151
|
Javanmardi N, Fransson S, Djos A, Umapathy G, Östensson M, Milosevic J, Borenäs M, Hallberg B, Kogner P, Martinsson T, Palmer RH. Analysis of ALK, MYCN, and the ALK ligand ALKAL2 (FAM150B/AUGα) in neuroblastoma patient samples with chromosome arm 2p rearrangements. Genes Chromosomes Cancer 2020; 59:50-57. [PMID: 31340081 DOI: 10.1002/gcc.22790] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 01/24/2023] Open
Abstract
Gain of chromosome arm 2p is a previously described entity in neuroblastoma (NB). This genomic address is home to two important oncogenes in NB-MYCN and anaplastic lymphoma kinase (ALK). MYCN amplification is a critical prognostic factor coupled with poor prognosis in NB. Mutation of the ALK receptor tyrosine kinase has been described in both somatic and familial NB. Here, ALK activation occurs in the context of the full-length receptor, exemplified by activating point mutations in NB. ALK overexpression and activation, in the absence of genetic mutation has also been described in NB. In addition, the recently identified ALK ligand ALKAL2 (previously described as FAM150B and AUGα) is also found on the distal portion of 2p, at 2p25. Here we analyze 356 NB tumor samples and discuss observations indicating that gain of 2p has implications for the development of NB. Finally, we put forward the hypothesis that the effect of 2p gain may result from a combination of MYCN, ALK, and the ALK ligand ALKAL2.
Collapse
Affiliation(s)
- Niloufar Javanmardi
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Malin Östensson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jelena Milosevic
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
152
|
Abstract
Aneuploidy (i.e., abnormal chromosome number) is the leading cause of miscarriage and congenital defects in humans. Moreover, aneuploidy is ubiquitous in cancer. The deleterious phenotypes associated with aneuploidy are likely a result of the imbalance in the levels of gene products derived from the additional chromosome(s). Here, we summarize the current knowledge on how the presence of extra chromosomes impacts gene expression. We describe studies that have found a strict correlation between gene dosage and transcript levels as wells as studies that have found a less stringent correlation, hinting at the possible existence of dosage compensation mechanisms. We conclude by peering into the epigenetic changes found in aneuploid cells and outlining current knowledge gaps and potential areas of future investigation.
Collapse
Affiliation(s)
- Shihoko Kojima
- Department of Biological Sciences & Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| | - Daniela Cimini
- Department of Biological Sciences & Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
153
|
Vianna P, Mendes MF, Bragatte MA, Ferreira PS, Salzano FM, Bonamino MH, Vieira GF. pMHC Structural Comparisons as a Pivotal Element to Detect and Validate T-Cell Targets for Vaccine Development and Immunotherapy-A New Methodological Proposal. Cells 2019; 8:E1488. [PMID: 31766602 PMCID: PMC6952977 DOI: 10.3390/cells8121488] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/02/2022] Open
Abstract
The search for epitopes that will effectively trigger an immune response remains the "El Dorado" for immunologists. The development of promising immunotherapeutic approaches requires the appropriate targets to elicit a proper immune response. Considering the high degree of HLA/TCR diversity, as well as the heterogeneity of viral and tumor proteins, this number will invariably be higher than ideal to test. It is known that the recognition of a peptide-MHC (pMHC) by the T-cell receptor is performed entirely in a structural fashion, where the atomic interactions of both structures, pMHC and TCR, dictate the fate of the process. However, epitopes with a similar composition of amino acids can produce dissimilar surfaces. Conversely, sequences with no conspicuous similarities can exhibit similar TCR interaction surfaces. In the last decade, our group developed a database and in silico structural methods to extract molecular fingerprints that trigger T-cell immune responses, mainly referring to physicochemical similarities, which could explain the immunogenic differences presented by different pMHC-I complexes. Here, we propose an immunoinformatic approach that considers a structural level of information, combined with an experimental technology that simulates the presentation of epitopes for a T cell, to improve vaccine production and immunotherapy efficacy.
Collapse
Affiliation(s)
- Priscila Vianna
- Laboratory of Human Teratogenesis and Population Medical Genetics, Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre 91.501-970, Brazil;
| | - Marcus F.A. Mendes
- Laboratory of Bioinformatics (NBLI), Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre 91.501-970, Brazil (M.A.B.)
| | - Marcelo A. Bragatte
- Laboratory of Bioinformatics (NBLI), Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre 91.501-970, Brazil (M.A.B.)
| | - Priscila S. Ferreira
- Program of Immunology and Tumor Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro 20231-050, Brazil; (P.S.F.); (M.H.B.)
| | - Francisco M. Salzano
- Laboratory of Molecular Evolution, Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre 91.501-970, Brazil;
| | - Martin H. Bonamino
- Program of Immunology and Tumor Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute, Rio de Janeiro 20231-050, Brazil; (P.S.F.); (M.H.B.)
- Vice Presidency of Research and Biological Collections, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
| | - Gustavo F. Vieira
- Laboratory of Bioinformatics (NBLI), Department of Genetics, Institute of Biosciences, Federal University of Rio Grande do Sul, Porto Alegre 91.501-970, Brazil (M.A.B.)
- Laboratory of Health Bioinformatics, Post Graduate Program in Health and Human Development, La Salle University, Canoas 91.501-970, Brazil
| |
Collapse
|
154
|
Njeru SN, Kraus J, Meena JK, Lechel A, Katz SF, Kumar M, Knippschild U, Azoitei A, Wezel F, Bolenz C, Leithäuser F, Gollowitzer A, Omrani O, Hoischen C, Koeberle A, Kestler HA, Günes C, Rudolph KL. Aneuploidy-inducing gene knockdowns overlap with cancer mutations and identify Orp3 as a B-cell lymphoma suppressor. Oncogene 2019; 39:1445-1465. [PMID: 31659255 DOI: 10.1038/s41388-019-1073-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/25/2019] [Accepted: 10/14/2019] [Indexed: 12/11/2022]
Abstract
Aneuploidy can instigate tumorigenesis. However, mutations in genes that control chromosome segregation are rare in human tumors as these mutations reduce cell fitness. Screening experiments indicate that the knockdown of multiple classes of genes that are not directly involved in chromosome segregation can lead to aneuploidy induction. The possible contribution of these genes to cancer formation remains yet to be defined. Here we identified gene knockdowns that lead to an increase in aneuploidy in checkpoint-deficient human cancer cells. Computational analysis revealed that the identified genes overlap with recurrent mutations in human cancers. The knockdown of the three strongest selected candidate genes (ORP3, GJB3, and RXFP1) enhances the malignant transformation of human fibroblasts in culture. Furthermore, the knockout of Orp3 results in an aberrant expansion of lymphoid progenitor cells and a high penetrance formation of chromosomal instable, pauci-clonal B-cell lymphoma in aging mice. At pre-tumorous stages, lymphoid cells from the animals exhibit deregulated phospholipid metabolism and an aberrant induction of proliferation regulating pathways associating with increased aneuploidy in hematopoietic progenitor cells. Together, these results support the concept that aneuploidy-inducing gene deficiencies contribute to cellular transformation and carcinogenesis involving the deregulation of various molecular processes such as lipid metabolism, proliferation, and cell survival.
Collapse
Affiliation(s)
- Sospeter N Njeru
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., 07745, Jena, Germany.,Paul-Ehrlich-Institute, Division Immunology, 63225, Langen, Germany
| | - Johann Kraus
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany
| | - Jitendra K Meena
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., 07745, Jena, Germany.,Baylor College of Medicine, Houston, TX, USA
| | - André Lechel
- Department of Internal Medicine I, Ulm University Hospital, 89081, Ulm, Germany
| | - Sarah-Fee Katz
- Department of Internal Medicine I, Ulm University Hospital, 89081, Ulm, Germany
| | - Mukesh Kumar
- Department of Urology, Ulm University Hospital, 89081, Ulm, Germany
| | - Uwe Knippschild
- Department of General and Visceral Surgery, Ulm University Hospital, 89081, Ulm, Germany
| | - Anca Azoitei
- Department of Urology, Ulm University Hospital, 89081, Ulm, Germany
| | - Felix Wezel
- Department of Urology, Ulm University Hospital, 89081, Ulm, Germany
| | - Christian Bolenz
- Department of Urology, Ulm University Hospital, 89081, Ulm, Germany
| | | | - André Gollowitzer
- Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Omid Omrani
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., 07745, Jena, Germany
| | - Christian Hoischen
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., 07745, Jena, Germany
| | - Andreas Koeberle
- Institute of Pharmacy, Friedrich-Schiller-University Jena, 07743, Jena, Germany.,Michael Popp Research Institute, University of Innsbruck, Innsbruck, Austria
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, 89081, Ulm, Germany.
| | - Cagatay Günes
- Department of Urology, Ulm University Hospital, 89081, Ulm, Germany.
| | - K Lenhard Rudolph
- Leibniz Institute on Aging, Fritz Lipmann Institute e.V., 07745, Jena, Germany.
| |
Collapse
|
155
|
Tsai HJ, Nelliat A. A Double-Edged Sword: Aneuploidy is a Prevalent Strategy in Fungal Adaptation. Genes (Basel) 2019; 10:E787. [PMID: 31658789 PMCID: PMC6826469 DOI: 10.3390/genes10100787] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Aneuploidy, a deviation from a balanced genome by either gain or loss of chromosomes, is generally associated with impaired fitness and developmental defects in eukaryotic organisms. While the general physiological impact of aneuploidy remains largely elusive, many phenotypes associated with aneuploidy link to a common theme of stress adaptation. Here, we review previously identified mechanisms and observations related to aneuploidy, focusing on the highly diverse eukaryotes, fungi. Fungi, which have conquered virtually all environments, including several hostile ecological niches, exhibit widespread aneuploidy and employ it as an adaptive strategy under severe stress. Gambling with the balance between genome plasticity and stability has its cost and in fact, most aneuploidies have fitness defects. How can this fitness defect be reconciled with the prevalence of aneuploidy in fungi? It is likely that the fitness cost of the extra chromosomes is outweighed by the advantage they confer under life-threatening stresses. In fact, once the selective pressures are withdrawn, aneuploidy is often lost and replaced by less drastic mutations that possibly incur a lower fitness cost. We discuss representative examples across hostile environments, including medically and industrially relevant cases, to highlight potential adaptive mechanisms in aneuploid yeast.
