151
|
Luo Y, Zhang N, Ye J, Wang Z, Zhou X, Liu J, Cai J, Li C, Chen L. Unveiling lactylation modification: A new hope for cancer treatment. Biomed Pharmacother 2025; 184:117934. [PMID: 39986235 DOI: 10.1016/j.biopha.2025.117934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
This review article delves into the multifaceted role of lactylation modification in antitumor therapy, revealing the complex interplay between lactylation modification and the tumor microenvironment (TME), metabolic reprogramming, gene expression, and immunotherapy. As an emerging epigenetic modification, lactylation has a significant impact on the metabolic pathways of tumor cells, immune evasion, gene expression regulation, and sensitivity to chemotherapy drugs. Studies have shown that lactylation modification significantly alters the development and therapeutic response of tumors by affecting metabolites in the TME, immune cell functions, and signaling pathways. In the field of immunotherapy, the regulatory role of lactylation modification provides a new perspective and potential targets for tumor treatment, including modulating the sensitivity of tumors to immunotherapy by affecting the expression of immune checkpoint molecules and the infiltration of immune cells. Moreover, research progress on lactylation modification in various types of tumors indicates that it may serve as a biomarker to predict patients' responses to chemotherapy and immunotherapy. Overall, research on lactylation modification provides a theoretical foundation for the development of new tumor treatment strategies and holds promise for improving patient prognosis and quality of life. Future research will further explore the application potential of lactylation modification in tumor therapy and how to improve treatment efficacy by targeting lactylation modification.
Collapse
Affiliation(s)
- Yuxiang Luo
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Ning Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Jiarong Ye
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Zuao Wang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Xinchi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Jipeng Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Jing Cai
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China.
| | - Chen Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Institute of Orthopedics of Jiangxi Province, Nanchang, Jiangxi 330006, China; Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Disease, Jiangxi 330006, China; Institute of Minimally Invasive Orthopedics, Nanchang University, Jiangxi 330006, China.
| | - Leifeng Chen
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Precision Oncology Medicine Center,The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, People's Republic of China.
| |
Collapse
|
152
|
Guo Z, Xiao Y, Wu W, Zhe M, Yu P, Shakya S, Li Z, Xing F. Metal-organic framework-based smart stimuli-responsive drug delivery systems for cancer therapy: advances, challenges, and future perspectives. J Nanobiotechnology 2025; 23:157. [PMID: 40022098 PMCID: PMC11871784 DOI: 10.1186/s12951-025-03252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
Cancer treatment is currently one of the most critical healthcare issues globally. A well-designed drug delivery system can precisely target tumor tissues, improve efficacy, and reduce damage to normal tissues. Stimuli-responsive drug delivery systems (SRDDSs) have shown promising application prospects. Intelligent nano drug delivery systems responsive to endogenous stimuli such as weak acidity, complex redox characteristics, hypoxia, active energy metabolism, as well as exogenous stimuli like high temperature, light, pressure, and magnetic fields are increasingly being applied in chemotherapy, radiotherapy, photothermal therapy, photodynamic therapy, and various other anticancer approaches. Metal-organic frameworks (MOFs) have become promising candidate materials for constructing SRDDSs due to their large surface area, tunable porosity and structure, ease of synthesis and modification, and good biocompatibility. This paper reviews the application of MOF-based SRDDSs in various modes of cancer therapy. It summarizes the key aspects, including the classification, synthesis, modifications, drug loading modes, stimuli-responsive mechanisms, and their roles in different cancer treatment modalities. Furthermore, we address the current challenges and summarize the potential applications of artificial intelligence in MOF synthesis. Finally, we propose strategies to enhance the efficacy and safety of MOF-based SRDDSs, ultimately aiming at facilitating their clinical translation.
Collapse
Affiliation(s)
- Ziliang Guo
- Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuzhen Xiao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China
| | - Wenting Wu
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peiyun Yu
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Str. 31, 53115, Bonn, Germany
| | - Sujan Shakya
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhihui Li
- Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Fei Xing
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
153
|
Quan C, Jiang X. The molecular mechanism underlying the human glucose facilitators inhibition. VITAMINS AND HORMONES 2025; 128:49-92. [PMID: 40097253 DOI: 10.1016/bs.vh.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Glucose is the primary energy substrate and an essential precursor for cellular metabolism. Maintaining glucose homeostasis necessitates the presence of glucose transporters, as the hydrophilic nature of glucose prevents its passage across the cell membrane. The GLUT family is a crucial group of glucose transporters that facilitate glucose diffusion along the transmembrane glucose concentration gradient. Dysfunction in GLUTs is associated with diseases, such as GLUT1 deficiency syndrome, Fanconi-Bickel syndrome, and type 2 diabetes. Furthermore, elevated expression of GLUTs fuels aerobic glycolysis, known as the Warburg effect, in various types of cancers, making GLUT isoforms possible targets for antineoplastic therapies. To date, 30 GLUT and homolog structures have been released on the Protein Data Bank (PDB), showcasing multiple conformational and ligand-binding states. These structures elucidate the molecular mechanisms underlying substrate recognition, the alternating access cycle, and transport inhibition. Here, we summarize the current knowledge of human GLUTs and their role in cancer, highlighting recent advances in the structural characterization of GLUTs. We also compare the inhibition mechanisms of exofacial and endofacial GLUT inhibitors, providing insights into the design and optimization of GLUT inhibitors for therapeutic applications.
Collapse
Affiliation(s)
- Cantao Quan
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, P.R. China
| | - Xin Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, The Department of Medical Genetics, The Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
154
|
Deng M, Liao S, Deng J, Li C, Liu L, Han Q, Huo Y, Zhou X, Teng X, Lai M, Zhang H, Lai C. S100A2 promotes clear cell renal cell carcinoma tumor metastasis through regulating GLUT2 expression. Cell Death Dis 2025; 16:135. [PMID: 40011447 PMCID: PMC11865524 DOI: 10.1038/s41419-025-07418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/20/2024] [Accepted: 01/31/2025] [Indexed: 02/28/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the predominant subtype of renal cancer and is highly malignant. Despite advances in diagnostics and treatment, the prognosis for ccRCC remains poor. The dual nature (promotion or inhibition) of S100A2 in different cancer types shows the complex involvement of its tumorigenesis, but its effect in ccRCC remains unclear. In this study, we first elucidate the tumor-promoting function of S100A2 in ccRCC by reprogramming glycolysis. Mechanistically, we demonstrate that S100A2 accelerates cancer progression through its interaction with the transcription factor HNF1A, leading to activating GLUT2 transcription. The upregulation of GLUT2 significantly enhances glucose uptake by cancer cells, thereby fueling augmented glucose metabolism and fostering the malignant progression of ccRCC. Collectively, our findings highlight the pivotal role of the S100A2-HNF1A-GLUT2 axis in promoting migration and invasion of ccRCC by amplifying glycolysis and suggest that targeting the S100A2-HNF1A-GLUT2 axis is clinically relevant for the treatment of metastatic ccRCC.
Collapse
Affiliation(s)
- Mengli Deng
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Shaoxia Liao
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Jingwen Deng
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Lu Liu
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Qizheng Han
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Yifeng Huo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao Zhou
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China
| | - Xiaodong Teng
- Department of Pathology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Maode Lai
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China.
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Honghe Zhang
- Department of Pathology, Zhejiang University School of Medicine, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Hangzhou, 310058, Zhejiang, China.
| | - Chong Lai
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
155
|
Li Y, Fu B, Jiang W. Emerging Roles of Nanozyme in Tumor Metabolism Regulation: Mechanisms, Applications, and Future Directions. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11552-11577. [PMID: 39936939 DOI: 10.1021/acsami.4c20417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Nanozymes, nanomaterials with intrinsic enzyme activity, have garnered significant attention in recent years due to their catalytic abilities comparable to natural enzymes, cost-effectiveness, high catalytic activities, and stability against environmental fluctuations. As functional analogs of natural enzymes, nanozymes participate in various critical metabolic processes, including glucose metabolism, lactate metabolism, and the maintenance of redox homeostasis, all of which are essential for normal cellular functions. However, disruptions in these metabolic pathways frequently promote tumorigenesis and progression, making them potential therapeutic targets. While several therapies targeting tumor metabolism are currently in clinical or preclinical stages, their efficacy requires further enhancement. Consequently, nanozymes that target tumor metabolism are regarded as a promising therapeutic strategy. Despite extensive studies investigating the application of nanozymes in tumor metabolism, relevant reviews are relatively scarce. This article first introduces the physicochemical properties and biological behaviors of nanozymes. Subsequently, we analyze the role of nanozymes in tumor metabolism and explore their potential applications in tumor therapy. In conclusion, this review aims to foster innovative research in related fields and advance the development of nanozyme-based strategies for cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Yikai Li
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, Jilin 130000, China
| | - Bowen Fu
- The First Bethune Hospital of Jilin University, Jilin University, Changchun, Jilin 130000, China
| | - Wei Jiang
- Academy of Medical Sciences, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450002, China
| |
Collapse
|
156
|
Liu H, Wang S, Wang J, Guo X, Song Y, Fu K, Gao Z, Liu D, He W, Yang LL. Energy metabolism in health and diseases. Signal Transduct Target Ther 2025; 10:69. [PMID: 39966374 PMCID: PMC11836267 DOI: 10.1038/s41392-025-02141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/08/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025] Open
Abstract
Energy metabolism is indispensable for sustaining physiological functions in living organisms and assumes a pivotal role across physiological and pathological conditions. This review provides an extensive overview of advancements in energy metabolism research, elucidating critical pathways such as glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism, along with their intricate regulatory mechanisms. The homeostatic balance of these processes is crucial; however, in pathological states such as neurodegenerative diseases, autoimmune disorders, and cancer, extensive metabolic reprogramming occurs, resulting in impaired glucose metabolism and mitochondrial dysfunction, which accelerate disease progression. Recent investigations into key regulatory pathways, including mechanistic target of rapamycin, sirtuins, and adenosine monophosphate-activated protein kinase, have considerably deepened our understanding of metabolic dysregulation and opened new avenues for therapeutic innovation. Emerging technologies, such as fluorescent probes, nano-biomaterials, and metabolomic analyses, promise substantial improvements in diagnostic precision. This review critically examines recent advancements and ongoing challenges in metabolism research, emphasizing its potential for precision diagnostics and personalized therapeutic interventions. Future studies should prioritize unraveling the regulatory mechanisms of energy metabolism and the dynamics of intercellular energy interactions. Integrating cutting-edge gene-editing technologies and multi-omics approaches, the development of multi-target pharmaceuticals in synergy with existing therapies such as immunotherapy and dietary interventions could enhance therapeutic efficacy. Personalized metabolic analysis is indispensable for crafting tailored treatment protocols, ultimately providing more accurate medical solutions for patients. This review aims to deepen the understanding and improve the application of energy metabolism to drive innovative diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Hui Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuo Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhua Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Guo
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yujing Song
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kun Fu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenjie Gao
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
157
|
Littleflower AB, Parambil ST, Antony GR, M S A, Subhadradevi L. Glut-1 inhibition in breast cancer cells. VITAMINS AND HORMONES 2025; 128:181-211. [PMID: 40097250 DOI: 10.1016/bs.vh.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Breast cancer is a widely prevalent and devastating morbidity that affects millions of women around the world. Conventional treatment options for breast cancer include surgery, chemotherapy, and radiotherapy. However, these therapies can frequently have adverse side effects and may not be effective for all patients. In recent years, there has been an increasing interest in the development of targeted therapies for breast cancer. Glut-1, a key glucose transporter that is often overexpressed in breast cancer cells, is a potential candidate for targeted therapies. Glut-1 is crucial for basal glucose transport into cancer cells and is necessary for their rapid growth and survival. Several Glut-1 inhibitors - both natural and synthetic small molecules - have been identified and used as anticancer agents. In this chapter, we summarize the different approaches of Glut-1 inhibition in breast cancer and the mode of inhibition used by various Glut-1 inhibitors. Further understanding of the mechanisms underlying the efficacy of Glut-1 inhibitors in breast cancer treatment may provide crucial insights that can lead to the advancement of current treatment strategies. The functional inhibition of Glut-1 by specific Glut-1 inhibitors is being explored as a potential treatment modality for breast cancer. This approach holds great promise for improving the therapeutic efficacy of breast cancer treatment and minimizing the side effects associated with conventional therapies.
Collapse
Affiliation(s)
- Ajeesh Babu Littleflower
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| | - Sulfath Thottungal Parambil
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| | - Gisha Rose Antony
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| | - Anju M S
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India
| | - Lakshmi Subhadradevi
- Division of Cancer Research, Regional Cancer Centre (Research Centre, University of Kerala), Thiruvananthapuram, Kerala, India.
| |
Collapse
|
158
|
Park SH, Seo JH, Kim MY, Yun HJ, Kang BK, Kim JH, Heo SV, Lee YH, Park HR, Choi MS, Lee JH. Enhanced Antitumor Activity of Korean Black Soybean Cultivar 'Soman' by Targeting STAT-Mediated Aerobic Glycolysis. Antioxidants (Basel) 2025; 14:228. [PMID: 40002413 PMCID: PMC11852074 DOI: 10.3390/antiox14020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Black soybeans have numerous health benefits owing to their high polyphenolic content, antioxidant activity, and antitumor effects. We previously reported that the Korean black soybean cultivar 'Soman' possesses higher anthocyanin and isoflavone contents and superior antioxidant potential than other Korean black soybean cultivars and landraces (Seoritae) do. Here, we investigated and compared the antitumor effects of Soman and Seoritae and aimed to elucidate the possible mechanisms of action. Soman inhibited cancer cell proliferation and was more potent than Seoritae. Mechanistically, Soman inhibited the phosphorylation of the signal transducer and activator of transcription (STAT1, 3, and 5) in a reactive oxygen species (ROS)-independent manner, subsequently decreasing glycolytic enzyme expression and the activities of pyruvate kinase and lactate dehydrogenase. Thus, Soman suppressed glucose uptake, lactate production, and ATP production in cancer cells. Additionally, it inhibited tumor growth in a B16F10 murine melanoma syngeneic model, accompanied by reduced STAT1 phosphorylation and decreased proliferation in Soman-treated mice, more potently than observed in Seoritae-treated mice. These findings showed that Soman exerted superior antitumor activities by suppressing STAT-mediated aerobic glycolysis and proliferation. Overall, our findings demonstrate the potent, tumor-suppressive role of Soman in human cancer and uncover a novel molecular mechanism for its therapeutic effects in cancer treatment.
