151
|
Paaby AB, White AG, Riccardi DD, Gunsalus KC, Piano F, Rockman MV. Wild worm embryogenesis harbors ubiquitous polygenic modifier variation. eLife 2015; 4. [PMID: 26297805 PMCID: PMC4569889 DOI: 10.7554/elife.09178] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/21/2015] [Indexed: 12/28/2022] Open
Abstract
Embryogenesis is an essential and stereotypic process that nevertheless evolves
among species. Its essentiality may favor the accumulation of cryptic genetic
variation (CGV) that has no effect in the wild-type but that enhances or
suppresses the effects of rare disruptions to gene function. Here, we adapted a
classical modifier screen to interrogate the alleles segregating in natural
populations of Caenorhabditis elegans: we induced gene
knockdowns and used quantitative genetic methodology to examine how segregating
variants modify the penetrance of embryonic lethality. Each perturbation
revealed CGV, indicating that wild-type genomes harbor myriad genetic modifiers
that may have little effect individually but which in aggregate can dramatically
influence penetrance. Phenotypes were mediated by many modifiers, indicating
high polygenicity, but the alleles tend to act very specifically, indicating low
pleiotropy. Our findings demonstrate the extent of conditional functionality in
complex trait architecture. DOI:http://dx.doi.org/10.7554/eLife.09178.001 Individuals of the same species have similar, but generally not identical, DNA
sequences. This ‘genetic variation’ is due to random changes in the DNA—known as
mutations—that occur among individuals. These mutations may be passed on to
these individuals' offspring, who in turn pass them on to their descendants.
Some of these mutations may have a positive or negative effect on the ability of
the organisms to survive and reproduce, but others may have no effect at
all. The process by which an embryo forms (which is called embryogenesis) follows a
precisely controlled series of events. Within the same species, there is genetic
variation in the DNA that programs embryogenesis, but it is not clear what
effect this variation has on how the embryo develops. Here, Paaby et al. adapted
a genetics technique called a ‘modifier screen’ to study how genetic variation
affects the development of a roundworm known as Caenorhabditis
elegans. The experiments show that populations of worms harbor a lot of genetic variation
that affects how they tolerate the loss of an important gene. One by one, Paaby
et al. interrupted the activity of specific genes that embryos need in order to
develop. How this affected the embryo, and whether or not it was able to
survive, was due in large part to the naturally-occurring genetic variation in
other genes in these worms. Paaby et al.'s findings serve as a reminder that the effect of a mutation depends
on other DNA sequences in the organism. In humans, for example, a gene that
causes a genetic disease may produce severe symptoms in one patient but mild
symptoms in another. Future experiments will reveal the details of how genetic
variation affects embryogenesis, which may also provide new insights into how
complex processes in animals evolve over time. DOI:http://dx.doi.org/10.7554/eLife.09178.002
Collapse
Affiliation(s)
- Annalise B Paaby
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| | - Amelia G White
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| | - David D Riccardi
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| | - Kristin C Gunsalus
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| | - Fabio Piano
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| | - Matthew V Rockman
- Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
| |
Collapse
|
152
|
When the Scaffold Cannot Be Ignored: The Role of the Hydrophobic Core in Ligand Binding and Specificity. J Mol Biol 2015; 427:3316-3326. [PMID: 26301601 DOI: 10.1016/j.jmb.2015.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/14/2015] [Accepted: 08/14/2015] [Indexed: 11/21/2022]
Abstract
The traditional view of protein-ligand binding treats a protein as comprising distinct binding epitopes on the surface of a degenerate structural scaffold, largely ignoring the impact of a protein's energy landscape. To determine the robustness of this simplification, we compared two small helix-turn-helix transcription factors with different energy landscapes. λ-Repressor is stable and well folded, while MarA appears to be marginally stable with multiple native conformations (molten). While λ-repressor is known to tolerate any hydrophobic mutation in the core, we find MarA drastically less tolerant to core mutation. Moreover, core mutations in MarA (distant from the DNA-binding interface) change the relative affinities of its binding partners, altering ligand specificity. These results can be explained by taking into account the effects of mutations on the entire energy landscape and not just the native state. Thus, for proteins with multiple conformations that are close in energy, such as many intrinsically disordered proteins, residues distant from the active site can alter both binding affinity and specificity.
Collapse
|
153
|
Garcia DM, Jarosz DF. Rebels with a cause: molecular features and physiological consequences of yeast prions. FEMS Yeast Res 2015; 14:136-47. [PMID: 25667942 DOI: 10.1111/1567-1364.12116] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prions are proteins that convert between structurally and functionally distinct states, at least one of which is self-perpetuating. The prion fold templates the conversion of native protein, altering its structure and function, and thus serves as a protein-based element of inheritance. Molecular chaperones ensure that these prion aggregates are divided and faithfully passed from mother cells to their daughters. Prions were originally identified as the cause of several rare neurodegenerative diseases in mammals, but the last decade has brought great progress in understanding their broad importance in biology and evolution. Most prion proteins regulate information flow in signaling networks, or otherwise affect gene expression. Consequently, switching into and out of prion states creates diverse new traits – heritable changes based on protein structure rather than nucleic acid. Despite intense study of the molecular mechanisms of this paradigm-shifting, epigenetic mode of inheritance, many key questions remain. Recent studies in yeast that support the view that prions are common, often beneficial elements of inheritance that link environmental stress to the appearance of new traits.
Collapse
|
154
|
A systemic approach for modeling biological evolution using Parallel DEVS. Biosystems 2015; 134:56-70. [DOI: 10.1016/j.biosystems.2015.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 03/26/2015] [Accepted: 06/17/2015] [Indexed: 12/22/2022]
|
155
|
Metaproteomic analysis of bacterial communities in marine mudflat aquaculture sediment. World J Microbiol Biotechnol 2015; 31:1397-408. [DOI: 10.1007/s11274-015-1891-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/12/2015] [Indexed: 10/23/2022]
|
156
|
Zhu X, Chen L, Carlsten JOP, Liu Q, Yang J, Liu B, Gustafsson CM. Mediator tail subunits can form amyloid-like aggregates in vivo and affect stress response in yeast. Nucleic Acids Res 2015; 43:7306-14. [PMID: 26138482 PMCID: PMC4551914 DOI: 10.1093/nar/gkv629] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/07/2015] [Indexed: 12/15/2022] Open
Abstract
The Med2, Med3 and Med15 proteins form a heterotrimeric subdomain in the budding yeast Mediator complex. This Med15 module is an important target for many gene specific transcription activators. A previous proteome wide screen in yeast identified Med3 as a protein with priogenic potential. In the present work, we have extended this observation and demonstrate that both Med3 and Med15 form amyloid-like protein aggregates under H2O2 stress conditions. Amyloid formation can also be stimulated by overexpression of Med3 or of a glutamine-rich domain present in Med15, which in turn leads to loss of the entire Med15 module from Mediator and a change in stress response. In combination with genome wide transcription analysis, our data demonstrate that amyloid formation can change the subunit composition of Mediator and thereby influence transcriptional output in budding yeast.
Collapse
Affiliation(s)
- Xuefeng Zhu
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Göteborg, Sweden
| | - Lihua Chen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Göteborg, Sweden
| | - Jonas O P Carlsten
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Göteborg, Sweden
| | - Qian Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Göteborg, Sweden
| | - Junsheng Yang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Göteborg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Göteborg, Sweden
| | - Claes M Gustafsson
- Institute of Biomedicine, University of Gothenburg, P.O. Box 440, SE-405 30 Göteborg, Sweden
| |
Collapse
|
157
|
Fares MA. The origins of mutational robustness. Trends Genet 2015; 31:373-81. [PMID: 26013677 DOI: 10.1016/j.tig.2015.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/27/2015] [Accepted: 04/28/2015] [Indexed: 11/17/2022]
Abstract
Biological systems are resistant to genetic changes; a property known as mutational robustness, the origin of which remains an open question. In recent years, researchers have explored emergent properties of biological systems and mechanisms of genetic redundancy to reveal how mutational robustness emerges and persists. Several mechanisms have been proposed to explain the origin of mutational robustness, including molecular chaperones and gene duplication. The latter has received much attention, but its role in robustness remains controversial. Here, I examine recent findings linking genetic redundancy through gene duplication and mutational robustness. Experimental evolution and genome resequencing have made it possible to test the role of gene duplication in tolerating mutations at both the coding and regulatory levels. This evidence as well as previous findings on regulatory reprogramming of duplicates support the role of gene duplication in the origin of robustness.
