods provide an alternative way to solve this problem. Since pathogenesis is a complicated procedure that involves complex regulations and interactions, the molecular interaction network of F. graminearum can give clues to potential pathogenic genes. Furthermore, the gene expression data of F. graminearum before and after its invasion into plant host can also provide useful information. In this paper, a novel systems biology approach is presented to predict pathogenic genes of F. graminearum based on molecular interaction network and gene expression data. With a small number of known pathogenic genes as seed genes, a subnetwork that consists of potential pathogenic genes is identified from the protein-protein interaction network (PPIN) of F. graminearum, where the genes in the subnetwork are further required to be differentially expressed before and after the invasion of the pathogenic fungus. Therefore, the candidate genes in the subnetwork are expected to be involved in the same biological processes as seed genes, which imply that they are potential pathogenic genes. The prediction results show that most of the pathogenic genes of F. graminearum are enriched in two important signal transduction pathways, including G protein coupled receptor pathway and MAPK signaling pathway, which are known related to pathogenesis in other fungi. In addition, several pathogenic genes predicted by our method are verified in other pathogenic fungi, which demonstrate the effectiveness of the proposed method. The results presented in this paper not only can provide guidelines for future experimental verification, but also shed light on the pathogenesis of the destructive fungus F. graminearum.
Collapse
Affiliation(s)
- Xiaoping Liu
- Institute of Systems Biology, Shanghai University, Shanghai, China
- School of Communication and Information Engineering, Shanghai University, Shanghai, China
| | - Wei-Hua Tang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xing-Ming Zhao
- Institute of Systems Biology, Shanghai University, Shanghai, China
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Luonan Chen
- Institute of Systems Biology, Shanghai University, Shanghai, China
- Key Laboratory of Systems Biology, SIBS-Novo Nordisk Translational Research Centre for PreDiabetes, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
189
|
Probing in vivo Mn2+ speciation and oxidative stress resistance in yeast cells with electron-nuclear double resonance spectroscopy. Proc Natl Acad Sci U S A 2010; 107:15335-9. [PMID: 20702768 DOI: 10.1073/pnas.1009648107] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Manganese is an essential transition metal that, among other functions, can act independently of proteins to either defend against or promote oxidative stress and disease. The majority of cellular manganese exists as low molecular-weight Mn(2+) complexes, and the balance between opposing "essential" and "toxic" roles is thought to be governed by the nature of the ligands coordinating Mn(2+). Until now, it has been impossible to determine manganese speciation within intact, viable cells, but we here report that this speciation can be probed through measurements of (1)H and (31)P electron-nuclear double resonance (ENDOR) signal intensities for intracellular Mn(2+). Application of this approach to yeast (Saccharomyces cerevisiae) cells, and two pairs of yeast mutants genetically engineered to enhance or suppress the accumulation of manganese or phosphates, supports an in vivo role for the orthophosphate complex of Mn(2+) in resistance to oxidative stress, thereby corroborating in vitro studies that demonstrated superoxide dismutase activity for this species.
Collapse
|
190
|
Benschop JJ, Brabers N, van Leenen D, Bakker LV, van Deutekom HWM, van Berkum NL, Apweiler E, Lijnzaad P, Holstege FCP, Kemmeren P. A consensus of core protein complex compositions for Saccharomyces cerevisiae. Mol Cell 2010; 38:916-28. [PMID: 20620961 DOI: 10.1016/j.molcel.2010.06.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 04/02/2010] [Accepted: 05/16/2010] [Indexed: 11/28/2022]
Abstract
Analyses of biological processes would benefit from accurate definitions of protein complexes. High-throughput mass spectrometry data offer the possibility of systematically defining protein complexes; however, the predicted compositions vary substantially depending on the algorithm applied. We determine consensus compositions for 409 core protein complexes from Saccharomyces cerevisiae by merging previous predictions with a new approach. Various analyses indicate that the consensus is comprehensive and of high quality. For 85 out of 259 complexes not recorded in GO, literature search revealed strong support in the form of coprecipitation. New complexes were verified by an independent interaction assay and by gene expression profiling of strains with deleted subunits, often revealing which cellular processes are affected. The consensus complexes are available in various formats, including a merge with GO, resulting in 518 protein complex compositions. The utility is further demonstrated by comparison with binary interaction data to reveal interactions between core complexes.