Collapse
Affiliation(s)
- Su Hwan Park
- Department of Health Sciences, Dong-A University, Busan 49315, Republic of Korea; (S.H.P.); (H.J.Y.)
| | - Jeong Hyun Seo
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea; (M.Y.K.); (B.K.K.); (J.H.K.); (S.V.H.); (Y.H.L.); (H.R.P.); (M.S.C.)
| | - Min Young Kim
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea; (M.Y.K.); (B.K.K.); (J.H.K.); (S.V.H.); (Y.H.L.); (H.R.P.); (M.S.C.)
| | - Hye Jin Yun
- Department of Health Sciences, Dong-A University, Busan 49315, Republic of Korea; (S.H.P.); (H.J.Y.)
| | - Beom Kyu Kang
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea; (M.Y.K.); (B.K.K.); (J.H.K.); (S.V.H.); (Y.H.L.); (H.R.P.); (M.S.C.)
| | - Jun Hoi Kim
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea; (M.Y.K.); (B.K.K.); (J.H.K.); (S.V.H.); (Y.H.L.); (H.R.P.); (M.S.C.)
| | - Su Vin Heo
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea; (M.Y.K.); (B.K.K.); (J.H.K.); (S.V.H.); (Y.H.L.); (H.R.P.); (M.S.C.)
| | - Yeong Hoon Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea; (M.Y.K.); (B.K.K.); (J.H.K.); (S.V.H.); (Y.H.L.); (H.R.P.); (M.S.C.)
| | - Hye Rang Park
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea; (M.Y.K.); (B.K.K.); (J.H.K.); (S.V.H.); (Y.H.L.); (H.R.P.); (M.S.C.)
| | - Man Soo Choi
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea; (M.Y.K.); (B.K.K.); (J.H.K.); (S.V.H.); (Y.H.L.); (H.R.P.); (M.S.C.)
| | - Jong-Ho Lee
- Department of Health Sciences, Dong-A University, Busan 49315, Republic of Korea; (S.H.P.); (H.J.Y.)
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
159
|
Wang H, Xu P, Yin K, Wang S. The role of m 6A modification during macrophage metabolic reprogramming in human diseases and animal models. Front Immunol 2025; 16:1521196. [PMID: 40066451 PMCID: PMC11891544 DOI: 10.3389/fimmu.2025.1521196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/28/2025] [Indexed: 05/13/2025] Open
Abstract
Macrophage metabolic reprogramming refers to the process by which macrophages adjust their physiological pathways to meet survival and functional demands in different immune microenvironments. This involves a range of metabolic pathways, including glycolysis, the tricarboxylic acid cycle, oxidative phosphorylation, fatty acid oxidation, and cholesterol transport. By modulating the expression and activity of key enzymes and molecules within these pathways, macrophages can make the transition between pro- and anti-inflammatory phenotypes, thereby linking metabolic reprogramming to inflammatory responses and the progression of several diseases, such as atherosclerosis, inflammatory bowel disease (IBD), and acute lung injury (ALI). N6-methyladenosine (m6A) modification has emerged as a critical regulatory mechanism during macrophage metabolic reprogramming, broadly affecting RNA stability, translation, and degradation. Therapeutic strategies targeting m6A modification can regulate the onset of metabolic diseases by influencing macrophage metabolic changes, for instance, small molecule inhibitors of methyltransferase-like 3 (METTL3) can affect glucose metabolism and inhibit IBD. This review systematically explores recent findings on the role and molecular mechanisms of m6A modification during macrophage metabolic reprogramming in human diseases and animal models, underscoring its potential as a therapeutic target for metabolic diseases.
Collapse
Affiliation(s)
- Huiling Wang
- Department of Laboratory Medicine, Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Peiqi Xu
- Department of Laboratory Medicine, Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Kai Yin
- Department of General Surgery, Affiliated Hospital of Jiangsu University, Institute of Digestive Diseases, Jiangsu University, Zhenjiang, China
| | - Shengjun Wang
- Department of Laboratory Medicine, Jiangsu Province Engineering Research Center for Precise Diagnosis and Treatment of Inflammatory Diseases, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
160
|
Li Y, Liu C, Shi J, Zheng X, Chen Y, Liu X, Bu Z, Zhao H, Xu C, Yin B, Wang S, Shi H. The association of metabolic disorders and prognosis in cancer patients. BMC Cancer 2025; 25:278. [PMID: 39962450 PMCID: PMC11834268 DOI: 10.1186/s12885-025-13707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVE Metabolic disorders are common in cancer patients. This study aimed to classify the metabolic disorder status of cancer patients using hematological indicators and to examine the association between disorder types and prognosis. METHODS A cohort of 6307 patients from INSCOC was classified into three clusters via K-means clustering based on hematological indicators. Logistic regression and Cox models assessed each cluster's impact on adverse outcomes. RESULTS A total of 6,307 participants were included in the study, K-means clustering divided the population into three groups, Cluster 1 (Normal Group, NG), Cluster 2 (Mild Disorder Group, MDG) and Cluster 3 (Severe Disorder Group, SDG). Compared to NG, MDG (OR = 2.268; 95% CI: 1.967-2.616) and SDG (OR = 4.317; 95% CI: 2.441-7.634) had significantly higher risks of sarcopenia. MDG (OR = 1.943; 95% CI: 1.717-2.198) was associated with a higher risk of moderate malnutrition, and both MDG (OR = 3.786; 95% CI: 3.282-4.368) and SDG (OR = 14.501; 95% CI: 6.847-30.709) were identified as risk factors for severe malnutrition (p < 0.05). Cox regression analysis indicated that MDG and SDG were independent risk factors for all-cause mortality (MDG: HR = 1.460, 95% CI: 1.341-1.590; SDG: HR = 2.257, 95% CI: 1.622-3.140) and cancer-specific mortality (MDG: HR = 1.192, 95% CI: 1.039-1.367; SDG: HR = 2.068, 95% CI: 1.825-2.343) (p < 0.05). CONCLUSION K-means clustering effectively categorized metabolic disorder subgroups, supporting targeted interventions and demonstrating a significant link between disorder severity and adverse outcomes.
Collapse
Affiliation(s)
- Yi Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325006, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Chenan Liu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Jinyu Shi
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Xin Zheng
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Yue Chen
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Xiaoyue Liu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Zhaoting Bu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Hong Zhao
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Changhong Xu
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Bing Yin
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Shuyao Wang
- Department of Gastrointestinal Surgery/Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China
| | - Hanping Shi
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, 325006, China.
- Key Laboratory of Cancer FSMP for State Market Regulation, Beijing, 100038, China.
| |
Collapse
|
161
|
Sun M, Wang K, Lu F, Yu D, Liu S. Regulatory role and therapeutic prospect of lactate modification in cancer. Front Pharmacol 2025; 16:1508552. [PMID: 40034817 PMCID: PMC11872897 DOI: 10.3389/fphar.2025.1508552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Post-translational modifications (PTMs) of proteins refer to the process of adding chemical groups, sugars, or other molecules to specific residues of target proteins following their biosynthesis by ribosomes. PTMs play a crucial role in processes such as signal transduction, epigenetics, and disease development. Lactylation is a newly discovered PTM that, due to its close association with lactate-the end product of glycolytic metabolism-provides a new perspective on the connection between cellular metabolic reprogramming and epigenetic regulation. Studies have demonstrated that lactylation plays a significant role in tumor progression and is associated with poor clinical prognosis. Abnormal histone lactylation can influence gene expression in both tumor cells and immune cells, thereby regulating tumor progression and immunosuppression. Lactylation of non-histone proteins can also modulate processes such as tumor proliferation and drug resistance. This review summarizes the latest research progress in the field of lactylation, highlighting its roles and mechanisms in tumorigenesis, tumor development, the tumor microenvironment, and immunosuppression. It also explores the potential application value of lactylation in tumor-targeted therapy and combined immunotherapy.
Collapse
Affiliation(s)
- Mengdi Sun
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Kejing Wang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Donghua Yu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
162
|
Yin G, Jiang Y, Feng J, Ruan Q, Wang Q, Han P, Zhang J. Influence of Linker Molecules on the Biodistribution Characteristics of 99mTc-labeled Mannose Derivatives with an Isocyanide-Coordinated Group. ACS Pharmacol Transl Sci 2025; 8:566-577. [PMID: 39974634 PMCID: PMC11833735 DOI: 10.1021/acsptsci.4c00657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/03/2025] [Accepted: 01/17/2025] [Indexed: 02/21/2025]
Abstract
A hallmark of cancer cells is their increased glucose demand, which is mediated by glucose transporters (GLUTs). Mannose is imported into cells via GLUTs, thereby prompting the selection of mannose as the targeting molecule for designing radioactive derivatives for tumor imaging. In this study, five 99mTc-labeled mannose derivatives were prepared and evaluated in vitro and in vivo. The derivatives were conjugated with an isonitrile group and different linkers, including (CH2)5-Dpro, (CH2)6-Dpro, (CH2)7-Dpro, (CH2)5-Lpro, and (CH2)6-Lpro. All five radioactive compounds exhibited hydrophilicity and in vitro stability. A comparative biodistribution study demonstrated that probes modified with D-proline exhibited greater uptake in tumors than those modified with L-proline. [99mTc]Tc-L1 exhibited the highest accumulation in the tumor and the most favorable tumor-to-nontarget ratios. SPECT/CT imaging results of [99mTc]Tc-L1 demonstrated clear accumulation and visualization at the tumor site. Blocking studies in cells and mice bearing S180 tumors revealed that [99mTc]Tc-L1 was transported into cancer cells via a GLUT-mediated mechanism. These findings suggest that [99mTc]Tc-L1 is a promising probe for SPECT tumor imaging and that linker molecules significantly affect biodistribution characteristics.
Collapse
Affiliation(s)
- Guangxing Yin
- Key
Laboratory of Radiopharmaceuticals of Ministry of Education; NMPA
(National Medical Products Administration) Key Laboratory for Research
and Evaluation of Radiopharmaceuticals; College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Yuhao Jiang
- Key
Laboratory of Radiopharmaceuticals of Ministry of Education; NMPA
(National Medical Products Administration) Key Laboratory for Research
and Evaluation of Radiopharmaceuticals; College of Chemistry, Beijing Normal University, Beijing 100875, PR China
- Key
Laboratory of Beam Technology of the Ministry of Education, School
of Physics and Astronomy, Beijing Normal
University, Beijing 100875, China
| | - Junhong Feng
- Key
Laboratory of Radiopharmaceuticals of Ministry of Education; NMPA
(National Medical Products Administration) Key Laboratory for Research
and Evaluation of Radiopharmaceuticals; College of Chemistry, Beijing Normal University, Beijing 100875, PR China
- Department
of Nuclear Technology and Application, China
Institute of Atomic Energy, Beijing 102413, China
| | - Qing Ruan
- Key
Laboratory of Radiopharmaceuticals of Ministry of Education; NMPA
(National Medical Products Administration) Key Laboratory for Research
and Evaluation of Radiopharmaceuticals; College of Chemistry, Beijing Normal University, Beijing 100875, PR China
- Key
Laboratory of Beam Technology of the Ministry of Education, School
of Physics and Astronomy, Beijing Normal
University, Beijing 100875, China
| | - Qianna Wang
- Key
Laboratory of Radiopharmaceuticals of Ministry of Education; NMPA
(National Medical Products Administration) Key Laboratory for Research
and Evaluation of Radiopharmaceuticals; College of Chemistry, Beijing Normal University, Beijing 100875, PR China
- Key
Laboratory of Beam Technology of the Ministry of Education, School
of Physics and Astronomy, Beijing Normal
University, Beijing 100875, China
- Department
of Nuclear Technology and Application, China
Institute of Atomic Energy, Beijing 102413, China
| | - Peiwen Han
- Key
Laboratory of Radiopharmaceuticals of Ministry of Education; NMPA
(National Medical Products Administration) Key Laboratory for Research
and Evaluation of Radiopharmaceuticals; College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Junbo Zhang
- Key
Laboratory of Radiopharmaceuticals of Ministry of Education; NMPA
(National Medical Products Administration) Key Laboratory for Research
and Evaluation of Radiopharmaceuticals; College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| |
Collapse
|
163
|
Peng Z, Huang R, Gan L, Wang J, Li X, Ding J, Han Y, Wu J, Xue K, Guo J, Zhang R, Qian J, Ma R. PDK2-enhanced glycolysis aggravates fibrosis via IL11 signaling pathway in Graves' orbitopathy. Front Immunol 2025; 16:1537365. [PMID: 40018034 PMCID: PMC11865214 DOI: 10.3389/fimmu.2025.1537365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 01/27/2025] [Indexed: 03/01/2025] Open
Abstract
Objectives Transforming growth factor β1 (TGFβ1)-interleukin 11 (IL11) is a newly found critical signaling pathway in fibrotic diseases such as Graves' orbitopathy (GO). It has now been confirmed that enhanced glycolysis plays a key role in the pathogenesis of GO. However, little is known about the relationship between glycolysis and IL11-mediated fibrosis in GO. This study aimed to identify the relationship between glycolysis and TGFβ1-IL11 signaling pathway and investigate the role of IL11 in glycolysis-facilitated fibrosis in GO. Methods Orbital connective tissues were collected from GO and control patients. Primary orbital fibroblasts (OFs) were cultured from clinical tissues. Patient-derived xenografts were established via intraorbital transplantation of GO orbital tissue in humanized NCG mice. Protein levels were measured using Capillary Western Immunoassay (WES). Small interfering RNA (siRNA) was used to construct transfected OF strains. Lactate production was measured to assess glycolysis status. Animal models were assessed by T2-weighted magnetic resonance (MR) scan. Immunohistochemistry staining was applied to patients' orbital connective tissues. Results Orbital connective tissues were collected from GO patients. Immunohistochemical (IHC) staining of GO tissues revealed the phenomenon of pyruvate dehydrogenase kinase 2 (PDK2)-enhanced glycolysis and upregulated IL11-IL11Rα pathway. In vitro experiments showed successful induction of fibrosis of patient-derived orbital fat/connective tissues, which could be alleviated by dichloroacetic acid (DCA). MRI images and analysis of hematoxylin and eosin (HE) and Masson-stained section demonstrated enhanced glycolysis in GO, facilitating fibrosis of the orbital tissue. Targeting PDK2 decreased IL11 expression to suppress fibrosis. In vivo experiment confirmed anti-fibrotic effect of inhibition of glycolysis. Conclusions PDK2-enhanced glycolysis exacerbates fibrosis via IL11-IL11Rα signaling pathway, shedding light on a potential therapeutic role of metabolic modulators such as DCA in GO treatment.