Collapse
Affiliation(s)
- Mario A Fares
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain; Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
158
|
Yang C, Wang L, Liu C, Zhou Z, Zhao X, Song L. The polymorphisms in the promoter of HSP90 gene and their association with heat tolerance of bay scallop. Cell Stress Chaperones 2015; 20:297-308. [PMID: 25261233 PMCID: PMC4326393 DOI: 10.1007/s12192-014-0546-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/15/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022] Open
Abstract
The heat shock protein 90 (HSP90) is a highly abundant and ubiquitous molecular chaperone which plays essential roles in many cellular processes. In the present study, the messenger RNA (mRNA) expressions of HSP90 after acute heat stress were investigated in two bay scallop populations (Argopecten irradians irradians and Argopecten irradians concentricus). The heat-resistant scallop A. i. concentricus, which is distributed in Zhanjiang, China, exhibited significantly higher induction of HSP90 compared with that of the heat-sensitive scallop A. i. irradians, which is distributed in Qinhuangdao, China. The promoter sequence of HSP90 gene from bay scallop (AiHSP90) was cloned, and the polymorphisms within this region were investigated by sequencing to analyze their association with heat tolerance. A total of six single nucleotide polymorphisms (SNPs), including -1167 T-C, -1023 A-C, -799 C-T, -774 A-G, -686 C-T, and -682 A-C, were identified in the amplified promoter region, and most of them affected the putative transcription factor binding sites except for locus -1167. All the six SNP sites were found to be associated with heat tolerance after Hardy-Weinberg equilibrium (HWE) and association analysis. Moreover, haplotypes CACACC and TCTATC were also found to be associated with heat tolerance based on the result of linkage disequilibrium and association analysis. The results provided insights into the molecular mechanisms underlying the thermal adaptation of different congener endemic bay scallops, which suggested that the increased heat tolerance of A. i. concentricus (compared with A. i. irradians) was associated with the higher expression of AiHSP90. Meanwhile, the six genotypes (-1167 TT, -1023 CC, -799 TT, -774 GG, -686 CC, and -682 AA) and two haplotypes (CACACC and TCTATC) could be used as potential markers for scallop selection breeding with higher heat tolerance.
Collapse
Affiliation(s)
- Chuanyan Yang
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| | - Lingling Wang
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| | - Conghui Liu
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
- />University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhi Zhou
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| | - Xin Zhao
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| | - Linsheng Song
- />Key laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao, 266071 China
| |
Collapse
|
159
|
Brown MA, Foreman K, Harriss J, Das C, Zhu L, Edwards M, Shaaban S, Tucker H. C-terminal domain of SMYD3 serves as a unique HSP90-regulated motif in oncogenesis. Oncotarget 2015; 6:4005-19. [PMID: 25738358 PMCID: PMC4414169 DOI: 10.18632/oncotarget.2970] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/16/2014] [Indexed: 01/25/2023] Open
Abstract
The SMYD3 histone methyl transferase (HMTase) and the nuclear chaperone, HSP90, have been independently implicated as proto-oncogenes in several human malignancies. We show that a degenerate tetratricopeptide repeat (TPR)-like domain encoded in the SMYD3 C-terminal domain (CTD) mediates physical interaction with HSP90. We further demonstrate that the CTD of SMYD3 is essential for its basal HMTase activity and that the TPR-like structure is required for HSP90-enhanced enzyme activity. Loss of SMYD3-HSP90 interaction leads to SMYD3 mislocalization within the nucleus, thereby losing its chromatin association. This results in reduction of SMYD3-mediated cell proliferation and, potentially, impairment of SMYD3's oncogenic activity. These results suggest a novel approach for blocking HSP90-driven malignancy in SMYD3-overexpressing cells with a reduced toxicity profile over current HSP90 inhibitors.
Collapse
Affiliation(s)
- Mark A. Brown
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - June Harriss
- University of Texas at Austin, Institute of Cellular and Molecular Biology, Austin, TX 78712, USA
| | - Chhaya Das
- University of Texas at Austin, Institute of Cellular and Molecular Biology, Austin, TX 78712, USA
| | - Li Zhu
- University of Texas at Austin, Institute of Cellular and Molecular Biology, Austin, TX 78712, USA
| | - Melissa Edwards
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- University of Texas at Austin, Institute of Cellular and Molecular Biology, Austin, TX 78712, USA
| | | | - Haley Tucker
- University of Texas at Austin, Institute of Cellular and Molecular Biology, Austin, TX 78712, USA
| |
Collapse
|
160
|
Chen J, Nolte V, Schlötterer C. Temperature stress mediates decanalization and dominance of gene expression in Drosophila melanogaster. PLoS Genet 2015; 11:e1004883. [PMID: 25719753 PMCID: PMC4342254 DOI: 10.1371/journal.pgen.1004883] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/10/2014] [Indexed: 11/18/2022] Open
Abstract
The regulatory architecture of gene expression remains an area of active research. Here, we studied how the interplay of genetic and environmental variation affects gene expression by exposing Drosophila melanogaster strains to four different developmental temperatures. At 18°C we observed almost complete canalization with only very few allelic effects on gene expression. In contrast, at the two temperature extremes, 13°C and 29°C a large number of allelic differences in gene expression were detected due to both cis- and trans-regulatory effects. Allelic differences in gene expression were mainly dominant, but for up to 62% of the genes the dominance swapped between 13 and 29°C. Our results are consistent with stabilizing selection causing buffering of allelic expression variation in non-stressful environments. We propose that decanalization of gene expression in stressful environments is not only central to adaptation, but may also contribute to genetic disorders in human populations.
Collapse
Affiliation(s)
- Jun Chen
- Institut für Populationsgenetik, Vienna, Austria
| | - Viola Nolte
- Institut für Populationsgenetik, Vienna, Austria
| | | |
Collapse
|
161
|
Salces-Ortiz J, González C, Martínez M, Mayoral T, Calvo JH, Serrano MM. Looking for adaptive footprints in the HSP90AA1 ovine gene. BMC Evol Biol 2015; 15:7. [PMID: 25648535 PMCID: PMC4351680 DOI: 10.1186/s12862-015-0280-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/05/2015] [Indexed: 11/10/2022] Open
Abstract
Background Climatic factors play an important role in determining species distributions and phenotypic variation of populations over geographic space. Since domestic sheep is managed under low intensive systems animals could have retained some genome adaptive footprints. The gene encoding the Hsp90α has been extensively studied in sheep and some polymorphisms located at its promoter have been associates with differences in the transcription rate of the gene depending on climatic conditions. In this work the relationships among the distribution and frequencies of 11 polymorphisms of the ovine HSP90AA1 gene promoter in 31 sheep breeds and the climatic and geographic variables prevailing in their regions of origin have been studied. Also the promoter sequence has been characterized in 9 species of the Caprinae subfamily. Results Correlations among several climatic variables and allele frequencies of the polymorphisms of the HSP90AA1 gene promoter linked with differences in the transcription activity of the gene under heat stress conditions have been assessed. A group of breeds reared in semi dry climates have high frequencies of the insertion allele of the g.667-668insC associated with the heat stress response. Other group of breeds native to semi arid conditions showed very low frequencies of this same allele. However, in some cases, this previous correlation has not been achieved, revealing the high levels of gene flow among populations occurred following domestication. The Bayesian Test of Beaumont and Balding identified two outlier loci, the g.522A > G and g.703_704del(2)A candidates to balancing and directional selection, respectively. Polymorphisms detected in O. aries are also present in several species of the Caprinae subfamily being C. hircus, O. musimon and O. moschatus those sharing the highest number of them with O. aries. Conclusions Despite domestication, sheep breeds showed some genetic footprints related to climatic variables. Adaptation of breeds to heat climates can suppose a selective advantage to cope with global warming caused by climatic change. Polymorphisms of the HSP90AA1 gene detected in the Ovis aries species are also present in wild species from the Caprinae subfamily, indicating a great antiquity of these mutations and its importance in the adaptation of species to past climatic conditions existing in its native environments. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0280-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Carmen González
- INIA, Carretera de La Coruña Km. 7,5. 280040, Madrid, Spain.
| | - Marta Martínez
- Laboratorio Central de Veterinaria, MAGRAMA, Ctra. M-106 km1.4 28110, Madrid, Spain.
| | - Tomás Mayoral
- Laboratorio Central de Veterinaria, MAGRAMA, Ctra. M-106 km1.4 28110, Madrid, Spain.
| | | | | |
Collapse
|
162
|
Joseph B, Corwin JA, Kliebenstein DJ. Genetic variation in the nuclear and organellar genomes modulates stochastic variation in the metabolome, growth, and defense. PLoS Genet 2015; 11:e1004779. [PMID: 25569687 PMCID: PMC4287608 DOI: 10.1371/journal.pgen.1004779] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/25/2014] [Indexed: 11/25/2022] Open
Abstract
Recent studies are starting to show that genetic control over stochastic variation is a key evolutionary solution of single celled organisms in the face of unpredictable environments. This has been expanded to show that genetic variation can alter stochastic variation in transcriptional processes within multi-cellular eukaryotes. However, little is known about how genetic diversity can control stochastic variation within more non-cell autonomous phenotypes. Using an Arabidopsis reciprocal RIL population, we showed that there is significant genetic diversity influencing stochastic variation in the plant metabolome, defense chemistry, and growth. This genetic diversity included loci specific for the stochastic variation of each phenotypic class that did not affect the other phenotypic classes or the average phenotype. This suggests that the organism's networks are established so that noise can exist in one phenotypic level like metabolism and not permeate up or down to different phenotypic levels. Further, the genomic variation within the plastid and mitochondria also had significant effects on the stochastic variation of all phenotypic classes. The genetic influence over stochastic variation within the metabolome was highly metabolite specific, with neighboring metabolites in the same metabolic pathway frequently showing different levels of noise. As expected from bet-hedging theory, there was more genetic diversity and a wider range of stochastic variation for defense chemistry than found for primary metabolism. Thus, it is possible to begin dissecting the stochastic variation of whole organismal phenotypes in multi-cellular organisms. Further, there are loci that modulate stochastic variation at different phenotypic levels. Finding the identity of these genes will be key to developing complete models linking genotype to phenotype.