Collapse
Affiliation(s)
- Hung-Ji Tsai
- Institute of Microbiology and Infection, and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Anjali Nelliat
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
156
|
Ben-David U, Amon A. Context is everything: aneuploidy in cancer. Nat Rev Genet 2019; 21:44-62. [DOI: 10.1038/s41576-019-0171-x] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
|
157
|
Chui MH, Doodnauth SA, Erdmann N, Tiedemann RE, Sircoulomb F, Drapkin R, Shaw P, Rottapel R. Chromosomal Instability and mTORC1 Activation through PTEN Loss Contribute to Proteotoxic Stress in Ovarian Carcinoma. Cancer Res 2019; 79:5536-5549. [DOI: 10.1158/0008-5472.can-18-3029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 07/25/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022]
|
158
|
Chronic iron exposure and c-Myc/H-ras-mediated transformation in fallopian tube cells alter the expression of EVI1, amplified at 3q26.2 in ovarian cancer. Oncogenesis 2019; 8:46. [PMID: 31434871 PMCID: PMC6704182 DOI: 10.1038/s41389-019-0154-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
Mechanisms underlying the pathogenesis of high-grade serous epithelial ovarian cancers (HGSOC) are not yet well defined although key precursor cells have been identified (including fimbriated fallopian tube epithelium, FTSECs). Since iron is elevated in endometriotic cysts and the pelvic cavity, it is suggested that this source of redox-active iron may contribute to ovarian cancer pathogenesis. Specifically, sources of nontransferrin-bound iron (NTBI) within the pelvic cavity could arise from ovulation, retrograde menstruation, follicular fluid, or iron overload conditions (i.e., hemochromatosis). Herein, we investigated the cellular response of p53-inactivated and telomerase-expressing (immortalized) FTSECs (Pax8+/FoxJ1−) to NTBI (presented as ferric ammonium citrate (FAC), supplemented in media for >2 months) in order to assess its ability to promote the transition to a tumor-like phenotype; this cellular response was compared with immortalized FTSECs transformed with H-RasV12A and c-MycT58A. Both approaches resulted in increased cell numbers and expression of the oncogenic transcriptional regulator, ecotropic virus integration site 1 (EVI1, a gene most frequently amplified at 3q26.2 in HGSOC, represented by multiple variants), along with other oncogenic gene products. In contrast to the transformed cells, FAC-exposed FTSECs elicited elevated migratory capacity (and epithelial–mesenchymal transition mRNA profile) along with increased expression of DNA damage response proteins (i.e., FANCD2) and hTERT mRNA relative to controls. Interestingly, in FAC-exposed FTSECs, EVI1 siRNA attenuated hTERT mRNA expression, whereas siRNAs targeting β-catenin and BMI1 (both elevated with chronic iron exposure) reduced Myc and Cyclin D1 proteins. Collectively, our novel findings provide strong foundational evidence for potential iron-induced initiation events, including EVI1 alterations, in the pathogenesis of HGSOC, warranting further in depth investigations. Thus, these findings will substantially advance our understanding of the contribution of iron enriched within the pelvic cavity, which may identify patients at risk of developing this deadly disease.
Collapse
|
159
|
Ried T, Meijer GA, Harrison DJ, Grech G, Franch-Expósito S, Briffa R, Carvalho B, Camps J. The landscape of genomic copy number alterations in colorectal cancer and their consequences on gene expression levels and disease outcome. Mol Aspects Med 2019; 69:48-61. [PMID: 31365882 DOI: 10.1016/j.mam.2019.07.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/18/2022]
Abstract
Aneuploidy, the unbalanced state of the chromosome content, represents a hallmark of most solid tumors, including colorectal cancer. Such aneuploidies result in tumor specific genomic imbalances, which emerge in premalignant precursor lesions. Moreover, increasing levels of chromosomal instability have been observed in adenocarcinomas and are maintained in distant metastases. A number of studies have systematically integrated copy number alterations with gene expression changes in primary carcinomas, cell lines, and experimental models of aneuploidy. In fact, chromosomal aneuploidies target a number of genes conferring a selective advantage for the metabolism of the cancer cell. Copy number alterations not only have a positive correlation with expression changes of the majority of genes on the altered genomic segment, but also have effects on the transcriptional levels of genes genome-wide. Finally, copy number alterations have been associated with disease outcome; nevertheless, the translational applicability in clinical practice requires further studies. Here, we (i) review the spectrum of genetic alterations that lead to colorectal cancer, (ii) describe the most frequent copy number alterations at different stages of colorectal carcinogenesis, (iii) exemplify their positive correlation with gene expression levels, and (iv) discuss copy number alterations that are potentially involved in disease outcome of individual patients.
Collapse
Affiliation(s)
- Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute/National Institutes of Health, Bethesda, MD, USA.
| | - Gerrit A Meijer
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, Scotland, UK
| | - Godfrey Grech
- Laboratory of Molecular Pathology, Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Sebastià Franch-Expósito
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Barcelona, Spain
| | - Romina Briffa
- School of Medicine, University of St Andrews, St Andrews, Scotland, UK; Laboratory of Molecular Pathology, Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Beatriz Carvalho
- Department of Pathology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Group, Institut D'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CIBEREHD, Barcelona, Spain; Unitat de Biologia Cel·lular i Genètica Mèdica, Departament de Biologia Cel·lular, Fisiologia i Immunologia, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| |
Collapse
|
160
|
Nawa N, Hirata K, Kawatani K, Nambara T, Omori S, Banno K, Kokubu C, Takeda J, Nishimura K, Ohtaka M, Nakanishi M, Okuzaki D, Taniguchi H, Arahori H, Wada K, Kitabatake Y, Ozono K. Elimination of protein aggregates prevents premature senescence in human trisomy 21 fibroblasts. PLoS One 2019; 14:e0219592. [PMID: 31356639 PMCID: PMC6663065 DOI: 10.1371/journal.pone.0219592] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 06/27/2019] [Indexed: 12/12/2022] Open
Abstract
Chromosome abnormalities induces profound alterations in gene expression, leading to various disease phenotypes. Recent studies on yeast and mammalian cells have demonstrated that aneuploidy exerts detrimental effects on organismal growth and development, regardless of the karyotype, suggesting that aneuploidy-associated stress plays an important role in disease pathogenesis. However, whether and how this effect alters cellular homeostasis and long-term features of human disease are not fully understood. Here, we aimed to investigate cellular stress responses in human trisomy syndromes, using fibroblasts and induced pluripotent stem cells (iPSCs). Dermal fibroblasts derived from patients with trisomy 21, 18 and 13 showed a severe impairment of cell proliferation and enhanced premature senescence. These phenomena were accompanied by perturbation of protein homeostasis, leading to the accumulation of protein aggregates. We found that treatment with sodium 4-phenylbutyrate (4-PBA), a chemical chaperone, decreased the protein aggregates in trisomy fibroblasts. Notably, 4-PBA treatment successfully prevented the progression of premature senescence in secondary fibroblasts derived from trisomy 21 iPSCs. Our study reveals aneuploidy-associated stress as a potential therapeutic target for human trisomies, including Down syndrome.
Collapse
Affiliation(s)
- Nobutoshi Nawa
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Katsuya Hirata
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Neonatal Medicine, Osaka Women’s and Children’s Hospital, Izumi, Osaka, Japan
| | - Keiji Kawatani
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toshihiko Nambara
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Sayaka Omori
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kimihiko Banno
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chikara Kokubu
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Junji Takeda
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Ken Nishimura
- Laboratory of Gene Regulation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Manami Ohtaka
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Mahito Nakanishi
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Daisuke Okuzaki
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Hidetoshi Taniguchi
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hitomi Arahori
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kazuko Wada
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Neonatal Medicine, Osaka Women’s and Children’s Hospital, Izumi, Osaka, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- * E-mail:
| | - Keiichi Ozono
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
161
|
Chen Y, Chen S, Li K, Zhang Y, Huang X, Li T, Wu S, Wang Y, Carey LB, Qian W. Overdosage of Balanced Protein Complexes Reduces Proliferation Rate in Aneuploid Cells. Cell Syst 2019; 9:129-142.e5. [PMID: 31351919 DOI: 10.1016/j.cels.2019.06.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 02/27/2019] [Accepted: 06/17/2019] [Indexed: 11/26/2022]
Abstract
Cells with complex aneuploidies display a wide range of phenotypic abnormalities. However, the molecular basis for this has been mainly studied in trisomic (2n + 1) and disomic (n + 1) cells. To determine how karyotype affects proliferation in cells with complex aneuploidies, we generated 92 2n + x yeast strains in which each diploid cell has between 3 and 12 extra chromosomes. Genome-wide and, for individual protein complexes, proliferation defects are caused by the presence of protein complexes in which all subunits are balanced at the 3-copy level. Proteomics revealed that over 50% of 3-copy members of imbalanced complexes were expressed at only 2n protein levels, whereas members of complexes in which all subunits are stoichiometrically balanced at 3 copies per cell had 3n protein levels. We validated this finding using orthogonal datasets from yeast and from human cancers. Taken together, our study provides an explanation of how aneuploidy affects phenotype.
Collapse
Affiliation(s)
- Ying Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyu Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuliang Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaohuan Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lucas B Carey
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona 08003, Spain; Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Wenfeng Qian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
162
|
Brás R, Sunkel CE, Resende LP. Tissue stem cells: the new actors in the aneuploidy field. Cell Cycle 2019; 18:1813-1823. [PMID: 31242809 DOI: 10.1080/15384101.2019.1635867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The development of multicellular organisms and the maintenance of its tissues relies on mitosis. However, this process represents a major challenge for genomic stability as each time a cell division occurs there are multiple steps where errors can lead to an abnormal chromosomal content in daughter cells - aneuploidy. Aneuploidy was first postulated to act as a tumour promoting agent over one century ago. Since then, we have learned to appreciate the complexity involving the cellular responses to aneuploidy and to value the importance of models where aneuploidy is induced in vivo and in a cell-type specific manner. Recent data suggests that stem cells evolved a distinct response to aneuploidy, being able to survive and proliferate as aneuploid. Since stem cells are the main cells responsible for tissue renewal, it is of the utmost importance to place the spotlight on stem cells within the aneuploidy field. Here, we briefly review some of the biological mechanisms implicated in aneuploidy, the relationship between aneuploidy and tissue pathologies, and summarize the most recent findings in Drosophila on how tissue stem cells respond to aneuploidy. Once we understand how stem cell behavior is impacted by aneuploidy, we might be able to better describe the complicated link between aneuploidy and tumourigenesis.
Collapse
Affiliation(s)
- Rita Brás
- a Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal.,b IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal
| | - Claudio E Sunkel
- a Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal.,c ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto , Porto , Portugal
| | - Luís Pedro Resende
- a Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto , Portugal.,b IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto , Porto , Portugal
| |
Collapse
|
163
|
Laucius CD, Orr B, Compton DA. Chromosomal instability suppresses the growth of K-Ras-induced lung adenomas. Cell Cycle 2019; 18:1702-1713. [PMID: 31179849 DOI: 10.1080/15384101.2019.1629790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Chromosomal instability (CIN) is defined as a high rate of whole chromosome loss or gain and is a hallmark of many aneuploid solid tumors. CIN positively correlates with poor patient prognosis and chemotherapeutic resistance. Despite this clinical importance, the role of CIN in tumor initiation, growth and/or progression remains poorly understood. To date, the only strategies developed to determine how CIN contributes to tumorigenesis have relied on transgenic mouse models that deliberately increase the rate of chromosomal mis-segregation. Here we develop a strain of transgenic mice that is designed to strategically decrease the rate of chromosome mis-segregation and suppress CIN. These animals modestly overexpress the kinesin-13 microtubule depolymerase Kif2b, a strategy proven successful in restoring faithful chromosome segregation to human cancer cells in culture. Using the LA2 K-Ras G12D-induced model for lung cancer, we show that Kif2b expression reduces the number of chromosome segregation defects but does not change the incidence of lung tumor lesions. However, pulmonary tumors were significantly larger in animals expressing Kif2b and those tumors exhibited elevated rates of Ki-67 positive cells relative to controls. Thus, in lung cancers driven by mutations in K-Ras, CIN has little impact on tumor initiation but suppresses tumor growth. These data support a model in which CIN imposes a burden on tumor cells, and that enhancement of mitotic fidelity results in accelerated tumor growth.