Collapse
Affiliation(s)
- Zhiyu Peng
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Rui Huang
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Lu Gan
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Jinghan Wang
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Xiaofeng Li
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Jie Ding
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Yinan Han
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Jihong Wu
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Kang Xue
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Jie Guo
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| | - Rui Zhang
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
| | - Jiang Qian
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
| | - Ruiqi Ma
- Department of Ophthalmology, Fudan Eye & ENT Hospital, Shanghai, China
- Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
| |
Collapse
|
164
|
Fang T, Hu L, Chen T, Li F, Yang L, Liang B, Wang W, Zeng F. Lactate Dehydrogenase-A-Forming LDH5 Promotes Breast Cancer Progression. BREAST CANCER (DOVE MEDICAL PRESS) 2025; 17:157-170. [PMID: 39963175 PMCID: PMC11831019 DOI: 10.2147/bctt.s502670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025]
Abstract
Background Breast cancer (BC) has become the main malignant tumor threatening the health of women worldwide. Previous studies have reported that Lactate dehydrogenase-A (LDHA) has critical roles in cancer development and progression. We aimed to explore the roles of LDHA and LDH5 isoenzyme activity in BC, which provides a new insight into LDHA for the treatment of BC. Methods The expression of LDHA in BC and its relationship with clinicopathological features were obtained from various databases including The Cancer Genome Atlas (TCGA), Human Protein Atlas (HPA), Breast Cancer-Gene Expression Miner (bc-GenExMiner), TNMplot, UALCAN. The Kaplan‒Meier Plotter was used to evaluate the prognostic value of LDHA. Western blot was performed to detect LDHA expression. Agarose gel electrophoresis was performed to detect the activities of LDH isoenzymes. The in vitro proliferation, migration and invasion potentials of BC cells were evaluated using MTT assays, colony formation, wound-healing assay, matrix metalloproteinase assays and transwell assays, respectively. The activities of LDH isoenzymes in serum and tissues were measured in patients with BC and healthy controls. Results Compared to normal tissues, LDHA expression was significantly higher in BC tissues. Patients' nodal status, histological types, TP53 mutation status and PAM50 subtypes were significant factors influencing the LDHA expression. By overexpressing or silencing LDHA gene in BT549 cells, it was confirmed that LDHA promoted cell proliferation, migration and invasion. LDH5 isoenzyme activity in patients with BC was higher than healthy controls. The increased activity of LDH5 isoenzymes was induced by overexpression of LDHA in BC. High expression of LDHA was found to be associated with poor prognosis in BC. Conclusion LDHA plays a critical role in the progression of BC through the regulation of the activity of LDH5 isoenzyme, indicating that LDHA may serve as a valuable target for BC treatment.
Collapse
Affiliation(s)
- Tianxing Fang
- Department of Nuclear Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, People’s Republic of China
- Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Liyu Hu
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Tianshun Chen
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Fei Li
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Liu Yang
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Bin Liang
- Department of General Surgery (Breast Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Wenjun Wang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
165
|
Chen J, Huang Z, Chen Y, Tian H, Chai P, Shen Y, Yao Y, Xu S, Ge S, Jia R. Lactate and lactylation in cancer. Signal Transduct Target Ther 2025; 10:38. [PMID: 39934144 PMCID: PMC11814237 DOI: 10.1038/s41392-024-02082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/07/2024] [Accepted: 11/18/2024] [Indexed: 02/13/2025] Open
Abstract
Accumulated evidence has implicated the diverse and substantial influence of lactate on cellular differentiation and fate regulation in physiological and pathological settings, particularly in intricate conditions such as cancer. Specifically, lactate has been demonstrated to be pivotal in molding the tumor microenvironment (TME) through its effects on different cell populations. Within tumor cells, lactate impacts cell signaling pathways, augments the lactate shuttle process, boosts resistance to oxidative stress, and contributes to lactylation. In various cellular populations, the interplay between lactate and immune cells governs processes such as cell differentiation, immune response, immune surveillance, and treatment effectiveness. Furthermore, communication between lactate and stromal/endothelial cells supports basal membrane (BM) remodeling, epithelial-mesenchymal transitions (EMT), metabolic reprogramming, angiogenesis, and drug resistance. Focusing on lactate production and transport, specifically through lactate dehydrogenase (LDH) and monocarboxylate transporters (MCT), has shown promise in the treatment of cancer. Inhibitors targeting LDH and MCT act as both tumor suppressors and enhancers of immunotherapy, leading to a synergistic therapeutic effect when combined with immunotherapy. The review underscores the importance of lactate in tumor progression and provides valuable perspectives on potential therapeutic approaches that target the vulnerability of lactate metabolism, highlighting the Heel of Achilles for cancer treatment.
Collapse
Affiliation(s)
- Jie Chen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ziyue Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Ya Chen
- Department of Radiology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Hao Tian
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Peiwei Chai
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Yongning Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China
| | - Shiqiong Xu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, PR China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, PR China.
| |
Collapse
|
166
|
Bieker S, Timme M, Woge N, Hassan DG, Brown CM, Marrink SJ, Melo MN, Holthuis JCM. Hexokinase-I directly binds to a charged membrane-buried glutamate of mitochondrial VDAC1 and VDAC2. Commun Biol 2025; 8:212. [PMID: 39930004 PMCID: PMC11811193 DOI: 10.1038/s42003-025-07551-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025] Open
Abstract
Binding of hexokinase HKI to mitochondrial voltage-dependent anion channels (VDACs) has far-reaching physiological implications. However, the structural basis of this interaction is unclear. Combining computer simulations with experiments in cells, we here show that complex assembly relies on intimate contacts between the N-terminal α-helix of HKI and a charged membrane-buried glutamate on the outer wall of VDAC1 and VDAC2. Protonation of this residue blocks complex formation in silico while acidification of the cytosol causes a reversable release of HKI from mitochondria. Membrane insertion of HKI occurs adjacent to the bilayer-facing glutamate where a pair of polar channel residues mediates a marked thinning of the cytosolic leaflet. Disrupting the membrane thinning capacity of VDAC1 dramatically impairs its ability to bind HKI in silico and in cells. Our data reveal key topological and mechanistic insights into HKI-VDAC complex assembly that may benefit the development of therapeutics to counter pathogenic imbalances in this process.
Collapse
Affiliation(s)
- Sebastian Bieker
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076, Osnabrück, Germany
| | - Michael Timme
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076, Osnabrück, Germany
| | - Nils Woge
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076, Osnabrück, Germany
| | - Dina G Hassan
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076, Osnabrück, Germany
- Department of Environmental Medical Sciences, Faculty of Graduate Studies and Environmental Research, Ain Shams University, Cairo, Egypt
| | - Chelsea M Brown
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Manuel N Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.
| | - Joost C M Holthuis
- Molecular Cell Biology Division, Department of Biology/Chemistry, University of Osnabrück, 49076, Osnabrück, Germany.
- Center for Cellular Nanoanalytics, Osnabrück University, Artilleriestraße 77, 49076, Osnabrück, Germany.
| |
Collapse
|
167
|
Liang Z, Zhao S, Liu Y, Cheng C. The promise of mitochondria in the treatment of glioblastoma: a brief review. Discov Oncol 2025; 16:142. [PMID: 39924629 PMCID: PMC11807951 DOI: 10.1007/s12672-025-01891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Glioblastoma (GBM) is a prevalent and refractory type of brain tumor. Over the past two decades, there have been minimal advancements in GBM therapy. The current standard treatment involves surgical excision followed by radiation and chemotherapy. Compared to other tumors, GBM is more challenging to treat due to the presence of glioma stem-like cells (GSCs) and the blood-brain barrier, resulting in an extremely low survival rate. Mitochondria play a critical role in tumor respiration, metabolism, and multiple signaling pathways involved in tumor formation, progression, and cell apoptosis. Consequently, mitochondria represent promising targets for developing novel anticancer agents, including those targeting oxidative phosphorylation, reactive oxygen species (ROS), mitochondrial transfer, and mitophagy. This review outlines the mitochondrial-related therapeutic targets in GBM, highlighting the potential of mitochondria as a target for GBM treatment.
Collapse
Affiliation(s)
- Zhuo Liang
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Songyun Zhao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Yuankun Liu
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
| | - Chao Cheng
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
| |
Collapse
|
168
|
Raynal F, Sengupta K, Plewczynski D, Aliaga B, Pancaldi V. Global chromatin reorganization and regulation of genes with specific evolutionary ages during differentiation and cancer. Nucleic Acids Res 2025; 53:gkaf084. [PMID: 39964480 PMCID: PMC11833689 DOI: 10.1093/nar/gkaf084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/18/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025] Open
Abstract
Cancer cells are highly plastic, favoring adaptation to changing conditions. Genes related to basic cellular processes evolved in ancient species, while more specialized genes appeared later with multicellularity (metazoan genes) or even after mammals evolved. Transcriptomic analyses have shown that ancient genes are up-regulated in cancer, while metazoan-origin genes are inactivated. Despite the importance of these observations, the underlying mechanisms remain unexplored. Here, we study local and global epigenomic mechanisms that may regulate genes from specific evolutionary periods. Using evolutionary gene age data, we characterize the epigenomic landscape, gene expression regulation, and chromatin organization in several cell types: human embryonic stem cells, normal primary B-cells, primary chronic lymphocytic leukemia malignant B-cells, and primary colorectal cancer samples. We identify topological changes in chromatin organization during differentiation observing patterns in Polycomb repression and RNA polymerase II pausing, which are reversed during oncogenesis. Beyond the non-random organization of genes and chromatin features in the 3D epigenome, we suggest that these patterns lead to preferential interactions among ancient, intermediate, and recent genes, mediated by RNA polymerase II, Polycomb, and the lamina, respectively. Our findings shed light on gene regulation according to evolutionary age and suggest this organization changes across differentiation and oncogenesis.
Collapse
Affiliation(s)
- Flavien Raynal
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31100 Toulouse, France
| | - Kaustav Sengupta
- Laboratory of Functional and Structural Genomics, Center of New Technologies (CeNT), University of Warsaw, Mazowieckie, 02-097 Warsaw, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland
- Department of Molecular Genetics, Erasmus University Medical Center, Erasmus MC Cancer Institute, 3015 GD Rotterdam, the Netherlands
| | - Dariusz Plewczynski
- Laboratory of Functional and Structural Genomics, Center of New Technologies (CeNT), University of Warsaw, Mazowieckie, 02-097 Warsaw, Poland
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-662 Warsaw, Poland
| | - Benoît Aliaga
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31100 Toulouse, France
| | - Vera Pancaldi
- CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, 31100 Toulouse, France
- Barcelona Supercomputing Center, 08034 Barcelona, Spain
| |
Collapse
|
169
|
Berg SZ, Berg J. Microbes, macrophages, and melanin: a unifying theory of disease as exemplified by cancer. Front Immunol 2025; 15:1493978. [PMID: 39981299 PMCID: PMC11840190 DOI: 10.3389/fimmu.2024.1493978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/03/2024] [Indexed: 02/22/2025] Open
Abstract
It is widely accepted that cancer mostly arises from random spontaneous mutations triggered by environmental factors. Our theory challenges the idea of the random somatic mutation theory (SMT). The SMT does not fit well with Charles Darwin's theory of evolution in that the same relatively few mutations would occur so frequently and that these mutations would lead to death rather than survival of the fittest. However, it would fit well under the theory of evolution, if we were to look at it from the vantage point of pathogens and their supporting microbial communities colonizing humans and mutating host cells for their own benefit, as it does give them an evolutionary advantage and they are capable of selecting genes to mutate and of inserting their own DNA or RNA into hosts. In this article, we provide evidence that tumors are actually complex microbial communities composed of various microorganisms living within biofilms encapsulated by a hard matrix; that these microorganisms are what cause the genetic mutations seen in cancer and control angiogenesis; that these pathogens spread by hiding in tumor cells and M2 or M2-like macrophages and other phagocytic immune cells and traveling inside them to distant sites camouflaged by platelets, which they also reprogram, and prepare the distant site for metastasis; that risk factors for cancer are sources of energy that pathogens are able to utilize; and that, in accordance with our previous unifying theory of disease, pathogens utilize melanin for energy for building and sustaining tumors and metastasis. We propose a paradigm shift in our understanding of what cancer is, and, thereby, a different trajectory for avenues of treatment and prevention.
Collapse
Affiliation(s)
- Stacie Z. Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| | - Jonathan Berg
- Department of Translational Biology, William Edwards LLC, Baltimore, MD, United States
| |
Collapse
|
170
|
Kelly JJ, Newkirk SE, Chordia MD, Pires MM. Evaluation and In Situ Library Expansion of Small Molecule MHC-I Inducers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635109. [PMID: 39975032 PMCID: PMC11838524 DOI: 10.1101/2025.01.31.635109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Immunotherapy has emerged as a powerful strategy for combating cancer by harnessing the patient immune system to recognize and eliminate malignant cells. The major histocompatibility complex class I (MHC-I) has a pivotal role in the recognition step. These surface proteins present cancer-specific neoantigens to CD8+ T cells, which triggers activation and T cell-mediated killing. However, cancer cells can often evade immune detection by downregulating MHC-I surface expression, which renders the immune response less effective. In turn, this resistance mechanism offers an opportunity to bolster MHC-I surface expression via therapeutic interventions. Here, we conducted an initial comprehensive evaluation of previously purported small molecule MHC-I inducers and identified heat shock protein 90 (Hsp90) inhibitors as privileged inducers of MHC-I surface expression. With a core scaffold in hand, we employed an in situ click chemistry-based derivatization strategy to generate 380 novel compounds in the same family. New agents from this library showed high levels of induction, with one of the triazole-based analogs, CliMB-325, also enhancing T cell activation and exhibiting lower toxicity, which could potentiate some immunotherapeutic modalities. Moreover, we demonstrated the potential of a click chemistry-based diversification strategy for the discovery of small molecules to counter immune evasion.