Collapse
Affiliation(s)
- Bindu Joseph
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Jason A Corwin
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America; DynaMo Center of Excellence, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
163
|
Abstract
Host and pathogen engage in a constant evolutionary struggle known as a "Red Queen Paradigm". In this struggle, natural selection favours the pathogen which evolves effective virulence mechanisms and the host which is able to field adequate resistance strategies. A number of factors limit what each side can do. These include the fact that the elaboration of virulence or resistance mechanisms results in costs in genetic fitness and requires the use of ever more of the limited number of genes available in the genome. In addition, since the pathogen usually has a very much shorter generation time than the host, it can fix new virulence mutations much more quickly than the host can evolve matching resistance mechanisms. Finally, the host must ensure that its defence system does not result in unacceptable levels of collateral damage to its own tissues. This chapter briefly outlines how these considerations shape host-pathogen interactions.
Collapse
Affiliation(s)
- Robert S Jack
- Department of Immunology, University of Greifswald, Sauerbruchstrasse DZ 7, Greifswald, D-17487, Germany.
| |
Collapse
|
164
|
Enders LS, Bickel RD, Brisson JA, Heng-Moss TM, Siegfried BD, Zera AJ, Miller NJ. Abiotic and biotic stressors causing equivalent mortality induce highly variable transcriptional responses in the soybean aphid. G3 (BETHESDA, MD.) 2014; 5:261-70. [PMID: 25538100 PMCID: PMC4321034 DOI: 10.1534/g3.114.015149] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/19/2014] [Indexed: 12/27/2022]
Abstract
Environmental stress affects basic organismal functioning and can cause physiological, developmental, and reproductive impairment. However, in many nonmodel organisms, the core molecular stress response remains poorly characterized and the extent to which stress-induced transcriptional changes differ across qualitatively different stress types is largely unexplored. The current study examines the molecular stress response of the soybean aphid (Aphis glycines) using RNA sequencing and compares transcriptional responses to multiple stressors (heat, starvation, and plant defenses) at a standardized stress level (27% adult mortality). Stress-induced transcriptional changes showed remarkable variation, with starvation, heat, and plant defensive stress altering the expression of 3985, 510, and 12 genes, respectively. Molecular responses showed little overlap across all three stressors. However, a common transcriptional stress response was identified under heat and starvation, involved with up-regulation of glycogen biosynthesis and molecular chaperones and down-regulation of bacterial endosymbiont cellular and insect cuticular components. Stressor-specific responses indicated heat affected expression of heat shock proteins and cuticular components, whereas starvation altered a diverse set of genes involved in primary metabolism, oxidative reductive processes, nucleosome and histone assembly, and the regulation of DNA repair and replication. Exposure to host plant defenses elicited the weakest response, of which half of the genes were of unknown function. This study highlights the need for standardizing stress levels when comparing across stress types and provides a basis for understanding the role of general vs. stressor specific molecular responses in aphids.
Collapse
Affiliation(s)
- Laramy S Enders
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0816
| | - Ryan D Bickel
- Department of Biology, University of Rochester, Rochester, New York 14627-0211
| | - Jennifer A Brisson
- Department of Biology, University of Rochester, Rochester, New York 14627-0211
| | - Tiffany M Heng-Moss
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0816
| | - Blair D Siegfried
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0816
| | - Anthony J Zera
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0118
| | - Nicholas J Miller
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, Nebraska 68583-0816
| |
Collapse
|
165
|
HSP90 empowers evolution of resistance to hormonal therapy in human breast cancer models. Proc Natl Acad Sci U S A 2014; 111:18297-302. [PMID: 25489079 DOI: 10.1073/pnas.1421323111] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The efficacy of hormonal therapies for advanced estrogen receptor-positive breast cancers is limited by the nearly inevitable development of acquired resistance. Efforts to block the emergence of resistance have met with limited success, largely because the mechanisms underlying it are so varied and complex. Here, we investigate a new strategy aimed at the very processes by which cancers evolve resistance. From yeast to vertebrates, heat shock protein 90 (HSP90) plays a unique role among molecular chaperones by promoting the evolution of heritable new traits. It does so by regulating the folding of a diverse portfolio of metastable client proteins, many of which mediate adaptive responses that allow organisms to adapt and thrive in the face of diverse challenges, including those posed by drugs. Guided by our previous work in pathogenic fungi, in which very modest HSP90 inhibition impairs resistance to mechanistically diverse antifungals, we examined the effect of similarly modest HSP90 inhibition on the emergence of resistance to antiestrogens in breast cancer models. Even though this degree of inhibition fell below the threshold for proteotoxic activation of the heat-shock response and had no overt anticancer activity on its own, it dramatically impaired the emergence of resistance to hormone antagonists both in cell culture and in mice. Our findings strongly support the clinical testing of combined hormone antagonist-low-level HSP90 inhibitor regimens in the treatment of metastatic estrogen receptor-positive breast cancer. At a broader level, they also provide promising proof of principle for a generalizable strategy to combat the pervasive problem of rapidly emerging resistance to molecularly targeted therapeutics.
Collapse
|
166
|
Siegal ML, Leu JY. On the Nature and Evolutionary Impact of Phenotypic Robustness Mechanisms. ANNUAL REVIEW OF ECOLOGY, EVOLUTION, AND SYSTEMATICS 2014; 45:496-517. [PMID: 26034410 PMCID: PMC4448758 DOI: 10.1146/annurev-ecolsys-120213-091705] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Biologists have long observed that physiological and developmental processes are insensitive, or robust, to many genetic and environmental perturbations. A complete understanding of the evolutionary causes and consequences of this robustness is lacking. Recent progress has been made in uncovering the regulatory mechanisms that underlie environmental robustness in particular. Less is known about robustness to the effects of mutations, and indeed the evolution of mutational robustness remains a controversial topic. The controversy has spread to related topics, in particular the evolutionary relevance of cryptic genetic variation. This review aims to synthesize current understanding of robustness mechanisms and to cut through the controversy by shedding light on what is and is not known about mutational robustness. Some studies have confused mutational robustness with non-additive interactions between mutations (epistasis). We conclude that a profitable way forward is to focus investigations (and rhetoric) less on mutational robustness and more on epistasis.
Collapse
Affiliation(s)
- Mark L Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003;
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan 11529;
| |
Collapse
|
167
|
Survival and innovation: The role of mutational robustness in evolution. Biochimie 2014; 119:254-61. [PMID: 25447135 DOI: 10.1016/j.biochi.2014.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/15/2014] [Indexed: 11/23/2022]
Abstract
Biological systems are resistant to perturbations caused by the environment and by the intrinsic noise of the system. Robustness to mutations is a particular aspect of robustness in which the phenotype is resistant to genotypic variation. Mutational robustness has been linked to the ability of the system to generate heritable genetic variation (a property known as evolvability). It is known that greater robustness leads to increased evolvability. Therefore, mechanisms that increase mutational robustness fuel evolvability. Two such mechanisms, molecular chaperones and gene duplication, have been credited with enormous importance in generating functional diversity through the increase of system's robustness to mutational insults. However, the way in which such mechanisms regulate robustness remains largely uncharacterized. In this review, I provide evidence in support of the role of molecular chaperones and gene duplication in innovation. Specifically, I present evidence that these mechanisms regulate robustness allowing unstable systems to survive long periods of time, and thus they provide opportunity for other mutations to compensate the destabilizing effects of functionally innovative mutations. The findings reported in this study set new questions with regards to the synergy between robustness mechanisms and how this synergy can alter the adaptive landscape of proteins. The ideas proposed in this article set the ground for future research in the understanding of the role of robustness in evolution.
Collapse
|
168
|
Gopinath RK, You ST, Chien KY, Swamy KBS, Yu JS, Schuyler SC, Leu JY. The Hsp90-dependent proteome is conserved and enriched for hub proteins with high levels of protein-protein connectivity. Genome Biol Evol 2014; 6:2851-65. [PMID: 25316598 PMCID: PMC4224352 DOI: 10.1093/gbe/evu226] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hsp90 is one of the most abundant and conserved proteins in the cell. Reduced levels or activity of Hsp90 causes defects in many cellular processes and also reveals genetic and nongenetic variation within a population. Despite information about Hsp90 protein–protein interactions, a global view of the Hsp90-regulated proteome in yeast is unavailable. To investigate the degree of dependency of individual yeast proteins on Hsp90, we used the “stable isotope labeling by amino acids in cell culture” method coupled with mass spectrometry to quantify around 4,000 proteins in low-Hsp90 cells. We observed that 904 proteins changed in their abundance by more than 1.5-fold. When compared with the transcriptome of the same population of cells, two-thirds of the misregulated proteins were observed to be affected posttranscriptionally, of which the majority were downregulated. Further analyses indicated that the downregulated proteins are highly conserved and assume central roles in cellular networks with a high number of protein interacting partners, suggesting that Hsp90 buffers genetic and nongenetic variation through regulating protein network hubs. The downregulated proteins were enriched for essential proteins previously not known to be Hsp90-dependent. Finally, we observed that downregulation of transcription factors and mating pathway components by attenuating Hsp90 function led to decreased target gene expression and pheromone response, respectively, providing a direct link between observed proteome regulation and cellular phenotypes.