Collapse
Affiliation(s)
- Christopher D Laucius
- a Department of Biochemistry , Geisel School of Medicine at Dartmouth , Hanover , NH , USA.,b Norris Cotton Cancer Center , Lebanon , NH , USA
| | - Bernardo Orr
- a Department of Biochemistry , Geisel School of Medicine at Dartmouth , Hanover , NH , USA.,b Norris Cotton Cancer Center , Lebanon , NH , USA
| | - Duane A Compton
- a Department of Biochemistry , Geisel School of Medicine at Dartmouth , Hanover , NH , USA.,b Norris Cotton Cancer Center , Lebanon , NH , USA
| |
Collapse
|
164
|
Induced Chromosomal Aneuploidy Results in Global and Consistent Deregulation of the Transcriptome of Cancer Cells. Neoplasia 2019; 21:721-729. [PMID: 31174021 PMCID: PMC6551473 DOI: 10.1016/j.neo.2019.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 01/17/2023] Open
Abstract
Chromosomal aneuploidy is a defining feature of epithelial cancers. The pattern of aneuploidies is cancer-type specific. For instance, the gain of chromosome 13 occurs almost exclusively in colorectal cancer. We used microcell-mediated chromosome transfer to generate gains of chromosome 13 in the diploid human colorectal cancer cell line DLD-1. Extra copies of chromosome 13 resulted in a significant and reproducible up-regulation of transcript levels of genes on chromosome 13 (P = .0004, FDR = 0.01) and a genome-wide transcriptional deregulation in all 8 independent clones generated. Genes contained in two clusters were particularly affected: the first cluster on cytoband 13q13 contained 7 highly up-regulated genes (NBEA, MAB21L1, DCLK1, SOHLH2, CCDC169, SPG20 and CCNA1, P = .0003) in all clones. A second cluster was located on 13q32.1 and contained five upregulated genes (ABCC4, CLDN10, DZIP1, DNAJC3 and UGGT2, P = .003). One gene, RASL11A, localized on chromosome band 13q12.2, escaped the copy number-induced overexpression and was reproducibly and significantly down-regulated on the mRNA and protein level (P = .0001, FDR = 0.002). RASL11A expression levels were also lower in primary colorectal tumors as compared to matched normal mucosa (P = .0001, FDR = 0.0001. Overexpression of RASL11A increases cell proliferation and anchorage independent growth while decreasing cell migration in +13 clones. In summary, we observed a strict correlation of genomic copy number and resident gene expression levels, and aneuploidy dependent consistent genome-wide transcriptional deregulation.
Collapse
|
165
|
Tsai HJ, Nelliat AR, Choudhury MI, Kucharavy A, Bradford WD, Cook ME, Kim J, Mair DB, Sun SX, Schatz MC, Li R. Hypo-osmotic-like stress underlies general cellular defects of aneuploidy. Nature 2019; 570:117-121. [PMID: 31068692 PMCID: PMC6583789 DOI: 10.1038/s41586-019-1187-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/10/2019] [Indexed: 01/06/2023]
Abstract
Aneuploidy, which refers to unbalanced chromosome numbers, represents a class of genetic variation that is associated with cancer, birth defects and eukaryotic micro-organisms1-4. Whereas it is known that each aneuploid chromosome stoichiometry can give rise to a distinct pattern of gene expression and phenotypic profile4,5, it remains a fundamental question as to whether there are common cellular defects that are associated with aneuploidy. Here we show the existence in budding yeast of a common aneuploidy gene-expression signature that is suggestive of hypo-osmotic stress, using a strategy that enables the observation of common transcriptome changes of aneuploidy by averaging out karyotype-specific dosage effects in aneuploid yeast-cell populations with random and diverse chromosome stoichiometry. Consistently, aneuploid yeast exhibited increased plasma-membrane stress that led to impaired endocytosis, and this defect was also observed in aneuploid human cells. Thermodynamic modelling showed that hypo-osmotic-like stress is a general outcome of the proteome imbalance that is caused by aneuploidy, and also predicted a relationship between ploidy and cell size that was observed in yeast and aneuploid cancer cells. A genome-wide screen uncovered a general dependency of aneuploid cells on a pathway of ubiquitin-mediated endocytic recycling of nutrient transporters. Loss of this pathway, coupled with the endocytic defect inherent to aneuploidy, leads to a marked alteration of intracellular nutrient homeostasis.
Collapse
Affiliation(s)
- Hung-Ji Tsai
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anjali R Nelliat
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Mohammad Ikbal Choudhury
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrei Kucharavy
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Malcolm E Cook
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jisoo Kim
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Devin B Mair
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sean X Sun
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Michael C Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
| | - Rong Li
- Center for Cell Dynamics, Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
166
|
Zhao Y, Carter R, Natarajan S, Varn FS, Compton DA, Gawad C, Cheng C, Godek KM. Single-cell RNA sequencing reveals the impact of chromosomal instability on glioblastoma cancer stem cells. BMC Med Genomics 2019; 12:79. [PMID: 31151460 PMCID: PMC6545015 DOI: 10.1186/s12920-019-0532-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/15/2019] [Indexed: 12/15/2022] Open
Abstract
Background Intra-tumor heterogeneity stems from genetic, epigenetic, functional, and environmental differences among tumor cells. A major source of genetic heterogeneity comes from DNA sequence differences and/or whole chromosome and focal copy number variations (CNVs). Whole chromosome CNVs are caused by chromosomal instability (CIN) that is defined by a persistently high rate of chromosome mis-segregation. Accordingly, CIN causes constantly changing karyotypes that result in extensive cell-to-cell genetic heterogeneity. How the genetic heterogeneity caused by CIN influences gene expression in individual cells remains unknown. Methods We performed single-cell RNA sequencing on a chromosomally unstable glioblastoma cancer stem cell (CSC) line and a control normal, diploid neural stem cell (NSC) line to investigate the impact of CNV due to CIN on gene expression. From the gene expression data, we computationally inferred large-scale CNVs in single cells. Also, we performed copy number adjusted differential gene expression analysis between NSCs and glioblastoma CSCs to identify copy number dependent and independent differentially expressed genes. Results Here, we demonstrate that gene expression across large genomic regions scales proportionally to whole chromosome copy number in chromosomally unstable CSCs. Also, we show that the differential expression of most genes between normal NSCs and glioblastoma CSCs is largely accounted for by copy number alterations. However, we identify 269 genes whose differential expression in glioblastoma CSCs relative to normal NSCs is independent of copy number. Moreover, a gene signature derived from the subset of genes that are differential expressed independent of copy number in glioblastoma CSCs correlates with tumor grade and is prognostic for patient survival. Conclusions These results demonstrate that CIN is directly responsible for gene expression changes and contributes to both genetic and transcriptional heterogeneity among glioblastoma CSCs. These results also demonstrate that the expression of some genes is buffered against changes in copy number, thus preserving some consistency in gene expression levels from cell-to-cell despite the continuous change in karyotype driven by CIN. Importantly, a gene signature derived from the subset of genes whose expression is buffered against copy number alterations correlates with tumor grade and is prognostic for patient survival that could facilitate patient diagnosis and treatment. Electronic supplementary material The online version of this article (10.1186/s12920-019-0532-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanding Zhao
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Robert Carter
- Departments of Oncology and Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Departments of Oncology and Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Frederick S Varn
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.,Present Address: Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Duane A Compton
- Department of Biochemistry and Cell Biology, HB7200, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA.,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Charles Gawad
- Departments of Oncology and Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chao Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA. .,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA. .,Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA. .,Present Address: Baylor College of Medicine, Houston, TX, USA.
| | - Kristina M Godek
- Department of Biochemistry and Cell Biology, HB7200, Geisel School of Medicine at Dartmouth, Hanover, NH, 03755, USA. .,Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
167
|
Chromosomal instability and pro-inflammatory response in aging. Mech Ageing Dev 2019; 182:111118. [PMID: 31102604 DOI: 10.1016/j.mad.2019.111118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/25/2019] [Accepted: 05/14/2019] [Indexed: 01/10/2023]
Abstract
Aging refers to the progressive deterioration of tissue and organ function over time. Increasing evidence points to the accumulation of highly damaged cell cycle-arrested cells with age (cellular senescence) as major reason for the development of certain aging-associated diseases. Recent studies have independently shown that aneuploidy, an abnormal chromosome set, occurs in senescent cells, and that the accumulation of cytoplasmic DNA driven by faulty chromosome segregation during mitosis aids in the establishment of senescence and its associated secretory phenotype known as SASP. Here we review the emerging link between chromosomal instability (CIN) and senescence in the context of aging, with emphasis on the cGAS-STING pathway activation and its role in the development of the SASP. Based on current evidence, we propose that age-associated CIN in mitotically active cells contributes to aging and its associated diseases, and we discuss the inhibition of CIN as a potential strategy to prevent the generation of aneuploid senescent cells and thereby to delay aging.
Collapse
|
168
|
Abstract
Aneuploidy, defined as chromosome gains and losses, is a hallmark of cancer. However, compared with other tumor types, extensive aneuploidy is relatively rare in prostate cancer. Thus, whether numerical chromosome aberrations dictate disease progression in prostate cancer patients is not known. Here, we report the development of a method based on whole-transcriptome profiling that allowed us to identify chromosome-arm gains and losses in 333 primary prostate tumors. In two independent cohorts (n = 404) followed prospectively for metastases and prostate cancer-specific death for a median of 15 years, increasing extent of tumor aneuploidy as predicted from the tumor transcriptome was strongly associated with higher risk of lethal disease. The 23% of patients whose tumors had five or more predicted chromosome-arm alterations had 5.3 times higher odds of lethal cancer (95% confidence interval, 2.2 to 13.1) than those with the same Gleason score and no predicted aneuploidy. Aneuploidy was associated with lethality even among men with high-risk Gleason score 8-to-10 tumors. These results point to a key role of aneuploidy in driving aggressive disease in primary prostate cancer.
Collapse
|
169
|
Profile of Angelika Amon, winner of the 2019 Vilcek Prize in Biomedical Science. Proc Natl Acad Sci U S A 2019; 116:7157-7159. [PMID: 30886095 DOI: 10.1073/pnas.1903221116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
170
|
Soto M, Raaijmakers JA, Medema RH. Consequences of Genomic Diversification Induced by Segregation Errors. Trends Genet 2019; 35:279-291. [DOI: 10.1016/j.tig.2019.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 01/02/2023]
|
171
|
Kneissig M, Bernhard S, Storchova Z. Modelling chromosome structural and copy number changes to understand cancer genomes. Curr Opin Genet Dev 2019; 54:25-32. [PMID: 30921673 DOI: 10.1016/j.gde.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 02/18/2019] [Indexed: 12/26/2022]
Abstract
Cancer cells differ from healthy cells by genetic information that is massively altered not only by point mutations and small insertions and deletions, but also by large scale changes such as chromosomal rearrangements as well as gains and losses of individual chromosomes or entire chromosome sets. How exactly large-scale chromosomal abnormalities contribute to tumorigenesis has been difficult to study. Remarkable progress has been recently made thanks to in vitro models that mimic large-scale chromosomal aberrations and allow their systematic analysis. The obtained findings reveal that genomic alterations strongly affect the cellular physiology and, importantly, instigate further genomic instability. This suggests that these model systems might provide novel insights by recapitulating the processes that occur during tumorigenesis.