Collapse
Affiliation(s)
- Joey J. Kelly
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States 22904
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, VA, United States 22904
| | - Sarah E. Newkirk
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States 22904
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, VA, United States 22904
| | - Mahendra D. Chordia
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States 22904
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, VA, United States 22904
| | - Marcos M. Pires
- Department of Chemistry, University of Virginia, Charlottesville, VA, United States 22904
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, VA, United States 22904
| |
Collapse
|
171
|
Garcia-Olazabal M, Adolfi MC, Wilde B, Hufnagel A, Paudel R, Lu Y, Meierjohann S, Rosenthal GG, Schartl M. Functional test of a naturally occurred tumor modifier gene provides insights to melanoma development. G3 (BETHESDA, MD.) 2025; 15:jkae298. [PMID: 39820438 PMCID: PMC11797068 DOI: 10.1093/g3journal/jkae298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
Occurrence of degenerative interactions is thought to serve as a mechanism underlying hybrid unfitness in most animal systems. However, the molecular mechanisms underpinning the genetic interaction and how they contribute to overall hybrid incompatibilities are limited to only a handful of examples. A vertebrate model organism, Xiphophorus, is used to study hybrid dysfunction, and it has been shown from this model that diseases, such as melanoma, can occur in certain interspecies hybrids. Melanoma development is due to hybrid inheritance of an oncogene, xmrk, and loss of a co-evolved tumor modifier. It was recently found that adgre5, a G protein-coupled receptor involved in cell adhesion, is a tumor regulator gene in naturally hybridizing Xiphophorus species Xiphophorus birchmanni (X. birchmanni) and Xiphophorus malinche (X. malinche). We hypothesized that 1 of the 2 parental alleles of adgre5 is involved in regulation of cell growth, migration, and melanomagenesis. Accordingly, we assessed the function of adgre5 alleles from each parental species of the melanoma-bearing hybrids using in vitro cell growth and migration assays. In addition, we expressed each adgre5 allele with the xmrk oncogene in transgenic medaka. We found that cells transfected with the X. birchmanni adgre5 exhibited decreased growth and migration compared to those with the X. malinche allele. Moreover, X. birchmanni allele of adgre5 completely inhibited melanoma development in xmrk-transgenic medaka, while X. malinche adgre5 expression did not exhibit melanoma suppressive activity in medaka. These findings provide evidence that adgre5 is a natural melanoma suppressor and provide new insight in melanoma etiology.
Collapse
Affiliation(s)
| | - Mateus Contar Adolfi
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Brigitta Wilde
- Department of Biochemistry and Cell Biology, University of Würzburg, 97074 Würzburg, Germany
| | - Anita Hufnagel
- Institute of Pathology, University of Würzburg, 97080 Würzburg, Germany
| | - Rupesh Paudel
- Department for Dermatology and Allergology, University Hospital Würzburg, 97080 Würzburg, Germany
| | - Yuan Lu
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
| | | | - Gil G Rosenthal
- Centro de Investigaciones Científicas de las Huastecas, A.C. 43230 Calnali, Hidalgo, Mexico
- Department of Biology, Università degli Studi di Padova, 35121 Padova, Italy
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX 78666, USA
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- Research Department for Limnology, University of Innsbruck, A-5310 Mondsee, Austria
| |
Collapse
|
172
|
Oh W, Kim AMJ, Dhawan D, Knapp DW, Lim SO. Lactic acid inhibits the interaction between PD-L1 protein and PD-L1 antibody in the PD-1/PD-L1 blockade therapy-resistant tumor. Mol Ther 2025; 33:723-733. [PMID: 40308191 PMCID: PMC11852701 DOI: 10.1016/j.ymthe.2024.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/15/2024] [Accepted: 12/27/2024] [Indexed: 05/02/2025] Open
Abstract
Immune checkpoint blockade therapy targeting the programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) axis has shown remarkable clinical impact in multiple cancer types. Nonetheless, despite the recent success of PD-1/PD-L1 blockade therapy, such response rates in cancer patients have been limited to tumors encompassing specific tumor microenvironment characteristics. The altered metabolic activity of cancer cells shapes the anti-tumor immune response by affecting the activity of immune cells. However, it remains mostly unknown how the altered metabolic activity of cancer cells impacts their resistance to PD-1/PD-L1 blockade therapy. Here, we found that tumor cell-derived lactic acid renders the immunosuppressive tumor microenvironment in the PD-1/PD-L1 blockade-resistant tumors by inhibiting the interaction between the PD-L1 protein and anti-PD-L1 antibody. Furthermore, we showed that the combination therapy of targeting PD-L1 with our PD-L1 antibody-drug conjugate (PD-L1-ADC) and reducing lactic acid with the monocarboxylate transporter 1 (MCT-1) inhibitor, AZD3965, can effectively treat the PD-1/PD-L1 blockade-resistant tumors. The findings of this study provide a new mechanism of how lactic acid induces an immunosuppressive tumor microenvironment and suggest a potential combination treatment to overcome the tumor resistance to PD-1/PD-L1 blockade therapy.
Collapse
Affiliation(s)
- Wonkyung Oh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Alyssa Min Jung Kim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Deepika Dhawan
- Department of Veterinary Clinical Science, Purdue University, West Lafayette, IN 47907, USA
| | - Deborah W Knapp
- Department of Veterinary Clinical Science, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Seung-Oe Lim
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA; Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
173
|
Muñoz M, Rosso M. Radiotherapy Plus the Neurokinin-1 Receptor Antagonist Aprepitant: A Potent Therapeutic Strategy for the Treatment of Diffuse Intrinsic Pontine Glioma. Cancers (Basel) 2025; 17:520. [PMID: 39941886 PMCID: PMC11816061 DOI: 10.3390/cancers17030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/24/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Diffuse intrinsic pontine glioma (DIPG) is a devastating childhood brainstem tumor. The median survival of DIPG is 16-24 months independent of the treatment received. Therefore, new therapeutic strategies against DIPG are urgently needed. Substance P (SP) peptide, through the neurokinin neurokinin-1 receptor (NK-1R), is involved in glioma progression. It induces glioma cell proliferation by activating MAPKs (p38 MAPK, ERK1/2, and JNK), c-Myc, AP-1, and NF-κB and induces antiapoptotic effects via PI3K/Akt/mTOR in glioma cells. SP favors glycogen breakdown that is essential for glycolysis. The SP/NK-1R system also regulates the migration and invasion of glioma cells, stimulates angiogenesis, and triggers inflammation which contributes to glioma progression. Moreover, all glioma cells express NK-1R, and NK-1R is essential for the viability of glioma cells and not of normal cells. In contrast, in glioma, NK-1R antagonists, such as the drug aprepitant, penetrate the brain and reach therapeutic concentrations, thereby inhibiting mitogenesis, inducing apoptosis, and inhibiting the breakdown of glycogen in glioma cells. In addition, they inhibit angiogenesis and exert antimetastatic and anti-inflammatory effects. The combination of radiotherapy with NK-1R antagonists produces radiosensitization and radioneuroprotection, reduces both peritumoral- and radiation-induced inflammation, and also provides antinausea and antivomiting effects. Objective: This review updates the involvement of the SP/NK-1R system in glioma promotion and progression and the potential clinical application of NK-1R antagonist drugs in DIPG therapy. Conclusions: NK-1R plays a crucial role in glioma progression and NK-1R antagonists such as aprepitant could be used in combination with radiotherapy as a potent therapeutic strategy for the treatment of patients with DIPG.
Collapse
Affiliation(s)
- Miguel Muñoz
- Research Laboratory on Neuropeptides, Institute of Biomedicine of Seville (IBIS), 41013 Seville, Spain;
| | | |
Collapse
|
174
|
Aoki Y, Kubota Y, Masaki N, Tome Y, Bouvet M, Nishida K, Hoffman RM. Targeting Methionine Addiction of Osteosarcoma with Methionine Restriction to Overcome Drug Resistance: A New Paradigm for a Recalcitrant Disease. Cancers (Basel) 2025; 17:506. [PMID: 39941872 PMCID: PMC11817422 DOI: 10.3390/cancers17030506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Chemotherapy resistance in osteosarcoma results in a very poor patient prognosis, with the 5-year survival rate of approximately 20%, which not improved for over three decades; thus, the development of novel therapeutic strategies is required. Methionine addiction is a fundamental and general hallmark of cancer, termed the Hoffman effect. Cancer cells need larger amounts of exogenous methionine in order to grow compared to normal cells, despite their ability to synthesize normal or greater amounts of methionine from homocysteine, due to increased transmethylation reactions in cancer cells. Methionine restriction therapy, including recombinant methioninase (rMETase), arrests cancer cells in the late-S/G2 phase of the cell cycle by targeting methionine addiction. First-line chemotherapy for osteosarcoma, including methotrexate (MTX), doxorubicin (DOX), and cisplatinum (CDDP), targets cells in the S/G2-phase, where cancer cells are also inhibited by methionine restriction, resulting in the synergy of methionine restriction to overcome drug resistance. In the present review, we describe the synergistic efficacy of conventional chemotherapy and methionine restriction therapy, including rMETase, in overcoming the drug resistance of osteosarcoma. The clinical potential of this new paradigm to overcome the drug resistance of osteosarcoma is discussed.
Collapse
Affiliation(s)
- Yusuke Aoki
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0125, Japan
- AntiCancer Inc., 7917 Ostrow St., Suite B, San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, San Diego, CA 92037, USA
| | - Yutaro Kubota
- AntiCancer Inc., 7917 Ostrow St., Suite B, San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, San Diego, CA 92037, USA
| | - Noriyuki Masaki
- AntiCancer Inc., 7917 Ostrow St., Suite B, San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, San Diego, CA 92037, USA
| | - Yasunori Tome
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0125, Japan
| | - Michael Bouvet
- Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, San Diego, CA 92037, USA
| | - Kotaro Nishida
- Department of Orthopedic Surgery, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0125, Japan
| | - Robert M. Hoffman
- AntiCancer Inc., 7917 Ostrow St., Suite B, San Diego, CA 92111, USA
- Department of Surgery, University of California, San Diego, 9300 Campus Point Drive #7220, La Jolla, San Diego, CA 92037, USA
| |
Collapse
|
175
|
Neitzel LR, Fuller DT, Cornell J, Rea S, de Aguiar Ferreira C, Williams CH, Hong CC. Inhibition of GPR68 induces ferroptosis and radiosensitivity in diverse cancer cell types. Sci Rep 2025; 15:4074. [PMID: 39900965 PMCID: PMC11791087 DOI: 10.1038/s41598-025-88357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Radioresistance is thought to be a major consequence of tumor milieu acidification resulting from the Warburg effect. Previously, using ogremorphin (OGM), a small molecule inhibitor of GPR68, an extracellular proton sensing receptor, we demonstrated that GPR68 is a key pro-survival pathway in glioblastoma cells. Here, we demonstrate that GPR68 inhibition also induces ferroptosis in lung cell carcinoma (A549) and pancreatic ductal adenocarcinoma (Panc02) cells. Moreover, OGM synergized with ionizing radiation to induce lipid peroxidation, a hallmark of ferroptosis, as well as reduce colony size in 2D and 3D cell culture. GPR68 inhibition is not acutely detrimental but increases intracellular free ferrous iron, which is known to trigger reactive oxygen species (ROS) generation. In summary, GPR68 inhibition induces lipid peroxidation in cancer cells and sensitizes them to ionizing radiation in part through the mobilization of intracellular free ferrous iron. Our results suggest that GPR68 is a key mediator of cancer cell radioresistance activated by acidic tumor microenvironment.
Collapse
Affiliation(s)
- Leif R Neitzel
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA
| | - Daniela T Fuller
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessica Cornell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Samantha Rea
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carolina de Aguiar Ferreira
- The Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, 48824, USA
- Department of Radiology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Charles H Williams
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
| | - Charles C Hong
- Department of Medicine, Michigan State University College of Human Medicine, East Lansing, MI, USA.
- Henry Ford Health + Michigan State Health Sciences, Detroit, MI, USA.
| |
Collapse
|
176
|
Zheng X, Zhang X, Li D, Wang Z, Zhang J, Li J, Li Y. Integrative bioinformatics and experimental analyses identify U2SURP as a novel lactylation-related prognostic signature in esophageal carcinoma. Immunol Res 2025; 73:45. [PMID: 39900790 DOI: 10.1007/s12026-024-09589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025]
Abstract
The lactylation modification has been implicated in several cancer types; however, the role of lactylation modification-related genes in esophageal carcinoma (EC) remains underexplored. Utilizing a set of 16 lactylation modification-related genes, cohorts of patients with EC were stratified into two distinct clusters, characterized by significant disparities in both survival outcomes and the immune microenvironment. An extensive bioinformatics analysis unveiled 382 differentially expressed genes (DEGs) between these two clusters. A subsequent univariate Cox regression analysis identified 24 DEGs specifically associated with lactylation, forming the basis of a constructed lactylation-related score. The resultant lactylation-related score exhibited notable predictive efficacy for survival and other clinicopathological traits, which was validated through calibration curves, Kaplan-Meier survival curves and the Wilcoxon test. Moreover, the lactylation-related score displayed a close correlation with immune cell infiltration in EC. Notable differential expressions of immune checkpoints and regulators were observed between groups stratified by low and high lactylation scores, with the latter exhibiting a more favorable response to anti-PD-1/PD-L1 therapy. Furthermore, the expression profile of U2 snRNP associated SURP domain containing (U2SURP), a constituent of the lactylation-related score, underwent both ex vivo and in vitro validation. The expression of U2SURP was significantly associated with lactylation levels, histological grade and tumor stage. Notably, knockdown of U2SURP expression inhibited the lactylation levels, immune genes IL-1A and IL-1B, proliferation, migration and invasion of EC cells. In conclusion, the lactylation-related score developed in the present study showed promise in predicting the prognosis and immunotherapeutic responses among patients with EC. Moreover, the identification of U2SUPR as a novel oncogene in EC suggests its potential as a prospective therapeutic target for EC treatment.