Collapse
Affiliation(s)
- Rajaneesh Karimpurath Gopinath
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Ting You
- Molecular and Cell Biology, Taiwan International Graduate Program, Graduate Institute of Life Sciences, National Defense Medical Center and Academia Sinica Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Kun-Yi Chien
- Molecular Medicine Research Center, Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | | | - Jau-Song Yu
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Scott C Schuyler
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
169
|
Low dose Hsp90 inhibitor 17AAG protects neural progenitor cells from ischemia induced death. J Cell Commun Signal 2014; 8:353-62. [PMID: 25280831 DOI: 10.1007/s12079-014-0247-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/25/2014] [Indexed: 12/19/2022] Open
Abstract
Stress adaptation effect provides cell protection against ischemia induced apoptosis. Whether this mechanism prevents other types of cell death in stroke is not well studied. This is an important question for regenerative medicine to treat stroke since other types of cell death such as necrosis are also prominent in the stroke brain apart from apoptosis. We report here that treatment with 17-N-Allylamino-17-demethoxygeldanamycin (17AAG), an Hsp90 inhibitor, protected neural progenitor cells (NPCs) against oxygen glucose deprivation (OGD) induced cell death in a dose dependent fashion. Cell death assays indicated that 17AAG not only ameliorated apoptosis, but also necrosis mediated by OGD. This NPC protection was confirmed by exposing cells to oxidative stress, a major stress signal prevalent in the stroke brain. Mechanistic studies demonstrated that 17AAG activated PI3K/Akt and MAPK cell protective pathways. More interestingly, these two pathways were activated in vivo by 17AAG and 17AAG treatment reduced infarct volume in a middle cerebral artery occlusion (MCAO) stroke model. These data suggest that 17AAG protects cells against major cell death pathways and thus might be used as a pharmacological conditioning agent for regenerative medicine for stroke.
Collapse
|
170
|
Trotter MV, Weissman DB, Peterson GI, Peck KM, Masel J. Cryptic genetic variation can make "irreducible complexity" a common mode of adaptation in sexual populations. Evolution 2014; 68:3357-67. [PMID: 25178652 DOI: 10.1111/evo.12517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 08/25/2014] [Indexed: 12/15/2022]
Abstract
The existence of complex (multiple-step) genetic adaptations that are "irreducible" (i.e., all partial combinations are less fit than the original genotype) is one of the longest standing problems in evolutionary biology. In standard genetics parlance, these adaptations require the crossing of a wide adaptive valley of deleterious intermediate stages. Here, we demonstrate, using a simple model, that evolution can cross wide valleys to produce "irreducibly complex" adaptations by making use of previously cryptic mutations. When revealed by an evolutionary capacitor, previously cryptic mutants have higher initial frequencies than do new mutations, bringing them closer to a valley-crossing saddle in allele frequency space. Moreover, simple combinatorics implies an enormous number of candidate combinations exist within available cryptic genetic variation. We model the dynamics of crossing of a wide adaptive valley after a capacitance event using both numerical simulations and analytical approximations. Although individual valley crossing events become less likely as valleys widen, by taking the combinatorics of genotype space into account, we see that revealing cryptic variation can cause the frequent evolution of complex adaptations.
Collapse
Affiliation(s)
- Meredith V Trotter
- Department of Biology, Stanford University, Stanford, California, 95306; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, 85721
| | | | | | | | | |
Collapse
|
171
|
Tofighi A, Mazaheri Assadi M, Asadirad MHA, Zare Karizi S. Bio-ethanol production by a novel autochthonous thermo-tolerant yeast isolated from wastewater. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2014; 12:107. [PMID: 25937930 PMCID: PMC4416319 DOI: 10.1186/2052-336x-12-107] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 07/09/2014] [Indexed: 06/02/2023]
Abstract
BACKGROUND It has been known for years that ethanol is a bio-fuel to replace fossil fuels. The ethanol industry requires the utilization of micro-organisms capable production with stresses. The purpose of present study was to isolate and characterize ethanologenic yeast with high potential application at high temperature to produce bio-ethanol. METHODS To isolate ethanologenic yeasts, wastewater samples from a starch producer plant in Varamin, Iran were used. The isolates were identified by molecular characterization. Characteristics of the isolated strains were determined at 30, 35, 40 and 45°C for 48 hours. RESULTS 50 yeast strains capable of growing well in agar plates in a temperature range of 30-45°C were isolated. Out of the isolated strains, only three strains were screened for their ability to grow at 45°C. Selected yeast, designated as AT-3 strain which showed efficient flocculation capabilities with higher ethanol production and grew faster as compared to the rest of strains in media with 180 g/L glucose at 35°C. The selected yeast was identified as a new strain of Saccharomyces cerevisiae and submitted to the Gene-Bank database. Its' optimum growth temperature was between 35 and 40°C. The results showed that during the bio-ethanol production 2.5 × 10(10) and 8.5 × 10(9) (CFU/mL) were a good indication of strain capability in heat tolerance. Also, ethanol produced at a raise of 6.9% and 6.85% (w/v) at 35 and 40°C, respectively, whereas glucose-to-ethanol conversion yield was about 75% of the theoretical value. CONCLUSIONS Results emphasized that the isolated strain identified as Saccharomyces cerevisiae. This specific strain has thermo-tolerant, osmo-tolerant, flocculating capabilities with potential for application in developing a low cost ethanol industry.
Collapse
Affiliation(s)
- Azadeh Tofighi
- />Department of Biology, Islamic Azad University, Varamin-Pishva Branch, Pishva, Iran
| | - Mahnaz Mazaheri Assadi
- />Departments of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | | | - Shohreh Zare Karizi
- />Department of Biology, Islamic Azad University, Varamin-Pishva Branch, Pishva, Iran
| |
Collapse
|
172
|
Abstract
Heat-shock protein 90 (Hsp90) promotes the maturation and stability of its client proteins, including many kinases. In doing so, Hsp90 may allow its clients to accumulate mutations as previously proposed by the capacitor hypothesis. If true, Hsp90 clients should show increased evolutionary rate compared with nonclients; however, other factors, such as gene expression and protein connectivity, may confound or obscure the chaperone’s putative contribution. Here, we compared the evolutionary rates of many Hsp90 clients and nonclients in the human protein kinase superfamily. We show that Hsp90 client status promotes evolutionary rate independently of, but in a small magnitude similar to that of gene expression and protein connectivity. Hsp90’s effect on kinase evolutionary rate was detected across mammals, specifically relaxing purifying selection. Hsp90 clients also showed increased nucleotide diversity and harbored more damaging variation than nonclient kinases across humans. These results are consistent with the central argument of the capacitor hypothesis that interaction with the chaperone allows its clients to harbor genetic variation. Hsp90 client status is thought to be highly dynamic with as few as one amino acid change rendering a protein dependent on the chaperone. Contrary to this expectation, we found that across protein kinase phylogeny Hsp90 client status tends to be gained, maintained, and shared among closely related kinases. We also infer that the ancestral protein kinase was not an Hsp90 client. Taken together, our results suggest that Hsp90 played an important role in shaping the kinase superfamily.
Collapse
Affiliation(s)
- Jennifer Lachowiec
- Molecular and Cellular Biology Program, University of Washington Department of Genome Sciences, University of Washington
| | | | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington Santa Fe Institute, Santa Fe
| | | |
Collapse
|
173
|
Mitochondrial-nuclear epistasis contributes to phenotypic variation and coadaptation in natural isolates of Saccharomyces cerevisiae. Genetics 2014; 198:1251-65. [PMID: 25164882 DOI: 10.1534/genetics.114.168575] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are essential multifunctional organelles whose metabolic functions, biogenesis, and maintenance are controlled through genetic interactions between mitochondrial and nuclear genomes. In natural populations, mitochondrial efficiencies may be impacted by epistatic interactions between naturally segregating genome variants. The extent that mitochondrial-nuclear epistasis contributes to the phenotypic variation present in nature is unknown. We have systematically replaced mitochondrial DNAs in a collection of divergent Saccharomyces cerevisiae yeast isolates and quantified the effects on growth rates in a variety of environments. We found that mitochondrial-nuclear interactions significantly affected growth rates and explained a substantial proportion of the phenotypic variances under some environmental conditions. Naturally occurring mitochondrial-nuclear genome combinations were more likely to provide growth advantages, but genetic distance could not predict the effects of epistasis. Interruption of naturally occurring mitochondrial-nuclear genome combinations increased endogenous reactive oxygen species in several strains to levels that were not always proportional to growth rate differences. Our results demonstrate that interactions between mitochondrial and nuclear genomes generate phenotypic diversity in natural populations of yeasts and that coadaptation of intergenomic interactions likely occurs quickly within the specific niches that yeast occupy. This study reveals the importance of considering allelic interactions between mitochondrial and nuclear genomes when investigating evolutionary relationships and mapping the genetic basis underlying complex traits.
Collapse
|
174
|
Posadas DM, Carthew RW. MicroRNAs and their roles in developmental canalization. Curr Opin Genet Dev 2014; 27:1-6. [PMID: 24791686 PMCID: PMC4125612 DOI: 10.1016/j.gde.2014.03.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/15/2014] [Indexed: 01/01/2023]
Abstract
Robustness is a fundamental property of biological systems. The type of robustness that ensures uniform phenotypic outcomes in the face of variation during an organism's development is called canalization. Here, we discuss the roles that microRNAs play in providing canalization to animal development, citing recent theoretical and experimental advances. MicroRNAs repress protein expression, and they do this in ways that create thresholds in expression and provide adaptation to regulatory networks. Numerous examples have now been described where the developmental impact of environmental variation is suppressed by individual microRNAs. A recent paper has found that the impact of genomic variation between individuals is similarly suppressed by a microRNA operating in a developmental network. Thus, genetic variability is held in check, which is potentially important for both animal evolution and manifestation of disease.
