151
|
Yoshimatsu S, Nakajima M, Iguchi A, Sanosaka T, Sato T, Nakamura M, Nakajima R, Arai E, Ishikawa M, Imaizumi K, Watanabe H, Okahara J, Noce T, Takeda Y, Sasaki E, Behr R, Edamura K, Shiozawa S, Okano H. Non-viral Induction of Transgene-free iPSCs from Somatic Fibroblasts of Multiple Mammalian Species. Stem Cell Reports 2021; 16:754-770. [PMID: 33798453 PMCID: PMC8072067 DOI: 10.1016/j.stemcr.2021.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/19/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are capable of providing an unlimited source of cells from all three germ layers and germ cells. The derivation and usage of iPSCs from various animal models may facilitate stem cell-based therapy, gene-modified animal production, and evolutionary studies assessing interspecies differences. However, there is a lack of species-wide methods for deriving iPSCs, in particular by means of non-viral and non-transgene-integrating (NTI) approaches. Here, we demonstrate the iPSC derivation from somatic fibroblasts of multiple mammalian species from three different taxonomic orders, including the common marmoset (Callithrix jacchus) in Primates, the dog (Canis lupus familiaris) in Carnivora, and the pig (Sus scrofa) in Cetartiodactyla, by combinatorial usage of chemical compounds and NTI episomal vectors. Interestingly, the fibroblasts temporarily acquired a neural stem cell-like state during the reprogramming. Collectively, our method, robustly applicable to various species, holds a great potential for facilitating stem cell-based research using various animals in Mammalia.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan; Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
| | - Mayutaka Nakajima
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Aozora Iguchi
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Tsukasa Sanosaka
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Tsukika Sato
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Mari Nakamura
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Ryusuke Nakajima
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Eri Arai
- Department of Pathology, School of Medicine, Keio University, Tokyo, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Kent Imaizumi
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Junko Okahara
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Toshiaki Noce
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuta Takeda
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan
| | - Erika Sasaki
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan; Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Rüdiger Behr
- Research Platform Degenerative Diseases, German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany; DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Kazuya Edamura
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Kanagawa, Japan
| | - Seiji Shiozawa
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Saitama, Japan.
| |
Collapse
|
152
|
Shankar V, van Blitterswijk C, Vrij E, Giselbrecht S. From Snapshots to Development: Identifying the Gaps in the Development of Stem Cell-based Embryo Models along the Embryonic Timeline. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004250. [PMID: 33898195 PMCID: PMC8061376 DOI: 10.1002/advs.202004250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/20/2020] [Indexed: 05/05/2023]
Abstract
In recent years, stem cell-based models that reconstruct mouse and human embryogenesis have gained significant traction due to their near-physiological similarity to natural embryos. Embryo models can be generated in large numbers, provide accessibility to a variety of experimental tools such as genetic and chemical manipulation, and confer compatibility with automated readouts, which permits exciting experimental avenues for exploring the genetic and molecular principles of self-organization, development, and disease. However, the current embryo models recapitulate only snapshots within the continuum of embryonic development, allowing the progression of the embryonic tissues along a specific direction. Hence, to fully exploit the potential of stem cell-based embryo models, multiple important gaps in the developmental landscape need to be covered. These include recapitulating the lesser-explored interactions between embryonic and extraembryonic tissues such as the yolk sac, placenta, and the umbilical cord; spatial and temporal organization of tissues; and the anterior patterning of embryonic development. Here, it is detailed how combinations of stem cells and versatile bioengineering technologies can help in addressing these gaps and thereby extend the implications of embryo models in the fields of cell biology, development, and regenerative medicine.
Collapse
Affiliation(s)
- Vinidhra Shankar
- Maastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | | | - Erik Vrij
- Maastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| | - Stefan Giselbrecht
- Maastricht UniversityUniversiteitssingel 40Maastricht6229 ERThe Netherlands
| |
Collapse
|
153
|
Hancock GV, Wamaitha SE, Peretz L, Clark AT. Mammalian primordial germ cell specification. Development 2021; 148:148/6/dev189217. [PMID: 33722957 DOI: 10.1242/dev.189217] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The peri-implantation window of mammalian development is the crucial window for primordial germ cell (PGC) specification. Whereas pre-implantation dynamics are relatively conserved between species, the implantation window marks a stage of developmental divergence between key model organisms, and thus potential variance in the cell and molecular mechanisms for PGC specification. In humans, PGC specification is very difficult to study in vivo To address this, the combined use of human and nonhuman primate embryos, and stem cell-based embryo models are essential for determining the origin of PGCs, as are comparative analyses to the equivalent stages of mouse development. Understanding the origin of PGCs in the peri-implantation embryo is crucial not only for accurate modeling of this essential process using stem cells, but also in determining the role of global epigenetic reprogramming upon which sex-specific differentiation into gametes relies.
Collapse
Affiliation(s)
- Grace V Hancock
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Sissy E Wamaitha
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Lior Peretz
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Amander T Clark
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA .,Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
154
|
Bourdon G, Cadoret V, Charpigny G, Couturier-Tarrade A, Dalbies-Tran R, Flores MJ, Froment P, Raliou M, Reynaud K, Saint-Dizier M, Jouneau A. Progress and challenges in developing organoids in farm animal species for the study of reproduction and their applications to reproductive biotechnologies. Vet Res 2021; 52:42. [PMID: 33691745 PMCID: PMC7944619 DOI: 10.1186/s13567-020-00891-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023] Open
Abstract
Within the past decades, major progress has been accomplished in isolating germ/stem/pluripotent cells, in refining culture medium and conditions and in establishing 3-dimensional culture systems, towards developing organoids for organs involved in reproduction in mice and to some extent in humans. Haploid male germ cells were generated in vitro from primordial germ cells. So were oocytes, with additional support from ovarian cells and subsequent follicle culture. Going on with the female reproductive tract, spherical oviduct organoids were obtained from adult stem/progenitor cells. Multicellular endometrial structures mimicking functional uterine glands were derived from endometrial cells. Trophoblastic stem cells were induced to form 3-dimensional syncytial-like structures and exhibited invasive properties, a crucial point for placentation. Finally, considering the embryo itself, pluripotent embryonic cells together with additional extra-embryonic cells, could self-organize into a blastoid, and eventually into a post-implantation-like embryo. Most of these accomplishments have yet to be reached in farm animals, but much effort is devoted towards this goal. Here, we review the progress and discuss the specific challenges of developing organoids for the study of reproductive biology in these species. We consider the use of such organoids in basic research to delineate the physiological mechanisms involved at each step of the reproductive process, or to understand how they are altered by environmental factors relevant to animal breeding. We evaluate their potential in reproduction of animals with a high genetic value, from a breeding point of view or in the context of preserving local breeds with limited headcounts.
Collapse
Affiliation(s)
- Guillaume Bourdon
- INRAE, CNRS, Université de Tours, IFCE, PRC, 37380, Nouzilly, France
| | - Véronique Cadoret
- INRAE, CNRS, Université de Tours, IFCE, PRC, 37380, Nouzilly, France
- CHU Bretonneau, Médecine et Biologie de la Reproduction-CECOS, 37044, Tours, France
| | - Gilles Charpigny
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Anne Couturier-Tarrade
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | | | - Maria-José Flores
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Pascal Froment
- INRAE, CNRS, Université de Tours, IFCE, PRC, 37380, Nouzilly, France
| | - Mariam Raliou
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France
- Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France
| | - Karine Reynaud
- INRAE, CNRS, Université de Tours, IFCE, PRC, 37380, Nouzilly, France
| | - Marie Saint-Dizier
- INRAE, CNRS, Université de Tours, IFCE, PRC, 37380, Nouzilly, France
- Faculty of Sciences and Techniques, University of Tours, 37200, Tours, France
| | - Alice Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350, Jouy-en-Josas, France.
- Ecole Nationale Vétérinaire D'Alfort, BREED, 94700, Maisons-Alfort, France.
| |
Collapse
|
155
|
Turocy J, Adashi EY, Egli D. Heritable human genome editing: Research progress, ethical considerations, and hurdles to clinical practice. Cell 2021; 184:1561-1574. [PMID: 33740453 DOI: 10.1016/j.cell.2021.02.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/29/2021] [Accepted: 02/17/2021] [Indexed: 12/14/2022]
Abstract
Our genome at conception determines much of our health as an adult. Most human diseases have a heritable component and thus may be preventable through heritable genome editing. Preventing disease from the beginning of life before irreversible damage has occurred is an admirable goal, but the path to fruition remains unclear. Here, we review the significant scientific contributions to the field of human heritable genome editing, the unique ethical challenges that cannot be overlooked, and the hurdles that must be overcome prior to translating these technologies into clinical practice.
Collapse
Affiliation(s)
- Jenna Turocy
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA
| | - Eli Y Adashi
- Professor of Medical Science, Brown University, Providence, RI, USA
| | - Dieter Egli
- Department of Obstetrics and Gynecology, Columbia University, New York, NY 10032, USA; Department of Pediatrics and Naomi Berrie Diabetes Center, Columbia University, New York, NY 10032, USA; Columbia University Stem Cell Initiative, New York, NY 10032, USA.
| |
Collapse
|
156
|
Bharti D, Tikka M, Lee SY, Bok EY, Lee HJ, Rho GJ. Female Germ Cell Development, Functioning and Associated Adversities under Unfavorable Circumstances. Int J Mol Sci 2021; 22:1979. [PMID: 33671303 PMCID: PMC7922109 DOI: 10.3390/ijms22041979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 01/07/2023] Open
Abstract
In the present era, infertility is one of the major issues which restricts many couples to have their own children. Infertility is the inability to achieve a clinical pregnancy after regular unprotected sexual intercourse for the period of one year or more. Various factors including defective male or female germ cell development, unhealthy and improper lifestyles, diseases like cancer and associated chemo-or-radiation therapies, congenital disorders, etc., may be responsible for infertility. Therefore, it is highly important to understand the basic concepts of germ cell development including primordial germ cell (PGC) formation, specification, migration, entry to genital ridges and their molecular mechanisms, activated pathways, paracrine and autocrine signaling, along with possible alteration which can hamper germ cell development and can cause adversities like cancer progression and infertility. Knowing all these aspects in a proper way can be very much helpful in improving our understanding about gametogenesis and finding possible ways to cure related disorders. Here in this review, various aspects of gametogenesis especially female gametes and relevant factors causing functional impairment have been thoroughly discussed.
