151
|
Haltigin T, Lange C, Mugnuolo R, Smith C. iMARS Phase 2 A Draft Mission Architecture and Science Management Plan for the Return of Samples from Mars Phase 2 Report of the International Mars Architecture for the Return of Samples (iMARS) Working Group. ASTROBIOLOGY 2018; 18:S1-S131. [PMID: 29683336 PMCID: PMC5926204 DOI: 10.1089/ast.2018.29027.mars] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
|
152
|
Price A, Pearson VK, Schwenzer SP, Miot J, Olsson-Francis K. Nitrate-Dependent Iron Oxidation: A Potential Mars Metabolism. Front Microbiol 2018; 9:513. [PMID: 29616015 PMCID: PMC5869265 DOI: 10.3389/fmicb.2018.00513] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/06/2018] [Indexed: 11/13/2022] Open
Abstract
This work considers the hypothetical viability of microbial nitrate-dependent Fe2+ oxidation (NDFO) for supporting simple life in the context of the early Mars environment. This draws on knowledge built up over several decades of remote and in situ observation, as well as recent discoveries that have shaped current understanding of early Mars. Our current understanding is that certain early martian environments fulfill several of the key requirements for microbes with NDFO metabolism. First, abundant Fe2+ has been identified on Mars and provides evidence of an accessible electron donor; evidence of anoxia suggests that abiotic Fe2+ oxidation by molecular oxygen would not have interfered and competed with microbial iron metabolism in these environments. Second, nitrate, which can be used by some iron oxidizing microorganisms as an electron acceptor, has also been confirmed in modern aeolian and ancient sediment deposits on Mars. In addition to redox substrates, reservoirs of both organic and inorganic carbon are available for biosynthesis, and geochemical evidence suggests that lacustrine systems during the hydrologically active Noachian period (4.1-3.7 Ga) match the circumneutral pH requirements of nitrate-dependent iron-oxidizing microorganisms. As well as potentially acting as a primary producer in early martian lakes and fluvial systems, the light-independent nature of NDFO suggests that such microbes could have persisted in sub-surface aquifers long after the desiccation of the surface, provided that adequate carbon and nitrates sources were prevalent. Traces of NDFO microorganisms may be preserved in the rock record by biomineralization and cellular encrustation in zones of high Fe2+ concentrations. These processes could produce morphological biosignatures, preserve distinctive Fe-isotope variation patterns, and enhance preservation of biological organic compounds. Such biosignatures could be detectable by future missions to Mars with appropriate instrumentation.
Collapse
Affiliation(s)
- Alex Price
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Victoria K. Pearson
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Susanne P. Schwenzer
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| | - Jennyfer Miot
- CNRS, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Muséum National d’Histoire Naturelle, Université Pierre et Marie Curie – Sorbonne Universités, UMR 7590, Paris, France
| | - Karen Olsson-Francis
- Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, United Kingdom
| |
Collapse
|
153
|
McMahon WJ, Davies NS. Evolution of alluvial mudrock forced by early land plants. Science 2018; 359:1022-1024. [DOI: 10.1126/science.aan4660] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/26/2017] [Accepted: 01/16/2018] [Indexed: 11/02/2022]
Affiliation(s)
- William J. McMahon
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Neil S. Davies
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| |
Collapse
|
154
|
Noell AC, Fisher AM, Fors‐Francis K, Sherrit S. Subcritical water extraction of amino acids from Mars analog soils. Electrophoresis 2018; 39:2854-2863. [DOI: 10.1002/elps.201700459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/29/2017] [Accepted: 01/01/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Aaron C. Noell
- Jet Propulsion LaboratoryCalifornia Institute of Technology Pasadena CA USA
| | - Anita M. Fisher
- Jet Propulsion LaboratoryCalifornia Institute of Technology Pasadena CA USA
| | - Kisa Fors‐Francis
- Jet Propulsion LaboratoryCalifornia Institute of Technology Pasadena CA USA
| | - Stewart Sherrit
- Jet Propulsion LaboratoryCalifornia Institute of Technology Pasadena CA USA
| |
Collapse
|
155
|
Chatterjee S. A symbiotic view of the origin of life at hydrothermal impact crater-lakes. Phys Chem Chem Phys 2018; 18:20033-46. [PMID: 27126878 DOI: 10.1039/c6cp00550k] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth. The theory suffers from the 'concentration problem' of cosmic and terrestrial biomolecules because of the vastness of the Eoarchean global ocean. An attractive alternative site would be highly sequestered, small, hydrothermal crater-lakes that might have cradled life on early Earth. A new symbiotic model for the origin of life at hydrothermal crater-lakes is proposed here. Meteoritic impacts on the Eoarchean crust at the tail end of the Heavy Bombardment period might have played important roles in the origin of life. Impacts and collisions that created hydrothermal crater lakes on the Eoarchean crust inadvertently became the perfect crucibles for prebiotic chemistry with building blocks of life, which ultimately led to the first organisms by prebiotic synthesis. In this scenario, life arose through four hierarchical stages of increasing molecular complexity in multiple niches of crater basins. In the cosmic stage (≥4.6 Ga), the building blocks of life had their beginnings in the interstellar space during the explosion of a nearby star. Both comets and carbonaceous chondrites delivered building blocks of life and ice to early Earth, which were accumulated in hydrothermal impact crater-lakes. In the geologic stage (∼4 Ga), crater basins contained an assortment of cosmic and terrestrial organic compounds, powered by hydrothermal, solar, tidal, and chemical energies, which drove the prebiotic synthesis. At the water surface, self-assembled primitive lipid membranes floated as a thick oil slick. Archean Greenstone belts in Greenland, Australia, and South Africa possibly represent the relics of these Archean craters, where the oldest fossils of thermophilic life (∼3.5 Ga) have been detected. In the chemical stage, monomers such as nucleotides and amino acids were selected from random assemblies of the prebiotic soup; they were polymerized at pores of mineral surfaces with the coevolution of RNA and protein molecules to form the 'RNA/protein world'. Lipid membranes randomly encapsulated these RNA and protein molecules to initiate a molecular symbiosis in a 'RNA/protein/lipid world' that led to hierarchical emergence of several cell components: plasma membranes, ribosomes, coding RNA and proteins, DNA, and finally protocells with a primitive genetic code. In the biological stage, the emergence of the first cells capable of reproduction, heredity, variation, and Darwinian evolution is the key breakthrough in the origin of life. RNA virus and prions may represent the evolutionary relics of the RNA/protein world that survived as parasites for billions of years. Although the proposed endosymbiotic model is speculative it has intrinsic heuristic value. Future experiments on encapsulated RNA virus and prions have the potential to create a synthetic cell that may confirm a coherent narrative of this hierarchical evolutionary sequence.