Collapse
Affiliation(s)
- Maja Kneissig
- Department of Molecular Genetics, University of Kaiserslautern, Germany
| | - Sara Bernhard
- Department of Molecular Genetics, University of Kaiserslautern, Germany
| | - Zuzana Storchova
- Department of Molecular Genetics, University of Kaiserslautern, Germany.
| |
Collapse
|
172
|
Fang X, Yin H, Zhang H, Wu F, Liu Y, Fu Y, Yu D, Zong L. p53 mediates hydroxyurea resistance in aneuploid cells of colon cancer. Exp Cell Res 2019; 376:39-48. [PMID: 30684461 DOI: 10.1016/j.yexcr.2019.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/11/2019] [Accepted: 01/22/2019] [Indexed: 01/08/2023]
Abstract
Aneuploidy refers to aberrancies in cellular chromosome count, which is prevalent in most human cancers. Chemotherapy is an effective cancer treatment; however, the development of drug resistance is a major concern of conventional chemotherapy. The chemotherapy agent hydroxyurea (HU) targets proliferating cells and has long been applied to treat various human cancers. It remains elusive whether aneuploidy affects the drug sensitivity of hydroxyurea. By generating an inducible aneuploidy model, we found that aneuploid colon cancer cells were resistant to HU treatment compared to euploid controls. Surprisingly, further analyses showed that the HU resistance was dependent on the expression of wild type p53. Activation of the p53 pathway in aneuploidy cells reduced cell proliferation but generated resistance of tumor cells to HU treatment. HU resistance was abrogated in aneuploid cells if p53 was absent but re-gained when inducing proliferation repression in cells by serum deprivation. Our results demonstrate that the HU resistance developed in aneuploid colon cancer cells is mediated by wild type p53 and indicates the prognostic value of combining karyotypic and p53 status in clinical cancer treatment.
Collapse
Affiliation(s)
- Xiao Fang
- Peking University Health Science Center, Beijing 100191, China; Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China; Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Hua Yin
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Hanqing Zhang
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Fan Wu
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yin Liu
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Yi Fu
- School of Biology and Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Duonan Yu
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou, China.
| | - Liang Zong
- Clinical Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China.
| |
Collapse
|
173
|
Melo Pereira S, Ribeiro R, Logarinho E. Approaches towards Longevity: Reprogramming, Senolysis, and Improved Mitotic Competence as Anti-Aging Therapies. Int J Mol Sci 2019; 20:E938. [PMID: 30795536 PMCID: PMC6413205 DOI: 10.3390/ijms20040938] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/09/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
Mainstream approaches that are currently used as anti-aging therapies primarily explore the senescence and epigenetic drift aging hallmarks and they are at two ends of the spectrum. While senolytic therapies include either the selective elimination of senescent cells or the disruption of their secretome with the use of drugs or natural compounds, cellular reprogramming uses genetic manipulation to revert cells all the way back to pluripotency. Here, we describe the progress that has been made on these therapies, while highlighting the major challenges involved. Moreover, based on recent findings elucidating the impact of mitotic shutdown and aneuploidy in cellular senescence, we discuss the modulation of mitotic competence as an alternative strategy to delay the hallmarks of aging. We propose that a regulated rise in mitotic competence of cells could circumvent certain limitations that are present in the senolytic and reprogramming approaches, by acting to decelerate senescence and possibly restore the epigenetic landscape.
Collapse
Affiliation(s)
- Sofia Melo Pereira
- Ageing and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Rui Ribeiro
- Ageing and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Elsa Logarinho
- Ageing and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
- Cell Division Unit, Faculty of Medicine, Department of Experimental Biology, Universidade do Porto, 4200-319 Porto, Portugal.
| |
Collapse
|
174
|
Huang TT, Huang DH, Ahn HJ, Arnett C, Huang CT. Early blastocyst expansion in euploid and aneuploid human embryos: evidence for a non-invasive and quantitative marker for embryo selection. Reprod Biomed Online 2019; 39:27-39. [PMID: 31130402 DOI: 10.1016/j.rbmo.2019.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/14/2018] [Accepted: 01/17/2019] [Indexed: 12/27/2022]
Abstract
RESEARCH QUESTION How can the kinetics of human blastocyst expansion be used to evaluate an embryo's ploidy identified using preimplantation genetic testing for aneuploidy (PGT-A)? DESIGN This was a retrospective observational study of 188 autologous blastocysts from 34 sequential treatment cycles using PGT-A and blastocyst biopsy. Using time-lapse imaging, blastocyst expansion was evaluated using a quantitative standardized expansion assay (qSEA). Trophectoderm cell division was examined in selected, unbiopsied embryos (n = 7) to evaluate the contribution of mitosis to the expansion rate. RESULTS The averaged euploid blastocyst expansion rate was significantly (52.8%) faster than in aneuploid blastocysts (P = 0.0041). Scatterplots, representing 'expansion maps', revealed that both populations showed a similarly overlapping distribution of blastocyst formation times at 80-140 h from fertilization. Euploidy and aneuploidy were better distinguished in regions of higher and lower expansion, respectively, in expansion maps. Based upon the expansion slopes, rank-ordering of individual embryos within cohorts resulted in more than 90% euploid embryos in the first two ranks in patients less than 35 years of age. Additional detailed time-lapse image analysis provided evidence that rapid expansion was associated with robust, integrative cellular mitosis in trophectoderm cells. CONCLUSIONS The kinetics of human blastocyst expansion are related to an embryo's ploidy. These preliminary observations describe a new quantitative, non-invasive approach to embryo assessment that may be useful to identify single blastocysts for transfer, particularly in younger patient groups. However, this approach may also be useful for euploid embryo selection after PGT-A. The results support the hypothesis that aneuploidy universally impairs general cellular processes, including cell division, in differentiated cells.
Collapse
Affiliation(s)
- Thomas Tf Huang
- Department of Obstetrics and Gynecology and Women's Health, John A. Burns School of Medicine, Honolulu Hawaii, USA; Pacific In Vitro Fertilization Institute, Honolulu Hawaii, USA.
| | - David H Huang
- Pacific In Vitro Fertilization Institute, Honolulu Hawaii, USA
| | - Hyeong J Ahn
- Department of Complementary and Integrative Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu Hawaii, USA
| | - Christina Arnett
- Advanced Reproductive Center of Hawaii, Kapiolani Medical Center for Women and Children, Honolulu Hawaii, USA
| | - Christopher Tf Huang
- Advanced Reproductive Center of Hawaii, Kapiolani Medical Center for Women and Children, Honolulu Hawaii, USA
| |
Collapse
|
175
|
Chunduri NK, Storchová Z. The diverse consequences of aneuploidy. Nat Cell Biol 2019; 21:54-62. [PMID: 30602769 DOI: 10.1038/s41556-018-0243-8] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/31/2018] [Indexed: 12/25/2022]
Abstract
Aneuploidy, or imbalanced chromosome number, has profound effects on eukaryotic cells. In humans, aneuploidy is associated with various pathologies, including cancer, which suggests that it mediates a proliferative advantage under these conditions. Here, we discuss physiological changes triggered by aneuploidy, such as altered cell growth, transcriptional changes, proteotoxic stress, genomic instability and response to interferons, and how cancer cells adapt to the changing aneuploid genome.
Collapse
Affiliation(s)
| | - Zuzana Storchová
- Department of Molecular Genetics, TU Kaiserslautern, Kaiserslautern, Germany.
| |
Collapse
|
176
|
Inoue M, Kajiwara K, Yamaguchi A, Kiyono T, Samura O, Akutsu H, Sago H, Okamoto A, Umezawa A. Autonomous trisomic rescue of Down syndrome cells. J Transl Med 2019; 99:885-897. [PMID: 30760866 PMCID: PMC6760570 DOI: 10.1038/s41374-019-0230-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 11/10/2022] Open
Abstract
Down syndrome is the most frequent chromosomal abnormality among live-born infants. All Down syndrome patients have mental retardation and are prone to develop early onset Alzheimer's disease. However, it has not yet been elucidated whether there is a correlation between the phenotype of Down syndrome and the extra chromosome 21. In this study, we continuously cultivated induced pluripotent stem cells (iPSCs) with chromosome 21 trisomy for more than 70 weeks, and serendipitously obtained revertant cells with normal chromosome 21 diploids from the trisomic cells during long-term cultivation. Repeated experiments revealed that this trisomy rescue was not due to mosaicism of chromosome 21 diploid cells and occurred at an extremely high frequency. We herewith report the spontaneous correction from chromosome 21 trisomy to disomy without genetic manipulation, chemical treatment or exposure to irradiation. The revertant diploid cells will possibly serve a reference for drug screening and a raw material of regenerative medicinal products for cell-based therapy.
Collapse
Affiliation(s)
- Momoko Inoue
- 0000 0004 0377 2305grid.63906.3aDepartment of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535 Japan ,0000 0001 0661 2073grid.411898.dDepartment of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471 Japan
| | - Kazuhiro Kajiwara
- 0000 0004 0377 2305grid.63906.3aDepartment of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535 Japan ,0000 0001 0661 2073grid.411898.dDepartment of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471 Japan
| | - Ayumi Yamaguchi
- 0000 0004 0377 2305grid.63906.3aDepartment of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535 Japan
| | - Tohru Kiyono
- 0000 0001 2168 5385grid.272242.3Division of Carcinogenesis and Cancer Prevention, Department of Cell Culture Technology, National Cancer Center Research Institute, Tokyo, 104-0045 Japan
| | - Osamu Samura
- 0000 0001 0661 2073grid.411898.dDepartment of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471 Japan
| | - Hidenori Akutsu
- 0000 0004 0377 2305grid.63906.3aDepartment of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535 Japan
| | - Haruhiko Sago
- 0000 0004 0377 2305grid.63906.3aDepartment of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, 157-8535 Japan
| | - Aikou Okamoto
- 0000 0001 0661 2073grid.411898.dDepartment of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, 105-8471 Japan
| | - Akihiro Umezawa
- Department of Reproductive Biology, National Center for Child Health and Development, Tokyo, 157-8535, Japan.
| |
Collapse
|
177
|
The Autophagy-Lysosomal Pathways and Their Emerging Roles in Modulating Proteostasis in Tumors. Cells 2018; 8:cells8010004. [PMID: 30577555 PMCID: PMC6356230 DOI: 10.3390/cells8010004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022] Open
Abstract
In normal physiological condition, the maintenance of cellular proteostasis is a prerequisite for cell growth, functioning, adapting to changing micro-environments, and responding to extracellular stress. Cellular proteostasis is maintained by specific proteostasis networks (PNs) to prevent protein misfolding, aggregating, and accumulating in subcellular compartments. Commonly, the PNs are composed of protein synthesis, molecular chaperones, endoplasmic reticulum (ER), unfolded protein response (UPR), stress response pathways (SRPs), secretions, ubiquitin proteasome system (UPS), and autophagy-lysosomal pathways (ALPs). Although great efforts have been made to explore the underlying detailed mechanisms of proteostasis, there are many questions remain to explore, especially in proteostasis regulated by the ALPs. Proteostasis out-off-balance is correlated with various human diseases such as diabetes, stroke, inflammation, hypertension, pulmonary fibrosis, and Alzheimer’s disease. Enhanced regulation of PNs is observed in tumors, thereby indicating that proteostasis may play a pivotal role in tumorigenesis and cancer development. Recently, inhibitors targeting the UPS have shown to be failed in solid tumor treatment. However, there is growing evidence showing that the ALPs play important roles in regulation of proteostasis alone or with a crosstalk with other PNs in tumors. In this review, we provide insights into the proteostatic process and how it is regulated by the ALPs, such as macroautophagy, aggrephagy, chaperone-mediated autophagy, microautophagy, as well as mitophagy during tumor development.