Collapse
Affiliation(s)
- Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Manisha Tikka
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala 147002, India;
| | - Sang-Yun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Eun-Yeong Bok
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| | - Hyeon-Jeong Lee
- Department of Medicine, University of California, San Diego, CA 92093-0021, USA;
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine and Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-Y.L.); (E.-Y.B.)
| |
Collapse
|
157
|
Saitou M. Mammalian Germ Cell Development: From Mechanism to In Vitro Reconstitution. Stem Cell Reports 2021; 16:669-680. [PMID: 33577794 PMCID: PMC8072030 DOI: 10.1016/j.stemcr.2021.01.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
The germ cell lineage gives rise to totipotency and perpetuates and diversifies genetic as well as epigenetic information. Specifically, germ cells undergo epigenetic reprogramming/programming, replicate genetic information with high fidelity, and create genetic diversity through meiotic recombination. Driven by advances in our understanding of the mechanisms underlying germ cell development and stem cell/reproductive technologies, research over the past 2 decades has culminated in the in vitro reconstitution of mammalian germ cell development: mouse pluripotent stem cells (PSCs) can now be induced into primordial germ cell-like cells (PGCLCs) and then differentiated into fully functional oocytes and spermatogonia, and human PSCs can be induced into PGCLCs and into early oocytes and prospermatogonia with epigenetic reprogramming. Here, I provide my perspective on the key investigations that have led to the in vitro reconstitution of mammalian germ cell development, which will be instrumental in exploring salient themes in germ cell biology and, with further refinements/extensions, in developing innovative medical applications.
Collapse
Affiliation(s)
- Mitinori Saitou
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
158
|
In vitro cytotoxicity of zinc oxide nanoparticles in mouse ovarian germ cells. Toxicol In Vitro 2021; 70:105032. [DOI: 10.1016/j.tiv.2020.105032] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/28/2020] [Accepted: 10/15/2020] [Indexed: 01/19/2023]
|
159
|
Heng D, Sheng X, Tian C, Li J, Liu L, Gou M, Liu L. Mtor inhibition by INK128 extends functions of the ovary reconstituted from germline stem cells in aging and premature aging mice. Aging Cell 2021; 20:e13304. [PMID: 33448083 PMCID: PMC7884035 DOI: 10.1111/acel.13304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
Stem cell transplantation has been generally considered as promising therapeutics in preserving or recovering functions of lost, damaged, or aging tissues. Transplantation of primordial germ cells (PGCs) or oogonia stem cells (OSCs) can reconstitute ovarian functions that yet sustain for only short period of time, limiting potential application of stem cells in preservation of fertility and endocrine function. Here, we show that mTOR inhibition by INK128 extends the follicular and endocrine functions of the reconstituted ovaries in aging and premature aging mice following transplantation of PGCs/OSCs. Follicular development and endocrine functions of the reconstituted ovaries by transplanting PGCs into kidney capsule of the recipient mice were maintained by INK128 treatment for more than 12 weeks, in contrast to the controls for only about 4 weeks without receiving the mTOR inhibitors. Comparatively, rapamycin also can prolong the ovarian functions but for limited time. Furthermore, our data reveal that INK128 promotes mitochondrial function in addition to its known function in suppression of immune response and inflammation. Taken together, germline stem cell transplantation in combination with mTOR inhibition by INK128 improves and extends the reconstituted ovarian and endocrine functions in reproductive aging and premature aging mice.
Collapse
Affiliation(s)
- Dai Heng
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Xiaoyan Sheng
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
- Animal Resources CenterNankai UniversityTianjinChina
| | - Chenglei Tian
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Jie Li
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Linlin Liu
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Mo Gou
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
- Department of Cell Biology and GeneticsCollege of Life SciencesNankai UniversityTianjinChina
- Animal Resources CenterNankai UniversityTianjinChina
| |
Collapse
|
160
|
Semi K, Takashima Y. Pluripotent stem cells for the study of early human embryology. Dev Growth Differ 2021; 63:104-115. [PMID: 33570781 PMCID: PMC8251740 DOI: 10.1111/dgd.12715] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Forty years have passed since the first pluripotent stem cells (PSCs), mouse embryonic stem cells (ESCs), were established. Since then, several PSCs have been reported, including human ESCs in 1998, mouse epiblast stem cells (EpiSCs) in 2007, induced PSCs (iPSCs) in 2006 and 2007, and naïve human PSCs in 2014. Naïve PSCs are thought to correspond to pre-implantation epiblast cells, whereas conventional (or primed) human PSCs correspond to post-implantation epiblast cells. Thus, naïve and primed PSCs are classified by their developmental stages and have stage-specific characteristics, despite sharing the common feature of pluripotency. In this review, we discuss the current status of PSCs and their use to model human peri-implantation development.
Collapse
Affiliation(s)
- Katsunori Semi
- Center for iPS Cell Research and ApplicationKyoto UniversityKyotoJapan
| | | |
Collapse
|
161
|
Gao Q, Zhang W, Zhao Y, Tian Y, Wang Y, Zhang J, Geng M, Xu M, Yao C, Wang H, Li L, Liu Y, Shuai L. High-throughput screening in postimplantation haploid epiblast stem cells reveals Hs3st3b1 as a modulator for reprogramming. Stem Cells Transl Med 2021; 10:743-755. [PMID: 33511777 PMCID: PMC8046116 DOI: 10.1002/sctm.20-0468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/12/2020] [Accepted: 01/03/2021] [Indexed: 12/15/2022] Open
Abstract
Epiblast stem cells (EpiSCs) derived from postimplantation epiblast are pluripotent stem cells, epigenetically distinct from embryonic stem cells (ESCs), which are widely used in reprogramming studies. Recent achieved haploid cell lines in mammalian species open a new era for high-throughput genetic screening, due to their homozygous phenotypes. Here, we report the generation of mouse haploid EpiSCs (haEpiSCs) from postimplantation chimeric embryos at embryonic day 6.5 (E6.5). These cells maintain one set of chromosomes, express EpiSC-specific genes, and have potentials to differentiate into three germ layers. We also develop a massive mutagenesis protocol with haEpiSCs, and subsequently perform reprogramming selection using this genome-wide mutation library. Multiple modules related to various pathways are implicated. The validation experiments prove that knockout of Hst3st3b1 (one of the candidates) can promote reprogramming of EpiSCs to the ground state efficiently. Our results open the feasibility of utilizing haEpiSCs to elucidate fundamental biological processes including cell fate alternations.
Collapse
Affiliation(s)
- Qian Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Wenhao Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Yiding Zhao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Yaru Tian
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Yuna Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Jinxin Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Mengyang Geng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Mei Xu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Chunmeng Yao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Haoyu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Luyuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China
| | - Yan Liu
- Department of Obstetrics, Tianjin First Central Hospital, Nankai University, Tianjin, People's Republic of China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, People's Republic of China.,Nankai Animal Resource Center, Nankai University, Tianjin, People's Republic of China.,Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin, People's Republic of China
| |
Collapse
|
162
|
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13:1-29. [PMID: 33584977 PMCID: PMC7859985 DOI: 10.4252/wjsc.v13.i1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/28/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
The recent progress in derivation of pluripotent stem cells (PSCs) from farm animals opens new approaches not only for reproduction, genetic engineering, treatment and conservation of these species, but also for screening novel drugs for their efficacy and toxicity, and modelling of human diseases. Initial attempts to derive PSCs from the inner cell mass of blastocyst stages in farm animals were largely unsuccessful as either the cells survived for only a few passages, or lost their cellular potency; indicating that the protocols which allowed the derivation of murine or human embryonic stem (ES) cells were not sufficient to support the maintenance of ES cells from farm animals. This scenario changed by the innovation of induced pluripotency and by the development of the 3 inhibitor culture conditions to support naïve pluripotency in ES cells from livestock species. However, the long-term culture of livestock PSCs while maintaining the full pluripotency is still challenging, and requires further refinements. Here, we review the current achievements in the derivation of PSCs from farm animals, and discuss the potential application areas.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India.
| | - Thirumala R Talluri
- Equine Production Campus, ICAR-National Research Centre on Equines, Bikaner 334001, India
| | - Naresh L Selokar
- Animal Physiology and Reproduction Division, ICAR-Central Institute for Research on Buffaloes, Hisar 125001, India
| | - Iqbal Hyder
- Department of Physiology, NTR College of Veterinary Science, Gannavaram 521102, India
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institute, Federal Institute of Animal Health, Neustadt 31535, Germany
| |
Collapse
|
163
|
Ameliorative effect of recombinant human lactoferrin on the premature ovarian failure in rats after cyclophosphamide treatments. J Ovarian Res 2021; 14:17. [PMID: 33478578 PMCID: PMC7821665 DOI: 10.1186/s13048-020-00763-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/27/2020] [Indexed: 12/27/2022] Open
Abstract
This study investigated the effect of recombinant human lactoferrin (rhLF) on the premature ovarian failure (POF) of rats. After cyclophosphamide treatments, the POF rats were divided into the following groups: normal control group (NC), low-dose group (LD), medium-dose group (MD) and high-dose group (HD) of rhLF. After drug administrations, the ovarian indexes and hormonal levels were detected. After follicle number count, the proliferation and apoptosis were analyzed with the expressions of genes related with oogenesis, reactive oxygen species (ROS) production and apoptosis detected, followed by the calculation of oxidative stress and protein expressions. After 4-hydroperoxy cyclophosphamide (4-HC) treatments, the effect of rhLF on the proliferation, ROS production and gene expressions of primary rat granulosa cells (GCs) cultured in vitro were detected. After mating, the fertilities of POF rats were recorded. The result showed that the rhLF administrations up-regulated the ovarian index with the number of developing follicles increased and the decreases of hormonal levels conferred. The Ki-67 intensities of the MD and HD groups were up-regulated with the Tunnel intensities decreased. The rhLF treatments significantly promoted the expression of oogenesis, antioxidant and anti-apoptosis related genes. The expression of Bax and Caspase 3 were decreased with the expression of Bcl-2 up-regulated after rhLF administrations. The in vitro treatments of rhLF effectively conferred the toxicity of 4-HC on primary rat GCs. The fertility assessment showed the rhLF treatments up-regulated the offspring’s’ folliculogenesis, which confirmed the ameliorative role of rhLF on the POF damages via the inhibition of ROS production in GCs.