Collapse
Affiliation(s)
- Sankar Chatterjee
- Department of Geosciences, Museum of Texas Tech University, P. O. Box 43191, Lubbock, TX 79409, USA.
| |
Collapse
|
156
|
Cockell CS, Biller B, Bryce C, Cousins C, Direito S, Forgan D, Fox-Powell M, Harrison J, Landenmark H, Nixon S, Payler SJ, Rice K, Samuels T, Schwendner P, Stevens A, Nicholson N, Wadsworth J. The UK Centre for Astrobiology: A Virtual Astrobiology Centre. Accomplishments and Lessons Learned, 2011-2016. ASTROBIOLOGY 2018; 18:224-243. [PMID: 29377716 PMCID: PMC5820684 DOI: 10.1089/ast.2017.1713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/16/2017] [Indexed: 05/17/2023]
Abstract
The UK Centre for Astrobiology (UKCA) was set up in 2011 as a virtual center to contribute to astrobiology research, education, and outreach. After 5 years, we describe this center and its work in each of these areas. Its research has focused on studying life in extreme environments, the limits of life on Earth, and implications for habitability elsewhere. Among its research infrastructure projects, UKCA has assembled an underground astrobiology laboratory that has hosted a deep subsurface planetary analog program, and it has developed new flow-through systems to study extraterrestrial aqueous environments. UKCA has used this research backdrop to develop education programs in astrobiology, including a massive open online course in astrobiology that has attracted over 120,000 students, a teacher training program, and an initiative to take astrobiology into prisons. In this paper, we review these activities and others with a particular focus on providing lessons to others who may consider setting up an astrobiology center, institute, or science facility. We discuss experience in integrating astrobiology research into teaching and education activities. Key Words: Astrobiology-Centre-Education-Subsurface-Analog research. Astrobiology 18, 224-243.
Collapse
Affiliation(s)
- Charles S. Cockell
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Beth Biller
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Casey Bryce
- Eberhard Karls Universitaet Tuebingen, Center for Applied Geoscience (ZAG), Geomicrobiology, Tuebingen, Germany
| | - Claire Cousins
- Centre for Exoplanet Science, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Susana Direito
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Duncan Forgan
- Centre for Exoplanet Science, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
| | - Mark Fox-Powell
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Jesse Harrison
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network “Chemistry Meets Microbiology”, University of Vienna, Vienna, Austria
| | - Hanna Landenmark
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Sophie Nixon
- Geomicrobiology Research Group, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, UK
| | - Samuel J. Payler
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Ken Rice
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Toby Samuels
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Petra Schwendner
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Adam Stevens
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Natasha Nicholson
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Jennifer Wadsworth
- UK Centre for Astrobiology, Scottish Universities Physics Alliance, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
157
|
Chojnacki M, Banks M, Urso A. Wind-Driven Erosion and Exposure Potential at Mars 2020 Rover Candidate-Landing Sites. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2018; 123:468-488. [PMID: 29568719 PMCID: PMC5859260 DOI: 10.1002/2017je005460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Aeolian processes have likely been the predominant geomorphic agent for most of Mars' history and have the potential to produce relatively young exposure ages for geologic units. Thus, identifying local evidence for aeolian erosion is highly relevant to the selection of landing sites for future missions, such as the Mars 2020 Rover mission that aims to explore astrobiologically relevant ancient environments. Here we investigate wind-driven activity at eight Mars 2020 candidate-landing sites to constrain erosion potential at these locations. To demonstrate our methods, we found that contemporary dune-derived abrasion rates were in agreement with rover-derived exhumation rates at Gale crater and could be employed elsewhere. The Holden crater candidate site was interpreted to have low contemporary erosion rates, based on the presence of a thick sand coverage of static ripples. Active ripples at the Eberswalde and southwest Melas sites may account for local erosion and the dearth of small craters. Moderate-flux regional dunes near Mawrth Vallis were deemed unrepresentative of the candidate site, which is interpreted to currently be experiencing low levels of erosion. The Nili Fossae site displayed the most unambiguous evidence for local sand transport and erosion, likely yielding relatively young exposure ages. The downselected Jezero crater and northeast Syrtis sites had high-flux neighboring dunes and exhibited substantial evidence for sediment pathways across their ellipses. Both sites had relatively high estimated abrasion rates, which would yield young exposure ages. The downselected Columbia Hills site lacked evidence for sand movement, and contemporary local erosion rates are estimated to be relatively low.
Collapse
Affiliation(s)
- Matthew Chojnacki
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - Maria Banks
- NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Anna Urso
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
158
|
Urso A, Chojnacki M, Vaz DA. Dune-Yardang Interactions in Becquerel Crater, Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2018; 123:353-368. [PMID: 29564199 PMCID: PMC5857962 DOI: 10.1002/2017je005465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Isolated landscapes largely shaped by aeolian processes can occur on Earth, while the majority of Mars' recent history has been dominated by wind-driven activity. Resultantly, Martian landscapes often exhibit large-scale aeolian features, including yardang landforms carved from sedimentary-layered deposits. High-resolution orbital monitoring has revealed that persistent bedform activity is occurring with dune and ripple migration implying ongoing abrasion of the surface. However, little is known about the interaction between dunes and the topography surrounding them. Here we explore dune-yardang interactions in Becquerel crater in an effort to better understand local landscape evolution. Dunes there occur on the north and south sides of a 700 m tall sedimentary deposit, which displays numerous superposed yardangs. Dune and yardang orientations are congruent, suggesting that they both were formed under a predominantly northerly wind regime. Migration rates and sediment fluxes decrease as dunes approach the deposit and begin to increase again downwind of the deposit where the effect of topographic sheltering decreases. Estimated sand abrasion rates (16-40 μm yr-1) would yield a formation time of 1.8-4.5 Myr for the 70 m deep yardangs. This evidence for local aeolian abrasion also helps explain the young exposure ages of deposit surfaces, as estimated by the crater size-frequency distribution. Comparisons to terrestrial dune activity and yardang development begin to place constraints on yardang formation times for both Earth and Mars. These results provide insight into the complexities of sediment transport on uneven terrain and are compelling examples of contemporary aeolian-driven landscape evolution on Mars.