Collapse
Affiliation(s)
- Diana M Posadas
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
175
|
Pechmann S, Frydman J. Interplay between chaperones and protein disorder promotes the evolution of protein networks. PLoS Comput Biol 2014; 10:e1003674. [PMID: 24968255 PMCID: PMC4072544 DOI: 10.1371/journal.pcbi.1003674] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 05/03/2014] [Indexed: 11/19/2022] Open
Abstract
Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the importance of the cellular context and integrated approaches for understanding proteome evolution. We feel that the development of λ may be a valuable addition to the toolbox applied to understand the molecular basis of evolution.
Collapse
Affiliation(s)
- Sebastian Pechmann
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail: (SP); (JF)
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail: (SP); (JF)
| |
Collapse
|
176
|
Marciano DC, Lua RC, Katsonis P, Amin SR, Herman C, Lichtarge O. Negative feedback in genetic circuits confers evolutionary resilience and capacitance. Cell Rep 2014; 7:1789-95. [PMID: 24910431 DOI: 10.1016/j.celrep.2014.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/04/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022] Open
Abstract
Natural selection for specific functions places limits upon the amino acid substitutions a protein can accept. Mechanisms that expand the range of tolerable amino acid substitutions include chaperones that can rescue destabilized proteins and additional stability-enhancing substitutions. Here, we present an alternative mechanism that is simple and uses a frequently encountered network motif. Computational and experimental evidence shows that the self-correcting, negative-feedback gene regulation motif increases repressor expression in response to deleterious mutations and thereby precisely restores repression of a target gene. Furthermore, this ability to rescue repressor function is observable across the Eubacteria kingdom through the greater accumulation of amino acid substitutions in negative-feedback transcription factors compared to genes they control. We propose that negative feedback represents a self-contained genetic canalization mechanism that preserves phenotype while permitting access to a wider range of functional genotypes.
Collapse
Affiliation(s)
- David C Marciano
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Rhonald C Lua
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shivas R Amin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Biology Department, University of St. Thomas, Houston, TX 77006, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Computational and Integrative Biomedical Research Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
177
|
|
178
|
Brown A, Thatje S. Explaining bathymetric diversity patterns in marine benthic invertebrates and demersal fishes: physiological contributions to adaptation of life at depth. Biol Rev Camb Philos Soc 2014; 89:406-26. [PMID: 24118851 PMCID: PMC4158864 DOI: 10.1111/brv.12061] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 08/01/2013] [Accepted: 08/14/2013] [Indexed: 12/01/2022]
Abstract
Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow-water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow-water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow-water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity-depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow-water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity-depth pattern over time. Thermal effects on metabolic-rate-dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow-water taxa invading the deep sea, may invoke a stress-evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress-evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity-depth pattern.
Collapse
Affiliation(s)
- Alastair Brown
- Ocean and Earth Science, University of Southampton, National Oceanography Centre SouthamptonEuropean Way, Southampton, SO14 3ZH, U.K.
| | - Sven Thatje
- Ocean and Earth Science, University of Southampton, National Oceanography Centre SouthamptonEuropean Way, Southampton, SO14 3ZH, U.K.
| |
Collapse
|
179
|
Sikkink KL, Reynolds RM, Ituarte CM, Cresko WA, Phillips PC. Rapid evolution of phenotypic plasticity and shifting thresholds of genetic assimilation in the nematode Caenorhabditis remanei. G3 (BETHESDA, MD.) 2014; 4:1103-12. [PMID: 24727288 PMCID: PMC4065253 DOI: 10.1534/g3.114.010553] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/06/2014] [Indexed: 11/22/2022]
Abstract
Many organisms can acclimate to new environments through phenotypic plasticity, a complex trait that can be heritable, subject to selection, and evolve. However, the rate and genetic basis of plasticity evolution remain largely unknown. We experimentally evolved outbred populations of the nematode Caenorhabditis remanei under an acute heat shock during early larval development. When raised in a nonstressful environment, ancestral populations were highly sensitive to a 36.8° heat shock and exhibited high mortality. However, initial exposure to a nonlethal high temperature environment resulted in significantly reduced mortality during heat shock (hormesis). Lines selected for heat shock resistance rapidly evolved the capacity to withstand heat shock in the native environment without any initial exposure to high temperatures, and early exposure to high temperatures did not lead to further increases in heat resistance. This loss of plasticity would appear to have resulted from the genetic assimilation of the heat induction response in the noninducing environment. However, analyses of transcriptional variation via RNA-sequencing from the selected populations revealed no global changes in gene regulation correlated with the observed changes in heat stress resistance. Instead, assays of the phenotypic response across a broader range of temperatures revealed that the induced plasticity was not fixed across environments, but rather the threshold for the response was shifted to higher temperatures over evolutionary time. These results demonstrate that apparent genetic assimilation can result from shifting thresholds of induction across environments and that analysis of the broader environmental context is critically important for understanding the evolution of phenotypic plasticity.
Collapse
Affiliation(s)
- Kristin L Sikkink
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
| | - Rose M Reynolds
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289 Department of Biology, William Jewell College, Liberty, Missouri 64068
| | - Catherine M Ituarte
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon 97403-5289
| |
Collapse
|
180
|
Dominy SS, Brown JN, Ryder MI, Gritsenko M, Jacobs JM, Smith RD. Proteomic analysis of saliva in HIV-positive heroin addicts reveals proteins correlated with cognition. PLoS One 2014; 9:e89366. [PMID: 24717448 PMCID: PMC3981673 DOI: 10.1371/journal.pone.0089366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 01/21/2014] [Indexed: 02/07/2023] Open
Abstract
The prevalence of HIV-associated neurocognitive disorders (HAND) remains high despite effective antiretroviral therapies. Multiple etiologies have been proposed over the last several years to account for this phenomenon, including the neurotoxic effects of antiretrovirals and co-morbid substance abuse; however, no underlying molecular mechanism has been identified. Emerging evidence in several fields has linked the gut to brain diseases, but the effect of the gut on the brain during HIV infection has not been explored. Saliva is the most accessible gut biofluid, and is therefore of great scientific interest for diagnostic and prognostic purposes. This study presents a longitudinal, liquid chromatography-mass spectrometry-based quantitative proteomics study investigating saliva samples taken from 8 HIV-positive (HIV+), 11 −negative (HIV−) heroin addicts. In addition, saliva samples were investigated from 11 HIV−, non-heroin addicted healthy controls. In the HIV+ group, 58 proteins were identified that show significant correlations with cognitive scores, implicating disruption of protein quality control pathways by HIV. Notably, only one protein from the HIV− heroin addict cohort showed a significant correlation with cognitive scores, and no proteins correlated with cognitive scores in the healthy control group. In addition, the majority of correlated proteins have been shown to be associated with exosomes, allowing us to propose that the salivary glands and/or oral epithelium may modulate brain function during HIV infection through the release of discrete packets of proteins in the form of exosomes.
Collapse
Affiliation(s)
- Stephen S. Dominy
- Department of Psychiatry, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (SD); (RS)
| | - Joseph N. Brown
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Mark I. Ryder
- Division of Periodontology, Department of Orofacial Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - Marina Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Jon M. Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, United States of America
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratories, Richland, Washington, United States of America
- * E-mail: (SD); (RS)
| |
Collapse
|
181
|
Abstract
Cryptic genetic variation (CGV) is invisible under normal conditions, but it can fuel evolution when circumstances change. In theory, CGV can represent a massive cache of adaptive potential or a pool of deleterious alleles that are in need of constant suppression. CGV emerges from both neutral and selective processes, and it may inform about how human populations respond to change. CGV facilitates adaptation in experimental settings, but does it have an important role in the real world? Here, we review the empirical support for widespread CGV in natural populations, including its potential role in emerging human diseases and the growing evidence of its contribution to evolution.
Collapse
Affiliation(s)
- Annalise B Paaby
- Department of Biology, and Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York 10003, USA
| | - Matthew V Rockman
- Department of Biology, and Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York 10003, USA
| |
Collapse
|
182
|
Cassidy JJ, Jha AR, Posadas DM, Giri R, Venken KJT, Ji J, Jiang H, Bellen HJ, White KP, Carthew RW. miR-9a minimizes the phenotypic impact of genomic diversity by buffering a transcription factor. Cell 2014; 155:1556-67. [PMID: 24360277 DOI: 10.1016/j.cell.2013.10.057] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/16/2013] [Accepted: 10/29/2013] [Indexed: 12/22/2022]
Abstract
Gene expression has to withstand stochastic, environmental, and genomic perturbations. For example, in the latter case, 0.5%-1% of the human genome is typically variable between any two unrelated individuals. Such diversity might create problematic variability in the activity of gene regulatory networks and, ultimately, in cell behaviors. Using multigenerational selection experiments, we find that for the Drosophila proneural network, the effect of genomic diversity is dampened by miR-9a-mediated regulation of senseless expression. Reducing miR-9a regulation of the Senseless transcription factor frees the genomic landscape to exert greater phenotypic influence. Whole-genome sequencing identified genomic loci that potentially exert such effects. A larger set of sequence variants, including variants within proneural network genes, exhibits these characteristics when miR-9a concentration is reduced. These findings reveal that microRNA-target interactions may be a key mechanism by which the impact of genomic diversity on cell behavior is dampened.