Collapse
|
164
|
La H, Yoo H, Lee EJ, Thang NX, Choi HJ, Oh J, Park JH, Hong K. Insights from the Applications of Single-Cell Transcriptomic Analysis in Germ Cell Development and Reproductive Medicine. Int J Mol Sci 2021; 22:E823. [PMID: 33467661 PMCID: PMC7829788 DOI: 10.3390/ijms22020823] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Mechanistic understanding of germ cell formation at a genome-scale level can aid in developing novel therapeutic strategies for infertility. Germ cell formation is a complex process that is regulated by various mechanisms, including epigenetic regulation, germ cell-specific gene transcription, and meiosis. Gonads contain a limited number of germ cells at various stages of differentiation. Hence, genome-scale analysis of germ cells at the single-cell level is challenging. Conventional genome-scale approaches cannot delineate the landscape of genomic, transcriptomic, and epigenomic diversity or heterogeneity in the differentiating germ cells of gonads. Recent advances in single-cell genomic techniques along with single-cell isolation methods, such as microfluidics and fluorescence-activated cell sorting, have helped elucidate the mechanisms underlying germ cell development and reproductive disorders in humans. In this review, the history of single-cell transcriptomic analysis and their technical advantages over the conventional methods have been discussed. Additionally, recent applications of single-cell transcriptomic analysis for analyzing germ cells have been summarized.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Korea; (H.L.); (H.Y.); (E.J.L.); (N.X.T.); (H.J.C.); (J.O.); (J.H.P.)
| |
Collapse
|
165
|
Advances in Female Germ Cell Induction from Pluripotent Stem Cells. Stem Cells Int 2021; 2021:8849230. [PMID: 33510796 PMCID: PMC7822693 DOI: 10.1155/2021/8849230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/15/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022] Open
Abstract
Germ cells are capable of maintaining species continuity through passing genetic and epigenetic information across generations. Female germ cells mainly develop during the embryonic stage and pass through subsequent developmental stages including primordial germ cells, oogonia, and oocyte. However, due to the limitation of using early human embryos as in vivo research model, in vitro research models are needed to reveal the early developmental process and related mechanisms of female germ cells. After birth, the number of follicles gradually decreases with age. Various conditions which damage ovarian functions would cause premature ovarian failure. Alternative treatments to solve these problems need to be investigated. Germ cell differentiation from pluripotent stem cells in vitro can simulate early embryonic development of female germ cells and clarify unresolved issues during the development process. In addition, pluripotent stem cells could potentially provide promising applications for female fertility preservation after proper in vitro differentiation. Mouse female germ cells have been successfully reconstructed in vitro and delivered to live offspring. However, the derivation of functional human female germ cells has not been fully achieved due to technical limitations and ethical issues. To provide an updated and comprehensive information, this review centers on the major studies on the differentiation of mouse and human female germ cells from pluripotent stem cells and provides references to further studies of developmental mechanisms and potential therapeutic applications of female germ cells.
Collapse
|
166
|
Qu J, Li Y, Liao S, Yan J. The Effects of Negative Elements in Environment and Cancer on Female Reproductive System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1300:283-313. [PMID: 33523439 DOI: 10.1007/978-981-33-4187-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the development of human society, factors that contribute to the impairment of female fertility is accumulating. Lifestyle-related risk factors, occupational risk factors, and iatrogenic factors, including cancer and anti-cancer treatments, have been recognized with their negative effects on the function of female reproductive system. However, the exact influences and their possible mechanism have not been elucidated yet. It is impossible to accurately estimate the indexes of female fertility, but many researchers have put forward that the general fertility has inclined through the past decades. Thus the demand for fertility preservation has increased more and more dramatically. Here we described some of the factors which may influence female reproductive system and methods for fertility preservation in response to female infertility.
Collapse
Affiliation(s)
- Jiangxue Qu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yuehan Li
- Department of Gynaecology and Obstetrics, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shujie Liao
- Department of Gynaecology and Obstetrics, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jie Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
167
|
Gruhn WH, Günesdogan U. Generation of Primordial Germ Cell-like Cells on Small and Large Scales. Methods Mol Biol 2021; 2214:75-89. [PMID: 32944904 DOI: 10.1007/978-1-0716-0958-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The specification and development of germ cells to gametes is a unique process, which is of great biological and clinical relevance. In mammals, the founding cells of the germline are primordial germ cells (PGCs), which arise during early embryogenesis. The low number of PGCs within the developing embryo limits the study of these cells in model organisms. The generation of PGC-like cells (PGCLCs) from murine pluripotent stem cells reconstitutes the earliest stages of germ cell development and mitigates the technical constraints of studying this developmental process in vivo. Here, we describe the technical details of the PGCLC specification approach and illustrate adaptations designed to improve compatibility with methods such as chromatin immunoprecipitation by increasing the yield of PGCLC generation.
Collapse
Affiliation(s)
- Wolfram H Gruhn
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK. .,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - Ufuk Günesdogan
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
168
|
Hayashi K, Galli C, Diecke S, Hildebrandt TB. Artificially produced gametes in mice, humans and other species. Reprod Fertil Dev 2021; 33:91-101. [PMID: 38769675 DOI: 10.1071/rd20265] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
The production of gametes from pluripotent stem cells in culture, also known as invitro gametogenesis, will make an important contribution to reproductive biology and regenerative medicine, both as a unique tool for understanding germ cell development and as an alternative source of gametes for reproduction. Invitro gametogenesis was developed using mouse pluripotent stem cells but is increasingly being applied in other mammalian species, including humans. In principle, the entire process of germ cell development is nearly reconstitutable in culture using mouse pluripotent stem cells, although the fidelity of differentiation processes and the quality of resultant gametes remain to be refined. The methodology in the mouse system is only partially applicable to other species, and thus it must be optimised for each species. In this review, we update the current status of invitro gametogenesis in mice, humans and other animals, and discuss challenges for further development of this technology.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-0054, Japan; and Corresponding author
| | - Cesare Galli
- Avantea, Laboratory of Reproductive Technologies, 26100 Cremona, Italy; and Fondazione Avantea, 26100 Cremona, Italy
| | - Sebastian Diecke
- Max-Delbrueck-Center for Molecular Medicine, 13092 Berlin, Germany
| | - Thomas B Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, D-10315 Berlin, Germany; and Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
169
|
Yu DCW, Wu FC, Wu CE, Chow LP, Ho HN, Chen HF. Human pluripotent stem cell-derived DDX4 and KRT-8 positive cells participate in ovarian follicle-like structure formation. iScience 2020; 24:102003. [PMID: 33490911 PMCID: PMC7811146 DOI: 10.1016/j.isci.2020.102003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/21/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Understanding the mechanisms of human pluripotent stem cells (hPSCs) specification, development and differentiation to gametes are useful for elucidating the causes of infertility and potential treatment. This study aims to examine whether hPSCs can be induced to DDX4 extracellularly expressing primordial germ cell-like cells (DDX4ec PGCLCs) and further into ovarian follicle stage in a combined in vitro and in vivo model. The transcriptional signatures show that these DDX4ec PGCLCs are characteristic of PGCs and express ovarian folliculogenesis markers. We also verify that keratin (KRT)-8 is highly expressed in the DDX4ec PGCLCs and plays a crucial role in germ cell migration. By co-culturing DDX4ec PGCLCs with human granulosa cells (GCs), these cells are further induced into ovarian follicle-like structures in a xenograft mice model. This approach can in the future design practical strategies for treating germ cell-associated issues of infertility. hPSC-derived DDX4 PGCLCs participate ovarian follicle-like structure formation Human granulosa cells as a niche environment are participating folliculogenesis Keratin 8 plays an essential role in primordial germ cell migration
Collapse
Affiliation(s)
- Danny C W Yu
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Institute of Immunotherapy, Fujian Medical University, Fujian, China.,Aging and Disease Prevention Research Center, and Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan
| | - Fang-Chun Wu
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Eng Wu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lu-Ping Chow
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Nerng Ho
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Fu Chen
- Department of Obstetrics and Gynecology, College of Medicine and the Hospital, National Taiwan University, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
170
|
Li L, Yang R, Yin C, Kee K. Studying human reproductive biology through single-cell analysis and in vitro differentiation of stem cells into germ cell-like cells. Hum Reprod Update 2020; 26:670-688. [PMID: 32464645 DOI: 10.1093/humupd/dmaa021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Understanding the molecular and cellular mechanisms of human reproductive development has been limited by the scarcity of human samples and ethical constraints. Recently, in vitro differentiation of human pluripotent stem cells into germ cells and single-cell analyses have opened new avenues to directly study human germ cells and identify unique mechanisms in human reproductive development. OBJECTIVE AND RATIONALE The goal of this review is to collate novel findings and insightful discoveries with these new methodologies, aiming at introducing researchers and clinicians to the use of these tools to study human reproductive biology and develop treatments for infertility. SEARCH METHODS PubMed was used to search articles and reviews with the following main keywords: in vitro differentiation, human stem cells, single-cell analysis, spermatogenesis, oogenesis, germ cells and other key terms related to these subjects. The search period included all publications from 2000 until now. OUTCOMES Single-cell analyses of human gonads have identified many important gene markers at different developmental stages and in subpopulations of cells. To validate the functional roles of these gene markers, researchers have used the in vitro differentiation of human pluripotent cells into germ cells and confirmed that some genetic requirements are unique in human germ cells and are not conserved in mouse models. Moreover, transcriptional regulatory networks and the interaction of germ and somatic cells in gonads were elucidated in these studies. WIDER IMPLICATIONS Single-cell analyses allow researchers to identify gene markers and potential regulatory networks using limited clinical samples. On the other hand, in vitro differentiation methods provide clinical researchers with tools to examine these newly identify gene markers and study the causative effects of mutations previously associated with infertility. Combining these two methodologies, researchers can identify gene markers and networks which are essential and unique in human reproductive development, thereby producing more accurate diagnostic tools for assessing reproductive disorders and developing treatments for infertility.