Collapse
|
178
|
Smith JC, Sheltzer JM. Systematic identification of mutations and copy number alterations associated with cancer patient prognosis. eLife 2018; 7:e39217. [PMID: 30526857 PMCID: PMC6289580 DOI: 10.7554/elife.39217] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/12/2018] [Indexed: 02/06/2023] Open
Abstract
Successful treatment decisions in cancer depend on the accurate assessment of patient risk. To improve our understanding of the molecular alterations that underlie deadly malignancies, we analyzed the genomic profiles of 17,879 tumors from patients with known outcomes. We find that mutations in almost all cancer driver genes contain remarkably little information on patient prognosis. However, CNAs in these same driver genes harbor significant prognostic power. Focal CNAs are associated with worse outcomes than broad alterations, and CNAs in many driver genes remain prognostic when controlling for stage, grade, TP53 status, and total aneuploidy. By performing a meta-analysis across independent patient cohorts, we identify robust prognostic biomarkers in specific cancer types, and we demonstrate that a subset of these alterations also confer specific therapeutic vulnerabilities. In total, our analysis establishes a comprehensive resource for cancer biomarker identification and underscores the importance of gene copy number profiling in assessing clinical risk.
Collapse
|
179
|
Fusco P, Esposito MR, Tonini GP. Chromosome instability in neuroblastoma. Oncol Lett 2018; 16:6887-6894. [PMID: 30546420 PMCID: PMC6256707 DOI: 10.3892/ol.2018.9545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/30/2018] [Indexed: 12/28/2022] Open
Abstract
Neuroblastoma is a neural crest-derived tumor that accounts for 7-10% of all malignancies in children and ~15% of all childhood cancer-associated mortalities. Approximately 50% of patients are characterized as high-risk (HR) and have an overall survival of <40% at 5 years from diagnosis. HR patients with unfavorable prognosis exhibit several structural copy number variations (CNVs), whereas localized tumors belonging to patients in the low- and intermediate-risk classes, have favorable outcomes and display several numerical CNVs. Taken together these results are indicative of chromosome instability (CIN) in neuroblastoma tumor cells. The present review discusses multiple aspects of CIN including methods of measuring CIN, CIN targeting as a therapeutic strategy in cancer and the effects of CIN in neuroblastoma development and aggressiveness with particular emphasis on the CIN gene signature associated with HR neuroblastoma patients.
Collapse
Affiliation(s)
- Pina Fusco
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, I-35127 Padua, Italy
| | - Maria Rosaria Esposito
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, I-35127 Padua, Italy
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, I-35127 Padua, Italy
| |
Collapse
|
180
|
Zhang C, Qu L, Lian S, Meng L, Min L, Liu J, Song Q, Shen L, Shou C. PRL-3 Promotes Ubiquitination and Degradation of AURKA and Colorectal Cancer Progression via Dephosphorylation of FZR1. Cancer Res 2018; 79:928-940. [PMID: 30498084 DOI: 10.1158/0008-5472.can-18-0520] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 08/08/2018] [Accepted: 11/21/2018] [Indexed: 11/16/2022]
Abstract
The oncogenic phosphatase PRL-3 is highly expressed in metastatic colorectal cancer but not in nonmetastatic colorectal cancer or noncolorectal cancer metastatic cancers. Although the proinvasive capacity of PRL-3 has been validated in multiple types of cancer, its impact on colorectal cancer progression and the underlying mechanisms remain poorly understood. Here, we report that overexpressed PRL-3 stimulates G2-M arrest, chromosomal instability (CIN), self-renewal, and growth of colorectal cancer cells in xenograft models, while colorectal cancer cell proliferation is decreased. PRL-3-induced G2-M arrest was associated with decreased expression of Aurora kinase A (AURKA). PRL-3-promoted slow proliferation, CIN, self-renewal, and growth in xenografts were counteracted by ectopic expression of AURKA. Conversely, knockdown of PRL-3 resulted in low proliferation, S-phase arrest, impaired self-renewal, increased apoptosis, and diminished xenograft growth independently of AURKA. Analysis of colorectal cancer specimens showed that expression of PRL-3 was associated with high status of CIN and poor prognosis, which were antagonized by expression of AURKA. PRL-3 enhanced AURKA ubiquitination and degradation in a phosphatase-dependent fashion. PRL-3 interacted with AURKA and FZR1, a regulatory component of the APC/CFZR1 complex. Destabilization of AURKA by PRL-3 required PRL-3-mediated dephosphorylation of FZR1 and assembly of the APC/CFZR1 complex. Our study suggests that PRL-3-regulated colorectal cancer progression is collectively determined by distinct malignant phenotypes and further reveals PRL-3 as an essential regulator of APC/CFZR1 in controlling the stability of AURKA. SIGNIFICANCE: Dephosphorylation of FZR1 by PRL-3 facilitates the activity of APC/CFZR1 by destabilizing AURKA, thus influencing aggressive characteristics and overall progression of colorectal cancer.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.,Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Like Qu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.
| | - Shenyi Lian
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.,Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Meng
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Li Min
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.,Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing, China
| | - Jiafei Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Qian Song
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China.
| | - Chengchao Shou
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
181
|
Hou J, Shi X, Chen C, Islam MS, Johnson AF, Kanno T, Huettel B, Yen MR, Hsu FM, Ji T, Chen PY, Matzke M, Matzke AJM, Cheng J, Birchler JA. Global impacts of chromosomal imbalance on gene expression in Arabidopsis and other taxa. Proc Natl Acad Sci U S A 2018; 115:E11321-E11330. [PMID: 30429332 PMCID: PMC6275517 DOI: 10.1073/pnas.1807796115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Changes in dosage of part of the genome (aneuploidy) have long been known to produce much more severe phenotypic consequences than changes in the number of whole genomes (ploidy). To examine the basis of these differences, global gene expression in mature leaf tissue for all five trisomies and in diploids, triploids, and tetraploids of Arabidopsis thaliana was studied. The trisomies displayed a greater spread of expression modulation than the ploidy series. In general, expression of genes on the varied chromosome ranged from compensation to dosage effect, whereas genes from the remainder of the genome ranged from no effect to reduced expression approaching the inverse level of chromosomal imbalance (2/3). Genome-wide DNA methylation was examined in each genotype and found to shift most prominently with trisomy 4 but otherwise exhibited little change, indicating that genetic imbalance is generally mechanistically unrelated to DNA methylation. Independent analysis of gene functional classes demonstrated that ribosomal, proteasomal, and gene body methylated genes were less modulated compared with all classes of genes, whereas transcription factors, signal transduction components, and organelle-targeted protein genes were more tightly inversely affected. Comparing transcription factors and their targets in the trisomies and in expression networks revealed considerable discordance, illustrating that altered regulatory stoichiometry is a major contributor to genetic imbalance. Reanalysis of published data on gene expression in disomic yeast and trisomic mouse cells detected similar stoichiometric effects across broad phylogenetic taxa, and indicated that these effects reflect normal gene regulatory processes.
Collapse
Affiliation(s)
- Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - Md Soliman Islam
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - Adam F Johnson
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam 550000
| | - Tatsuo Kanno
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding, Cologne, Germany 50829
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
| | - Fei-Man Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO 65211
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529
| | - Marjori Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529;
| | - Antonius J M Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan 11529;
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211;
| |
Collapse
|
182
|
Simonetti G, Padella A, do Valle IF, Fontana MC, Fonzi E, Bruno S, Baldazzi C, Guadagnuolo V, Manfrini M, Ferrari A, Paolini S, Papayannidis C, Marconi G, Franchini E, Zuffa E, Laginestra MA, Zanotti F, Astolfi A, Iacobucci I, Bernardi S, Sazzini M, Ficarra E, Hernandez JM, Vandenberghe P, Cools J, Bullinger L, Ottaviani E, Testoni N, Cavo M, Haferlach T, Castellani G, Remondini D, Martinelli G. Aneuploid acute myeloid leukemia exhibits a signature of genomic alterations in the cell cycle and protein degradation machinery. Cancer 2018; 125:712-725. [PMID: 30480765 PMCID: PMC6587451 DOI: 10.1002/cncr.31837] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/08/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
Abstract
Background Aneuploidy occurs in more than 20% of acute myeloid leukemia (AML) cases and correlates with an adverse prognosis. Methods To understand the molecular bases of aneuploid acute myeloid leukemia (A‐AML), this study examined the genomic profile in 42 A‐AML cases and 35 euploid acute myeloid leukemia (E‐AML) cases. Results A‐AML was characterized by increased genomic complexity based on exonic variants (an average of 26 somatic mutations per sample vs 15 for E‐AML). The integration of exome, copy number, and gene expression data revealed alterations in genes involved in DNA repair (eg, SLX4IP, RINT1, HINT1, and ATR) and the cell cycle (eg, MCM2, MCM4, MCM5, MCM7, MCM8, MCM10, UBE2C, USP37, CK2, CK3, CK4, BUB1B, NUSAP1, and E2F) in A‐AML, which was associated with a 3‐gene signature defined by PLK1 and CDC20 upregulation and RAD50 downregulation and with structural or functional silencing of the p53 transcriptional program. Moreover, A‐AML was enriched for alterations in the protein ubiquitination and degradation pathway (eg, increased levels of UHRF1 and UBE2C and decreased UBA3 expression), response to reactive oxygen species, energy metabolism, and biosynthetic processes, which may help in facing the unbalanced protein load. E‐AML was associated with BCOR/BCORL1 mutations and HOX gene overexpression. Conclusions These findings indicate that aneuploidy‐related and leukemia‐specific alterations cooperate to tolerate an abnormal chromosome number in AML, and they point to the mitotic and protein degradation machineries as potential therapeutic targets. Aneuploid acute myeloid leukemia (A‐AML) is associated with genomic and transcriptional alterations in the cell cycle and protein degradation pathways. The upregulation of PLK1 and CDC20 and the downregulation of RAD50 and of a p53‐related signature are hallmarks of A‐AML.