Collapse
Affiliation(s)
- Xuan Zheng
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China
| | - Xiaoru Zhang
- Nuclear Medicine Laboratory, Tangshan People's Hospital, Tangshan, 063001, China
| | - Dan Li
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China
| | - Zhuo Wang
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China
| | - Jun Zhang
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China
| | - Jingwu Li
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China.
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China.
| | - Yufeng Li
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China.
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China.
| |
Collapse
|
177
|
Gorría T, Sierra-Boada M, Rojas M, Figueras C, Marin S, Madurga S, Cascante M, Maurel J. Metabolic Singularities in Microsatellite-Stable Colorectal Cancer: Identifying Key Players in Immunosuppression to Improve the Immunotherapy Response. Cancers (Basel) 2025; 17:498. [PMID: 39941865 PMCID: PMC11815897 DOI: 10.3390/cancers17030498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Although immune checkpoint inhibitor (ICI) therapy is currently the standard of care in microsatellite-unstable (MSI) metastatic colorectal cancer (CRC), ICI therapy, alone or in combination with other therapies, is not a treatment approach in microsatellite-stable (MSS) CRC, which is present in 95% of patients. In this review, we focus on metabolic singularities-at the transcriptomic (either bulk or single cell), proteomic, and post-translational modification levels-that induce immunosuppression in cancer and specifically in MSS CRC. First, we evaluate the current efficacy of ICIs in limited and metastatic disease in MSS CRC. Second, we discuss the latest findings on the potential biomarkers for evaluating ICI efficacy in MSS CRC using strict REMARK criteria. Third, we review the current evidence on metabolic patterns in CRC tumors and immune cell metabolism to advance our understanding of metabolic crosstalk and to pave the way for the development of combination strategies to enhance ICI efficacy.
Collapse
Affiliation(s)
- Teresa Gorría
- Medical Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (T.G.); (M.R.); (C.F.)
- Translational Genomics and Targeted Therapies in Solid Tumors, Agustí Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Medicine Department, University of Barcelona, 08036 Barcelona, Spain
| | - Marina Sierra-Boada
- Medical Oncology Department, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, 08208 Sabadell, Spain;
| | - Mariam Rojas
- Medical Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (T.G.); (M.R.); (C.F.)
| | - Carolina Figueras
- Medical Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (T.G.); (M.R.); (C.F.)
| | - Silvia Marin
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08036 Barcelona, Spain;
- Institute of Biomedicine of University of Barcelona (IBUB), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Sergio Madurga
- Department of Material Science and Physical Chemistry, Research Institute of Theoretical and Computational Chemistry (IQTCUB), University of Barcelona, 08028 Barcelona, Spain;
| | - Marta Cascante
- Department of Biochemistry and Molecular Biomedicine, University of Barcelona, 08036 Barcelona, Spain;
- Institute of Biomedicine of University of Barcelona (IBUB), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Joan Maurel
- Medical Oncology Department, Hospital Clínic de Barcelona, 08036 Barcelona, Spain; (T.G.); (M.R.); (C.F.)
- Translational Genomics and Targeted Therapies in Solid Tumors, Agustí Pi i Sunyer Biomedical Research Institute (IDIBAPS), 08036 Barcelona, Spain
- Medicine Department, University of Barcelona, 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
178
|
Fatima S, Kumar V, Kumar D. Molecular mechanism of genetic, epigenetic, and metabolic alteration in lung cancer. Med Oncol 2025; 42:61. [PMID: 39893601 DOI: 10.1007/s12032-025-02608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
Lung cancer, a leading cause of cancer-related deaths worldwide, is primarily linked to smoking, tobacco use, air pollution, and exposure to hazardous chemicals. Genetic alterations, particularly in oncogenes like RAS, EGFR, MYC, BRAF, HER, and P13K, can lead to metabolic changes in cancer cells. These cells often rely on glycolysis for energy production, even in the presence of oxygen, a phenomenon known as aerobic glycolysis. This metabolic shift, along with other alterations, contributes to cancer cell growth and survival. To develop effective therapies, it's crucial to understand the genetic and metabolic changes that drive lung cancer. This review aims to identify specific genes associated with these metabolic alterations and screen phytochemicals for their potential to target these genes. By targeting both genetic and metabolic pathways, we hope to develop innovative therapeutic approaches to combat lung cancer.
Collapse
Affiliation(s)
- Sheeri Fatima
- School of Health Science and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India
| | - Vineet Kumar
- Chemistry & Bioprospecting Division, Forest Research Institute, Dehradun, 248006, India
| | - Dhruv Kumar
- School of Health Science and Technology (SoHST), UPES, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
179
|
Moiz S, Saha B, Mondal V, Bishnu D, Das B, Bose B, Das S, Banerjee N, Dutta A, Chatterjee K, Goswami S, Mukhopadhyay S, Basu S. Differential Expression of miRNAs Between Young-Onset and Late-Onset Indian Colorectal Carcinoma Patients. Noncoding RNA 2025; 11:10. [PMID: 39997610 PMCID: PMC11858122 DOI: 10.3390/ncrna11010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Reports indicate a worldwide increase in the incidence of Early-Onset Colorectal Carcinoma (EOCRC) (<50 years old). In an effort to understand the different modes of pathogenesis in early-onset CRC, colorectal tumors from EOCRC (<50 years old) and Late-Onset patients (LOCRC; >50 years old) were screened to eliminate microsatellite instability (MSI), nuclear β-catenin, and APC mutations, as these are known canonical factors in CRC pathogenesis. Small-RNA sequencing followed by comparative analysis revealed differential expression of 23 miRNAs (microRNAs) specific to EOCRC and 11 miRNAs specific to LOCRC. We validated the top 10 EOCRC DEMs in TCGA-COAD and TCGA-READ cohorts, followed by validation in additional EOCRC and LOCRC cohorts. Our integrated analysis revealed upregulation of hsa-miR-1247-3p and hsa-miR-148a-3p and downregulation of hsa-miR-326 between the two subsets. Experimentally validated targets of the above miRNAs were compared with differentially expressed genes in the TCGA dataset to identify targets with physiological significance in EOCRC development. Our analysis revealed metabolic reprogramming, downregulation of anoikis-regulating pathways, and changes in tissue morphogenesis, potentially leading to anchorage-independent growth and progression of epithelial-mesenchymal transition (EMT). Upregulated targets include proteins present in the basal part of intestinal epithelial cells and genes whose expression is known to correlate with invasion and poor prognosis.
Collapse
Affiliation(s)
- Sumaiya Moiz
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India; (S.M.); (V.M.); (D.B.)
| | - Barsha Saha
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani 741251, India; (B.S.); (S.G.)
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, India
| | - Varsha Mondal
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India; (S.M.); (V.M.); (D.B.)
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, USA
| | - Debarati Bishnu
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India; (S.M.); (V.M.); (D.B.)
| | - Biswajit Das
- Department of Histopathology, Netaji Subhas Chandra Bose Cancer Hospital, Kolkata 700094, India; (B.D.); (N.B.); (A.D.); (K.C.)
| | - Bodhisattva Bose
- Department of Surgical Oncology, All India Institute of Medical Sciences (AIIMS), Rishikesh 249203, India;
- Department of General Surgery, Nil Ratan Sircar Medical College and Hospital, Kolkata 700014, India
| | - Soumen Das
- Department of Surgical Oncology, Netaji Subhas Chandra Bose Cancer Hospital, Kolkata 700094, India;
| | - Nirmalya Banerjee
- Department of Histopathology, Netaji Subhas Chandra Bose Cancer Hospital, Kolkata 700094, India; (B.D.); (N.B.); (A.D.); (K.C.)
- Department of Histopathology, Narayana Superspeciality Hospital, Kolkata 700099, India
| | - Amitava Dutta
- Department of Histopathology, Netaji Subhas Chandra Bose Cancer Hospital, Kolkata 700094, India; (B.D.); (N.B.); (A.D.); (K.C.)
| | - Krishti Chatterjee
- Department of Histopathology, Netaji Subhas Chandra Bose Cancer Hospital, Kolkata 700094, India; (B.D.); (N.B.); (A.D.); (K.C.)
- Department of Pathology, Neotia Bhagirathi Woman and Child Care Centre, Kolkata 700017, India
| | - Srikanta Goswami
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani 741251, India; (B.S.); (S.G.)
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad 121001, India
| | - Soma Mukhopadhyay
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India; (S.M.); (V.M.); (D.B.)
| | - Sudarshana Basu
- Department of Molecular Biology, Netaji Subhas Chandra Bose Cancer Research Institute, Kolkata 700094, India; (S.M.); (V.M.); (D.B.)
| |
Collapse
|
180
|
Singh A, Shadangi S, Gupta PK, Rana S. Type 2 Diabetes Mellitus: A Comprehensive Review of Pathophysiology, Comorbidities, and Emerging Therapies. Compr Physiol 2025; 15:e70003. [PMID: 39980164 DOI: 10.1002/cph4.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Humans are perhaps evolutionarily engineered to get deeply addicted to sugar, as it not only provides energy but also helps in storing fats, which helps in survival during starvation. Additionally, sugars (glucose and fructose) stimulate the feel-good factor, as they trigger the secretion of serotonin and dopamine in the brain, associated with the reward sensation, uplifting the mood in general. However, when consumed in excess, it contributes to energy imbalance, weight gain, and obesity, leading to the onset of a complex metabolic disorder, generally referred to as diabetes. Type 2 diabetes mellitus (T2DM) is one of the most prevalent forms of diabetes, nearly affecting all age groups. T2DM is clinically diagnosed with a cardinal sign of chronic hyperglycemia (excessive sugar in the blood). Chronic hyperglycemia, coupled with dysfunctions of pancreatic β-cells, insulin resistance, and immune inflammation, further exacerbate the pathology of T2DM. Uncontrolled T2DM, a major public health concern, also contributes significantly toward the onset and progression of several micro- and macrovascular diseases, such as diabetic retinopathy, nephropathy, neuropathy, atherosclerosis, and cardiovascular diseases, including cancer. The current review discusses the epidemiology, causative factors, pathophysiology, and associated comorbidities, including the existing and emerging therapies related to T2DM. It also provides a future roadmap for alternative drug discovery for the management of T2DM.
Collapse
Affiliation(s)
- Aditi Singh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Sucharita Shadangi
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
181
|
Chen W, Huang D, Wu R, Wen Y, Zhong Y, Guo J, Liu A, Lin L. A multi-functional integrated nanoplatform based on a tumor microenvironment-responsive PtAu/MnO 2 cascade nanoreactor with multi-enzymatic activities for multimodal synergistic tumor therapy. J Colloid Interface Sci 2025; 679:957-974. [PMID: 39486234 DOI: 10.1016/j.jcis.2024.10.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
The utilization or improvement of tumor microenvironment (TME) has become a breakthrough in emerging oncology therapies. To address the limited therapeutic efficacy of single modality, a multi-functional integrated nanoplatform based on a TME-responsive PtAu/MnO2 cascade nanoreactor with multi-enzymatic activities was developed for multimodal synergistic tumor therapy. Benefiting from the slightly acidic environment and high-level glutathione (GSH) in TME, PtAu/MnO2 cascade nanoreactor consumed GSH, followed by the reductive generation of manganese ion (Mn2+) and the release of PtAu nanoparticles (NPs). Then, the multimodal synergistic tumor therapy was activated as follows. First, GSH depletion inhibited the activity of glutathione peroxidase 4 and led to the accumulation of lipid peroxidation, thereby inducing tumor cell ferroptosis. Second, PtAu NPs exhibited catalase-like, glucose oxidase-like and nicotinamide adenine dinucleotide (NADH) oxidase-like activities, which generated oxygen for the cascade reaction to alleviate hypoxia and further depleted glucose, NADH and adenosine triphosphate, leading to the inhibition of tumor cell proliferation via starvation therapy. Third, the production of reactive oxygen species by the oxidase- and peroxidase-like activities of PtAu NPs and the Fenton-like reaction of Mn2+ simultaneously induced tumor cell apoptosis via chemodynamic therapy. Briefly, the in vitro and in vivo results confirmed that the multi-functional integrated nanoplatform based on a PtAu/MnO2 cascade nanoreactor with five nanozyme activities demonstrated outstanding biocompatibility and greater inhibition of tumor growth via synergistic ferroptosis/starvation therapy/apoptosis.