Collapse
Affiliation(s)
- Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China
| | - Risako Yang
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China
| | - Kehkooi Kee
- Department of Basic Medical Sciences, Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
171
|
Yu L, Wei Y, Sun HX, Mahdi AK, Pinzon Arteaga CA, Sakurai M, Schmitz DA, Zheng C, Ballard ED, Li J, Tanaka N, Kohara A, Okamura D, Mutto AA, Gu Y, Ross PJ, Wu J. Derivation of Intermediate Pluripotent Stem Cells Amenable to Primordial Germ Cell Specification. Cell Stem Cell 2020; 28:550-567.e12. [PMID: 33271070 DOI: 10.1016/j.stem.2020.11.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 07/17/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Dynamic pluripotent stem cell (PSC) states are in vitro adaptations of pluripotency continuum in vivo. Previous studies have generated a number of PSCs with distinct properties. To date, however, no known PSCs have demonstrated dual competency for chimera formation and direct responsiveness to primordial germ cell (PGC) specification, a unique functional feature of formative pluripotency. Here, by modulating fibroblast growth factor (FGF), transforming growth factor β (TGF-β), and WNT pathways, we derived PSCs from mice, horses, and humans (designated as XPSCs) that are permissive for direct PGC-like cell induction in vitro and are capable of contributing to intra- or inter-species chimeras in vivo. XPSCs represent a pluripotency state between naive and primed pluripotency and harbor molecular, cellular, and phenotypic features characteristic of formative pluripotency. XPSCs open new avenues for studying mammalian pluripotency and dissecting the molecular mechanisms governing PGC specification. Our method may be broadly applicable for the derivation of analogous stem cells from other mammalian species.
Collapse
Affiliation(s)
- Leqian Yu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yulei Wei
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; International Healthcare Innovation Institute, Jiangmen 529040, China
| | - Hai-Xi Sun
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Ahmed K Mahdi
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Carlos A Pinzon Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel A Schmitz
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Canbin Zheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Microsurgery, Orthopaedic Trauma and Hand Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Emily D Ballard
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jie Li
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Noriko Tanaka
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Aoi Kohara
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Daiji Okamura
- Department of Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nakamachi, Nara 631-8505, Japan
| | - Adrian A Mutto
- Instituto de Investigaciones Biotecnológicas IIB-INTECH Dr. Rodolfo Ugalde, UNSAM-CONICET, Buenos Aires 1650, Argentina
| | - Ying Gu
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518083, China; China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, Davis, CA 95616, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
172
|
Pavlovic ZJ, Sax MR, Kim AS, DeCherney AH. Altered evolution: are reproductive endocrinology and infertility specialists ready for the genetically engineered future? J Assist Reprod Genet 2020; 37:2949-2954. [PMID: 33047188 PMCID: PMC7714831 DOI: 10.1007/s10815-020-01963-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/04/2020] [Indexed: 11/29/2022] Open
Abstract
Science, propelled forward by noble aspirations and, at times, human hubris, has the capacity to affect lives and alter the world in unanticipated ways. Even seemingly minor discoveries have repeatedly proven to have far reaching implications that experts within their respective fields could not have predicted. Nuclear technology is both a source of energy and a potential means of annihilation. The internet has both seamlessly connected the world but has also opened society to the misuse and manipulation of information. Both exemplify how new technologies have the potential for positive and negative outcomes that often go beyond what was initially intended. This is not a fault of science and innovation but rather an inherent occupational hazard as new discoveries exist within a gray zone between ignorance and comprehension. These gaps in our knowledge can only be filled over time as our knowledge expands. Innovations that were once seen as fringe, over time, become mainstream and that which was once revolutionary becomes a part of everyday life. Occasionally, a scientific advancement comes along that challenges societal norms and causes us to question what is feasible, acceptable, and ethical. Nowhere in the twenty-first century has this been more evident than within the fields of genetics and genetic engineering. As we gain a deeper understanding of the source code of life, from individual base pairs to epigenetic influences, the implications of new discoveries will go far beyond curing genetic diseases, and the possibilities will be endless. Reproductive endocrinology and infertility (REI) specialists utilize many tools including expanded carrier screening, preimplantation genetic testing, and embryo selection and have become some of the experts at the forefront of the ongoing genetic revolution. Now more than ever, there is a need for REIs to be trained in the fundamentals of genetics, exposed to novel gene sequencing and editing techniques, and involved in the coming ethical discussions in order to be prepared for the genetically engineered future.
Collapse
Affiliation(s)
- Zoran J. Pavlovic
- Department of Obstetrics and Gynecology, Rush University Medical Center, 1653 W. Congress Pkwy, Suite 218 Kellogg, Chicago, IL 60612 USA
| | - Megan R. Sax
- Department of Obstetrics and Gynecology, University of Cincinnati, Medical Sciences Building Room 7264, 231 Albert Sabin Way, Mail Location 0526, Cincinnati, OH 45267 USA
| | - Ashley S. Kim
- Department of Obstetrics and Gynecology, Kaiser Permanente Los Angeles Medical Center, 4900 Sunset Boulevard, Los Angeles, CA 90027 USA
| | - Alan H. DeCherney
- Program in Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| |
Collapse
|
173
|
Ohta H, Yabuta Y, Kurimoto K, Nakamura T, Murase Y, Yamamoto T, Saitou M. Cyclosporin A and FGF signaling support the proliferation/survival of mouse primordial germ cell-like cells in vitro†. Biol Reprod 2020; 104:344-360. [PMID: 33079185 DOI: 10.1093/biolre/ioaa195] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 01/20/2023] Open
Abstract
Primordial germ cells (PGCs) are the founding population of the germ cell lineage that undergo a multistep process to generate spermatozoa or oocytes. Establishing an appropriate culture system for PGCs is a key challenge in reproductive biology. By a chemical screening using mouse PGC-like cells (mPGCLCs), which were induced from mouse embryonic stem cells, we reported previously that forskolin and rolipram synergistically enhanced the proliferation/survival of mPGCLCs with an average expansion rate of ~20-fold. In the present study, we evaluated other chemicals or cytokines to see whether they would improve the current mPGCLC culture system. Among the chemicals and cytokines examined, in the presence of forskolin and rolipram, cyclosporin A (CsA) and fibroblast growth factors (FGFs: FGF2 and FGF10) effectively enhanced the expansion of mPGCLCs in vitro (~50-fold on average). During the expansion by CsA or FGFs, mPGCLCs comprehensively erased their DNA methylation to acquire a profile equivalent to that of gonadal germ cells in vivo, while maintaining their highly motile phenotype as well as their transcriptional properties as sexually uncommitted PGCs. Importantly, these mPGCLCs robustly contributed to spermatogenesis and produced fertile offspring. Furthermore, mouse PGCs (mPGCs) cultured with CsA ex vivo showed transcriptomes and DNA methylomes similar to those of cultured mPGCLCs. The improved culture system for mPGCLCs/mPGCs would be instructive for addressing key questions in PGC biology, including the mechanisms for germ cell migration, epigenetic reprogramming, and sex determination of the germline.
Collapse
Affiliation(s)
- Hiroshi Ohta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuki Kurimoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Embryology, Nara Medical University, Nara, Japan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Murase
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Tokyo, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Kyoto, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
174
|
Taheri M, Saki G, Nikbakht R, Eftekhari AR. Bone morphogenetic protein 15 induces differentiation of mesenchymal stem cells derived from human follicular fluid to oocyte-like cell. Cell Biol Int 2020; 45:127-139. [PMID: 32997425 DOI: 10.1002/cbin.11475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022]
Abstract
Follicular fluid (FF) is essential for developing ovarian follicles. Besides the oocytes, FF has abundant undifferentiated somatic cells containing stem cell properties, which are discarded in daily medical procedures. Earlier studies have shown that FF cells could differentiate into primordial germ cells via forming embryoid bodies, which produced oocyte-like cells (OLC). This study aimed at isolating mesenchymal stem cells (MSC) from FF and evaluating the impacts of bone morphogenetic protein 15 (BMP15) on the differentiation of these cells into OLCs. Human FF-derived cells were collected from 78 women in the assisted fertilization program and cultured in human recombinant BMP15 medium for 21 days. Real-time polymerase chain reaction and immunocytochemistry staining characterized MSCs and OLCs. MSCs expressed germline stem cell (GSC) markers, such as OCT4 and Nanog. In the control group, after 15 days, OLCs were formed and expressed zona pellucida markers (ZP2 and ZP3), and reached 20-30 µm in diameter. Ten days after induction with BMP15, round cells developed, and the size of OLCs reached 115 µm. A decrease ranged from 0.04 to 4.5 in the expression of pluripotency and oocyte-specific markers observed in the cells cultured in a BMP15-supplemented medium. FF-derived MSCs have an innate potency to differentiate into OLCs, and BMP15 is effective in promoting the differentiation of these cells, which may give an in vitro model to examine germ cell development.