Collapse
Affiliation(s)
- Justin J Cassidy
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Aashish R Jha
- Institute for Genomics and Systems Biology, Departments of Human Genetics and Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Diana M Posadas
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ritika Giri
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Koen J T Venken
- Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jingran Ji
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Hongmei Jiang
- Department of Statistics, Northwestern University, Evanston, IL 60208, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Howard Hughes Medical Institute, Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology, Departments of Human Genetics and Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
183
|
Abstract
SummaryFungal pathogens pose a major threat to human health worldwide. They infect billions of people each year, leading to at least 1·5 million deaths. Treatment of fungal infections is difficult due to the limited number of clinically useful antifungal drugs, and the emergence of drug resistance. A promising new strategy to enhance the efficacy of antifungal drugs and block the evolution of drug resistance is to target the molecular chaperone Hsp90. Pharmacological inhibitors of Hsp90 function that are in development as anticancer agents have potential to be repurposed as agents for combination antifungal therapy for some applications, such as biofilm infections. For systemic infections, however, effective combination therapy regimens may require Hsp90 inhibitors that can selectively target Hsp90 in the pathogen, or alternate strategies to compromise function of the Hsp90 chaperone machine. Selectively impairing Hsp90 function in the pathogen could in principle be achieved by targeting Hsp90 co-chaperones or regulators of Hsp90 function that are more divergent between pathogen and host than Hsp90. Antifungal combination therapies could also exploit downstream effectors of Hsp90 that are critical for fungal drug resistance and virulence. Here, we discuss the progress and prospects for establishing Hsp90 as an important therapeutic target for life-threatening fungal infections.
Collapse
|
184
|
Verkhivker GM. Computational Studies of Allosteric Regulation in the Hsp90 Molecular Chaperone: From Functional Dynamics and Protein Structure Networks to Allosteric Communications and Targeted Anti-Cancer Modulators. Isr J Chem 2014. [DOI: 10.1002/ijch.201300143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
185
|
Regulatory role of the 90-kDa-heat-shock protein (Hsp90) and associated factors on gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:71-87. [DOI: 10.1016/j.bbagrm.2013.12.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 12/23/2013] [Accepted: 12/26/2013] [Indexed: 12/31/2022]
|
186
|
Rohner N, Jarosz DF, Kowalko JE, Yoshizawa M, Jeffery WR, Borowsky RL, Lindquist S, Tabin CJ. Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish. Science 2013; 342:1372-5. [PMID: 24337296 DOI: 10.1126/science.1240276] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the process of morphological evolution, the extent to which cryptic, preexisting variation provides a substrate for natural selection has been controversial. We provide evidence that heat shock protein 90 (HSP90) phenotypically masks standing eye-size variation in surface populations of the cavefish Astyanax mexicanus. This variation is exposed by HSP90 inhibition and can be selected for, ultimately yielding a reduced-eye phenotype even in the presence of full HSP90 activity. Raising surface fish under conditions found in caves taxes the HSP90 system, unmasking the same phenotypic variation as does direct inhibition of HSP90. These results suggest that cryptic variation played a role in the evolution of eye loss in cavefish and provide the first evidence for HSP90 as a capacitor for morphological evolution in a natural setting.
Collapse
Affiliation(s)
- Nicolas Rohner
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Vincent BM, Lancaster AK, Scherz-Shouval R, Whitesell L, Lindquist S. Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS Biol 2013; 11:e1001692. [PMID: 24204207 PMCID: PMC3812114 DOI: 10.1371/journal.pbio.1001692] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 09/05/2013] [Indexed: 11/22/2022] Open
Abstract
The rarity of clinical drug resistance to the antifungal amphotericin B is explained by the extreme costs that resistance mutations impose upon stress responses and virulence factors. The evolution of drug resistance in microbial pathogens provides a paradigm for investigating evolutionary dynamics with important consequences for human health. Candida albicans, the leading fungal pathogen of humans, rapidly evolves resistance to two major antifungal classes, the triazoles and echinocandins. In contrast, resistance to the third major antifungal used in the clinic, amphotericin B (AmB), remains extremely rare despite 50 years of use as monotherapy. We sought to understand this long-standing evolutionary puzzle. We used whole genome sequencing of rare AmB-resistant clinical isolates as well as laboratory-evolved strains to identify and investigate mutations that confer AmB resistance in vitro. Resistance to AmB came at a great cost. Mutations that conferred resistance simultaneously created diverse stresses that required high levels of the molecular chaperone Hsp90 for survival, even in the absence of AmB. This requirement stemmed from severe internal stresses caused by the mutations, which drastically diminished tolerance to external stresses from the host. AmB-resistant mutants were hypersensitive to oxidative stress, febrile temperatures, and killing by neutrophils and also had defects in filamentation and tissue invasion. These strains were avirulent in a mouse infection model. Thus, the costs of evolving resistance to AmB limit the emergence of this phenotype in the clinic. Our work provides a vivid example of the ways in which conflicting selective pressures shape evolutionary trajectories and illustrates another mechanism by which the Hsp90 buffer potentiates the emergence of new phenotypes. Developing antibiotics that deliberately create such evolutionary constraints might offer a strategy for limiting the rapid emergence of drug resistance. The evolution of drug resistance in human pathogens is considered an inevitable consequence of the selective pressures imposed by antimicrobial drugs. Yet resistance to one antifungal drug, amphotericin B (AmB), remains extremely rare despite decades of widespread use. Here we explore the biological mechanisms underlying this conundrum. By examining natural and experimental populations of Candida albicans, we identify multiple mutations that confer resistance to AmB in vitro. As with the evolution of resistance to other antifungals, we find that the chaperone protein Hsp90 is involved in enabling the evolution of resistance to AmB. We also discover, however, that mutations that confer AmB resistance impose massive costs on other aspects of fungal pathogenicity; strains that are resistant to AmB are hypersensitive to attack by the host immune system and are unable to invade and damage host tissue. Thus, the evolution of resistance to AmB is restricted by a tradeoff between tolerance of the drug and the ability to cause disease. We propose that developing new antibiotics for which resistance presents such dire tradeoffs may be a promising strategy to prevent the evolution of resistance.
Collapse
Affiliation(s)
- Benjamin Matteson Vincent
- Microbiology Graduate Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Alex Kelvin Lancaster
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Ruth Scherz-Shouval
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Luke Whitesell
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
188
|
Nguyen MT, Csermely P, Sőti C. Hsp90 chaperones PPARγ and regulates differentiation and survival of 3T3-L1 adipocytes. Cell Death Differ 2013; 20:1654-63. [PMID: 24096869 DOI: 10.1038/cdd.2013.129] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/24/2013] [Accepted: 08/21/2013] [Indexed: 11/09/2022] Open
Abstract
Adipose tissue dysregulation has a major role in various human diseases. The peroxisome proliferator-activated receptor-γ (PPARγ) is a key regulator of adipocyte differentiation and function, as well as a target of insulin-sensitizing drugs. The Hsp90 chaperone stabilizes a diverse set of signaling 'client' proteins, thereby regulates various biological processes. Here we report a novel role for Hsp90 in controlling PPARγ stability and cellular differentiation. Specifically, we show that the Hsp90 inhibitors geldanamycin and novobiocin efficiently impede the differentiation of murine 3T3-L1 preadipocytes. Geldanamycin at higher concentrations also inhibits the survival of both developing and mature adipocytes, respectively. Further, Hsp90 inhibition disrupts an Hsp90-PPARγ complex, leads to the destabilization and proteasomal degradation of PPARγ, and inhibits the expression of PPARγ target genes, identifying PPARγ as an Hsp90 client. A similar destabilization of PPARγ and a halt of adipogenesis also occur in response to protein denaturing stresses caused by a single transient heat-shock or proteasome inhibition. Recovery from stress restores PPARγ stability and adipocyte differentiation. Thus, our findings reveal Hsp90 as a critical stress-responsive regulator of adipocyte biology and offer a potential therapeutic target in obesity and the metabolic syndrome.
Collapse
Affiliation(s)
- M T Nguyen
- Department of Medical Chemistry, Semmelweis University, Budapest, Hungary
| | | | | |
Collapse
|
189
|
Garfield DA, Runcie DE, Babbitt CC, Haygood R, Nielsen WJ, Wray GA. The impact of gene expression variation on the robustness and evolvability of a developmental gene regulatory network. PLoS Biol 2013; 11:e1001696. [PMID: 24204211 PMCID: PMC3812118 DOI: 10.1371/journal.pbio.1001696] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 09/16/2013] [Indexed: 11/18/2022] Open
Abstract
Regulatory interactions buffer development against genetic and environmental perturbations, but adaptation requires phenotypes to change. We investigated the relationship between robustness and evolvability within the gene regulatory network underlying development of the larval skeleton in the sea urchin Strongylocentrotus purpuratus. We find extensive variation in gene expression in this network throughout development in a natural population, some of which has a heritable genetic basis. Switch-like regulatory interactions predominate during early development, buffer expression variation, and may promote the accumulation of cryptic genetic variation affecting early stages. Regulatory interactions during later development are typically more sensitive (linear), allowing variation in expression to affect downstream target genes. Variation in skeletal morphology is associated primarily with expression variation of a few, primarily structural, genes at terminal positions within the network. These results indicate that the position and properties of gene interactions within a network can have important evolutionary consequences independent of their immediate regulatory role.