Collapse
Affiliation(s)
- Anna Urso
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - Matthew Chojnacki
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, USA
| | - David A Vaz
- INAF, Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Teramo, Teramo, Italy
- Centre for Earth and Space Research of the University of Coimbra, Observatório Geofísico e Astronómico da Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
159
|
Goordial J, Altshuler I, Hindson K, Chan-Yam K, Marcolefas E, Whyte LG. In Situ Field Sequencing and Life Detection in Remote (79°26'N) Canadian High Arctic Permafrost Ice Wedge Microbial Communities. Front Microbiol 2017; 8:2594. [PMID: 29326684 PMCID: PMC5742409 DOI: 10.3389/fmicb.2017.02594] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/12/2017] [Indexed: 11/18/2022] Open
Abstract
Significant progress is being made in the development of the next generation of low cost life detection instrumentation with much smaller size, mass and energy requirements. Here, we describe in situ life detection and sequencing in the field in soils over laying ice wedges in polygonal permafrost terrain on Axel Heiberg Island, located in the Canadian high Arctic (79°26'N), an analog to the polygonal permafrost terrain observed on Mars. The life detection methods used here include (1) the cryo-iPlate for culturing microorganisms using diffusion of in situ nutrients into semi-solid media (2) a Microbial Activity Microassay (MAM) plate (BIOLOG Ecoplate) for detecting viable extant microorganisms through a colourimetric assay, and (3) the Oxford Nanopore MinION for nucleic acid detection and sequencing of environmental samples and the products of MAM plate and cryo-iPlate. We obtained 39 microbial isolates using the cryo-iPlate, which included several putatively novel strains based on the 16S rRNA gene, including a Pedobacter sp. (96% closest similarity in GenBank) which we partially genome sequenced using the MinION. The MAM plate successfully identified an active community capable of L-serine metabolism, which was used for metagenomic sequencing with the MinION to identify the active and enriched community. A metagenome on environmental ice wedge soil samples was completed, with base calling and uplink/downlink carried out via satellite internet. Validation of MinION sequencing using the Illumina MiSeq platform was consistent with the results obtained with the MinION. The instrumentation and technology utilized here is pre-existing, low cost, low mass, low volume, and offers the prospect of equipping micro-rovers and micro-penetrators with aggressive astrobiological capabilities. Since potentially habitable astrobiology targets have been identified (RSLs on Mars, near subsurface water ice on Mars, the plumes and oceans of Europa and Enceladus), future astrobiology missions will certainly target these areas and there is a need for direct life detection instrumentation.
Collapse
Affiliation(s)
- J Goordial
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, United States
| | - Ianina Altshuler
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| | - Katherine Hindson
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| | - Kelly Chan-Yam
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| | - Evangelos Marcolefas
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, McGill University, Ste. Anne-de-Bellevue, QC, Canada
| |
Collapse
|
160
|
Oehler DZ, Etiope G. Methane Seepage on Mars: Where to Look and Why. ASTROBIOLOGY 2017; 17:1233-1264. [PMID: 28771029 PMCID: PMC5730060 DOI: 10.1089/ast.2017.1657] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/14/2017] [Indexed: 05/09/2023]
Abstract
Methane on Mars is a topic of special interest because of its potential association with microbial life. The variable detections of methane by the Curiosity rover, orbiters, and terrestrial telescopes, coupled with methane's short lifetime in the martian atmosphere, may imply an active gas source in the planet's subsurface, with migration and surface emission processes similar to those known on Earth as "gas seepage." Here, we review the variety of subsurface processes that could result in methane seepage on Mars. Such methane could originate from abiotic chemical reactions, thermogenic alteration of abiotic or biotic organic matter, and ancient or extant microbial metabolism. These processes can occur over a wide range of temperatures, in both sedimentary and igneous rocks, and together they enhance the possibility that significant amounts of methane could have formed on early Mars. Methane seepage to the surface would occur preferentially along faults and fractures, through focused macro-seeps and/or diffuse microseepage exhalations. Our work highlights the types of features on Mars that could be associated with methane release, including mud-volcano-like mounds in Acidalia or Utopia; proposed ancient springs in Gusev Crater, Arabia Terra, and Valles Marineris; and rims of large impact craters. These could have been locations of past macro-seeps and may still emit methane today. Microseepage could occur through faults along the dichotomy or fractures such as those at Nili Fossae, Cerberus Fossae, the Argyre impact, and those produced in serpentinized rocks. Martian microseepage would be extremely difficult to detect remotely yet could constitute a significant gas source. We emphasize that the most definitive detection of methane seepage from different release candidates would be best provided by measurements performed in the ground or at the ground-atmosphere interface by landers or rovers and that the technology for such detection is currently available. Key Words: Mars-Methane-Seepage-Clathrate-Fischer-Tropsch-Serpentinization. Astrobiology 17, 1233-1264.
Collapse
Affiliation(s)
| | - Giuseppe Etiope
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 2, Roma, Italy, and Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
161
|
Ehlmann BL, Edgett KS, Sutter B, Achilles CN, Litvak ML, Lapotre MGA, Sullivan R, Fraeman AA, Arvidson RE, Blake DF, Bridges NT, Conrad PG, Cousin A, Downs RT, Gabriel TSJ, Gellert R, Hamilton VE, Hardgrove C, Johnson JR, Kuhn S, Mahaffy PR, Maurice S, McHenry M, Meslin PY, Ming DW, Minitti ME, Morookian JM, Morris RV, O'Connell-Cooper CD, Pinet PC, Rowland SK, Schröder S, Siebach KL, Stein NT, Thompson LM, Vaniman DT, Vasavada AR, Wellington DF, Wiens RC, Yen AS. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2510-2543. [PMID: 29497589 DOI: 10.1002/2016je005225] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 05/25/2023]
Abstract
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.
Collapse
|
162
|
Chemtob SM, Nickerson RD, Morris RV, Agresti DG, Catalano JG. Oxidative alteration of ferrous smectites and implications for the redox evolution of early Mars. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2469-2488. [PMID: 32802700 PMCID: PMC7427814 DOI: 10.1002/2017je005331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Surface conditions on early Mars were likely anoxic, similar to early Earth, but the timing of the evolution to oxic conditions characteristic of contemporary Mars is unresolved. Ferrous trioctahedral smectites are the thermodynamically predicted products of anoxic basalt weathering, but orbital analyses of Noachian-aged terrains find primarily Fe3+-bearing clay minerals. Rover-based detection of Fe2+-bearing trioctahedral smectites at Gale Crater suggest that ferrous smectites are the unoxidized progenitors of orbitally-detected ferric smectites. To assess this pathway, we conducted ambient-temperature oxidative alteration experiments on four synthetic ferrous smectites having molar Fe/(Mg+Fe) from 1.00 to 0.33. Smectite suspension in air-saturated solutions produced incomplete oxidation (24-38% Fe3+/ΣFe). Additional smectite oxidation occurred upon re-exposure to air-saturated solutions after anoxic hydrothermal recrystallization, which accelerated cation and charge redistribution in the octahedral sheet. Oxidation was accompanied by contraction of the octahedral sheet (d(060) decreased from 1.53-1.56 Å to 1.52 Å), consistent with a shift towards dioctahedral structure. Ferrous smectite oxidation by aqueous hydrogen peroxide solutions resulted in nearly complete Fe2+ oxidation but also led to partial Fe3+ ejection from the structure, producing nanoparticulate hematite. Reflectance spectra of oxidized smectites were characterized by (Fe3+,Mg)2-OH bands at 2.28-2.30 μm, consistent with oxidative formation of dioctahedral nontronite. Accordingly, ferrous smectites are plausible precursors to observed ferric smectites on Mars, and their presence in late-Noachian sedimentary units suggests that anoxic conditions may have persisted on Mars beyond the Noachian.