Collapse
Affiliation(s)
- Mahin Taheri
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Fertility, Infertility and Perinatology Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ghasem Saki
- Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roshan Nikbakht
- Fertility, Infertility and Perinatology Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali R Eftekhari
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Science, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
175
|
Functional Oocytes Derived from Granulosa Cells. Cell Rep 2020; 29:4256-4267.e9. [PMID: 31875537 DOI: 10.1016/j.celrep.2019.11.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 10/09/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022] Open
Abstract
The generation of genomically stable and functional oocytes has great potential for preserving fertility and restoring ovarian function. It remains elusive whether functional oocytes can be generated from adult female somatic cells through reprogramming to germline-competent pluripotent stem cells (gPSCs) by chemical treatment alone. Here, we show that somatic granulosa cells isolated from adult mouse ovaries can be robustly induced to generate gPSCs by a purely chemical approach, with additional Rock inhibition and critical reprogramming facilitated by crotonic sodium or acid. These gPSCs acquired high germline competency and could consistently be directed to differentiate into primordial-germ-cell-like cells and form functional oocytes that produce fertile mice. Moreover, gPSCs promoted by crotonylation and the derived germ cells exhibited longer telomeres and high genomic stability like PGCs in vivo, providing additional evidence supporting the safety and effectiveness of chemical induction, which is particularly important for germ cells in genetic inheritance.
Collapse
|
176
|
Suzuki S, Diaz VD, Hermann BP. What has single-cell RNA-seq taught us about mammalian spermatogenesis? Biol Reprod 2020; 101:617-634. [PMID: 31077285 DOI: 10.1093/biolre/ioz088] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/09/2019] [Indexed: 12/18/2022] Open
Abstract
Mammalian spermatogenesis is a complex developmental program that transforms mitotic testicular germ cells (spermatogonia) into mature male gametes (sperm) for production of offspring. For decades, it has been known that this several-weeks-long process involves a series of highly ordered and morphologically recognizable cellular changes as spermatogonia proliferate, spermatocytes undertake meiosis, and spermatids develop condensed nuclei, acrosomes, and flagella. Yet, much of the underlying molecular logic driving these processes has remained opaque because conventional characterization strategies often aggregated groups of cells to meet technical requirements or due to limited capability for cell selection. Recently, a cornucopia of single-cell transcriptome studies has begun to lift the veil on the full compendium of gene expression phenotypes and changes underlying spermatogenic development. These datasets have revealed the previously obscured molecular heterogeneity among and between varied spermatogenic cell types and are reinvigorating investigation of testicular biology. This review describes the extent of available single-cell RNA-seq profiles of spermatogenic and testicular somatic cells, how those data were produced and evaluated, their present value for advancing knowledge of spermatogenesis, and their potential future utility at both the benchtop and bedside.
Collapse
Affiliation(s)
- Shinnosuke Suzuki
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Victoria D Diaz
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| | - Brian P Hermann
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas
| |
Collapse
|
177
|
Hayashi K. In vitro reconstitution of germ cell development†. Biol Reprod 2020; 101:567-578. [PMID: 31295346 DOI: 10.1093/biolre/ioz111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
Germ cell development is a series of highly specialized processes through which diploid pluripotent cells differentiate into haploid gametes. The processes include biologically important events such as epigenetic reprogramming, sex determination, and meiosis. The mechanisms underlying these events are key issues in reproductive and developmental biology, yet they still remain elusive. As a tool to elucidate these mechanisms, in vitro gametogenesis, which reproduces germ cell development in culture, has long been sought for decades. Recently, methods of in vitro gametogenesis have undergone rapid development in association with stem cell biology, opening many possibilities in this field. This new technology is considered an alternative source of gametes for the reproduction of animals and perhaps humans. This review summarizes current advances and problems in in vitro gametogenesis.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
178
|
Murase Y, Yabuta Y, Ohta H, Yamashiro C, Nakamura T, Yamamoto T, Saitou M. Long-term expansion with germline potential of human primordial germ cell-like cells in vitro. EMBO J 2020; 39:e104929. [PMID: 32954504 DOI: 10.15252/embj.2020104929] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/22/2022] Open
Abstract
Human germ cells perpetuate human genetic and epigenetic information. However, the underlying mechanism remains elusive, due to a lack of appropriate experimental systems. Here, we show that human primordial germ cell-like cells (hPGCLCs) derived from human-induced pluripotent stem cells (hiPSCs) can be propagated to at least ~106 -fold over a period of 4 months under a defined condition in vitro. During expansion, hPGCLCs maintain an early hPGC-like transcriptome and preserve their genome-wide DNA methylation profiles, most likely due to retention of maintenance DNA methyltransferase activity. These characteristics contrast starkly with those of mouse PGCLCs, which, under an analogous condition, show a limited propagation (up to ~50-fold) and persist only around 1 week, yet undergo cell-autonomous genome-wide DNA demethylation. Importantly, upon aggregation culture with mouse embryonic ovarian somatic cells in xenogeneic-reconstituted ovaries, expanded hPGCLCs initiate genome-wide DNA demethylation and differentiate into oogonia/gonocyte-like cells, demonstrating their germline potential. By creating a paradigm for hPGCLC expansion, our study uncovers critical divergences in expansion potential and the mechanism for epigenetic reprogramming between the human and mouse germ cell lineage.
Collapse
Affiliation(s)
- Yusuke Murase
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Ohta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chika Yamashiro
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,AMED-CREST, AMED, Tokyo, Japan.,Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| |
Collapse
|
179
|
Praxedes ÉA, Bressan FF, Fernandes Pereira A. A Comparative Approach of Cellular Reprogramming in the Rodentia Order. Cell Reprogram 2020; 22:227-235. [PMID: 32780598 DOI: 10.1089/cell.2020.0024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cellular reprogramming mainly involves induction of reactivation of genes responsible for nuclear plasticity, a process that can be performed in vitro through production of cloned embryos by somatic cell nuclear transfer or by induction of cells into the pluripotent state through exogenous transcription factor expression. While these techniques are already well known and utilized in mice and rats, their application in other rodent species would be greatly beneficial, especially for conservation purposes. Within the diverse Rodentia order, wild species stand out as they play an important role in balancing the ecosystem by facilitating seed diversion, soil aeration, and consequently, reforestation. Many of these species are currently approaching extinction, and application of techniques, such as nuclear reprogramming, aimed at species conservation and multiplication and to produce stem cells is of interest. Thus, in this review, we aimed to present the evolution and success of nuclear reprogramming, mainly highlighting its potential application for the conservation of wild rodents.
Collapse
Affiliation(s)
- Érika Almeida Praxedes
- Laboratory of Animal Biotechnology, Federal Rural University of the Semi-Arid Region, Mossoró, Brazil
| | - Fabiana Fernandes Bressan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | | |
Collapse
|
180
|
Li M, Xie L, Li Y, Liu J, Nie G, Yang H. Synergistic effect of Huyang Yangkun Formula and embryonic stem cells on 4-vinylcyclohexene diepoxide induced premature ovarian insufficiency in mice. Chin Med 2020; 15:83. [PMID: 32774448 PMCID: PMC7405416 DOI: 10.1186/s13020-020-00362-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
Background Huyang Yangkun Formula (HYYKF) was developed based on theory of traditional Chinese medicine as well as clinical experience and used to improve ovarian function of premature ovarian insufficiency (POI) patients. Transplantation of embryonic stem cells (ESCs) has great potential in improving POI, and studies have confirmed that traditional Chinese medicine promoted the treatment effect of ESCs. In the present study, we compared the effect of combining HYYKF and ESCs, single HYYKF treatment and single ESCs intervention on POI mice to explore the effect of combination of HYYKF and ESCs in improving ovarian function. Methods C57BL/6 mice were used to create a POI model by 15-day intraperitoneal injection of 160 mg/kg of 4-vinylcyclonhexene diepoxide (VCD) and then treated with HYYKF, ESCs transplantation and combination of ESCs and HYYKF. When the treatments were finished, estrus cycle, ovarian follicle counting, serum sex hormone level, and expression of key nodes in the transforming growth factor beta/transforming growth factor beta-activated kinase 1 (TGF-β/TAK1) signaling pathway were determined. Results Combination therapy brought down the abnormal estrus cycle rate to 5.26%, significantly lower than that of HYYKF or ESCs alone (30%, 25%, respectively). The numbers of follicles at all levels were increased significantly in the combination ESCs with HYYKF group (P < 0.05), especially that of antral follicles (P < 0.01), which was not increased significantly when HYYKF or ESCs was single used. The level of anti-Mullerian hormone (AMH) was more significantly increased in the combination ESCs with HYYKF group (P < 0.01) than that of HYYKF or ESCs alone (both P < 0.05). The expression of the key nodes TGF-β1, TAK1, JNK, Smad4 and FSHR in the TGF-β/TAK1 pathway were obviously affected in the SCHY group. Conclusion Both HYYKF and ESCs improve the ovarian function of POI induced by VCD, and a combination of HYYKF and ESCs has the advantage that they work together to promote follicles developing probably by inhibiting expression of the TGF-β1/TAK1 pathway.
Collapse
Affiliation(s)
- Meifang Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Li Xie
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006 China
| | - Yang Li
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120 China
| | - Jian Liu
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120 China
| | - Guangning Nie
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120 China
| | - Hongyan Yang
- Department of Gynaecology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120 China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, Guangdong 510120 China
| |
Collapse
|
181
|
Idrees M, Oh SH, Muhammad T, El-Sheikh M, Song SH, Lee KL, Kong IK. Growth Factors, and Cytokines; Understanding the Role of Tyrosine Phosphatase SHP2 in Gametogenesis and Early Embryo Development. Cells 2020; 9:cells9081798. [PMID: 32751109 PMCID: PMC7465981 DOI: 10.3390/cells9081798] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Growth factors and cytokines have vital roles in germ cell development, gamete maturation, and early embryo development. Cell surface receptors are present for growth factors and cytokines to integrate with and trigger protein signaling in the germ and embryo intracellular milieu. Src-homology-2-containing phosphotyrosine phosphatase (SHP2) is a ubiquitously expressed, multifunctional protein that plays a central role in the signaling pathways involved in growth factor receptors, cytokine receptors, integrins, and G protein-coupled receptors. Over recent decades, researchers have recapitulated the protein signaling networks that influence gamete progenitor specification as well as gamete differentiation and maturation. SHP2 plays an indispensable role in cellular growth, survival, proliferation, differentiation, and migration, as well as the basic events in gametogenesis and early embryo development. SHP2, a classic cytosolic protein and a key regulator of signal transduction, displays unconventional nuclear expression in the genital organs. Several observations provided shreds of evidence that this behavior is essential for fertility. The growth factor and cytokine-dependent roles of SHP2 and its nuclear/cytoplasmic presence during gamete maturation, early embryonic development and embryo implantation are fascinating and complex subjects. This review is intended to summarize the previous and recent knowledge about the SHP2 functions in gametogenesis and early embryo development.