Collapse
Affiliation(s)
- David A. Garfield
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Daniel E. Runcie
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Courtney C. Babbitt
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
| | - Ralph Haygood
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Center for Systems Biology, Duke University, Durham, North Carolina, United States of America
| | - William J. Nielsen
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
| | - Gregory A. Wray
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, United States of America
- Center for Systems Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
190
|
Affiliation(s)
- Joanna Masel
- Ecology and Evolutionary Biology, University of Arizona, 1041 E, Lowell St, Tucson, AZ 84721, USA.
| |
Collapse
|
191
|
Gidalevitz T, Wang N, Deravaj T, Alexander-Floyd J, Morimoto RI. Natural genetic variation determines susceptibility to aggregation or toxicity in a C. elegans model for polyglutamine disease. BMC Biol 2013; 11:100. [PMID: 24079614 PMCID: PMC3816611 DOI: 10.1186/1741-7007-11-100] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/11/2013] [Indexed: 11/10/2022] Open
Abstract
Background Monogenic gain-of-function protein aggregation diseases, including Huntington’s disease, exhibit substantial variability in age of onset, penetrance, and clinical symptoms, even between individuals with similar or identical mutations. This difference in phenotypic expression of proteotoxic mutations is proposed to be due, at least in part, to the variability in genetic background. To address this, we examined the role of natural variation in defining the susceptibility of genetically diverse individuals to protein aggregation and toxicity, using the Caenorhabditis elegans polyglutamine model. Results Introgression of polyQ40 into three wild genetic backgrounds uncovered wide variation in onset of aggregation and corresponding toxicity, as well as alteration in the cell-specific susceptibility to aggregation. To further dissect these relationships, we established a panel of 21 recombinant inbred lines that showed a broad range of aggregation phenotypes, independent of differences in expression levels. We found that aggregation is a transgressive trait, and does not always correlate with measures of toxicity, such as early onset of muscle dysfunction, egg-laying deficits, or reduced lifespan. Moreover, distinct measures of proteotoxicity were independently modified by the genetic background. Conclusions Resistance to protein aggregation and the ability to restrict its associated cellular dysfunction are independently controlled by the natural variation in genetic background, revealing important new considerations in the search for targets for therapeutic intervention in conformational diseases. Thus, our C. elegans model can serve as a powerful tool to dissect the contribution of natural variation to individual susceptibility to proteotoxicity. Please see related commentary by Kaeberlein, http://www.biomedcentral.com/1741-7007/11/102.
Collapse
Affiliation(s)
- Tali Gidalevitz
- Department of Molecular Biosciences, Rice Institute for Biomedical Research, Northwestern University, Evanston, IL 60208-3500, USA.
| | | | | | | | | |
Collapse
|
192
|
Saibil H. Chaperone machines for protein folding, unfolding and disaggregation. Nat Rev Mol Cell Biol 2013; 14:630-42. [PMID: 24026055 DOI: 10.1038/nrm3658] [Citation(s) in RCA: 789] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Molecular chaperones are diverse families of multidomain proteins that have evolved to assist nascent proteins to reach their native fold, protect subunits from heat shock during the assembly of complexes, prevent protein aggregation or mediate targeted unfolding and disassembly. Their increased expression in response to stress is a key factor in the health of the cell and longevity of an organism. Unlike enzymes with their precise and finely tuned active sites, chaperones are heavy-duty molecular machines that operate on a wide range of substrates. The structural basis of their mechanism of action is being unravelled (in particular for the heat shock proteins HSP60, HSP70, HSP90 and HSP100) and typically involves massive displacements of 20-30 kDa domains over distances of 20-50 Å and rotations of up to 100°.
Collapse
Affiliation(s)
- Helen Saibil
- Department of Crystallography, Institute for Structural and Molecular Biology, Birkbeck College London, UK
| |
Collapse
|
193
|
Richardson JB, Uppendahl LD, Traficante MK, Levy SF, Siegal ML. Histone variant HTZ1 shows extensive epistasis with, but does not increase robustness to, new mutations. PLoS Genet 2013; 9:e1003733. [PMID: 23990806 PMCID: PMC3749942 DOI: 10.1371/journal.pgen.1003733] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/05/2013] [Indexed: 12/18/2022] Open
Abstract
Biological systems produce phenotypes that appear to be robust to perturbation by mutations and environmental variation. Prior studies identified genes that, when impaired, reveal previously cryptic genetic variation. This result is typically interpreted as evidence that the disrupted gene normally increases robustness to mutations, as such robustness would allow cryptic variants to accumulate. However, revelation of cryptic genetic variation is not necessarily evidence that a mutationally robust state has been made less robust. Demonstrating a difference in robustness requires comparing the ability of each state (with the gene perturbed or intact) to suppress the effects of new mutations. Previous studies used strains in which the existing genetic variation had been filtered by selection. Here, we use mutation accumulation (MA) lines that have experienced minimal selection, to test the ability of histone H2A.Z (HTZ1) to increase robustness to mutations in the yeast Saccharomyces cerevisiae. HTZ1, a regulator of chromatin structure and gene expression, represents a class of genes implicated in mutational robustness. It had previously been shown to increase robustness of yeast cell morphology to fluctuations in the external or internal microenvironment. We measured morphological variation within and among 79 MA lines with and without HTZ1. Analysis of within-line variation confirms that HTZ1 increases microenvironmental robustness. Analysis of between-line variation shows the morphological effects of eliminating HTZ1 to be highly dependent on the line, which implies that HTZ1 interacts with mutations that have accumulated in the lines. However, lines without HTZ1 are, as a group, not more phenotypically diverse than lines with HTZ1 present. The presence of HTZ1, therefore, does not confer greater robustness to mutations than its absence. Our results provide experimental evidence that revelation of cryptic genetic variation cannot be assumed to be caused by loss of robustness, and therefore force reevaluation of prior claims based on that assumption.
Collapse
Affiliation(s)
- Joshua B. Richardson
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Locke D. Uppendahl
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Maria K. Traficante
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Sasha F. Levy
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Mark L. Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| |
Collapse
|
194
|
He K, Zheng X, Zhang L, Yu J. Hsp90 inhibitors promote p53-dependent apoptosis through PUMA and Bax. Mol Cancer Ther 2013; 12:2559-68. [PMID: 23966620 DOI: 10.1158/1535-7163.mct-13-0284] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hsp90 is widely overexpressed in cancer cells and believed to be essential for the maintenance of malignant phenotypes. Targeting Hsp90 by small molecules has shown promise in solid and hematologic malignancies, which likely involves degradation of client oncoproteins in a cell-type-specific manner. In this study, we found that structurally unrelated Hsp90 inhibitors induce DNA damage and apoptosis via p53-dependent induction of PUMA, which indirectly triggers Bax activation and mitochondrial dysfunction in colon cancer cells. Deficiency in PUMA, BAX, or p53, at lesser extent, abrogated 17-allylamino-17-demethoxygeldanamycin (17-AAG)-induced apoptosis and mitochondrial dysfunction, and enhanced clonogenic cell survival. Furthermore, suppression of p53-dependent p21 induction or enhanced p53 activation synergized with 17-AAG to induce PUMA-dependent apoptosis. Finally, PUMA was found to mediate apoptotic and therapeutic responses to the 17-AAG analog 17-DMAG in xenografts. These results show an important role of the p53/PUMA/Bax axis in Hsp90 inhibitor-induced killing of p53 wild-type cells, and have important implications for their clinical applications.
Collapse
Affiliation(s)
- Kan He
- Department of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA.,University of Pittsburgh Cancer Institute 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Xingnan Zheng
- Department of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA.,University of Pittsburgh Cancer Institute 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA.,University of Pittsburgh Cancer Institute 5117 Centre Ave., Pittsburgh, PA 15213, USA
| | - Jian Yu
- Department of Pathology, University of Pittsburgh School of Medicine, 5117 Centre Ave., Pittsburgh, PA 15213, USA.,University of Pittsburgh Cancer Institute 5117 Centre Ave., Pittsburgh, PA 15213, USA
| |
Collapse
|
195
|
Blacklock K, Verkhivker GM. Differential modulation of functional dynamics and allosteric interactions in the Hsp90-cochaperone complexes with p23 and Aha1: a computational study. PLoS One 2013; 8:e71936. [PMID: 23977182 PMCID: PMC3747073 DOI: 10.1371/journal.pone.0071936] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/10/2013] [Indexed: 12/27/2022] Open
Abstract
Allosteric interactions of the molecular chaperone Hsp90 with a large cohort of cochaperones and client proteins allow for molecular communication and event coupling in signal transduction networks. The integration of cochaperones into the Hsp90 system is driven by the regulatory mechanisms that modulate the progression of the ATPase cycle and control the recruitment of the Hsp90 clientele. In this work, we report the results of computational modeling of allosteric regulation in the Hsp90 complexes with the cochaperones p23 and Aha1. By integrating protein docking, biophysical simulations, modeling of allosteric communications, protein structure network analysis and the energy landscape theory we have investigated dynamics and stability of the Hsp90-p23 and Hsp90-Aha1 interactions in direct comparison with the extensive body of structural and functional experiments. The results have revealed that functional dynamics and allosteric interactions of Hsp90 can be selectively modulated by these cochaperones via specific targeting of the regulatory hinge regions that could restrict collective motions and stabilize specific chaperone conformations. The protein structure network parameters have quantified the effects of cochaperones on conformational stability of the Hsp90 complexes and identified dynamically stable communities of residues that can contribute to the strengthening of allosteric interactions. According to our results, p23-mediated changes in the Hsp90 interactions may provide "molecular brakes" that could slow down an efficient transmission of the inter-domain allosteric signals, consistent with the functional role of p23 in partially inhibiting the ATPase cycle. Unlike p23, Aha1-mediated acceleration of the Hsp90-ATPase cycle may be achieved via modulation of the equilibrium motions that facilitate allosteric changes favoring a closed dimerized form of Hsp90. The results of our study have shown that Aha1 and p23 can modulate the Hsp90-ATPase activity and direct the chaperone cycle by exerting the precise control over structural stability, global movements and allosteric communications in Hsp90.