Collapse
Affiliation(s)
- Steven M Chemtob
- Department of Earth and Environmental Sciences, Temple University, Philadelphia, PA 19122, U.S.A
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, U.S.A
| | - Ryan D Nickerson
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, U.S.A
| | | | - David G Agresti
- Department of Physics, University of Alabama at Birmingham, Birmingham, AL, U.S.A
| | - Jeffrey G Catalano
- Department of Earth and Planetary Sciences, Washington University, St. Louis, MO 63130, U.S.A
| |
Collapse
|
163
|
Ehlmann BL, Edgett KS, Sutter B, Achilles CN, Litvak ML, Lapotre MGA, Sullivan R, Fraeman AA, Arvidson RE, Blake DF, Bridges NT, Conrad PG, Cousin A, Downs RT, Gabriel TSJ, Gellert R, Hamilton VE, Hardgrove C, Johnson JR, Kuhn S, Mahaffy PR, Maurice S, McHenry M, Meslin P, Ming DW, Minitti ME, Morookian JM, Morris RV, O'Connell‐Cooper CD, Pinet PC, Rowland SK, Schröder S, Siebach KL, Stein NT, Thompson LM, Vaniman DT, Vasavada AR, Wellington DF, Wiens RC, Yen AS. Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2017; 122:2510-2543. [PMID: 29497589 PMCID: PMC5815393 DOI: 10.1002/2017je005267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 05/31/2023]
Abstract
The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45-500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust-covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt-sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse-sieved fraction of Bagnold sands, corroborated by visible/near-infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand-sized fraction (represented by Bagnold) that are Si-enriched, hydroxylated alteration products and/or H2O- or OH-bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.
Collapse
|
164
|
Uckert K, Chanover NJ, Getty S, Voelz DG, Brinckerhoff WB, McMillan N, Xiao X, Boston PJ, Li X, McAdam A, Glenar DA, Chavez A. The Characterization of Biosignatures in Caves Using an Instrument Suite. ASTROBIOLOGY 2017; 17:1203-1218. [PMID: 29227156 DOI: 10.1089/ast.2016.1568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The search for life and habitable environments on other Solar System bodies is a major motivator for planetary exploration. Due to the difficulty and significance of detecting extant or extinct extraterrestrial life in situ, several independent measurements from multiple instrument techniques will bolster the community's confidence in making any such claim. We demonstrate the detection of subsurface biosignatures using a suite of instrument techniques including IR reflectance spectroscopy, laser-induced breakdown spectroscopy, and scanning electron microscopy/energy dispersive X-ray spectroscopy. We focus our measurements on subterranean calcium carbonate field samples, whose biosignatures are analogous to those that might be expected on some high-interest astrobiology targets. In this work, we discuss the feasibility and advantages of using each of the aforementioned instrument techniques for the in situ search for biosignatures and present results on the autonomous characterization of biosignatures using multivariate statistical analysis techniques. Key Words: Biosignature suites-Caves-Mars-Life detection. Astrobiology 17, 1203-1218.
Collapse
Affiliation(s)
- Kyle Uckert
- 1 Department of Astronomy, New Mexico State University , Las Cruces, New Mexico
| | - Nancy J Chanover
- 1 Department of Astronomy, New Mexico State University , Las Cruces, New Mexico
| | | | - David G Voelz
- 3 Department of Electrical and Computer Engineering, New Mexico State University , Las Cruces, New Mexico
| | | | - Nancy McMillan
- 4 Department of Geological Sciences, New Mexico State University , Las Cruces, New Mexico
| | - Xifeng Xiao
- 3 Department of Electrical and Computer Engineering, New Mexico State University , Las Cruces, New Mexico
| | - Penelope J Boston
- 5 NASA Astrobiology Institute , NASA Ames Research Center, Moffett Field, California
| | - Xiang Li
- 6 University of Maryland , Baltimore County, Baltimore, Maryland
| | - Amy McAdam
- 2 NASA/Goddard Space Flight Center , Greenbelt, Maryland
| | - David A Glenar
- 6 University of Maryland , Baltimore County, Baltimore, Maryland
| | - Arriana Chavez
- 4 Department of Geological Sciences, New Mexico State University , Las Cruces, New Mexico
| |
Collapse
|
165
|
McKay CP, Andersen D, Davila A. Antarctic environments as models of planetary habitats: University Valley as a model for modern Mars and Lake Untersee as a model for Enceladus and ancient Mars. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/2154896x.2017.1383705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Dale Andersen
- Carl Sagan Center, SETI Institute, Mountain View, CA, USA
| | - Alfonso Davila
- Space Science Division, NASA Ames Research Center, Mountain View, CA, USA
| |
Collapse
|
166
|
Cheng Z, Xiao L, Wang H, Yang H, Li J, Huang T, Xu Y, Ma N. Bacterial and Archaeal Lipids Recovered from Subsurface Evaporites of Dalangtan Playa on the Tibetan Plateau and Their Astrobiological Implications. ASTROBIOLOGY 2017; 17:1112-1122. [PMID: 28926282 DOI: 10.1089/ast.2016.1526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Qaidam Basin (Tibetan Plateau) is considered an applicable analogue to Mars with regard to sustained extreme aridity and abundant evaporites. To investigate the possibility of the preservation of microbial lipids under these Mars analog conditions, we conducted a mineralogical and organic geochemistry study on samples collected from two Quaternary sections in Dalangtan Playa, northwestern Qaidam Basin, which will enhance our understanding of the potential preservation of molecular biomarkers on Mars. Two sedimentary units were identified along two profiles: one salt unit characterized by a predominance of gypsum and halite, and one detrital unit with a decrease of gypsum and halite and enrichment in siliciclastic minerals. Bacterial fatty acids and archaeal acyclic diether and tetraether membrane lipids were detected, and they varied throughout the sections in concentration and abundance. Bacterial and archaeal biomolecules indicate a dominance of Gram-positive bacteria and halophilic archaea in this hypersaline ecosystem that is similar to those in other hypersaline environments. Furthermore, the abundance of bacterial lipids decreases with the increase of salinity, whereas archaeal lipids showed a reverse trend. The detection of microbial lipids in hypersaline environments would indicate, for example on Mars, a high potential for the detection of microbial biomarkers in evaporites over geological timescales. Key Words: Dalangtan playa-The Qaidam Basin-Subsurface evaporites-Lipid biomarkers-Mars. Astrobiology 17, 1112-1122.