Collapse
Affiliation(s)
- Giorgia Simonetti
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Antonella Padella
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Italo Farìa do Valle
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy.,CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Maria Chiara Fontana
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Eugenio Fonzi
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Samantha Bruno
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Carmen Baldazzi
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Viviana Guadagnuolo
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Marco Manfrini
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Anna Ferrari
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Stefania Paolini
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Cristina Papayannidis
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Giovanni Marconi
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Eugenia Franchini
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Elisa Zuffa
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Maria Antonella Laginestra
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Federica Zanotti
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Annalisa Astolfi
- Giorgio Prodi Cancer Research Center, University of Bologna, Bologna, Italy
| | - Ilaria Iacobucci
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Simona Bernardi
- Unit of Blood Diseases and Stem Cell Transplantation, University of Brescia, Brescia, Italy
| | - Marco Sazzini
- Department of Biological Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | | | - Jesus Maria Hernandez
- Fundación de Investigación del Cáncer de la Universidad de Salamanca, Salamanca, Spain
| | | | - Jan Cools
- Katholieke Universiteit Leuven, Leuven, Belgium
| | | | - Emanuela Ottaviani
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Nicoletta Testoni
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | - Michele Cavo
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| | | | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Giovanni Martinelli
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna and L. e A. Seràgnoli Institute of Hematology, Bologna, Italy
| |
Collapse
|
183
|
Smith ER, Capo-Chichi CD, Xu XX. Defective Nuclear Lamina in Aneuploidy and Carcinogenesis. Front Oncol 2018; 8:529. [PMID: 30524960 PMCID: PMC6256246 DOI: 10.3389/fonc.2018.00529] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/29/2018] [Indexed: 01/05/2023] Open
Abstract
Aneuploidy, loss or gain of whole chromosomes, is a prominent feature of carcinomas, and is generally considered to play an important role in the initiation and progression of cancer. In high-grade serous ovarian cancer, the only common gene aberration is the p53 point mutation, though extensive genomic perturbation is common due to severe aneuploidy, which presents as a deviant karyotype. Several mechanisms for the development of aneuploidy in cancer cells have been recognized, including chromosomal non-disjunction during mitosis, centrosome amplification, and more recently, nuclear envelope rupture at interphase. Many cancer types including ovarian cancer have lost or reduced expression of Lamin A/C, a structural component of the lamina matrix that underlies the nuclear envelope in differentiated cells. Several recent studies suggest that a nuclear lamina defect caused by the loss or reduction of Lamin A/C leads to failure in cytokinesis and formation of tetraploid cells, transient nuclear envelope rupture, and formation of nuclear protrusions and micronuclei during the cell cycle gap phase. Thus, loss and reduction of Lamin A/C underlies the two common features of cancer—aberrations in nuclear morphology and aneuploidy. We discuss here and emphasize the newly recognized mechanism of chromosomal instability due to the rupture of a defective nuclear lamina, which may account for the rapid genomic changes in carcinogenesis.
Collapse
Affiliation(s)
- Elizabeth R Smith
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Callinice D Capo-Chichi
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States.,Laboratory of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, University of Abomey-Calavi, Abomey Calavi, Benin
| | - Xiang-Xi Xu
- Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
184
|
Simonetti G, Bruno S, Padella A, Tenti E, Martinelli G. Aneuploidy: Cancer strength or vulnerability? Int J Cancer 2018; 144:8-25. [PMID: 29981145 PMCID: PMC6587540 DOI: 10.1002/ijc.31718] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 12/12/2022]
Abstract
Aneuploidy is a very rare and tissue‐specific event in normal conditions, occurring in a low number of brain and liver cells. Its frequency increases in age‐related disorders and is one of the hallmarks of cancer. Aneuploidy has been associated with defects in the spindle assembly checkpoint (SAC). However, the relationship between chromosome number alterations, SAC genes and tumor susceptibility remains unclear. Here, we provide a comprehensive review of SAC gene alterations at genomic and transcriptional level across human cancers and discuss the oncogenic and tumor suppressor functions of aneuploidy. SAC genes are rarely mutated but frequently overexpressed, with a negative prognostic impact on different tumor types. Both increased and decreased SAC gene expression show oncogenic potential in mice. SAC gene upregulation may drive aneuploidization and tumorigenesis through mitotic delay, coupled with additional oncogenic functions outside mitosis. The genomic background and environmental conditions influence the fate of aneuploid cells. Aneuploidy reduces cellular fitness. It induces growth and contact inhibition, mitotic and proteotoxic stress, cell senescence and production of reactive oxygen species. However, aneuploidy confers an evolutionary flexibility by favoring genome and chromosome instability (CIN), cellular adaptation, stem cell‐like properties and immune escape. These properties represent the driving force of aneuploid cancers, especially under conditions of stress and pharmacological pressure, and are currently under investigation as potential therapeutic targets. Indeed, promising results have been obtained from synthetic lethal combinations exploiting CIN, mitotic defects, and aneuploidy‐tolerating mechanisms as cancer vulnerability.
Collapse
Affiliation(s)
- Giorgia Simonetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Antonella Padella
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Elena Tenti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
185
|
Simões-Sousa S, Littler S, Thompson SL, Minshall P, Whalley H, Bakker B, Belkot K, Moralli D, Bronder D, Tighe A, Spierings DCJ, Bah N, Graham J, Nelson L, Green CM, Foijer F, Townsend PA, Taylor SS. The p38α Stress Kinase Suppresses Aneuploidy Tolerance by Inhibiting Hif-1α. Cell Rep 2018; 25:749-760.e6. [PMID: 30332653 PMCID: PMC6205844 DOI: 10.1016/j.celrep.2018.09.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/25/2018] [Accepted: 09/18/2018] [Indexed: 12/20/2022] Open
Abstract
Deviating from the normal karyotype dramatically changes gene dosage, in turn decreasing the robustness of biological networks. Consequently, aneuploidy is poorly tolerated by normal somatic cells and acts as a barrier to transformation. Paradoxically, however, karyotype heterogeneity drives tumor evolution and the emergence of therapeutic drug resistance. To better understand how cancer cells tolerate aneuploidy, we focused on the p38 stress response kinase. We show here that p38-deficient cells upregulate glycolysis and avoid post-mitotic apoptosis, leading to the emergence of aneuploid subclones. We also show that p38 deficiency upregulates the hypoxia-inducible transcription factor Hif-1α and that inhibiting Hif-1α restores apoptosis in p38-deficent cells. Because hypoxia and aneuploidy are both barriers to tumor progression, the ability of Hif-1α to promote cell survival following chromosome missegregation raises the possibility that aneuploidy tolerance coevolves with adaptation to hypoxia.
Collapse
Affiliation(s)
- Susana Simões-Sousa
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Samantha Littler
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Sarah L Thompson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Paul Minshall
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Helen Whalley
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Bjorn Bakker
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | - Klaudyna Belkot
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Daniela Moralli
- Wellcome Centre Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Daniel Bronder
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Anthony Tighe
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Diana C J Spierings
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | - Nourdine Bah
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Joshua Graham
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Louisa Nelson
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Catherine M Green
- Wellcome Centre Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV Groningen, the Netherlands
| | - Paul A Townsend
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK
| | - Stephen S Taylor
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Cancer Research Centre, Wilmslow Road, Manchester M20 4QL, UK.
| |
Collapse
|
186
|
Samarani M, Loberto N, Soldà G, Straniero L, Asselta R, Duga S, Lunghi G, Zucca FA, Mauri L, Ciampa MG, Schiumarini D, Bassi R, Giussani P, Chiricozzi E, Prinetti A, Aureli M, Sonnino S. A lysosome-plasma membrane-sphingolipid axis linking lysosomal storage to cell growth arrest. FASEB J 2018; 32:5685-5702. [PMID: 29746165 PMCID: PMC6133699 DOI: 10.1096/fj.201701512rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/30/2018] [Indexed: 01/15/2023]
Abstract
Lysosomal accumulation of undegraded materials is a common feature of lysosomal storage diseases, neurodegenerative disorders, and the aging process. To better understand the role of lysosomal storage in the onset of cell damage, we used human fibroblasts loaded with sucrose as a model of lysosomal accumulation. Sucrose-loaded fibroblasts displayed increased lysosomal biogenesis followed by arrested cell proliferation. Notably, we found that reduced lysosomal catabolism and autophagy impairment led to an increase in sphingolipids ( i.e., sphingomyelin, glucosylceramide, ceramide, and the gangliosides GM3 and GD3), at both intracellular and plasma membrane (PM) levels. In addition, we observed an increase in the lysosomal membrane protein Lamp-1 on the PM of sucrose-loaded fibroblasts and a greater release of the soluble lysosomal protein cathepsin D in their extracellular medium compared with controls. These results indicate increased fusion between lysosomes and the PM, as also suggested by the increased activity of lysosomal glycosphingolipid hydrolases on the PM of sucrose-loaded fibroblasts. The inhibition of β-glucocerebrosidase and nonlysosomal glucosylceramidase, both involved in ceramide production resulting from glycosphingolipid catabolism on the PM, partially restored cell proliferation. Our findings indicate the existence of a new molecular mechanism underlying cell damage triggered by lysosomal impairment.-Samarani, M., Loberto, N., Soldà, G., Straniero, L., Asselta, R., Duga, S., Lunghi, G., Zucca, F. A., Mauri, L., Ciampa, M. G., Schiumarini, D., Bassi, R., Giussani, P., Chiricozzi, E., Prinetti, A., Aureli, M., Sonnino, S. A lysosome-plasma membrane-sphingolipid axis linking lysosomal storage to cell growth arrest.
Collapse
Affiliation(s)
- Maura Samarani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Nicoletta Loberto
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Letizia Straniero
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Fabio A. Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Maria Grazia Ciampa
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Domitilla Schiumarini
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Rosaria Bassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Elena Chiricozzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
187
|
Gatie MI, Kelly GM. Metabolic profile and differentiation potential of extraembryonic endoderm-like cells. Cell Death Discov 2018; 4:42. [PMID: 30302276 PMCID: PMC6158286 DOI: 10.1038/s41420-018-0102-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 08/20/2018] [Accepted: 08/28/2018] [Indexed: 02/08/2023] Open
Abstract
Glucose metabolism has a crucial role for providing substrates required to generate ATP and regulate the epigenetic landscape. We reported that F9 embryonal carcinoma stem-like cells require cytosolic reactive oxygen species to differentiate into extraembryonic endoderm; however, mitochondrial sources were not examined. To extend these studies, we examined the metabolic profile of early and late-passage F9 cells, and show that their ability to differentiate is similar, even though each population has dramatically different metabolic profiles. Differentiated early-passage cells relied on glycolysis, while differentiated late-passage cells transitioned towards oxidative phosphorylation (OXPHOS). Unexpectedly, electron transport chain protein stoichiometry was disrupted in differentiated late-passage cells, whereas genes encoding mitofusion 1 and 2, which promote mitochondrial fusion and favor OXPHOS, were upregulated in differentiated early-passage cells. Despite this, early-passage cells cultured under conditions to promote glycolysis showed enhanced differentiation, whereas promoting OXPHOS in late-passage cells showed a similar trend. Further analysis revealed that the distinct metabolic profiles seen between the two populations is largely associated with changes in genomic integrity, linking metabolism to passage number. Together, these results indicate that passaging has no effect on the potential for F9 cells to differentiate into extraembryonic endoderm; however, it does impact their metabolic profile. Thus, it is imperative to determine the molecular and metabolic status of a stem cell population before considering its utility as a therapeutic tool for regenerative medicine.