Collapse
Affiliation(s)
- Muhammad Idrees
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
| | - Seon-Hwa Oh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
| | - Tahir Muhammad
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Marwa El-Sheikh
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Seok-Hwan Song
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Kyeong-Lim Lee
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (M.I.); (S.-H.O.); (M.E.-S.)
- The King Kong Ltd., Gyeongsang National University, Jinju 52828, Korea; (S.-H.S.); (K.-L.L.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
182
|
Zhang PY, Fan Y, Tan T, Yu Y. Generation of Artificial Gamete and Embryo From Stem Cells in Reproductive Medicine. Front Bioeng Biotechnol 2020; 8:781. [PMID: 32793569 PMCID: PMC7387433 DOI: 10.3389/fbioe.2020.00781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
In addition to the great growing need for assisted reproduction technologies (ART), additional solutions for patients without functional gametes are strongly needed. Due to ethical restrictions, limited studies can be performed on human gametes and embryos; however, artificial gametes and embryos represent a new hope for clinical application and basic research in the field of reproductive medicine. Here, we provide a review of the research progress and possible application of artificial gametes and embryos from different species, including mice, monkeys and humans. Gametes specification from adult stem cells and embryonic stem cells (ESCs) as well as propagation of stem cells from the reproductive system and from organized embryos, which are similar to blastocysts, have been realized in some nonhuman mammals, but not all achievements can be replicated in humans. This area of research remains noteworthy and requires further study and effort to achieve the reconstitution of the entire cycle of gametogenesis and embryo development in vitro.
Collapse
Affiliation(s)
- Pu-Yao Zhang
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yong Fan
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Tan
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China.,Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, China
| | - Yang Yu
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
183
|
Abstract
Organ constructs are organ-like structures grown in vitro or in vivo that harbor the components, architecture, and function of in vivo organs, in part or in toto. The convergence of stem cell biology, bioengineering, and gene editing tools have substantially broadened our ability to generate various types of organ constructs for regenerative medicine as well as to address pressing biomedical questions. In this Review, we highlight prevailing approaches for generating organ constructs, from organoids to chimeric organ engineering. We also discuss design principles of different approaches, their utility and limitations, and propose strategies to resolve existing hurdles.
Collapse
Affiliation(s)
- Yun Xia
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore 308232, Singapore.
| | - Juan Carlos Izpisua Belmonte
- Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
184
|
Malik HN, Singhal DK, Saini S, Malakar D. Derivation of oocyte-like cells from putative embryonic stem cells and parthenogenetically activated into blastocysts in goat. Sci Rep 2020; 10:10086. [PMID: 32572061 PMCID: PMC7308273 DOI: 10.1038/s41598-020-66609-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/21/2020] [Indexed: 02/02/2023] Open
Abstract
Germ cells are responsible for the propagation of live animals from generation to generation, but to surprise, a steep increase in infertile problems among livestock poses great threat for economic development of human race. An alternative and robust approach is essential to combat these ailments. Here, we demonstrate that goat putative embryonic stem cells (ESCs) were successfully in vitro differentiated into primordial germ cells and oocyte-like cells using bone morphogenetic protein-4 (BMP-4) and trans-retinoic acid (RA). Oocyte-like cells having distinct zonapellucida recruited adjacent somatic cells in differentiating culture to form cumulus-oocyte complexes (COCs). The putative COCs were found to express the zonapellucida specific (ZP1 and ZP2) and oocyte-specific markers. Primordial germ cell-specific markers VASA, DAZL, STELLA, and PUM1 were detected at protein and mRNA level. In addition to that, the surface architecture of these putative COCs was thoroughly visualized by the scanning electron microscope. The putative COCs were further parthenogenetically activated to develop into healthy morula, blastocysts and hatched blastocyst stage like embryos. Our findings may contribute to the fundamental understanding of mammalian germ cell biology and may provide clinical insights regarding infertility ailments.
Collapse
Affiliation(s)
- Hruda Nanda Malik
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 32001, India
| | - Dinesh Kumar Singhal
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 32001, India
| | - Sikander Saini
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 32001, India
| | - Dhruba Malakar
- Animal Biotechnology Centre, National Dairy Research Institute, Karnal, 32001, India.
| |
Collapse
|
185
|
Wang G, Farzaneh M. Mini Review; Differentiation of Human Pluripotent Stem Cells into Oocytes. Curr Stem Cell Res Ther 2020; 15:301-307. [DOI: 10.2174/1574888x15666200116100121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022]
Abstract
Primary Ovarian Insufficiency (POI) is one of the main diseases causing female infertility
that occurs in about 1% of women between 30-40 years of age. There are few effective methods for
the treatment of women with POI. In the past few years, stem cell-based therapy as one of the most
highly investigated new therapies has emerged as a promising strategy for the treatment of POI. Human
pluripotent stem cells (hPSCs) can self-renew indefinitely and differentiate into any type of cell.
Human Embryonic Stem Cells (hESCs) as a type of pluripotent stem cells are the most powerful candidate
for the treatment of POI. Human-induced Pluripotent Stem Cells (hiPSCs) are derived from
adult somatic cells by the treatment with exogenous defined factors to create an embryonic-like pluripotent
state. Both hiPSCs and hESCs can proliferate and give rise to ectodermal, mesodermal, endodermal,
and germ cell lineages. After ovarian stimulation, the number of available oocytes is limited
and the yield of total oocytes with high quality is low. Therefore, a robust and reproducible in-vitro
culture system that supports the differentiation of human oocytes from PSCs is necessary. Very few
studies have focused on the derivation of oocyte-like cells from hiPSCs and the details of hPSCs differentiation
into oocytes have not been fully investigated. Therefore, in this review, we focus on the
differentiation potential of hPSCs into human oocyte-like cells.
Collapse
Affiliation(s)
- Gaifang Wang
- Department of Life Sciences, Luliang University Lvliang, 033000, China
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
186
|
Saragusty J, Ajmone-Marsan P, Sampino S, Modlinski JA. Reproductive biotechnology and critically endangered species: Merging in vitro gametogenesis with inner cell mass transfer. Theriogenology 2020; 155:176-184. [PMID: 32702562 DOI: 10.1016/j.theriogenology.2020.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/16/2023]
Abstract
A fifth of mammalian species face the risk of extinction. A variety of stresses, and lack of sufficient resources and political endorsement, mean thousands of further extinctions in the coming years. Once a species has declined to a mere few individuals, in situ efforts seem insufficient to prevent its extinction. Here we propose a roadmap to overcome some of the current roadblocks and facilitate rejuvenation of such critically endangered species. We suggest combining two advanced assisted reproductive technologies to accomplish this task. The first is the generation of gametes from induced pluripotent stem cells, already demonstrated in mice. The second is to 'trick' the immunological system of abundant species' surrogate mothers into believing it carries conceptus of its own species. This can be achieved by transferring the inner cell mass (ICM) of the endangered species into a trophoblastic vesicle derived from the foster mother's species. Such synthesis of reproductive biotechnologies, in association with in situ habitat conservation and societal changes, holds the potential to restore diversity and accelerate the production of animals in the most endangered species on Earth.
Collapse
Affiliation(s)
- Joseph Saragusty
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.
| | - Paolo Ajmone-Marsan
- Department of Animal Science, Food and Nutrition - DIANA, Nutrigenomics and Proteomics Research Center - PRONUTRIGEN, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Silvestre Sampino
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| | - Jacek A Modlinski
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland
| |
Collapse
|
187
|
Goszczynski DE, Cheng H, Demyda-Peyrás S, Medrano JF, Wu J, Ross PJ. In vitro breeding: application of embryonic stem cells to animal production†. Biol Reprod 2020; 100:885-895. [PMID: 30551176 DOI: 10.1093/biolre/ioy256] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/12/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
Embryonic stem cells (ESCs) are derived from the inner cell mass of preimplantation blastocysts. For decades, attempts to efficiently derive ESCs in animal livestock species have been unsuccessful, but this goal has recently been achieved in cattle. Together with the recent reconstitution of the germ cell differentiation processes from ESCs in mice, these achievements open new avenues for the development of promising technologies oriented toward improving health, animal production, and the environment. In this article, we present a strategy that will notably accelerate genetic improvement in livestock populations by reducing the generational interval, namely in vitro breeding (IVB). IVB combines genomic selection, a widely used strategy for genetically improving livestock, with ESC derivation and in vitro differentiation of germ cells from pluripotent stem cells. We also review the most recent findings in the fields on which IVB is based. Evidence suggests this strategy will be soon within reach.