Collapse
Affiliation(s)
- Wenxin Chen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Dandan Huang
- Department of Pharmacy, Fujian Children's Hospital, Fuzhou, Fujian 350000, China
| | - Ruimei Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yujuan Wen
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Yu Zhong
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Jianpeng Guo
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Ailin Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China
| | - Liqing Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian 350122, China.
| |
Collapse
|
182
|
Albers GJ, Michalaki C, Ogger PP, Lloyd AF, Causton B, Walker SA, Caldwell A, Halket JM, Sinclair LV, Forde SH, McCarthy C, Hinks TSC, Lloyd CM, Byrne AJ. Airway macrophage glycolysis controls lung homeostasis and responses to aeroallergen. Mucosal Immunol 2025; 18:121-134. [PMID: 39426627 DOI: 10.1016/j.mucimm.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
The lungs represent a dynamic microenvironment where airway macrophages (AMs) are the major lung-resident macrophages. AMs dictate the balance between tissue homeostasis and immune activation and thus have contradictory functions by maintaining tolerance and tissue homeostasis, as well as initiating strong inflammatory responses. Emerging evidence has highlighted the connection between macrophage function and cellular metabolism. However, the functional importance of these processes in tissue-resident specialized macrophage populations such as those found in the airways, remain poorly elucidated. Here, we reveal that glycolysis is a fundamental pathway in AMs which regulates both lung homeostasis and responses to inhaled allergen. Using macrophage specific targeting in vivo, and multi-omics approaches, we determined that glycolytic activity in AMs is necessary to restrain type 2 (T2) immunity during homeostasis. Exposure to a range of common aeroallergens, including house dust mite (HDM), drove AM-glycolysis and furthermore, AM-specific inhibition of glycolysis altered inflammation in the airways and HDM-driven airway metabolic adaptations in vivo. Additionally, allergen sensitised asthmatics had profound metabolic changes in the airways, compared to non-sensitised asthmatic controls. Finally, we found that allergen driven AM-glycolysis in mice was TLR2 dependent. Thus, our findings demonstrate a direct relationship between glycolysis in AMs, AM-mediated homeostatic processes, and T2 immune responses in the lungs. These data suggest that glycolysis is essential for the plasticity of AMs. Depending on the immunological context, AM-glycolysis is required to exert homeostatic activity but once activated by allergen, AM-glycolysis influences inflammatory responses. Thus, precise modulation of glycolytic activity in AMs is essential for preserving lung homeostasis and regulating airway inflammation.
Collapse
Affiliation(s)
- Gesa J Albers
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Patricia P Ogger
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Amy F Lloyd
- Cell Signalling and Immunology, University of Dundee, Dundee, UK
| | - Benjamin Causton
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Simone A Walker
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anna Caldwell
- Dept. of Nutritional Sciences, School of Life Course & Population Health Sciences, King's College London, London, UK; Department of Nutritional Sciences, KIng's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - John M Halket
- Department of Nutritional Sciences, KIng's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, UK
| | - Linda V Sinclair
- Cell Signalling and Immunology, University of Dundee, Dundee, UK
| | - Sarah H Forde
- Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Cormac McCarthy
- Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland
| | - Timothy S C Hinks
- Respiratory Medicine Unit, Nuffield Department of Medicine and National Institute for Health Research Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Sir Henry Wellcome Laboratories, and the NIHR Southampton Respiratory Biomedical Research Unit, Southampton University Hospital, Southampton, UK
| | - Clare M Lloyd
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Adam J Byrne
- National Heart and Lung Institute, Imperial College London, London, UK; Conway Institute and School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
183
|
Maebashi M, Miyake K, Yamamoto J, Sahara K, Akiyama T, Kimura Y, Endo I. Methionine restriction inhibits pancreatic cancer proliferation while suppressing JAK2/STAT3 pathway. Pancreatology 2025; 25:108-117. [PMID: 39668011 DOI: 10.1016/j.pan.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Methionine restriction (MR) has been demonstrated to exhibit anti-tumor effects in various types of cancer, including pancreatic cancer (PC). However, the detailed mechanism induced by MR remains still unclear. This study aims to reveal the underlying mechanism of MR on PC by proteomic analysis. MATERIAL & METHODS Human PC cell lines were cultured in both standard and MR media to evaluate the effect of MR. The differences in protein expression were evaluated through proteomic analysis. Ingenuity Pathway Analysis (IPA) was performed to identify proteins potentially associated with tumor growth in vitro. The proteins associated with the anti-tumor effect were validated using western blotting, real-time PCR, and ELISA. An experimental model involving subcutaneous PC mice was established for the assessment of the effectiveness of the MR diet and the expression of target proteins through immunohistochemical staining. RESULTS Cell proliferation was suppressed in the MR media compared to the standard media. IPA analysis showed that STAT3 was decreased in the Apoptotic Pathway of Pancreatic Cancer Cell lines in the MR group. Western blotting showed MR decreased STAT3 expression. Real-time PCR showed that MR decreased JAK2 and STAT3 mRNA expression in Panc-1 and Mia-PaCa 2, but not in Capan-1. ELISA revealed that NF-kB expression was decreased in the MR group. In the in vivo study, the final estimated tumor volume in the MR group was significantly lower than the control group (p < 0.01). Immunostaining of resected specimens showed that STAT3 expression was suppressed in the MR group. CONCLUSION MR suppressed the JAK2/STAT3 pathway and decreased NF-kB in some PC cell lines.
Collapse
Affiliation(s)
- Manabu Maebashi
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kentaro Miyake
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Jun Yamamoto
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kota Sahara
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomoko Akiyama
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Yayoi Kimura
- Advanced Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
184
|
Leven AS, Wagner N, Nienaber S, Messiha D, Tasdogan A, Ugurel S. Changes in tumor and cardiac metabolism upon immune checkpoint. Basic Res Cardiol 2025; 120:133-152. [PMID: 39658699 PMCID: PMC11790718 DOI: 10.1007/s00395-024-01092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Cardiovascular disease and cancer are the leading causes of death in the Western world. The associated risk factors are increased by smoking, hypertension, diabetes, sedentary lifestyle, aging, unbalanced diet, and alcohol consumption. Therefore, the study of cellular metabolism has become of increasing importance, with current research focusing on the alterations and adjustments of the metabolism of cancer patients. This may also affect the efficacy and tolerability of anti-cancer therapies such as immune-checkpoint inhibition (ICI). This review will focus on metabolic adaptations and their consequences for various cell types, including cancer cells, cardiac myocytes, and immune cells. Focusing on ICI, we illustrate how anti-cancer therapies interact with metabolism. In addition to the desired tumor response, we highlight that ICI can also lead to a variety of side effects that may impact metabolism or vice versa. With regard to the cardiovascular system, ICI-induced cardiotoxicity is increasingly recognized as one of the most life-threatening adverse events with a mortality of up to 50%. As such, significant efforts are being made to assess the specific interactions and associated metabolic changes associated with ICIs to improve both efficacy and management of side effects.
Collapse
Affiliation(s)
- Anna-Sophia Leven
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Natalie Wagner
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stephan Nienaber
- Clinic III for Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Daniel Messiha
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Centre, University of Duisburg-Essen, Essen, Germany
| | - Alpaslan Tasdogan
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
- National Center for Tumor Diseases (NCT)-West, Campus Essen, and Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, Venereology and Allergology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany
- National Center for Tumor Diseases (NCT)-West, Campus Essen, and Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
185
|
Hsieh YJ, Hung CY, Chen YT, Lin YT, Chang KP, Chiang WF, Chien CY, Wu CC, Li L, Yu JS, Chien KY. Enhanced nano-LC-MS for analyzing dansylated oral cancer tissue metabolome dissolved in solvents with high elution strength. Anal Chim Acta 2025; 1337:343514. [PMID: 39800537 DOI: 10.1016/j.aca.2024.343514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND Tissue metabolomics analysis, alongside genomics and proteomics, offers crucial insights into the regulatory mechanisms of tumorigenesis. To enhance metabolite detection sensitivity, chemical isotope labeling (CIL) techniques, such as dansylation, have been developed to improve metabolite separation and ionization in mass spectrometry (MS). However, the dissolution of hydrophobic derivatized metabolites in solvents with high acetonitrile content limits the use of liquid chromatography (LC) systems with small-volume reversed-phase (RP) columns. In this study, we established a nano-LC-MS system with an online dilution design to address this issue, enabling sensitive analysis of oral cancer tissue metabolomes. RESULTS Our nano-LC system features a flow path design with online sample dilution before an RP trap column and backflushing of the trap column before entering the analytical column. Compared to other nano-LC systems, both with and without online dilution designs, our system demonstrates the superiority of the T-connector-based dilution method. Using only 1/20th of the sample required for popular micro-LC systems, our nano-LC detects a larger number of peak pairs with similar recovery rates for both hydrophilic and hydrophobic metabolites, ensuring unbiased results. Thirty-two matched pairs of oral squamous cell carcinoma (OSCC) tissue samples and adjacent noncancerous tissues (ANTs) underwent high-throughput CIL-metabolome analysis using our nano-LC system. Compared to our previous micro-LC methods, the nano-LC-MS system exhibits enhanced detection sensitivity, significantly reducing sample requirements. SIGNIFICANCE Our findings highlight the efficacy of our platform for metabolomic analysis with limited sample amounts. The nano-LC system's ability to analyze samples dissolved in strong eluents suggests potential applications for handling other hydrophobic compounds using RPLC or other separation methods facing similar solvent incompatibility issues. This approach holds promise for identifying novel metabolite biomarkers for oral cancers, advancing our understanding of tumorigenesis, and enhancing clinical applications.
Collapse
Affiliation(s)
- Ya-Ju Hsieh
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Cheng-Yu Hung
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yi-Ting Chen
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Kidney Research Center, Department of Nephrology, LinKou Chang Gung Memorial Hospital, Taoyuan, 333423, Taiwan
| | - Yu-Tsun Lin
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Kai-Ping Chang
- Department of Otolaryngology-Head & Neck Surgery, LinKou Chang Gung Memorial Hospital, Taoyuan, 333423, Taiwan
| | - Wei-Fan Chiang
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, 736, Taiwan
| | - Chih-Yen Chien
- Department of Otolaryngology, Chang Gung Memorial Hospital, Kaohsiung, 833, Taiwan
| | - Chih-Ching Wu
- Department of Otolaryngology-Head & Neck Surgery, LinKou Chang Gung Memorial Hospital, Taoyuan, 333423, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, 333, Taoyuan, Taiwan
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G2G2, Canada
| | - Jau-Song Yu
- Molecular and Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan; Department of Otolaryngology-Head & Neck Surgery, LinKou Chang Gung Memorial Hospital, Taoyuan, 333423, Taiwan
| | - Kun-Yi Chien
- Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, 333, Taiwan; Clinical Proteomics Core Laboratory, LinKou Chang Gung Memorial Hospital, Taoyuan, 333423, Taiwan.
| |
Collapse
|
186
|
Mir IA, Mir HA, Mehraj U, Bhat MY, Mir MA, Dar TA, Hussain MU. Chloroquine sensitises hypoxic colorectal cancer cells to ROS-mediated cell death via structural disruption of pyruvate dehydrogenase kinase 1. Free Radic Biol Med 2025; 227:656-666. [PMID: 39657842 DOI: 10.1016/j.freeradbiomed.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Chloroquine (CQ), an autophagy antagonist, has been recently explored as a repurposable medicine for cancer; however the exact mechanism of its action is still not known. The present study investigated the effect of CQ on colorectal cancer cells to elucidate the underlying molecular mechanisms. We report for the first time that CQ suppresses hypoxia-induced growth and survival of HCT-116 cells by reducing glycolytic capacity and NAD+ production through inhibition of PDK1. Furthermore, in silico and in vitro studies revealed that CQ induces structural alteration in the PDK1 protein, leading to its destabilization and promotes its enhanced degradation by proteases. This degradation is in turn inhibited by the MG-132 protease inhibitor. Moreover, CQ-induced suppression of PDK1 results in mitochondrial damage through excessive production of ROS, as reflected by the reduction in mitochondrial membrane potential, which in turn triggers apoptosis through PARP cleavage and Caspase activation. These findings advocate CQ as a promising repurposable chemotherapeutic for colorectal cancer and a novel inhibitor of PDK1.
Collapse
Affiliation(s)
- Irfan Ahmad Mir
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Hilal Ahmad Mir
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India; Department of Ophthalmology, Columbia University, New York, NY 10032, USA
| | - Umar Mehraj
- Department of Pathology, Duke University, Durham, NC 27710, USA; Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, J&K, India
| | - Mohd Younus Bhat
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, J&K, India
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Mahboob-Ul Hussain
- Department of Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
187
|
Bernal-Masferrer L, Gracia-Cazaña T, Najera-Botello L, Gomez-Mateo MC, Cerro P, Matei MC, Gallego-Rentero M, González S, Juarranz A, Gilaberte Y. Analysis of tumoral, stromal and glycolitic markers in the response basal cell carcinoma and Bowen disease to photodynamic therapy in real life. Photodiagnosis Photodyn Ther 2025; 51:104442. [PMID: 39667651 DOI: 10.1016/j.pdpdt.2024.104442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a widely-used non-surgical treatment for non-melanoma skin cancers, including basal cell carcinoma (BCC), actinic keratoses (AK), and Bowen's disease (BD). PDT has high success rates, but various factors, can influence treatment response. This study investigates the clinical, histological, and molecular factors that affect the efficacy of methyl aminolevulinate PDT (MAL-PDT) for BCC and BD. METHODS AND PATIENTS Prospective observational multicentric study performed between May 2019 and January 2021 with 64 patients included. Clinical data such as tumor thickness, location, and histological subtype were recorded. Immunohistochemical analysis was performed on tumor samples to assess the expression of biomarkers including p53, β-catenin, and GLUT1. RESULTS Tumor thickness was found to be a critical determinant of MAL-PDT response, with thicker nodular BCCs showing reduced response rates compared to thinner, superficial BCCs and BD lesions. Immunohistochemical analysis revealed that p53 positivity was associated with better treatment outcomes, while increased β-catenin and cytoplasmic GLUT1 expression correlated with resistance to PDT. On the other hand, the metabolic profile of the tumors indicated that tumors with higher glycolytic activity were less responsive to treatment, therefore, using metformin, a glycolytic inhibitor, as a potential adjuvant therapy to improve outcomes in resistant tumors should be considered. CONCLUSION This study emphasizes the importance of personalized approaches in the use of MAL-PDT, tailoring treatment according to tumor-specific characteristics. Biomarkers such as p53, β-catenin, and GLUT1 can serve as predictive tools for PDT response, helping clinicians identify patients who may benefit from alternative or combined treatments to enhance therapeutic efficacy.