Collapse
Affiliation(s)
- Mohamed I Gatie
- 1Department of Biology, Collaborative Graduate Specialization in Developmental Biology, The University of Western Ontario, London, ON Canada
| | - Gregory M Kelly
- 1Department of Biology, Collaborative Graduate Specialization in Developmental Biology, The University of Western Ontario, London, ON Canada.,2Department of Paediatrics, The University of Western Ontario, London, ON Canada.,3Department of Physiology and Pharmacology, The University of Western Ontario, London, ON Canada.,Child Health Research Institute, London, ON Canada.,5Ontario Institute for Regenerative Medicine, Toronto, ON Canada
| |
Collapse
|
188
|
Zhang L, Wei D, Zhu Y, Gao Y, Yan J, Chen ZJ. Rates of live birth after mosaic embryo transfer compared with euploid embryo transfer. J Assist Reprod Genet 2018; 36:165-172. [PMID: 30246223 DOI: 10.1007/s10815-018-1322-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/14/2018] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Mosaicism is a prevalent characteristic of human preimplantation embryos. This retrospective cohort study aimed to investigate pregnancy outcomes after transfer of mosaic or euploid embryos. METHODS The embryos, which had been transferred as "euploidy," were processed using array-based comparative genomic hybridization (aCGH). The original aCGH charts of the transferred embryos were reanalyzed. Mosaic and control euploid embryos were defined according to log2 ratio calls. RESULTS Overall, 102 embryos were determined to be mosaic, of which 101 were estimated to harbor no more than 50% aneuploid mosaicism. Additionally, 268 euploid embryos were matched as controls. The rates of live birth (46.6% vs. 59.1%, odds ratio (OR) 0.60, 95% confidence interval (CI) 0.38-0.95), and biochemical pregnancy (65.7% vs. 76.1%, OR 0.60, 95% CI 0.37-0.99) per transfer cycle were significantly lower after mosaic embryo transfer than after euploid embryo transfer. The rates of clinical pregnancy and pregnancy loss and the risks of obstetric outcomes did not differ significantly between the two groups. CONCLUSIONS Compared with euploid embryo transfer, mosaic embryo transfer is associated with a lower rate of live birth, which is mainly attributed to a decreased rate of conception. However, as mosaic embryo transfer yielded a live birth rate of 46.6%, patients without euploid embryos could be counseled regarding this alternative option.
Collapse
Affiliation(s)
- Lei Zhang
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jingliu Road 157, Jinan, 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Daimin Wei
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jingliu Road 157, Jinan, 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Yueting Zhu
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jingliu Road 157, Jinan, 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Yuan Gao
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jingliu Road 157, Jinan, 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China
| | - Junhao Yan
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jingliu Road 157, Jinan, 250021, China. .,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China. .,The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China. .,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jingliu Road 157, Jinan, 250021, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China.,The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.,Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, China.,Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
| |
Collapse
|
189
|
Rao CV, Farooqui M, Asch AS, Yamada HY. Critical role of mitosis in spontaneous late-onset Alzheimer's disease; from a Shugoshin 1 cohesinopathy mouse model. Cell Cycle 2018; 17:2321-2334. [PMID: 30231670 DOI: 10.1080/15384101.2018.1515554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
From early-onset Alzheimer's disease (EOAD) studies, the amyloid-beta hypothesis emerged as the foremost theory of the pathological causes of AD. However, how amyloid-beta accumulation is triggered and progresses toward senile plaques in spontaneous late-onset Alzheimer's disease (LOAD) in humans remains unanswered. Various LOAD facilitators have been proposed, and LOAD is currently considered a complex disease with multiple causes. Mice do not normally develop LOAD. Possibly due to the multiple causes, proposed LOAD facilitators have not been able to replicate spontaneous LOAD in mice, representing a disease modeling issue. Recently, we reported spontaneous late-onset development of amyloid-beta accumulation in brains of Shugoshin 1 (Sgo1) haploinsufficient mice, a cohesinopathy-mediated chromosome instability model. The result for the first time expands disease relevance of mitosis studies to a major disease other than cancers. Reverse-engineering of the model would shed light on the process of late-onset amyloid-beta accumulation in the brain and spontaneous LOAD development, and contribute to development of interventions for LOAD. This review will discuss the Sgo1 model, our current "three-hit hypothesis" regarding LOAD development with an emphasis on critical role of prolonged mitosis in amyloid-beta accumulation, and implications for human LOAD intervention and treatment. Abbreviations: Alzheimer's disease (AD); Late-onset Alzheimer's disease (LOAD); Early-onset Alzheimer's disease (EOAD); Shugoshin-1 (Sgo1); Chromosome Instability (CIN); apolipoprotein (Apoe); Central nervous system (CNS); Amyloid precursor protein (APP); N-methyl-d-aspartate (NMDA); Hazard ratio (HR); Cyclin-dependent kinase (CDK); Chronic Atrial Intestinal Dysrhythmia (CAID); beta-secretase 1 (BACE); phosphor-Histone H3 (p-H3); Research and development (R&D); Non-steroidal anti-inflammatory drugs (NSAIDs); Brain blood barrier (BBB).
Collapse
Affiliation(s)
- Chinthalapally V Rao
- a Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section , University of Oklahoma Health Sciences Center (OUHSC) , Oklahoma City , OK , USA
| | - Mudassir Farooqui
- a Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section , University of Oklahoma Health Sciences Center (OUHSC) , Oklahoma City , OK , USA
| | - Adam S Asch
- b Stephenson Cancer Center, Department of Medicine, Hematology/Oncology Section , University of Oklahoma Health Sciences Center (OUHSC) , Oklahoma City , OK , USA
| | - Hiroshi Y Yamada
- a Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section , University of Oklahoma Health Sciences Center (OUHSC) , Oklahoma City , OK , USA
| |
Collapse
|
190
|
Knouse KA, Lopez KE, Bachofner M, Amon A. Chromosome Segregation Fidelity in Epithelia Requires Tissue Architecture. Cell 2018; 175:200-211.e13. [PMID: 30146160 PMCID: PMC6151153 DOI: 10.1016/j.cell.2018.07.042] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/17/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022]
Abstract
Much of our understanding of chromosome segregation is based on cell culture systems. Here, we examine the importance of the tissue environment for chromosome segregation by comparing chromosome segregation fidelity across several primary cell types in native and nonnative contexts. We discover that epithelial cells have increased chromosome missegregation outside of their native tissues. Using organoid culture systems, we show that tissue architecture, specifically integrin function, is required for accurate chromosome segregation. We find that tissue architecture enhances the correction of merotelic microtubule-kinetochore attachments, and this is especially important for maintaining chromosome stability in the polyploid liver. We propose that disruption of tissue architecture could underlie the widespread chromosome instability across epithelial cancers. Moreover, our findings highlight the extent to which extracellular context can influence intrinsic cellular processes and the limitations of cell culture systems for studying cells that naturally function within a tissue.
Collapse
Affiliation(s)
- Kristin A Knouse
- Koch Institute for Integrative Cancer Research, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA.
| | - Kristina E Lopez
- Koch Institute for Integrative Cancer Research, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marc Bachofner
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Angelika Amon
- Koch Institute for Integrative Cancer Research, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
191
|
Restricted cell cycle is essential for clonal evolution and therapeutic resistance of pre-leukemic stem cells. Nat Commun 2018; 9:3535. [PMID: 30166543 PMCID: PMC6117297 DOI: 10.1038/s41467-018-06021-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/02/2018] [Indexed: 01/02/2023] Open
Abstract
Pre-leukemic stem cells (pre-LSCs) give rise to leukemic stem cells through acquisition of additional gene mutations and are an important source of relapse following chemotherapy. We postulated that cell-cycle kinetics of pre-LSCs may be an important determinant of clonal evolution and therapeutic resistance. Using a doxycycline-inducible H2B-GFP transgene in a mouse model of T-cell acute lymphoblastic leukemia to study cell cycle in vivo, we show that self-renewal, clonal evolution and therapeutic resistance are limited to a rare population of pre-LSCs with restricted cell cycle. We show that proliferative pre-LSCs are unable to return to a cell cycle-restricted state. Cell cycle-restricted pre-LSCs have activation of p53 and its downstream cell-cycle inhibitor p21. Furthermore, absence of p21 leads to proliferation of pre-LSCs, with clonal extinction through loss of asymmetric cell division and terminal differentiation. Thus, inducing proliferation of pre-LSCs represents a promising strategy to increase cure rates for acute leukemia.
Collapse
|
192
|
Abstract
The billions of proteins inside a eukaryotic cell are organized among dozens of sub-cellular compartments, within which they are further organized into protein complexes. The maintenance of both levels of organization is crucial for normal cellular function. Newly made proteins that fail to be segregated to the correct compartment or assembled into the appropriate complex are defined as orphans. In this review, we discuss the challenges faced by a cell of minimizing orphaned proteins, the quality control systems that recognize orphans, and the consequences of excess orphans for protein homeostasis and disease.
Collapse
|
193
|
Macedo JC, Vaz S, Bakker B, Ribeiro R, Bakker PL, Escandell JM, Ferreira MG, Medema R, Foijer F, Logarinho E. FoxM1 repression during human aging leads to mitotic decline and aneuploidy-driven full senescence. Nat Commun 2018; 9:2834. [PMID: 30026603 PMCID: PMC6053425 DOI: 10.1038/s41467-018-05258-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
Aneuploidy, an abnormal chromosome number, has been linked to aging and age-associated diseases, but the underlying molecular mechanisms remain unknown. Here we show, through direct live-cell imaging of young, middle-aged, and old-aged primary human dermal fibroblasts, that aneuploidy increases with aging due to general dysfunction of the mitotic machinery. Increased chromosome mis-segregation in elderly mitotic cells correlates with an early senescence-associated secretory phenotype (SASP) and repression of Forkhead box M1 (FoxM1), the transcription factor that drives G2/M gene expression. FoxM1 induction in elderly and Hutchison–Gilford progeria syndrome fibroblasts prevents aneuploidy and, importantly, ameliorates cellular aging phenotypes. Moreover, we show that senescent fibroblasts isolated from elderly donors’ cultures are often aneuploid, and that aneuploidy is a key trigger into full senescence phenotypes. Based on this feedback loop between cellular aging and aneuploidy, we propose modulation of mitotic efficiency through FoxM1 as a potential strategy against aging and progeria syndromes. Evidence for mitotic decline in aged cells and for aneuploidy-driven progression into full senescence is limited. Here, the authors find that in aged cells, mitotic gene repression leads to increased chromosome mis-segregation and aneuploidy that triggers permanent cell cycle arrest and full senescence.