Collapse
Affiliation(s)
- Joris J Benschop
- Department of Physiological Chemistry, University Medical Centre Utrecht, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Asp1, a conserved 1/3 inositol polyphosphate kinase, regulates the dimorphic switch in Schizosaccharomyces pombe. Mol Cell Biol 2010; 30:4535-47. [PMID: 20624911 DOI: 10.1128/mcb.00472-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The ability to undergo dramatic morphological changes in response to extrinsic cues is conserved in fungi. We have used the model yeast Schizosaccharomyces pombe to determine which intracellular signal regulates the dimorphic switch from the single-cell yeast form to the filamentous invasive growth form. The S. pombe Asp1 protein, a member of the conserved Vip1 1/3 inositol polyphosphate kinase family, is a key regulator of the morphological switch via the cAMP protein kinase A (PKA) pathway. Lack of a functional Asp1 kinase domain abolishes invasive growth which is monopolar, while an increase in Asp1-generated inositol pyrophosphates (PP) increases the cellular response. Remarkably, the Asp1 kinase activity encoded by the N-terminal part of the protein is regulated negatively by the C-terminal domain of Asp1, which has homology to acid histidine phosphatases. Thus, the fine tuning of the cellular response to environmental cues is modulated by the same protein. As the Saccharomyces cerevisiae Asp1 ortholog is also required for the dimorphic switch in this yeast, we propose that Vip1 family members have a general role in regulating fungal dimorphism.
Collapse
|
192
|
Monserrate JP, York JD. Inositol phosphate synthesis and the nuclear processes they affect. Curr Opin Cell Biol 2010; 22:365-73. [DOI: 10.1016/j.ceb.2010.03.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/03/2010] [Accepted: 03/04/2010] [Indexed: 01/30/2023]
|
193
|
Life in the midst of scarcity: adaptations to nutrient availability in Saccharomyces cerevisiae. Curr Genet 2010; 56:1-32. [PMID: 20054690 DOI: 10.1007/s00294-009-0287-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/18/2009] [Accepted: 12/19/2009] [Indexed: 12/27/2022]
Abstract
Cells of all living organisms contain complex signal transduction networks to ensure that a wide range of physiological properties are properly adapted to the environmental conditions. The fundamental concepts and individual building blocks of these signalling networks are generally well-conserved from yeast to man; yet, the central role that growth factors and hormones play in the regulation of signalling cascades in higher eukaryotes is executed by nutrients in yeast. Several nutrient-controlled pathways, which regulate cell growth and proliferation, metabolism and stress resistance, have been defined in yeast. These pathways are integrated into a signalling network, which ensures that yeast cells enter a quiescent, resting phase (G0) to survive periods of nutrient scarceness and that they rapidly resume growth and cell proliferation when nutrient conditions become favourable again. A series of well-conserved nutrient-sensory protein kinases perform key roles in this signalling network: i.e. Snf1, PKA, Tor1 and Tor2, Sch9 and Pho85-Pho80. In this review, we provide a comprehensive overview on the current understanding of the signalling processes mediated via these kinases with a particular focus on how these individual pathways converge to signalling networks that ultimately ensure the dynamic translation of extracellular nutrient signals into appropriate physiological responses.
Collapse
|
194
|
Kim J, Kim YS, Ko J. CKβ8/CCL23 and its isoform CKβ8-1 induce up-regulation of cyclins via the Gi/Go protein/PLC/PKCδ/ERK leading to cell-cycle progression. Cytokine 2010; 50:42-9. [DOI: 10.1016/j.cyto.2009.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2009] [Revised: 11/11/2009] [Accepted: 12/17/2009] [Indexed: 02/08/2023]
|
195
|
Sauer K, Cooke MP. Regulation of immune cell development through soluble inositol-1,3,4,5-tetrakisphosphate. Nat Rev Immunol 2010; 10:257-71. [PMID: 20336153 PMCID: PMC2922113 DOI: 10.1038/nri2745] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The membrane lipid phosphatidylinositol-3,4,5-trisphosphate (PtdInsP(3)) regulates membrane receptor signalling in many cells, including immunoreceptor signalling. Here, we review recent data that have indicated essential roles for the soluble PtdInsP(3) analogue inositol-1,3,4,5-tetrakisphosphate (InsP(4)) in T cell, B cell and neutrophil development and function. Decreased InsP(4) production in leukocytes causes immunodeficiency in mice and might contribute to inflammatory vasculitis in Kawasaki disease in humans. InsP(4)-producing kinases could therefore provide attractive drug targets for inflammatory and infectious diseases.