Collapse
Affiliation(s)
- Ziye Cheng
- 1 State Key Laboratory of Geological Processes and Mineral Resources, Planetary Science Institute, School of Earth Sciences, China University of Geosciences , Wuhan, China
| | - Long Xiao
- 1 State Key Laboratory of Geological Processes and Mineral Resources, Planetary Science Institute, School of Earth Sciences, China University of Geosciences , Wuhan, China
- 2 Macau University of Science and Technology , Macau, China
| | - Hongmei Wang
- 3 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan, China
| | - Huan Yang
- 3 State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences , Wuhan, China
| | - Jingjing Li
- 4 State Key Laboratory of Lake Sciences and Environment, Nanjing Institute of Geography and Limnology , Chinese Academy of Sciences, Nanjing, China
| | - Ting Huang
- 1 State Key Laboratory of Geological Processes and Mineral Resources, Planetary Science Institute, School of Earth Sciences, China University of Geosciences , Wuhan, China
| | - Yi Xu
- 2 Macau University of Science and Technology , Macau, China
| | - Nina Ma
- 5 Key Laboratory of Saline Lake Resources and Environments, Chinese Academy of Geological Sciences , Beijing, China
| |
Collapse
|
167
|
Malherbe C, Hutchinson IB, Ingley R, Boom A, Carr AS, Edwards H, Vertruyen B, Gilbert B, Eppe G. On the Habitability of Desert Varnish: A Combined Study by Micro-Raman Spectroscopy, X-ray Diffraction, and Methylated Pyrolysis-Gas Chromatography-Mass Spectrometry. ASTROBIOLOGY 2017; 17:1123-1137. [PMID: 29039682 DOI: 10.1089/ast.2016.1512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In 2020, the ESA ExoMars and NASA Mars 2020 missions will be launched to Mars to search for evidence of past and present life. In preparation for these missions, terrestrial analog samples of rock formations on Mars are studied in detail in order to optimize the scientific information that the analytical instrumentation will return. Desert varnishes are thin mineral coatings found on rocks in arid and semi-arid environments on Earth that are recognized as analog samples. During the formation of desert varnishes (which takes many hundreds of years), organic matter is incorporated, and microorganisms may also play an active role in the formation process. During this study, four complementary analytical techniques proposed for Mars missions (X-ray diffraction [XRD], Raman spectroscopy, elemental analysis, and pyrolysis-gas chromatography-mass spectrometry [Py-GC-MS]) were used to interrogate samples of desert varnish and describe their capacity to sustain life under extreme scenarios. For the first time, both the geochemistry and the organic compounds associated with desert varnish are described with the use of identical sets of samples. XRD and Raman spectroscopy measurements were used to nondestructively interrogate the mineralogy of the samples. In addition, the use of Raman spectroscopy instruments enabled the detection of β-carotene, a highly Raman-active biomarker. The content and the nature of the organic material in the samples were further investigated with elemental analysis and methylated Py-GC-MS, and a bacterial origin was determined to be likely. In the context of planetary exploration, we describe the habitable nature of desert varnish based on the biogeochemical composition of the samples. Possible interference of the geological substrate on the detectability of pyrolysis products is also suggested. Key Words: Desert varnish-Habitability-Raman spectroscopy-Py-GC-MS-XRD-ExoMars-Planetary science. Astrobiology 17, 1123-1137.
Collapse
Affiliation(s)
- C Malherbe
- 1 Department of Physics and Astronomy, University of Leicester , Leicester, UK
- 2 Laboratory of Inorganic Analytical Chemistry, Department of Chemistry, University of Liège , Liège, Belgium
| | - I B Hutchinson
- 1 Department of Physics and Astronomy, University of Leicester , Leicester, UK
| | - R Ingley
- 1 Department of Physics and Astronomy, University of Leicester , Leicester, UK
| | - A Boom
- 3 Department of Geography, University of Leicester , Leicester, UK
| | - A S Carr
- 3 Department of Geography, University of Leicester , Leicester, UK
| | - H Edwards
- 1 Department of Physics and Astronomy, University of Leicester , Leicester, UK
| | - B Vertruyen
- 4 LCIS/GREENMAT, Department of Chemistry, University of Liège , Liège, Belgium
| | - B Gilbert
- 2 Laboratory of Inorganic Analytical Chemistry, Department of Chemistry, University of Liège , Liège, Belgium
| | - G Eppe
- 2 Laboratory of Inorganic Analytical Chemistry, Department of Chemistry, University of Liège , Liège, Belgium
| |
Collapse
|
168
|
Kölbl D, Pignitter M, Somoza V, Schimak MP, Strbak O, Blazevic A, Milojevic T. Exploring Fingerprints of the Extreme Thermoacidophile Metallosphaera sedula Grown on Synthetic Martian Regolith Materials as the Sole Energy Sources. Front Microbiol 2017; 8:1918. [PMID: 29062303 PMCID: PMC5640722 DOI: 10.3389/fmicb.2017.01918] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/20/2017] [Indexed: 12/04/2022] Open
Abstract
The biology of metal transforming microorganisms is of a fundamental and applied importance for our understanding of past and present biogeochemical processes on Earth and in the Universe. The extreme thermoacidophile Metallosphaera sedula is a metal mobilizing archaeon, which thrives in hot acid environments (optimal growth at 74°C and pH 2.0) and utilizes energy from the oxidation of reduced metal inorganic sources. These characteristics of M. sedula make it an ideal organism to further our knowledge of the biogeochemical processes of possible life on extraterrestrial planetary bodies. Exploring the viability and metal extraction capacity of M. sedula living on and interacting with synthetic extraterrestrial minerals, we show that M. sedula utilizes metals trapped in the Martian regolith simulants (JSC Mars 1A; P-MRS; S-MRS; MRS07/52) as the sole energy sources. The obtained set of microbiological and mineralogical data suggests that M. sedula actively colonizes synthetic Martian regolith materials and releases free soluble metals. The surface of bioprocessed Martian regolith simulants is analyzed for specific mineralogical fingerprints left upon M. sedula growth. The obtained results provide insights of biomining of extraterrestrial material as well as of the detection of biosignatures implementing in life search missions.
Collapse
Affiliation(s)
- Denise Kölbl
- Extremophiles Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Marc Pignitter
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Veronika Somoza
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Mario P Schimak
- Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Oliver Strbak
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Amir Blazevic
- Extremophiles Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| | - Tetyana Milojevic
- Extremophiles Group, Department of Biophysical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
169
|
Fairén AG, Parro V, Schulze-Makuch D, Whyte L. Searching for Life on Mars Before It Is Too Late. ASTROBIOLOGY 2017; 17:962-970. [PMID: 28885042 PMCID: PMC5655416 DOI: 10.1089/ast.2017.1703] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Decades of robotic exploration have confirmed that in the distant past, Mars was warmer and wetter and its surface was habitable. However, none of the spacecraft missions to Mars have included among their scientific objectives the exploration of Special Regions, those places on the planet that could be inhabited by extant martian life or where terrestrial microorganisms might replicate. A major reason for this is because of Planetary Protection constraints, which are implemented to protect Mars from terrestrial biological contamination. At the same time, plans are being drafted to send humans to Mars during the 2030 decade, both from international space agencies and the private sector. We argue here that these two parallel strategies for the exploration of Mars (i.e., delaying any efforts for the biological reconnaissance of Mars during the next two or three decades and then directly sending human missions to the planet) demand reconsideration because once an astronaut sets foot on Mars, Planetary Protection policies as we conceive them today will no longer be valid as human arrival will inevitably increase the introduction of terrestrial and organic contaminants and that could jeopardize the identification of indigenous martian life. In this study, we advocate for reassessment over the relationships between robotic searches, paying increased attention to proactive astrobiological investigation and sampling of areas more likely to host indigenous life, and fundamentally doing this in advance of manned missions. Key Words: Contamination-Earth Mars-Planetary Protection-Search for life (biosignatures). Astrobiology 17, 962-970.