Collapse
Affiliation(s)
- L Bernal-Masferrer
- Department of Dermatology, Miguel Servet University Hospital, University of Zaragoza, IIS Aragón. Zaragoza, Spain
| | - T Gracia-Cazaña
- Department of Dermatology, Miguel Servet University Hospital, University of Zaragoza, IIS Aragón. Zaragoza, Spain.
| | - L Najera-Botello
- Department of Pathology, Puerta de Hierro University Hospital, Universidad Autónoma, Majadahonda, Madrid, Spain
| | - M C Gomez-Mateo
- Department of Pathology, Miguel Servet University Hospital, Zaragoza, Spain
| | | | - M C Matei
- Department of Dermatology, Miguel Servet University Hospital, University of Zaragoza, IIS Aragón. Zaragoza, Spain
| | - M Gallego-Rentero
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain; Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación, IRYCIS, Madrid, Spain
| | - S González
- Department of Medicine and Medical Specialties, Universidad de Alcalá, 28871 Madrid, Spain; Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación Sanitaria, IRYCIS, Madrid, Spain
| | - A Juarranz
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain; Department of Experimental Dermatology and Skin Biology, Instituto Ramón y Cajal de Investigación, IRYCIS, Madrid, Spain
| | - Y Gilaberte
- Department of Dermatology, Miguel Servet University Hospital, University of Zaragoza, IIS Aragón. Zaragoza, Spain
| |
Collapse
|
188
|
Qi Y, Zhao X, Wu W, Wang N, Ge P, Guo S, Lei S, Zhou P, Zhao L, Tang Z, Duan J, Yang N, Guo R, Dong Y, Chai X, Zhang Q, Snijders AM, Zhu H. Coptisine improves LPS-induced anxiety-like behaviors by regulating the Warburg effect in microglia via PKM2. Biomed Pharmacother 2025; 183:117837. [PMID: 39823725 DOI: 10.1016/j.biopha.2025.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
Neuroinflammation mediated by microglia is considered the primary cause and pathological process of anxiety. Abnormal glycolysis of microglia is observed during microglia activation. However, whether regulating the Warburg effect in microglia can effectively intervene anxiety and its potential mechanisms have not been elucidated. This study focused on coptisine (Cop), a natural alkaloid that regulates the glycolysis and function of microglia affecting anxiety. The effects of Cop on anxiety-like behaviors, hippocampal synaptic function, and excessive activation of microglia were assessed in lipopolysaccharide (LPS) induced mouse models of anxiety. Microglia expressing mutant pyruvate kinase isoform M2 (PKM2) were used to further investigate the molecular mechanism by which Cop regulates the phenotype of microglia. neuroinflammatory is emerging Further research revealed that Cop attaches to the amino acid residue phenylalanine 26 of PKM2, shifting the dynamic equilibrium of PKM2 towards tetramers, and enhancing its pyruvate kinase activity. This interaction prevented LPS-induced Warburg effect and inactivated PKM2/hypoxia-inducible factor-1α (HIF-1α) pathway in microglia. In conclusion, Cop attenuates anxiety by regulating the Warburg effect in microglia. Our work revealed the role of PKM2/(HIF-1α) pathway in anxiety for the first time. Importantly, the molecular mechanism by which Cop ameliorates anxiety-like behaviors is through modulation of the dimeric/tetrameric form of PKM2, indicating the usefulness of PKM2 as a key potential target for the treatment of anxiety.
Collapse
Affiliation(s)
- Yiyu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China; College of Chemical and Materials Engineering, Zhejiang A&F University, Lin'an 311300, China
| | - Xin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Weizhen Wu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Ningjing Wang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Pingyuan Ge
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Siqi Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Shaohua Lei
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Peng Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Li Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Zhishu Tang
- Shanxi Innovative Drug Research Center, Shaanxi University of Chinese Medicine, Xixian Rd., Xianyang 712046, China
| | - Jin'ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Nianyun Yang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Rui Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Yinfeng Dong
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China
| | - Xin Chai
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qichun Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China.
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.
| | - Huaxu Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, 138 Xianlin Rd., Nanjing 210023, China.
| |
Collapse
|
189
|
Silvestris N, Aprile G, Tessitore D, Mentrasti G, Cristina Petrella M, Speranza D, Casirati A, Caccialanza R, Cinieri S, Pedrazzoli P. Harnessing tumor metabolism during cancer treatment: A narrative review of emerging dietary approaches. Crit Rev Oncol Hematol 2025; 206:104571. [PMID: 39581244 DOI: 10.1016/j.critrevonc.2024.104571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
Cancer is currently one of the biggest public health challenges worldwide, ranking as the second leading cause of death globally. To date, strong epidemiological associations have been demonstrated between unhealthy lifestyles and eating habits, i.e. obesity, and an increased risk of developing cancer. However, there is limited evidence regarding the impact of specific dietary regimes on cancer outcomes during conventional cancer treatments. This paper systematically reviews and evaluates preclinical and clinical evidence regarding the effects of fasting, fast-mimicking diet, ketogenic diet, vegan diet, alkaline diet, paleolithic diet, the Gerson regimen, and macrobiotic diet in the context of cancer treatments. Clinical trials on dietary regimes as complementary cancer therapy are limited by significant differences in trial design, patient characteristics, and cancer type, making it difficult to draw conclusions. In the future, more uniformly controlled clinical trials should help to better define the role of diets in cancer management.
Collapse
Affiliation(s)
- Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| | - Dalila Tessitore
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Giulia Mentrasti
- Medical Oncology, University Hospital-Marche Polytechnic University, Ancona, Italy
| | | | - Desirèe Speranza
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Amanda Casirati
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Saverio Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy.
| | - Paolo Pedrazzoli
- Department of Internal Medicine, University of Pavia, Pavia, Italy; Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
190
|
King DE, Copeland WC. DNA repair pathways in the mitochondria. DNA Repair (Amst) 2025; 146:103814. [PMID: 39914164 PMCID: PMC11848857 DOI: 10.1016/j.dnarep.2025.103814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/24/2025]
Abstract
Mitochondria contain their own small, circular genome that is present in high copy number. The mitochondrial genome (mtDNA) encodes essential subunits of the electron transport chain. Mutations in the mitochondrial genome are associated with a wide range of mitochondrial diseases and the maintenance and replication of mtDNA is crucial to cellular health. Despite the importance of maintaining mtDNA genomic integrity, fewer DNA repair pathways exist in the mitochondria than in the nucleus. However, mitochondria have numerous pathways that allow for the removal and degradation of DNA damage that may prevent accumulation of mutations. Here, we briefly review the DNA repair pathways present in the mitochondria, sources of mtDNA mutations, and discuss the passive role that mtDNA mutagenesis may play in cancer progression.
Collapse
Affiliation(s)
- Dillon E King
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
191
|
Pandey A, Alcaraz M, Saggese P, Soto A, Gomez E, Jaldu S, Yanagawa J, Scafoglio C. Exploring the Role of SGLT2 Inhibitors in Cancer: Mechanisms of Action and Therapeutic Opportunities. Cancers (Basel) 2025; 17:466. [PMID: 39941833 PMCID: PMC11815934 DOI: 10.3390/cancers17030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer cells utilize larger amounts of glucose than their normal counterparts, and the expression of GLUT transporters is a known diagnostic target and a prognostic factor for many cancers. Recent evidence has shown that sodium-glucose transporters are also expressed in different types of cancer, and SGLT2 has raised particular interest because of the current availability of anti-diabetic drugs that block SGLT2 in the kidney, which could be readily re-purposed for the treatment of cancer. The aim of this article is to perform a narrative review of the existing literature and a critical appraisal of the evidence for a role of SGLT2 inhibitors for the treatment and prevention of cancer. SGLT2 inhibitors block Na-dependent glucose uptake in the proximal kidney tubules, leading to glycosuria and the improvement of blood glucose levels and insulin sensitivity in diabetic patients. They also have a series of systemic effects, including reduced blood pressure, weight loss, and reduced inflammation, which also make them effective for heart failure and kidney disease. Epidemiological evidence in diabetic patients suggests that individuals treated with SGLT2 inhibitors may have a lower incidence and better outcomes of cancer. These studies are confirmed by pre-clinical evidence of an effect of SGLT2 inhibitors against cancer in xenograft and genetically engineered models, as well as by in vitro mechanistic studies. The action of SGLT2 inhibitors in cancer can be mediated by the direct inhibition of glucose uptake in cancer cells, as well as by systemic effects. In conclusion, there is evidence suggesting a potential role of SGLT2 inhibitors against different types of cancer. The most convincing evidence exists for lung and breast adenocarcinomas, hepatocellular carcinoma, and pancreatic cancer. Several ongoing clinical trials will provide more information on the efficacy of SGLT2 inhibitors against cancer.
Collapse
Affiliation(s)
- Aparamita Pandey
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Martín Alcaraz
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Pasquale Saggese
- Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Adriana Soto
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Estefany Gomez
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Shreya Jaldu
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Jane Yanagawa
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA;
| | - Claudio Scafoglio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| |
Collapse
|
192
|
Fujiwara-Tani R, Nakashima C, Ohmori H, Fujii K, Luo Y, Sasaki T, Ogata R, Kuniyasu H. Significance of Malic Enzyme 1 in Cancer: A Review. Curr Issues Mol Biol 2025; 47:83. [PMID: 39996805 PMCID: PMC11854147 DOI: 10.3390/cimb47020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Malic enzyme 1 (ME1) plays a key role in promoting malignant phenotypes in various types of cancer. ME1 promotes epithelial-mesenchymal transition (EMT) and enhances stemness via glutaminolysis, energy metabolism reprogramming from oxidative phosphorylation to glycolysis. As a result, ME1 promotes the malignant phenotypes of cancer cells and poor patient prognosis. In particular, ME1 expression is promoted in hypoxic environments associated with hypoxia-inducible factor (HIF1) α. ME1 is overexpressed in budding cells at the cancer invasive front, promoting cancer invasion and metastasis. ME1 also generates nicotinamide adenine dinucleotide (NADPH), which, together with glucose-6-phosphate dehydrogenase (G6PD) and isocitrate dehydrogenase (IDH1), expands the NADPH pool, maintaining the redox balance in cancer cells, suppressing cell death by neutralizing mitochondrial reactive oxygen species (ROS), and promoting stemness. This review summarizes the latest research insights into the mechanisms by which ME1 contributes to cancer progression. Because ME1 is involved in various aspects of cancer and promotes many of its malignant phenotypes, it is expected that ME1 will become a novel drug target in the near future.
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara 634-8521, Japan; (C.N.); (H.O.); (K.F.); (Y.L.); (T.S.); (R.O.)
| | | | | | | | | | | | | | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara 634-8521, Japan; (C.N.); (H.O.); (K.F.); (Y.L.); (T.S.); (R.O.)
| |
Collapse
|
193
|
Novak J, Nahacka Z, Oliveira GL, Brisudova P, Dubisova M, Dvorakova S, Miklovicova S, Dalecka M, Puttrich V, Grycova L, Magalhaes-Novais S, Correia CM, Levoux J, Stepanek L, Prochazka J, Svec D, Reguera DP, Lopez-Domenech G, Zobalova R, Sedlacek R, Terp MG, Gammage PA, Lansky Z, Kittler J, Oliveira PJ, Ditzel HJ, Berridge MV, Rodriguez AM, Boukalova S, Rohlena J, Neuzil J. The adaptor protein Miro1 modulates horizontal transfer of mitochondria in mouse melanoma models. Cell Rep 2025; 44:115154. [PMID: 39792553 DOI: 10.1016/j.celrep.2024.115154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 10/31/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Recent research has shown that mtDNA-deficient cancer cells (ρ0 cells) acquire mitochondria from tumor stromal cells to restore respiration, facilitating tumor formation. We investigated the role of Miro1, an adaptor protein involved in movement of mitochondria along microtubules, in this phenomenon. Inducible Miro1 knockout (Miro1KO) mice markedly delayed tumor formation after grafting ρ0 cancer cells. Miro1KO mice with fluorescently labeled mitochondria revealed that this delay was due to hindered mitochondrial transfer from the tumor stromal cells to grafted B16 ρ0 cells, which impeded recovery of mitochondrial respiration and tumor growth. Miro1KO led to the perinuclear accumulation of mitochondria and impaired mobility of the mitochondrial network. In vitro experiments revealed decreased association of mitochondria with microtubules, compromising mitochondrial transfer via tunneling nanotubes (TNTs) in mesenchymal stromal cells. Here we show the role of Miro1 in horizontal mitochondrial transfer in mouse melanoma models in vivo and its involvement with TNTs.
Collapse
Affiliation(s)
- Jaromir Novak
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Zuzana Nahacka
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic.
| | - Gabriela L Oliveira
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; NC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; Institute for Interdisciplinary Research, Doctoral Program in Experimental Biology and Biomedicine (PDBEB), University of Coimbra, 3060-197 Cantanhede, Portugal
| | - Petra Brisudova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Maria Dubisova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Sarka Dvorakova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Sona Miklovicova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Marketa Dalecka
- Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Verena Puttrich
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Lenka Grycova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Silvia Magalhaes-Novais
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | | | - Jennifer Levoux
- Sorbonne University, Institute of Biology Paris-Seine, 75005 Paris, France
| | - Ludek Stepanek
- Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Jan Prochazka
- Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - David Svec
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - David Pajuelo Reguera
- Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Guillermo Lopez-Domenech
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Radek Sedlacek
- Czech Center for Phenogenomic, Institute of Molecular Genetics, Czech Academy of Sciences, 252 50 Vestec, Czech Republic
| | - Mikkel G Terp
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Payam A Gammage
- Cancer Research UK Scotland Institute, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Glasgow G61 1BD, UK
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Josef Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Paulo J Oliveira
- NC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal
| | - Henrik J Ditzel
- Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark; Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
| | | | - Anne-Marie Rodriguez
- Sorbonne University, Institute of Biology Paris-Seine, 75005 Paris, France; University Paris-Est Créteil, INSERM, IMRB, 94010 Créteil, France
| | - Stepana Boukalova
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague-West, Czech Republic; Faculty of Science, Charles University, 128 00 Prague, Czech Republic; School of Pharmacy and Medical Science, Griffith University, Southport, QLD 4222, Australia; 1(st) Faculty of Medicine, Charles University, 121 08 Prague, Czech Republic.
| |
Collapse
|
194
|
Khan T, Nagarajan M, Kang I, Wu C, Wangpaichitr M. Targeting Metabolic Vulnerabilities to Combat Drug Resistance in Cancer Therapy. J Pers Med 2025; 15:50. [PMID: 39997327 PMCID: PMC11856717 DOI: 10.3390/jpm15020050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 02/26/2025] Open
Abstract
Drug resistance remains a significant barrier to effective cancer therapy. Cancer cells evade treatment by reprogramming their metabolism, switching from glycolysis to oxidative phosphorylation (OXPHOS), and relying on alternative carbon sources such as glutamine. These adaptations not only enable tumor survival but also contribute to immune evasion through mechanisms such as reactive oxygen species (ROS) generation and the upregulation of immune checkpoint molecules like PD-L1. This review explores the potential of targeting metabolic weaknesses in drug-resistant cancers to enhance therapeutic efficacy. Key metabolic pathways involved in resistance, including glycolysis, glutamine metabolism, and the kynurenine pathway, are discussed. The combination of metabolic inhibitors with immune checkpoint inhibitors (ICIs), particularly anti-PD-1/PD-L1 therapies, represents a promising approach to overcoming both metabolic and immune evasion mechanisms. Clinical trials combining metabolic and immune therapies have shown early promise, but further research is needed to optimize treatment combinations and identify biomarkers for patient selection. In conclusion, targeting cancer metabolism in combination with immune checkpoint blockade offers a novel approach to overcoming drug resistance, providing a potential pathway to improved outcomes in cancer therapy. Future directions include personalized treatments based on tumor metabolic profiles and expanding research to other tumor types.