Collapse
Affiliation(s)
| | - Hao Cheng
- Department of Animal Science, University of California, Davis, California, USA
| | - Sebastian Demyda-Peyrás
- Instituto de Genetica Veterinaria, Universidad Nacional de La Plata-CONICET, La Plata, Argentina
| | - Juan F Medrano
- Department of Animal Science, University of California, Davis, California, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
188
|
Zeng M, Dai X, Liang Z, Sun R, Huang S, Luo L, Li Z. Critical roles of mRNA m 6A modification and YTHDC2 expression for meiotic initiation and progression in female germ cells. Gene 2020; 753:144810. [PMID: 32470506 DOI: 10.1016/j.gene.2020.144810] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/30/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022]
Abstract
Meiotic entry and progression require dynamic regulation of germline gene expression. m6A on mRNAs and recognition by YTHDC2 has been known as post-transcriptional regulatory complex, but the roles of this regulator remain unclear for meiotic initiation and progression in female germ cells (FGCs). This study showed that m6A modification occurred mainly in FGCs rather than ovarian somatic cells (SOMAs), and m6A levels in FGCs increased significantly with meiotic initiation. m6A inhibition suppressed expression of the meiotic markers and affected the percent of FGCs at zygotene, pachytene and diplotene stage respectively. YTHDC2 expression also increased in the same pattern with m6A. Ythdc2 knockdown decreased the percent of STRA8-positive FGCs and altered the percent of FGCs at zygotene and pachytene stage respectively. Taken together, these results suggest that mRNA m6A modification and YTHDC2 expression are essential for meiotic initiation and progression in FGCs.
Collapse
Affiliation(s)
- Ming Zeng
- Medical Research Institute, Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518133, China
| | - Xin Dai
- Medical Research Institute, Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518133, China
| | - Zhibing Liang
- Medical Research Institute, Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518133, China
| | - Ruliang Sun
- Department of Pathology, Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518133, China
| | - Sui Huang
- Department of Pathology, Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518133, China
| | - Liangping Luo
- Medical Imaging Center, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| | - Zhongxiang Li
- Medical Research Institute, Baoan Women's and Children's Hospital, Jinan University, Shenzhen 518133, China.
| |
Collapse
|
189
|
Soleimani A, Fard NZ, Talaei-Khozani T, Bahmanpour S. Epidermal growth factor and three-dimensional scaffolds provide conducive environment for differentiation of mouse embryonic stem cells into oocyte-like cells. Cell Biol Int 2020; 44:1850-1859. [PMID: 32437076 DOI: 10.1002/cbin.11391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/07/2020] [Accepted: 05/18/2020] [Indexed: 11/09/2022]
Abstract
Three-dimensional (3D) culture provides a biomimicry of the naive microenvironment that can support cell proliferation, differentiation, and regeneration. Some growth factors, such as epidermal growth factor (EGF), facilitate normal meiosis during oocyte maturation in vivo. In this study, a scaffold-based 3D coculture system using purified alginate was applied to induce oocyte differentiation from mouse embryonic stem cells (mESCs). mESCs were induced to differentiate into oocyte-like cells using embryoid body protocol in the two-dimensional or 3D microenvironment in vitro. To increase the efficiency of the oocyte-like cell differentiation from mESCs, we employed a coculture system using ovarian granulosa cells in the presence or absence of epidermal growth factor (+EGF or -EGF) for 14 days and then the cells were assessed for germ cell differentiation, meiotic progression, and oocyte maturation markers. The cultures exposed to EGF in the alginate-based 3D microenvironment showed the highest level of premeiotic (Oct4 and Mvh), meiotic (Scp1, Scp3, Stra8, and Rec8), and oocyte maturation (Gdf9, Cx37, and Zp2) marker genes (p < .05) in comparison to other groups. According to the gene-expression patterns, we can conclude that alginate-based 3D coculture system provided a highly efficient protocol for oocyte-like cell differentiation from mESCs. The data showed that this culture system along with EGF improved the rate of in vitro oocyte-like cell differentiation.
Collapse
Affiliation(s)
- Azam Soleimani
- Stem Cell Research Laboratory, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nehleh Zarei Fard
- Stem Cell Research Laboratory, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Talaei-Khozani
- Stem Cell Research Laboratory, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soghra Bahmanpour
- Stem Cell Research Laboratory, Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
190
|
Sheng X, Tian C, Liu L, Wang L, Ye X, Li J, Zeng M, Liu L. Characterization of oogonia stem cells in mice by Fragilis. Protein Cell 2020; 10:825-831. [PMID: 31559571 PMCID: PMC6834537 DOI: 10.1007/s13238-019-00654-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Xiaoyan Sheng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chenglei Tian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Linlin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lingling Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiaoying Ye
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie Li
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ming Zeng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
- Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
191
|
Bothun AM, Woods DC. Inherent mitochondrial activity influences specification of the germ line in pluripotent stem cells. Heliyon 2020; 6:e03651. [PMID: 32258510 PMCID: PMC7118317 DOI: 10.1016/j.heliyon.2020.e03651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/12/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Herein we investigated whether inherent differences in mitochondrial activity in mouse pluripotent cells could be used to identify populations with an intrinsic ability to differentiate into primordial germ cells (PGCs). Notably, we determined that stem cells sorted based on differences in mitochondrial membrane activity exhibited altered germline differentiation capacity, with low-mitochondrial membrane potential associated with an increase in PGC-like cells. This specification was not further enhanced by hypoxia. We additionally noted differences between these populations in metabolism, transcriptome, and cell-cycle. These data contribute to a growing body of work demonstrating that pluripotent cells exhibit a large range of mitochondrial activity, which impacts cellular function and differentiation potential. Furthermore, pluripotent cells possess a subpopulation of cells with an improved ability to differentiate into the germ lineage that can be identified based on differences in mitochondrial membrane potential.
Collapse
Affiliation(s)
- Alisha M Bothun
- Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University, Boston, MA 02115, USA
| | - Dori C Woods
- Department of Biology, Laboratory for Aging and Infertility Research, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
192
|
Yamashiro C, Sasaki K, Yokobayashi S, Kojima Y, Saitou M. Generation of human oogonia from induced pluripotent stem cells in culture. Nat Protoc 2020; 15:1560-1583. [PMID: 32231324 DOI: 10.1038/s41596-020-0297-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/15/2020] [Indexed: 11/09/2022]
Abstract
The human germ-cell lineage originates as human primordial germ cells (hPGCs). hPGCs undergo genome-wide epigenetic reprogramming and differentiate into oogonia or gonocytes, precursors for oocytes or spermatogonia, respectively. Here, we describe a protocol to differentiate human induced pluripotent stem cells (hiPSCs) into oogonia in vitro. hiPSCs are induced into incipient mesoderm-like cells (iMeLCs) using activin A and a WNT pathway agonist. iMeLCs, or, alternatively, hPSCs cultured with divergent signaling inhibitors, are induced into hPGC-like cells (hPGCLCs) in floating aggregates by cytokines including bone morphogenic protein 4. hPGCLCs are aggregated with mouse embryonic ovarian somatic cells to form xenogeneic reconstituted ovaries, which are cultured under an air-liquid interface condition for ~4 months for hPGCLCs to differentiate into oogonia and immediate precursory states for oocytes. To date, this is the only approach that generates oogonia from hPGCLCs. The protocol is suitable for investigating the mechanisms of hPGC specification and epigenetic reprogramming.
Collapse
Affiliation(s)
- Chika Yamashiro
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kotaro Sasaki
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Shihori Yokobayashi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Yoji Kojima
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan. .,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. .,Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
| |
Collapse
|
193
|
Gouveia C, Huyser C, Egli D, Pepper MS. Lessons Learned from Somatic Cell Nuclear Transfer. Int J Mol Sci 2020; 21:E2314. [PMID: 32230814 PMCID: PMC7177533 DOI: 10.3390/ijms21072314] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 02/06/2023] Open
Abstract
Somatic cell nuclear transfer (SCNT) has been an area of interest in the field of stem cell research and regenerative medicine for the past 20 years. The main biological goal of SCNT is to reverse the differentiated state of a somatic cell, for the purpose of creating blastocysts from which embryonic stem cells (ESCs) can be derived for therapeutic cloning, or for the purpose of reproductive cloning. However, the consensus is that the low efficiency in creating normal viable offspring in animals by SCNT (1-5%) and the high number of abnormalities seen in these cloned animals is due to epigenetic reprogramming failure. In this review we provide an overview of the current literature on SCNT, focusing on protocol development, which includes early SCNT protocol deficiencies and optimizations along with donor cell type and cell cycle synchrony; epigenetic reprogramming in SCNT; current protocol optimizations such as nuclear reprogramming strategies that can be applied to improve epigenetic reprogramming by SCNT; applications of SCNT; the ethical and legal implications of SCNT in humans; and specific lessons learned for establishing an optimized SCNT protocol using a mouse model.
Collapse
Affiliation(s)
- Chantel Gouveia
- Institute for Cellular and Molecular Medicine, Department of Immunology and South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa;
- Department of Obstetrics and Gynaecology, Reproductive Biology Laboratory, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0002, South Africa;
| | - Carin Huyser
- Department of Obstetrics and Gynaecology, Reproductive Biology Laboratory, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0002, South Africa;
| | - Dieter Egli
- Department of Obstetrics and Gynecology, Columbia University Medical Center, New York, NY 10027, USA;
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology and South African Medical Research Council (SAMRC) Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa;
| |
Collapse
|
194
|
Bharti D, Jang SJ, Lee SY, Lee SL, Rho GJ. In Vitro Generation of Oocyte Like Cells and Their In Vivo Efficacy: How Far We have been Succeeded. Cells 2020; 9:E557. [PMID: 32120836 PMCID: PMC7140496 DOI: 10.3390/cells9030557] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
In the last few decades, stem cell therapy has grown as a boon for many pathological complications including female reproductive disorders. In this review, a brief description of available strategies that are related to stem cell-based in vitro oocyte-like cell (OLC) development are given. We have tried to cover all the aspects and latest updates of the in vitro OLC developmental methodologies, marker profiling, available disease models, and in vivo efficacies, with a special focus on mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and embryonic stem cells (ESCs) usage. The differentiation abilities of both the ovarian and non-ovarian stem cell sources under various induction conditions have shown different effects on morphological alterations, proliferation- and size-associated developments, hormonal secretions under gonadotropic stimulations, and their neo-oogenesis or folliculogenesis abilities after in vivo transplantations. The attainment of characters like oocyte-like morphology, size expansion, and meiosis initiation have been found to be major obstacles during in vitro oogenesis. A number of reports have either lacked in vivo studies or have shown their functional incapability to produce viable and healthy offspring. Though researchers have gained many valuable insights regarding in vitro gametogenesis, still there are many things to do to make stem cell-derived OLCs fully functional.