Collapse
Affiliation(s)
- Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, New York
| | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
| | - Dirk Schulze-Makuch
- Center of Astronomy and Astrophysics, Technical University Berlin, Berlin, Germany
- SETI Institute, Mountain View, California
| | - Lyle Whyte
- Department of Natural Resource Sciences, McGill University, Québec, Canada
| |
Collapse
|
170
|
Anderson W, Day M. Turbulent flow over craters on Mars: Vorticity dynamics reveal aeolian excavation mechanism. Phys Rev E 2017; 96:043110. [PMID: 29347578 DOI: 10.1103/physreve.96.043110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Impact craters are scattered across Mars. These craters exhibit geometric self-similarity over a spectrum of diameters, ranging from tens to thousands of kilometers. The late Noachian-early Hesperian boundary marks a dramatic shift in the role of mid-latitude craters, from depocenter sedimentary basins to aeolian source areas. At present day, many craters contain prominent layered sedimentary mounds with maximum elevations comparable to the rim height. The mounds are remnants of Noachian deposition and are surrounded by a radial moat. Large-eddy simulation has been used to model turbulent flows over synthetic craterlike geometries. Geometric attributes of the craters and the aloft flow have been carefully matched to resemble ambient conditions in the atmospheric boundary layer of Mars. Vorticity dynamics analysis within the crater basin reveals the presence of counterrotating helical vortices, verifying the efficacy of deflationary models put forth recently by Bennett and Bell [K. Bennett and J. Bell, Icarus 264, 331 (2016)]ICRSA50019-103510.1016/j.icarus.2015.09.041 and Day et al. [M. Day et al., Geophys. Res. Lett. 43, 2473 (2016)]GPRLAJ0094-827610.1002/2016GL068011. We show how these helical counterrotating vortices spiral around the outer rim, gradually deflating the moat and carving the mound; excavation occurs faster on the upwind side, explaining the radial eccentricity of the mounds relative to the surrounding crater basin.
Collapse
Affiliation(s)
- William Anderson
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Mackenzie Day
- Department of Earth and Space Sciences, University of Washington, 4000 15th Ave NE, Seattle, Washington 98195, USA
| |
Collapse
|
171
|
Rizzo V, Cantasano N. Structural parallels between terrestrial microbialites and Martian sediments: are all cases of ‘Pareidolia’? INTERNATIONAL JOURNAL OF ASTROBIOLOGY 2017; 16:297-316. [DOI: 10.1017/s1473550416000355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
AbstractThe study analyses possible parallels of the microbialite-known structures with a set of similar settings selected by a systematic investigation from the wide record and data set of images shot by NASA rovers. Terrestrial cases involve structures both due to bio-mineralization processes and those induced by bacterial metabolism, that occur in a dimensional field longer than 0.1 mm, at micro, meso and macro scales. The study highlights occurrence on Martian sediments of widespread structures like microspherules, often organized into some higher-order settings. Such structures also occur on terrestrial stromatolites in a great variety of ‘Microscopic Induced Sedimentary Structures’, such as voids, gas domes and layer deformations of microbial mats. We present a suite of analogies so compelling (i.e. different scales of morphological, structural and conceptual relevance), to make the case that similarities between Martian sediment structures and terrestrial microbialites are not all cases of ‘Pareidolia’.
Collapse
|
172
|
Olsson-Francis K, Pearson VK, Steer ED, Schwenzer SP. Determination of Geochemical Bio-Signatures in Mars-Like Basaltic Environments. Front Microbiol 2017; 8:1668. [PMID: 28943863 PMCID: PMC5596621 DOI: 10.3389/fmicb.2017.01668] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/17/2017] [Indexed: 11/28/2022] Open
Abstract
Bio-signatures play a central role in determining whether life existed on early Mars. Using a terrestrial basalt as a compositional analog for the martian surface, we applied a combination of experimental microbiology and thermochemical modeling techniques to identify potential geochemical bio-signatures for life on early Mars. Laboratory experiments were used to determine the short-term effects of biota on the dissolution of terrestrial basalt, and the formation of secondary alteration minerals. The chemoorganoheterotrophic bacterium, Burkholderia sp. strain B_33, was grown in a minimal growth medium with and without terrestrial basalt as the sole nutrient source. No growth was detected in the absence of the basalt. In the presence of basalt, during exponential growth, the pH decreased rapidly from pH 7.0 to 3.6 and then gradually increased to a steady-state of equilibrium of between 6.8 and 7.1. Microbial growth coincided with an increase in key elements in the growth medium (Si, K, Ca, Mg, and Fe). Experimental results were compared with theoretical thermochemical modeling to predict growth of secondary alteration minerals, which can be used as bio-signatures, over a geological timescale. We thermochemically modeled the dissolution of the basalt (in the absence of biota) in very dilute brine at 25°C, 1 bar; the pH was buffered by the mineral dissolution and precipitation reactions. Preliminary results suggested that at the water to rock ratio of 1 × 107, zeolite, hematite, chlorite, kaolinite, and apatite formed abiotically. The biotic weathering processes were modeled by varying the pH conditions within the model to adjust for biologic influence. The results suggested that, for a basaltic system, the microbially-mediated dissolution of basalt would result in “simpler” secondary alteration, consisting of Fe-hydroxide and kaolinite, under conditions where the abiotic system would also form chlorite. The results from this study demonstrate that, by using laboratory-based experiments and thermochemical modeling, it is possible to identify secondary alteration minerals that could potentially be used to distinguish between abiotic and biotic weathering processes on early Mars. This work will contribute to the interpretation of data from past, present, and future life detection missions to Mars.