Collapse
Affiliation(s)
- Karsten Sauer
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | |
Collapse
|
196
|
Khodakovskaya M, Sword C, Wu Q, Perera IY, Boss WF, Brown CS, Winter Sederoff H. Increasing inositol (1,4,5)-trisphosphate metabolism affects drought tolerance, carbohydrate metabolism and phosphate-sensitive biomass increases in tomato. PLANT BIOTECHNOLOGY JOURNAL 2010; 8:170-183. [PMID: 20040061 DOI: 10.1111/j.1467-7652.2009.00472.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Inositol-(1,4,5)-trisphosphate (InsP(3)) is a second messenger in plants that increases in response to many stimuli. The metabolic consequences of this signalling pathway are not known. We reduced the basal level of InsP(3) in tomato (Solanum lycopersicum cv. Micro-Tom) by expressing the human type I inositol polyphosphate 5-phosphatase (InsP 5-ptase) gene. Transgenic lines producing InsP 5-ptase protein had between 15% and 30% of the basal InsP(3) level of control plants. This increased hydrolysis of InsP(3) caused dramatic increases in drought tolerance, vegetative biomass and lycopene and hexose concentrations in the fruits. Transcript profiling of root, leaf and fruit tissues identified a small group of genes, including a cell-wall invertase inhibitor gene, that were differentially regulated in all tissues of the InsP 5-ptase expressing plants. Significant differences were found in the amounts of carbohydrates and organic phosphate in these plants. Plants with increased hydrolysis of InsP(3) in the cytosol also showed increased net CO(2)-fixation and sucrose export into sink tissue and storage of hexoses in the source leaves. The increase in biomass was dependent on the supply of inorganic phosphate in the nutrient medium. Uptake and storage of phosphate was increased in the transgene expressing lines. This suggests that in tomato, increased flux through the inositol phosphate pathway uncoupled phosphate sensing from phosphate metabolism. Altering the second messenger, InsP(3), revealed multiple coordinated changes in development and metabolism in tomato that have potential for crop improvement.
Collapse
|
197
|
|
198
|
Best MD, Zhang H, Prestwich GD. Inositol polyphosphates, diphosphoinositol polyphosphates and phosphatidylinositol polyphosphate lipids: Structure, synthesis, and development of probes for studying biological activity. Nat Prod Rep 2010; 27:1403-30. [DOI: 10.1039/b923844c] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
199
|
Tsui MM, York JD. Roles of inositol phosphates and inositol pyrophosphates in development, cell signaling and nuclear processes. ACTA ACUST UNITED AC 2009; 50:324-37. [PMID: 20006638 DOI: 10.1016/j.advenzreg.2009.12.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marco M Tsui
- Department of Pharmacology and Cancer Biology, Howard Hughes Medical Institute, Duke University Medical Center, Box 3813, Durham, NC 27710, USA
| | | |
Collapse
|
200
|
Barker CJ, Illies C, Gaboardi GC, Berggren PO. Inositol pyrophosphates: structure, enzymology and function. Cell Mol Life Sci 2009; 66:3851-71. [PMID: 19714294 PMCID: PMC11115731 DOI: 10.1007/s00018-009-0115-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/13/2009] [Accepted: 07/20/2009] [Indexed: 02/04/2023]
Abstract
The stereochemistry of the inositol backbone provides a platform on which to generate a vast array of distinct molecular motifs that are used to convey information both in signal transduction and many other critical areas of cell biology. Diphosphoinositol phosphates, or inositol pyrophosphates, are the most recently characterized members of the inositide family. They represent a new frontier with both novel targets within the cell and novel modes of action. This includes the proposed pyrophosphorylation of a unique subset of proteins. We review recent insights into the structures of these molecules and the properties of the enzymes which regulate their concentration. These enzymes also act independently of their catalytic activity via protein-protein interactions. This unique combination of enzymes and products has an important role in diverse cellular processes including vesicle trafficking, endo- and exocytosis, apoptosis, telomere length regulation, chromatin hyperrecombination, the response to osmotic stress, and elements of nucleolar function.
Collapse
Affiliation(s)
- Christopher John Barker
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, 171 76 Stockholm, Sweden
| | | | | | | |
Collapse
|