Collapse
Affiliation(s)
- Joana Catarina Macedo
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Sara Vaz
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Bjorn Bakker
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, NL-9713 AV, Groningen, The Netherlands
| | - Rui Ribeiro
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Petra Lammigje Bakker
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, NL-9713 AV, Groningen, The Netherlands
| | - Jose Miguel Escandell
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901, Oeiras, Portugal
| | - Miguel Godinho Ferreira
- Telomere and Genome Stability Laboratory, Instituto Gulbenkian de Ciência, 2781-901, Oeiras, Portugal.,Telomere Shortening and Cancer Laboratory, Institute for Research on Cancer and Aging (IRCAN), UMR7284, U1081, UNS, 06107, Nice, France
| | - René Medema
- Division of Cell Biology and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Aging, University of Groningen, University Medical Center Groningen, NL-9713 AV, Groningen, The Netherlands
| | - Elsa Logarinho
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal. .,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal. .,Cell Division Unit, Faculty of Medicine, Department of Experimental Biology, Universidade do Porto, 4200-319, Porto, Portugal.
| |
Collapse
|
194
|
Aziz NM, Guedj F, Pennings JLA, Olmos-Serrano JL, Siegel A, Haydar TF, Bianchi DW. Lifespan analysis of brain development, gene expression and behavioral phenotypes in the Ts1Cje, Ts65Dn and Dp(16)1/Yey mouse models of Down syndrome. Dis Model Mech 2018; 11:dmm031013. [PMID: 29716957 PMCID: PMC6031353 DOI: 10.1242/dmm.031013] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Down syndrome (DS) results from triplication of human chromosome 21. Neuropathological hallmarks of DS include atypical central nervous system development that manifests prenatally and extends throughout life. As a result, individuals with DS exhibit cognitive and motor deficits, and have delays in achieving developmental milestones. To determine whether different mouse models of DS recapitulate the human prenatal and postnatal phenotypes, here, we directly compared brain histogenesis, gene expression and behavior over the lifespan of three cytogenetically distinct mouse models of DS: Ts1Cje, Ts65Dn and Dp(16)1/Yey. Histological data indicated that Ts65Dn mice were the most consistently affected with respect to somatic growth, neurogenesis and brain morphogenesis. Embryonic and adult gene expression results showed that Ts1Cje and Ts65Dn brains had considerably more differentially expressed (DEX) genes compared with Dp(16)1/Yey mice, despite the larger number of triplicated genes in the latter model. In addition, DEX genes showed little overlap in identity and chromosomal distribution in the three models, leading to dissimilarities in affected functional pathways. Perinatal and adult behavioral testing also highlighted differences among the models in their abilities to achieve various developmental milestones and perform hippocampal- and motor-based tasks. Interestingly, Dp(16)1/Yey mice showed no abnormalities in prenatal brain phenotypes, yet they manifested behavioral deficits starting at postnatal day 15 that continued through adulthood. In contrast, Ts1Cje mice showed mildly abnormal embryonic brain phenotypes, but only select behavioral deficits as neonates and adults. Altogether, our data showed widespread and unexpected fundamental differences in behavioral, gene expression and brain development phenotypes between these three mouse models. Our findings illustrate unique limitations of each model when studying aspects of brain development and function in DS. This work helps to inform model selection in future studies investigating how observed neurodevelopmental abnormalities arise, how they contribute to cognitive impairment, and when testing therapeutic molecules to ameliorate the intellectual disability associated with DS.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nadine M Aziz
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Faycal Guedj
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeroen L A Pennings
- Center for Health Protection, National Institute for Public Health and the Environment, 3720 BA Bilthoven, The Netherlands
| | - Jose Luis Olmos-Serrano
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ashley Siegel
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Diana W Bianchi
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
195
|
Cánovas B, Igea A, Sartori AA, Gomis RR, Paull TT, Isoda M, Pérez-Montoyo H, Serra V, González-Suárez E, Stracker TH, Nebreda AR. Targeting p38α Increases DNA Damage, Chromosome Instability, and the Anti-tumoral Response to Taxanes in Breast Cancer Cells. Cancer Cell 2018; 33:1094-1110.e8. [PMID: 29805078 DOI: 10.1016/j.ccell.2018.04.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 01/18/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022]
Abstract
Breast cancer is the second leading cause of cancer-related death among women. Here we report a role for the protein kinase p38α in coordinating the DNA damage response and limiting chromosome instability during breast tumor progression, and identify the DNA repair regulator CtIP as a p38α substrate. Accordingly, decreased p38α signaling results in impaired ATR activation and homologous recombination repair, with concomitant increases in replication stress, DNA damage, and chromosome instability, leading to cancer cell death and tumor regression. Moreover, we show that pharmacological inhibition of p38α potentiates the effects of taxanes by boosting chromosome instability in murine models and patient-derived xenografts, suggesting the potential interest of combining p38α inhibitors with chemotherapeutic drugs that induce chromosome instability.
Collapse
Affiliation(s)
- Begoña Cánovas
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Ana Igea
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Alessandro A Sartori
- University of Zurich, Institute of Molecular Cancer Research, Zurich 8057, Switzerland
| | - Roger R Gomis
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain; Universitat de Barcelona and CIBERONC, Barcelona, Spain
| | - Tanya T Paull
- Howard Hughes Medical Institute, University of Texas at Austin, Austin, TX 78712, USA
| | - Michitaka Isoda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Héctor Pérez-Montoyo
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| | - Violeta Serra
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona 08035, Spain
| | - Eva González-Suárez
- Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Angel R Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona 08028, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
196
|
Cancer: a CINful evolution. Curr Opin Cell Biol 2018; 52:136-144. [DOI: 10.1016/j.ceb.2018.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/06/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
|
197
|
Zhu J, Tsai HJ, Gordon MR, Li R. Cellular Stress Associated with Aneuploidy. Dev Cell 2018; 44:420-431. [PMID: 29486194 DOI: 10.1016/j.devcel.2018.02.002] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 01/10/2023]
Abstract
Aneuploidy, chromosome stoichiometry that deviates from exact multiples of the haploid compliment of an organism, exists in eukaryotic microbes, several normal human tissues, and the majority of solid tumors. Here, we review the current understanding about the cellular stress states that may result from aneuploidy. The topics of aneuploidy-induced proteotoxic, metabolic, replication, and mitotic stress are assessed in the context of the gene dosage imbalance observed in aneuploid cells. We also highlight emerging findings related to the downstream effects of aneuploidy-induced cellular stress on the immune surveillance against aneuploid cells.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hung-Ji Tsai
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Molly R Gordon
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
198
|
Acquisition of an oncogenic fusion protein serves as an initial driving mutation by inducing aneuploidy and overriding proliferative defects. Oncotarget 2018; 7:62814-62835. [PMID: 27588498 PMCID: PMC5325330 DOI: 10.18632/oncotarget.11716] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/10/2016] [Indexed: 11/25/2022] Open
Abstract
While many solid tumors are defined by the presence of a particular oncogene, the role that this oncogene plays in driving transformation through the acquisition of aneuploidy and overcoming growth arrest are often not known. Further, although aneuploidy is present in many solid tumors, it is not clear whether it is the cause or effect of malignant transformation. The childhood sarcoma, Alveolar Rhabdomyosarcoma (ARMS), is primarily defined by the t(2;13)(q35;q14) translocation, creating the PAX3-FOXO1 fusion protein. It is unclear what role PAX3-FOXO1 plays in the initial stages of tumor development through the acquisition and persistence of aneuploidy. In this study we demonstrate that PAX3-FOXO1 serves as a driver mutation to initiate a cascade of mRNA and miRNA changes that ultimately reprogram proliferating myoblasts to induce the formation of ARMS. We present evidence that cells containing PAX3-FOXO1 have changes in the expression of mRNA and miRNA essential for maintaining proper chromosome number and structure thereby promoting aneuploidy. Further, we demonstrate that the presence of PAX3-FOXO1 alters the expression of growth factor related mRNA and miRNA, thereby overriding aneuploid-dependent growth arrest. Finally, we present evidence that phosphorylation of PAX3-FOXO1 contributes to these changes. This is one of the first studies describing how an oncogene and post-translational modifications drive the development of a tumor through the acquisition and persistence of aneuploidy. This mechanism has implications for other solid tumors where large-scale genomics studies may elucidate how global alterations contribute to tumor phenotypes allowing the development of much needed multi-faceted tumor-specific therapeutic regimens.
Collapse
|
199
|
Viganó C, von Schubert C, Ahrné E, Schmidt A, Lorber T, Bubendorf L, De Vetter JRF, Zaman GJR, Storchova Z, Nigg EA. Quantitative proteomic and phosphoproteomic comparison of human colon cancer DLD-1 cells differing in ploidy and chromosome stability. Mol Biol Cell 2018; 29:1031-1047. [PMID: 29496963 PMCID: PMC5921571 DOI: 10.1091/mbc.e17-10-0577] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/15/2018] [Accepted: 02/21/2018] [Indexed: 11/11/2022] Open
Abstract
Although aneuploidy is poorly tolerated during embryogenesis, aneuploidy and whole chromosomal instability (CIN) are common hallmarks of cancer, raising the question of how cancer cells can thrive in spite of chromosome aberrations. Here we present a comprehensive and quantitative proteomics analysis of isogenic DLD-1 colorectal adenocarcinoma cells lines, aimed at identifying cellular responses to changes in ploidy and/or CIN. Specifically, we compared diploid (2N) and tetraploid (4N) cells with posttetraploid aneuploid (PTA) clones and engineered trisomic clones. Our study provides a comparative data set on the proteomes and phosphoproteomes of the above cell lines, comprising several thousand proteins and phosphopeptides. In comparison to the parental 2N line, we observed changes in proteins associated with stress responses and with interferon signaling. Although we did not detect a conspicuous protein signature associated with CIN, we observed many changes in phosphopeptides that relate to fundamental cellular processes, including mitotic progression and spindle function. Most importantly, we found that most changes detectable in PTA cells were already present in the 4N progenitor line. This suggests that activation of mitotic pathways through hyper-phosphorylation likely constitutes an important response to chromosomal burden. In line with this conclusion, cells with extensive chromosome gains showed differential sensitivity toward a number of inhibitors targeting cell cycle kinases, suggesting that the efficacy of anti-mitotic drugs may depend on the karyotype of cancer cells.
Collapse
Affiliation(s)
| | | | - Erik Ahrné
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Thomas Lorber
- Institute of Pathology, University Hospital Basel, University of Basel, 4056 Basel, Switzerland
| | - Lukas Bubendorf
- Institute of Pathology, University Hospital Basel, University of Basel, 4056 Basel, Switzerland
| | | | - Guido J. R. Zaman
- Netherlands Translational Research Center B.V., 5340 Oss, The Netherlands
| | | | - Erich A. Nigg
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
200
|
Godek KM, Compton DA. Quantitative methods to measure aneuploidy and chromosomal instability. Methods Cell Biol 2018; 144:15-32. [PMID: 29804667 DOI: 10.1016/bs.mcb.2018.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cell viability requires accurate chromosome segregation during meiosis and mitosis so that the daughter cells produced have the correct chromosome complement. In contrast, chromosome segregation errors lead to aneuploidy, a state of abnormal chromosome numbers. Furthermore, a persistently high rate of chromosome segregation errors causes the related phenomenon of whole chromosomal instability (w-CIN). Aneuploidy and w-CIN are common characteristics of several human conditions and diseases including birth defects and cancers. Thus, methods to measure aneuploidy and w-CIN have important research applications in many areas of cell biology. In this chapter, we describe methods to measure chromosome missegregation rates and aneuploid cell survival with a focus on cells grown in culture; however, we also highlight methods that are amenable to primary tissue samples. Together, these methods provide a comprehensive approach to determining the frequency of aneuploidy and w-CIN in cells.
Collapse
Affiliation(s)
- Kristina M Godek
- Geisel School of Medicine, Hanover, NH, United States; Norris Cotton Cancer Center, Lebanon, NH, United States
| | - Duane A Compton
- Geisel School of Medicine, Hanover, NH, United States; Norris Cotton Cancer Center, Lebanon, NH, United States.
| |
Collapse
|