Collapse
Affiliation(s)
- Karen Olsson-Francis
- School of Environment, Earth and Ecosystem Sciences, Open UniversityMilton Keynes, United Kingdom
| | - Victoria K Pearson
- School of Physical Sciences, Open UniversityMilton Keynes, United Kingdom
| | - Elisabeth D Steer
- School of Physical Sciences, Open UniversityMilton Keynes, United Kingdom.,Nanoscale and Microscale Research Centre, University of NottinghamNottingham, United Kingdom
| | - Susanne P Schwenzer
- School of Environment, Earth and Ecosystem Sciences, Open UniversityMilton Keynes, United Kingdom
| |
Collapse
|
173
|
Gaboyer F, Le Milbeau C, Bohmeier M, Schwendner P, Vannier P, Beblo-Vranesevic K, Rabbow E, Foucher F, Gautret P, Guégan R, Richard A, Sauldubois A, Richmann P, Perras AK, Moissl-Eichinger C, Cockell CS, Rettberg P, Marteinsson, Monaghan E, Ehrenfreund P, Garcia-Descalzo L, Gomez F, Malki M, Amils R, Cabezas P, Walter N, Westall F. Mineralization and Preservation of an extremotolerant Bacterium Isolated from an Early Mars Analog Environment. Sci Rep 2017; 7:8775. [PMID: 28821776 PMCID: PMC5562696 DOI: 10.1038/s41598-017-08929-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 07/14/2017] [Indexed: 11/09/2022] Open
Abstract
The artificial mineralization of a polyresistant bacterial strain isolated from an acidic, oligotrophic lake was carried out to better understand microbial (i) early mineralization and (ii) potential for further fossilisation. Mineralization was conducted in mineral matrixes commonly found on Mars and Early-Earth, silica and gypsum, for 6 months. Samples were analyzed using microbiological (survival rates), morphological (electron microscopy), biochemical (GC-MS, Microarray immunoassay, Rock-Eval) and spectroscopic (EDX, FTIR, RAMAN spectroscopy) methods. We also investigated the impact of physiological status on mineralization and long-term fossilisation by exposing cells or not to Mars-related stresses (desiccation and radiation). Bacterial populations remained viable after 6 months although the kinetics of mineralization and cell-mineral interactions depended on the nature of minerals. Detection of biosignatures strongly depended on analytical methods, successful with FTIR and EDX but not with RAMAN and immunoassays. Neither influence of stress exposure, nor qualitative and quantitative changes of detected molecules were observed as a function of mineralization time and matrix. Rock-Eval analysis suggests that potential for preservation on geological times may be possible only with moderate diagenetic and metamorphic conditions. The implications of our results for microfossil preservation in the geological record of Earth as well as on Mars are discussed.
Collapse
Affiliation(s)
- F Gaboyer
- Centre de Biophysique Moléculaire, CNRS, Orléans, France.
| | - C Le Milbeau
- Institut des Sciences de la Terre d'Orléans, UMR 7327, CNRS-Université d'Orléans, 1A Rue de la Férollerie, 45071, Orléans Cedex 2, France
| | - M Bohmeier
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - P Schwendner
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - P Vannier
- MATIS - Prokaria, Reykjavík, Iceland
| | - K Beblo-Vranesevic
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - E Rabbow
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | - F Foucher
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| | - P Gautret
- Institut des Sciences de la Terre d'Orléans, UMR 7327, CNRS-Université d'Orléans, 1A Rue de la Férollerie, 45071, Orléans Cedex 2, France
| | - R Guégan
- Institut des Sciences de la Terre d'Orléans, UMR 7327, CNRS-Université d'Orléans, 1A Rue de la Férollerie, 45071, Orléans Cedex 2, France
| | - A Richard
- Centre de Microscopie Electronique, Université d'Orléans, Orléans, France
| | - A Sauldubois
- Centre de Microscopie Electronique, Université d'Orléans, Orléans, France
| | - P Richmann
- Institut des Sciences de la Terre d'Orléans, UMR 7327, CNRS-Université d'Orléans, 1A Rue de la Férollerie, 45071, Orléans Cedex 2, France
| | - A K Perras
- University Regensburg, Department of Microbiology, Regensburg, Germany.,Medical University of Graz, Department of Internal Medicine, Graz, Austria
| | | | - C S Cockell
- UK Center for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - P Rettberg
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne, Germany
| | | | - E Monaghan
- Leiden Observatory, Universiteit Leiden, Leiden, Netherlands
| | - P Ehrenfreund
- Leiden Observatory, Universiteit Leiden, Leiden, Netherlands
| | - L Garcia-Descalzo
- Instituto Nacional de Técnica Aeroespacial - Centro de Astrobiología (INTA-CAB), Madrid, Spain
| | - F Gomez
- Instituto Nacional de Técnica Aeroespacial - Centro de Astrobiología (INTA-CAB), Madrid, Spain
| | - M Malki
- Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - R Amils
- Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - P Cabezas
- European Science Foundation (ESF), Strasbourg, France
| | - N Walter
- European Science Foundation (ESF), Strasbourg, France
| | - F Westall
- Centre de Biophysique Moléculaire, CNRS, Orléans, France
| |
Collapse
|
174
|
Cantine MD, Fournier GP. Environmental Adaptation from the Origin of Life to the Last Universal Common Ancestor. ORIGINS LIFE EVOL B 2017; 48:35-54. [PMID: 28685374 DOI: 10.1007/s11084-017-9542-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/15/2017] [Indexed: 01/03/2023]
Abstract
Extensive fundamental molecular and biological evolution took place between the prebiotic origins of life and the state of the Last Universal Common Ancestor (LUCA). Considering the evolutionary innovations between these two endpoints from the perspective of environmental adaptation, we explore the hypothesis that LUCA was temporally, spatially, and environmentally distinct from life's earliest origins in an RNA world. Using this lens, we interpret several molecular biological features as indicating an environmental transition between a cold, radiation-shielded origin of life and a mesophilic, surface-dwelling LUCA. Cellularity provides motility and permits Darwinian evolution by connecting genetic material and its products, and thus establishing heredity and lineage. Considering the importance of compartmentalization and motility, we propose that the early emergence of cellularity is required for environmental dispersal and diversification during these transitions. Early diversification and the emergence of ecology before LUCA could be an important pre-adaptation for life's persistence on a changing planet.