Collapse
Affiliation(s)
- Kristin Blacklock
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- School of Computational Sciences and Crean School of Health and Life Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
196
|
The fungal Achilles’ heel: targeting Hsp90 to cripple fungal pathogens. Curr Opin Microbiol 2013; 16:377-84. [DOI: 10.1016/j.mib.2013.03.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 03/11/2013] [Indexed: 11/24/2022]
|
197
|
Alarcon SV, Mollapour M, Lee MJ, Tsutsumi S, Lee S, Kim YS, Prince T, Apolo AB, Giaccone G, Xu W, Neckers LM, Trepel JB. Tumor-intrinsic and tumor-extrinsic factors impacting hsp90- targeted therapy. Curr Mol Med 2013; 12:1125-41. [PMID: 22804236 DOI: 10.2174/156652412803306729] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 05/18/2012] [Accepted: 07/07/2012] [Indexed: 01/19/2023]
Abstract
In 1994 the first heat shock protein 90 (Hsp90) inhibitor was identified and Hsp90 was reported to be a target for anticancer therapeutics. In the past 18 years there have been 17 distinct Hsp90 inhibitors entered into clinical trial, and the small molecule Hsp90 inhibitors have been highly valuable as probes of the role of Hsp90 and its client proteins in cancer. Although no Hsp90 inhibitor has achieved regulatory approval, recently there has been significant progress in Hsp90 inhibitor clinical development, and in the past year RECIST responses have been documented in HER2-positive breast cancer and EML4-ALK-positive non-small cell lung cancer. All of the clinical Hsp90 inhibitors studied to date are specific in their target, i.e. they bind exclusively to Hsp90 and two related heat shock proteins. However, Hsp90 inhibitors are markedly pleiotropic, causing degradation of over 200 client proteins and impacting critical multiprotein complexes. Furthermore, it has only recently been appreciated that Hsp90 inhibitors can, paradoxically, cause transient activation of the protein kinase clients they are chaperoning, resulting in initiation of signal transduction and significant physiological events in both tumor and tumor microenvironment. An additional area of recent progress in Hsp90 research is in studies of the posttranslational modifications of Hsp90 itself and Hsp90 co-chaperone proteins. Together, a picture is emerging in which the impact of Hsp90 inhibitors is shaped by the tumor intracellular and extracellular milieu, and in which Hsp90 inhibitors impact tumor and host on a microenvironmental and systems level. Here we review the tumor intrinsic and extrinsic factors that impact the efficacy of small molecules engaging the Hsp90 chaperone machine.
Collapse
Affiliation(s)
- S V Alarcon
- Medical Oncology Branch, CCR, NCI, NIH, Bldg 10, Rm 12N230, 10 Center Drive, Bethesda, MD 20816, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Yvert G, Ohnuki S, Nogami S, Imanaga Y, Fehrmann S, Schacherer J, Ohya Y. Single-cell phenomics reveals intra-species variation of phenotypic noise in yeast. BMC SYSTEMS BIOLOGY 2013; 7:54. [PMID: 23822767 PMCID: PMC3711934 DOI: 10.1186/1752-0509-7-54] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 06/21/2013] [Indexed: 01/31/2023]
Abstract
Background Most quantitative measures of phenotypic traits represent macroscopic contributions of large numbers of cells. Yet, cells of a tissue do not behave similarly, and molecular studies on several organisms have shown that regulations can be highly stochastic, sometimes generating diversified cellular phenotypes within tissues. Phenotypic noise, defined here as trait variability among isogenic cells of the same type and sharing a common environment, has therefore received a lot of attention. Given the potential fitness advantage provided by phenotypic noise in fluctuating environments, the possibility that it is directly subjected to evolutionary selection is being considered. For selection to act, phenotypic noise must differ between contemporary genotypes. Whether this is the case or not remains, however, unclear because phenotypic noise has very rarely been quantified in natural populations. Results Using automated image analysis, we describe here the phenotypic diversity of S. cerevisiae morphology at single-cell resolution. We profiled hundreds of quantitative traits in more than 1,000 cells of 37 natural strains, which represent various geographical and ecological origins of the species. We observed abundant trait variation between strains, with no correlation with their ecological origin or population history. Phenotypic noise strongly depended on the strain background. Noise variation was largely trait-specific (specific strains showing elevated noise for subset of traits) but also global (a few strains displaying elevated noise for many unrelated traits). Conclusions Our results demonstrate that phenotypic noise does differ quantitatively between natural populations. This supports the possibility that, if noise is adaptive, microevolution may tune it in the wild. This tuning may happen on specific traits or by varying the degree of global phenotypic buffering.
Collapse
Affiliation(s)
- Gaël Yvert
- Laboratoire de Biologie Moléculaire de la Cellule, Ecole Normale Supérieure de Lyon; CNRS, Université Lyon 1, 46 Allée d'Italie, Lyon F-69007, France.
| | | | | | | | | | | | | |
Collapse
|
199
|
Derecka K, Blythe MJ, Malla S, Genereux DP, Guffanti A, Pavan P, Moles A, Snart C, Ryder T, Ortori CA, Barrett DA, Schuster E, Stöger R. Transient exposure to low levels of insecticide affects metabolic networks of honeybee larvae. PLoS One 2013; 8:e68191. [PMID: 23844170 PMCID: PMC3699529 DOI: 10.1371/journal.pone.0068191] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/27/2013] [Indexed: 01/21/2023] Open
Abstract
The survival of a species depends on its capacity to adjust to changing environmental conditions, and new stressors. Such new, anthropogenic stressors include the neonicotinoid class of crop-protecting agents, which have been implicated in the population declines of pollinating insects, including honeybees (Apis mellifera). The low-dose effects of these compounds on larval development and physiological responses have remained largely unknown. Over a period of 15 days, we provided syrup tainted with low levels (2 µg/L(-1)) of the neonicotinoid insecticide imidacloprid to beehives located in the field. We measured transcript levels by RNA sequencing and established lipid profiles using liquid chromatography coupled with mass spectrometry from worker-bee larvae of imidacloprid-exposed (IE) and unexposed, control (C) hives. Within a catalogue of 300 differentially expressed transcripts in larvae from IE hives, we detect significant enrichment of genes functioning in lipid-carbohydrate-mitochondrial metabolic networks. Myc-involved transcriptional response to exposure of this neonicotinoid is indicated by overrepresentation of E-box elements in the promoter regions of genes with altered expression. RNA levels for a cluster of genes encoding detoxifying P450 enzymes are elevated, with coordinated downregulation of genes in glycolytic and sugar-metabolising pathways. Expression of the environmentally responsive Hsp90 gene is also reduced, suggesting diminished buffering and stability of the developmental program. The multifaceted, physiological response described here may be of importance to our general understanding of pollinator health. Muscles, for instance, work at high glycolytic rates and flight performance could be impacted should low levels of this evolutionarily novel stressor likewise induce downregulation of energy metabolising genes in adult pollinators.
Collapse
Affiliation(s)
- Kamila Derecka
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom
| | - Martin J. Blythe
- Deep Seq, Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - Sunir Malla
- Deep Seq, Centre for Genetics and Genomics, University of Nottingham, Nottingham, United Kingdom
| | - Diane P. Genereux
- Biology Department, Westfield State University, Westfield, Massachusetts, United States of America
| | | | | | | | - Charles Snart
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom
| | | | - Catharine A. Ortori
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - David A. Barrett
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Eugene Schuster
- Institute of Healthy Ageing, Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Reinhard Stöger
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, United Kingdom
| |
Collapse
|
200
|
Dragosits M, Mattanovich D. Adaptive laboratory evolution -- principles and applications for biotechnology. Microb Cell Fact 2013; 12:64. [PMID: 23815749 PMCID: PMC3716822 DOI: 10.1186/1475-2859-12-64] [Citation(s) in RCA: 467] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/24/2013] [Indexed: 11/19/2022] Open
Abstract
Adaptive laboratory evolution is a frequent method in biological studies to gain insights into the basic mechanisms of molecular evolution and adaptive changes that accumulate in microbial populations during long term selection under specified growth conditions. Although regularly performed for more than 25 years, the advent of transcript and cheap next-generation sequencing technologies has resulted in many recent studies, which successfully applied this technique in order to engineer microbial cells for biotechnological applications. Adaptive laboratory evolution has some major benefits as compared with classical genetic engineering but also some inherent limitations. However, recent studies show how some of the limitations may be overcome in order to successfully incorporate adaptive laboratory evolution in microbial cell factory design. Over the last two decades important insights into nutrient and stress metabolism of relevant model species were acquired, whereas some other aspects such as niche-specific differences of non-conventional cell factories are not completely understood. Altogether the current status and its future perspectives highlight the importance and potential of adaptive laboratory evolution as approach in biotechnological engineering.
Collapse
Affiliation(s)
- Martin Dragosits
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 11, A-1190 Vienna, Austria.
| | | |
Collapse
|