Collapse
Affiliation(s)
- Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Si-Jung Jang
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Sang-Yun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea; (D.B.); (S.-J.J.); (S.-Y.L.); (S.-L.L.)
- Research Institute of Life Sciences, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
195
|
Hayashi K, Shimamoto S, Nagamatsu G. Environmental factors for establishment of the dormant state in oocytes. Dev Growth Differ 2020; 62:150-157. [PMID: 32106340 PMCID: PMC7187221 DOI: 10.1111/dgd.12653] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022]
Abstract
Guaranteeing the sustainability of gametogenesis is a fundamental issue for perpetuating the species. In the mammalian ovary, sustainability is accomplished by keeping a number of oocytes “stocked” in the dormant state. Despite the evident importance of this state, the mechanisms underlying the oocyte dormancy are not fully understood, although it is presumed that both intrinsic and extrinsic factors are involved. Here, we review environmental factors involved in the regulation of oocyte dormancy. Consideration of the environmental factors illustrates the nature of the ovarian compartment, in which primordial follicles reside. This should greatly improve our understanding of the mechanisms and also assist in reconstitution of the dormant state in culture. Accumulating knowledge on the dormant state of oocytes will contribute to a wide range of research in fields such as developmental biology, reproductive biology and regenerative medicine.
Collapse
Affiliation(s)
- Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - So Shimamoto
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Go Nagamatsu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
196
|
Chibelean CB, Petca RC, Radu DC, Petca A. State of the Art in Fertility Preservation for Female Patients Prior to Oncologic Therapies. ACTA ACUST UNITED AC 2020; 56:medicina56020089. [PMID: 32102169 PMCID: PMC7073829 DOI: 10.3390/medicina56020089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/14/2022]
Abstract
Quality of life improvement stands as one of the main goals of the medical sciences. Increasing cancer survival rates associated with better early detection and extended therapeutic options led to the specific modeling of patients’ choices, comprising aspects of reproductive life that correlated with the evolution of modern society, and requires better assessment. Of these, fertility preservation and ovarian function conservation for pre-menopause female oncologic patients pose a contemporary challenge due to procreation age advance in evolved societies and to the growing expectations regarding cancer treatment. Progress made in cell and tissue-freezing technologies brought hope and shed new light on the onco-fertility field. Additionally, crossing roads with general fertility and senescence studies proved highly beneficial due to the enlarged scope and better synergies and funding. We here strive to bring attention to this domain of care and to sensitize all medical specialties towards a more cohesive approach and to better communication among caregivers and patients.
Collapse
Affiliation(s)
- Călin Bogdan Chibelean
- Department of Urology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu-Mures, 540139 Targu-Mures, Romania;
- Mureș County Hospital, 540136 Targu-Mures, Romania
| | - Răzvan-Cosmin Petca
- “Carol Davila” University of Medicine and Pharmacy, 050471 Bucharest, Romania;
- Department of Urology, “Prof. Dr. Th. Burghele” Clinical Hospital, 050659 Bucharest, Romania
- Correspondence: ; Tel.: +40-722-224492
| | | | - Aida Petca
- “Carol Davila” University of Medicine and Pharmacy, 050471 Bucharest, Romania;
- Department of Obstetrics and Gynecology, Elias University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
197
|
Kobayashi T, Kobayashi H, Goto T, Takashima T, Oikawa M, Ikeda H, Terada R, Yoshida F, Sanbo M, Nakauchi H, Kurimoto K, Hirabayashi M. Germline development in rat revealed by visualization and deletion of Prdm14. Development 2020; 147:dev.183798. [PMID: 32001439 DOI: 10.1242/dev.183798] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 01/15/2020] [Indexed: 12/22/2022]
Abstract
Primordial germ cells (PGCs), the founder cells of the germline, are specified in pre-gastrulating embryos in mammals, and subsequently migrate towards gonads to mature into functional gametes. Here, we investigated PGC development in rats, by genetically modifying Prdm14, a unique marker and an essential PGC transcriptional regulator. We trace PGC development in rats, for the first time, from specification until the sex determination stage in fetal gonads using Prdm14 H2BVenus knock-in rats. We uncover that the crucial role of Prdm14 in PGC specification is conserved between rat and mice, by analyzing Prdm14-deficient rat embryos. Notably, loss of Prdm14 completely abrogates the PGC program, as demonstrated by failure of the maintenance and/or activation of germ cell markers and pluripotency genes. Finally, we profile the transcriptome of the post-implantation epiblast and all PGC stages in rat to reveal enrichment of distinct gene sets at each transition point, thereby providing an accurate transcriptional timeline for rat PGC development. Thus, the novel genetically modified rats and data sets obtained in this study will advance our knowledge on conserved versus species-specific features for germline development in mammals.
Collapse
Affiliation(s)
- Toshihiro Kobayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan.,Department of Physiological Sciences, The Graduate University of Advanced Studies, Okazaki, 444-8787 Aichi, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Kashihara, 634-0813 Nara, Japan
| | - Teppei Goto
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Tomoya Takashima
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, 156-8502 Tokyo, Japan
| | - Mami Oikawa
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Hiroki Ikeda
- Department of Embryology, Nara Medical University, Kashihara, 634-0813 Nara, Japan
| | - Reiko Terada
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Fumika Yoshida
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Makoto Sanbo
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Institute of Medical Science, The University of Tokyo, Minato-ku, 108-8639 Tokyo, Japan.,Institute for Stem Cell Biology and Regenerative Medicine, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Kashihara, 634-0813 Nara, Japan
| | - Masumi Hirabayashi
- Section of Mammalian Transgenesis, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, 444-8787 Aichi, Japan .,Department of Physiological Sciences, The Graduate University of Advanced Studies, Okazaki, 444-8787 Aichi, Japan
| |
Collapse
|
198
|
Nagaoka SI, Nakaki F, Miyauchi H, Nosaka Y, Ohta H, Yabuta Y, Kurimoto K, Hayashi K, Nakamura T, Yamamoto T, Saitou M. ZGLP1 is a determinant for the oogenic fate in mice. Science 2020; 367:science.aaw4115. [PMID: 32054698 DOI: 10.1126/science.aaw4115] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 10/17/2019] [Accepted: 01/31/2020] [Indexed: 11/03/2022]
Abstract
Sex determination of germ cells is vital to creating the sexual dichotomy of germ cell development, thereby ensuring sexual reproduction. However, the underlying mechanisms remain unclear. Here, we show that ZGLP1, a conserved transcriptional regulator with GATA-like zinc fingers, determines the oogenic fate in mice. ZGLP1 acts downstream of bone morphogenetic protein, but not retinoic acid (RA), and is essential for the oogenic program and meiotic entry. ZGLP1 overexpression induces differentiation of in vitro primordial germ cell-like cells (PGCLCs) into fetal oocytes by activating the oogenic programs repressed by Polycomb activities, whereas RA signaling contributes to oogenic program maturation and PGC program repression. Our findings elucidate the mechanism for mammalian oogenic fate determination, providing a foundation for promoting in vitro gametogenesis and reproductive medicine.
Collapse
Affiliation(s)
- So I Nagaoka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Fumio Nakaki
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hidetaka Miyauchi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiaki Nosaka
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroshi Ohta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukihiro Yabuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuki Kurimoto
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsuhiko Hayashi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tomonori Nakamura
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuya Yamamoto
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.,AMED-CREST, AMED, 1-7-1 Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, 606-8507, Japan
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. .,Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.,Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
199
|
Saragusty J, Anzalone DA, Palazzese L, Arav A, Patrizio P, Gosálvez J, Loi P. Dry biobanking as a conservation tool in the Anthropocene. Theriogenology 2020; 150:130-138. [PMID: 31980207 DOI: 10.1016/j.theriogenology.2020.01.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/13/2022]
Abstract
Species are going extinct at an alarming rate, termed by some as the sixth mass extinction event in the history of Earth. Many are the causes for this but in the end, all converge to one entity - humans. Since we are the cause, we also hold the key to making the change. Any change, however, will take time, and for some species this could be too long. While working on possible solutions, we also have the responsibility to buy time for those species on the verge of extinction. Genome resource banks, in the form of cryobanks, where samples are maintained under liquid nitrogen, are already in existence but they come with a host of drawbacks. Biomimicry - innovation inspired by Nature, has been a huge source for ideas. Searching methods that Nature utilizes to preserve biological systems for extended periods of time, we realize that drying rather than freezing is the method of choice. We thus argue here in favor of preserving at least part of the samples from critically endangered species in dry biobanks, a much safer, cost-effective, biobanking approach.
Collapse
Affiliation(s)
- Joseph Saragusty
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.
| | - Debora Agata Anzalone
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Luca Palazzese
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Amir Arav
- FertileSafe Ltd., Ness Ziona, Israel
| | - Pasquale Patrizio
- FertileSafe Ltd., Ness Ziona, Israel; Yale Fertility Center, New Haven, CT, USA
| | - Jaime Gosálvez
- Genetics Unit, Department of Biology, University Autónoma of Madrid, Catoblanco, Madrid, Spain
| | - Pasqualino Loi
- Laboratory of Embryology, Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
200
|
Albertini DF. Prospects for new oocyte-based assisted reproduction in animals and humans. Reprod Fertil Dev 2020; 32:7-10. [DOI: 10.1071/rd19271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Procuring high-quality oocytes is the rate-limiting step for assisted reproduction technologies intended for embryo production. Although much is known about the intraovarian processes that dictate oocyte growth and maturation, subtleties in the process of oogenesis have yet to be replicated in invitro systems. In contrast with the mouse, in which functional oocytes have been derived from stem cells under ex vivo conditions, the generation of developmentally competent oocytes in other species has yet to be achieved. This paper reviews the principles and practices based on stem cell and organ culture strategies that hold promise for developing a technological base upon which future efforts to recapitulate or augment oogenesis in mammals could be realised.
Collapse
|