Collapse
Affiliation(s)
- Taranatee Khan
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
| | - Manojavan Nagarajan
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Irene Kang
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
- South Florida VA Foundation for Research and Education, Miami, FL 33125, USA
| | - Chunjing Wu
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
| | - Medhi Wangpaichitr
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33125, USA; (T.K.); (M.N.); (I.K.); (C.W.)
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
- South Florida VA Foundation for Research and Education, Miami, FL 33125, USA
- Department of Surgery, Division of Thoracic Surgery, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
195
|
Komza M, Khatun J, Gelles JD, Trotta AP, Abraham-Enachescu I, Henao J, Elsaadi A, Kotini AG, Clementelli C, Arandela J, Ghaity-Beckley SE, Barua A, Chen Y, Berisa M, Marcellino BK, Papapetrou EP, Poyurovsky MV, Chipuk JE. Metabolic adaptations to acute glucose uptake inhibition converge upon mitochondrial respiration for leukemia cell survival. Cell Commun Signal 2025; 23:47. [PMID: 39863913 PMCID: PMC11762851 DOI: 10.1186/s12964-025-02044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems. Our results reveal that while several metabolic adaptations occur in response to acute glucose uptake inhibition, the most critical is increased mitochondrial oxidative phosphorylation. KL-11743 treatment efficiently blocks the majority of glucose uptake and glycolysis, yet markedly increases mitochondrial respiration via enhanced Complex I function. Compared to partial glucose uptake inhibition, dependency on mitochondrial respiration is less apparent suggesting robust blockage of glucose uptake is essential to create a metabolic vulnerability. When wild-type and oncogenic RAS patient-derived induced pluripotent stem cell acute myeloid leukemia (AML) models were examined, KL-11743 mediated induction of mitochondrial respiration and dependency for survival associated with oncogenic RAS. Furthermore, we examined the therapeutic potential of these observations by treating a cohort of primary AML patient samples with KL-11743 and witnessed similar dependency on mitochondrial respiration for sustained cellular survival. Together, these data highlight conserved adaptations to acute glucose uptake inhibition in diverse leukemic models and AML patient samples, and position mitochondrial respiration as a key determinant of treatment success.
Collapse
Affiliation(s)
- Monika Komza
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Present Address: Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 441, New York, NY, 10065, USA
| | - Jesminara Khatun
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Jesse D Gelles
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Andrew P Trotta
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Ioana Abraham-Enachescu
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Juan Henao
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Ahmed Elsaadi
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Andriana G Kotini
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Cara Clementelli
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - JoAnn Arandela
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Sebastian El Ghaity-Beckley
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Agneesh Barua
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015, Lausanne, CH, Switzerland
| | - Yiyang Chen
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Mirela Berisa
- Metabolomics Core, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Bridget K Marcellino
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
- Center for Advancement of Blood Cancer Therapies, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Masha V Poyurovsky
- Kadmon Pharmaceuticals, 450 East 29th Street, New York, NY, 10016, USA
- Present address: PMV Pharmaceuticals, Inc., 1 Research Way, Princeton, NJ, 08540, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, Box 1130, 1425 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
196
|
Guo ZX, Ma JL, Zhang JQ, Yan LL, Zhou Y, Mao XL, Li SW, Zhou XB. Metabolic reprogramming and immunological changes in the microenvironment of esophageal cancer: future directions and prospects. Front Immunol 2025; 16:1524801. [PMID: 39925801 PMCID: PMC11802498 DOI: 10.3389/fimmu.2025.1524801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Background Esophageal cancer (EC) is the seventh-most prevalent cancer worldwide and is a significant contributor to cancer-related mortality. Metabolic reprogramming in tumors frequently coincides with aberrant immune function alterations, and extensive research has demonstrated that perturbations in energy metabolism within the tumor microenvironment influence the occurrence and progression of esophageal cancer. Current treatment modalities for esophageal cancer primarily include encompass chemotherapy and a limited array of targeted therapies, which are hampered by toxicity and drug resistance issues. Immunotherapy, particularly immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 pathway, has exhibited promising results; however, a substantial proportion of patients remain unresponsive. The optimization of these immunotherapies requires further investigation. Mounting evidence underscores the importance of modulating metabolic traits within the tumor microenvironment (TME) to augment anti-tumor immunotherapy. Methods We selected relevant studies on the metabolism of the esophageal cancer tumor microenvironment and immune cells based on our searches of MEDLINE and PubMed, focusing on screening experimental articles and reviews related to glucose metabolism, amino acid metabolism, and lipid metabolism, as well their interactions with tumor cells and immune cells, published within the last five years. We analyzed and discussed these studies, while also expressing our own insights and opinions. Results A total of 137 articles were included in the review: 21 articles focused on the tumor microenvironment of esophageal cancer, 33 delved into research related to glucose metabolism and tumor immunology, 30 introduced amino acid metabolism and immune responses, and 17 focused on the relationship between lipid metabolism in the tumor microenvironment and both tumor cells and immune cells. Conclusion This article delves into metabolic reprogramming and immune alterations within the TME of EC, systematically synthesizes the metabolic characteristics of the TME, dissects the interactions between tumor and immune cells, and consolidates and harnesses pertinent immunotherapy targets, with the goal of enhancing anti-tumor immunotherapy for esophageal cancer and thereby offering insights into the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Zhi-Xun Guo
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jia-Li Ma
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jin-Qiu Zhang
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ling-Ling Yan
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Ying Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xin-li Mao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Shao-Wei Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xian-Bin Zhou
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
- Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Linhai, Zhejiang, China
- Institute of Digestive Disease, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| |
Collapse
|
197
|
Sun F, Li W, Du R, Liu M, Cheng Y, Ma J, Yan S. Impact of glycolysis enzymes and metabolites in regulating DNA damage repair in tumorigenesis and therapy. Cell Commun Signal 2025; 23:44. [PMID: 39849559 PMCID: PMC11760674 DOI: 10.1186/s12964-025-02047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
Initially, it was believed that glycolysis and DNA damage repair (DDR) were two distinct biological processes that independently regulate tumor progression. The former metabolic reprogramming rapidly generates energy and generous intermediate metabolites, supporting the synthetic metabolism and proliferation of tumor cells. While the DDR plays a pivotal role in preserving genomic stability, thus resisting cellular senescence and cell death under both physiological and radio-chemotherapy conditions. Recently, an increasing number of studies have shown closely correlation between these two biological processes, and then promoting tumor progression. For instance, lactic acid, the product of glycolysis, maintains an acidic tumor microenvironment that not only fosters cell proliferation and invasion but also facilitates DDR by enhancing AKT activity. Here, we provide a comprehensive overview of the enzymes and metabolites involved in glycolysis, along with the primary methods for DDR. Meanwhile, this review explores existing knowledge of glycolysis enzymes and metabolites in regulating DDR. Moreover, considering the significant roles of glycolysis and DDR in tumor development and radio-chemotherapy resistance, the present review discusses effective direct or indirect therapeutic strategies targeted to glycolysis and DDR.
Collapse
Affiliation(s)
- Fengyao Sun
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Wen Li
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Ruihang Du
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Mingchan Liu
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Yi Cheng
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Jianxing Ma
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China
| | - Siyuan Yan
- Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
| |
Collapse
|
198
|
Zhang Q, Wang J, Chen Z, Qin H, Zhang Q, Tian B, Li X. Transcytosis: an effective mechanism to enhance nanoparticle extravasation and infiltration through biological barriers. Biomed Mater 2025; 20:022003. [PMID: 39788078 DOI: 10.1088/1748-605x/ada85e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Nanoparticles (NPs)1have been explored as drugs carriers for treating tumors and central nervous system (CNS)2diseases and for oral administration. However, they lack satisfactory clinical efficacy due to poor extravasation and infiltration through biological barriers to target tissues. Most clinical antitumor NPs have been designed based on enhanced permeability and retention effects which are insufficient and heterogeneous in human tumors. The tight junctions33TJs: tight junctionsof the blood-brain barrier44BBB: blood-brain barrierand the small intestinal epithelium severely impede NPs from being transported into the CNS and blood circulation, respectively. By contrast, transcytosis enables NPs to bypass these physiological barriers and enhances their infiltration into target tissues by active transport. Here, we systematically review the mechanisms and putative application of NP transcytosis for targeting tumor and CNS tissues, explore oral NP administration, and propose future research directions in the field of NP transcytosis.
Collapse
Affiliation(s)
- Qianyi Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Jiamian Wang
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200120, People's Republic of China
| | - Zhiyang Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Hao Qin
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Qichen Zhang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Bo Tian
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Xilei Li
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|
199
|
Ruidas B, Choudhury N, Chaudhury SS, Sur TK, Bhowmick S, Saha A, Das P, De P, Das Mukhopadhyay C. Precision targeting of fat metabolism in triple negative breast cancer with a biotinylated copolymer. J Mater Chem B 2025; 13:1363-1371. [PMID: 39661021 DOI: 10.1039/d4tb02142h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Mitochondrial CPT1-mediated fatty acid β-oxidation (FAO) critically contributes to the accelerated metastatic expansion of triple negative breast cancer (TNBC). Hence, inhibition of FAO through active CPT1 targeting could be a promising therapeutic approach in anti-TNBC therapies. Herein, we strategically synthesized a pyrene chain end labelled copolymer bearing biotin pendants, CP4, that actively targets CPT1 and efficiently blocks FAO in metastatic TNBC. Following the comprehensive characterization and synthesis of CP4, in silico negative docking score and Ramachandran plot analyses confirmed its on-target binding potential to CPT1. As a result, CP4 disrupts mitochondrial membrane potential, generates excessive ROS, and restricts excessive ATP production by impairing mitochondrial respiration, glycolytic function, and FAO. Subsequently, CP4 suppressed FA uptake and regulated FAO-associated gene expressions, exhibiting successive metastatic growth inhibition and apoptosis induction. Also, in an animal model, CP4 demonstrated active binding to CPT1, as evidenced by the significant depletion of CPT1A expression in tumor and liver tissue, akin to the specific CPT1-targeted drug. This active targeting of CPT1 has further consolidated the healing of altered lipid and oxidative stress, resulting in remarkable tumor regression, highlighting CP4 as a promising anticancer therapy focused on mitochondrial FAO, advancing future breast cancer treatments.
Collapse
Affiliation(s)
- Bhuban Ruidas
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Neha Choudhury
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Sutapa Som Chaudhury
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Tapas Kumar Sur
- Department of Pharmacology, R G Kar Medical College and Hospital, Kolkata 700004, West Bengal, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, 92, A. P. C. Road, Kolkata, 700009, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, 92, A. P. C. Road, Kolkata, 700009, India
| | - Pritha Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur-741246, Nadia, West Bengal, India
| | - Chitrangada Das Mukhopadhyay
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science Technology, Shibpur, Howrah-711103, West Bengal, India.
| |
Collapse
|
200
|
Stefanello ST, Mizdal CR, da Silva AF, Todesca LM, Soares FAA, Shahin V. Synergistic activity of Pitstop-2 and 1,6-hexanediol in aggressive human lung cancer cells. DISCOVER NANO 2025; 20:12. [PMID: 39836351 PMCID: PMC11751257 DOI: 10.1186/s11671-025-04184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Metastatic cancer cells undergo metabolic reprogramming, which involves changes in the metabolic fluxes, including endocytosis, nucleocytoplasmic transport, and mitochondrial metabolism, to satisfy their massive demands for energy, cell division, and proliferation compared to normal cells. We have previously demonstrated the ability of two different types of compounds to interfere with linchpins of metabolic reprogramming, Pitstop-2 and 1,6-hexanediol (1,6-HD). 1,6-HD disrupts glycolysis enzymes and mitochondrial function, enhancing reactive oxygen species production and reducing cellular ATP levels, while Pitstop-2 impedes clathrin-mediated endocytosis and small GTPases activity. Besides, both compounds interfere with the integrity of nuclear pore complexes, the gatekeepers for all nucleocytoplasmic transport. Herein, we investigate the possible synergistic effects of both compounds on lowly, highly metastatic, and erlotinib-resistant non-small cell lung cancer. We observe a synergistic cytotoxic effect on erlotinib-resistant cells. Moreover, motility assays show that the compounds combination significantly impedes the motility of all cells. Drug safety and tolerability assessments were validated using the in vivo model organism Caenorhabditis elegans, where fairly high doses showed negligible impact on survival, development, or behavioral parameters. Our findings propose that the 1,6-HD and Pitstop-2 combination may usher in the design of potent strategies for treating advanced lung cancer.
Collapse
Affiliation(s)
- Sílvio Terra Stefanello
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Caren Rigon Mizdal
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Aline Franzen da Silva
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Luca Matteo Todesca
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany
| | - Félix Alexandre Antunes Soares
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Robert-Koch-Str. 27b, 48149, Münster, Germany.
| |
Collapse
|