Collapse
Affiliation(s)
- Marjorie D Cantine
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
175
|
Ciarletti V, Clifford S, Plettemeier D, Le Gall A, Hervé Y, Dorizon S, Quantin-Nataf C, Benedix WS, Schwenzer S, Pettinelli E, Heggy E, Herique A, Berthelier JJ, Kofman W, Vago JL, Hamran SE. The WISDOM Radar: Unveiling the Subsurface Beneath the ExoMars Rover and Identifying the Best Locations for Drilling. ASTROBIOLOGY 2017; 17:565-584. [PMCID: PMC5568567 DOI: 10.1089/ast.2016.1532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/05/2017] [Indexed: 05/28/2023]
Abstract
The search for evidence of past or present life on Mars is the principal objective of the 2020 ESA-Roscosmos ExoMars Rover mission. If such evidence is to be found anywhere, it will most likely be in the subsurface, where organic molecules are shielded from the destructive effects of ionizing radiation and atmospheric oxidants. For this reason, the ExoMars Rover mission has been optimized to investigate the subsurface to identify, understand, and sample those locations where conditions for the preservation of evidence of past life are most likely to be found. The Water Ice Subsurface Deposit Observation on Mars (WISDOM) ground-penetrating radar has been designed to provide information about the nature of the shallow subsurface over depth ranging from 3 to 10 m (with a vertical resolution of up to 3 cm), depending on the dielectric properties of the regolith. This depth range is critical to understanding the geologic evolution stratigraphy and distribution and state of subsurface H2O, which provide important clues in the search for life and the identification of optimal drilling sites for investigation and sampling by the Rover's 2-m drill. WISDOM will help ensure the safety and success of drilling operations by identification of potential hazards that might interfere with retrieval of subsurface samples. Key Words: Ground penetrating radar—Martian shallow subsurface—ExoMars. Astrobiology 17, 565–584.
Collapse
Affiliation(s)
- Valérie Ciarletti
- LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC, Paris 06, CNRS, Guyancourt, France
| | | | | | - Alice Le Gall
- LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC, Paris 06, CNRS, Guyancourt, France
| | - Yann Hervé
- LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC, Paris 06, CNRS, Guyancourt, France
| | - Sophie Dorizon
- LATMOS/IPSL, UVSQ Université Paris-Saclay, UPMC, Paris 06, CNRS, Guyancourt, France
| | - Cathy Quantin-Nataf
- Laboratoire de Géologie de Lyon, Université Claude Bernard Lyon 1/CNRS/ENS Lyon, Villeurbanne, France
| | | | - Susanne Schwenzer
- Open University Centre for Earth Planetary Space and Astronomical Research, Milton Keynes, Milton Keynes, United Kingdom
| | - Elena Pettinelli
- Universita degli Studi Roma Tre Dipartimento di Matematica e Fisica, Roma, Italy
| | - Essam Heggy
- University of Southern California Viterbi School of Engineering, Los Angeles, California
| | - Alain Herique
- Université Grenoble Alpes, IPAG, F-38000 Grenoble; CNRS, IPAG, F-38000, Grenoble, France
| | | | - Wlodek Kofman
- Université Grenoble Alpes, IPAG, F-38000 Grenoble; CNRS, IPAG, F-38000, Grenoble, France
- Space Research Centre, PAN, Warsaw, Poland
| | - Jorge L. Vago
- European Space Agency, ESA/ESTEC (HME-ME), Noordwijk, The Netherlands
| | | |
Collapse
|
176
|
Abstract
The scientific objectives of the ExoMars rover are designed to answer several key questions in the search for life on Mars. In particular, the unique subsurface drill will address some of these, such as the possible existence and stability of subsurface organics. PanCam will establish the surface geological and morphological context for the mission, working in collaboration with other context instruments. Here, we describe the PanCam scientific objectives in geology, atmospheric science, and 3-D vision. We discuss the design of PanCam, which includes a stereo pair of Wide Angle Cameras (WACs), each of which has an 11-position filter wheel and a High Resolution Camera (HRC) for high-resolution investigations of rock texture at a distance. The cameras and electronics are housed in an optical bench that provides the mechanical interface to the rover mast and a planetary protection barrier. The electronic interface is via the PanCam Interface Unit (PIU), and power conditioning is via a DC-DC converter. PanCam also includes a calibration target mounted on the rover deck for radiometric calibration, fiducial markers for geometric calibration, and a rover inspection mirror. Key Words: Mars—ExoMars—Instrumentation—Geology—Atmosphere—Exobiology—Context. Astrobiology 17, 511–541.
Collapse
|
177
|
Vago JL, Westall F. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. ASTROBIOLOGY 2017; 17:471-510. [PMID: 31067287 PMCID: PMC5685153 DOI: 10.1089/ast.2016.1533] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 03/05/2017] [Indexed: 05/19/2023]
Abstract
The second ExoMars mission will be launched in 2020 to target an ancient location interpreted to have strong potential for past habitability and for preserving physical and chemical biosignatures (as well as abiotic/prebiotic organics). The mission will deliver a lander with instruments for atmospheric and geophysical investigations and a rover tasked with searching for signs of extinct life. The ExoMars rover will be equipped with a drill to collect material from outcrops and at depth down to 2 m. This subsurface sampling capability will provide the best chance yet to gain access to chemical biosignatures. Using the powerful Pasteur payload instruments, the ExoMars science team will conduct a holistic search for traces of life and seek corroborating geological context information. Key Words: Biosignatures-ExoMars-Landing sites-Mars rover-Search for life. Astrobiology 17, 471-510.
Collapse
|
178
|
Francis R, Estlin T, Doran G, Johnstone S, Gaines D, Verma V, Burl M, Frydenvang J, Montaño S, Wiens RC, Schaffer S, Gasnault O, DeFlores L, Blaney D, Bornstein B. AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use. Sci Robot 2017; 2:2/7/eaan4582. [PMID: 33157897 DOI: 10.1126/scirobotics.aan4582] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 05/31/2017] [Indexed: 11/02/2022]
Abstract
Limitations on interplanetary communications create operations latencies and slow progress in planetary surface missions, with particular challenges to narrow-field-of-view science instruments requiring precise targeting. The AEGIS (Autonomous Exploration for Gathering Increased Science) autonomous targeting system has been in routine use on NASA's Curiosity Mars rover since May 2016, selecting targets for the ChemCam remote geochemical spectrometer instrument. AEGIS operates in two modes; in autonomous target selection, it identifies geological targets in images from the rover's navigation cameras, choosing for itself targets that match the parameters specified by mission scientists the most, and immediately measures them with ChemCam, without Earth in the loop. In autonomous pointing refinement, the system corrects small pointing errors on the order of a few milliradians in observations targeted by operators on Earth, allowing very small features to be observed reliably on the first attempt. AEGIS consistently recognizes and selects the geological materials requested of it, parsing and interpreting geological scenes in tens to hundreds of seconds with very limited computing resources. Performance in autonomously selecting the most desired target material over the last 2.5 kilometers of driving into previously unexplored terrain exceeds 93% (where ~24% is expected without intelligent targeting), and all observations resulted in a successful geochemical observation. The system has substantially reduced lost time on the mission and markedly increased the pace of data collection with ChemCam. AEGIS autonomy has rapidly been adopted as an exploration tool by the mission scientists and has influenced their strategy for exploring the rover's environment.
Collapse
Affiliation(s)
- R Francis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.
| | - T Estlin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - G Doran
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - S Johnstone
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - D Gaines
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - V Verma
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - M Burl
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - S Montaño
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - R C Wiens
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - O Gasnault
- Institut de Recherche en Astrophysique et Planétologie, Toulouse, France
| | - L DeFlores
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - D Blaney
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - B Bornstein
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
179
|
Hurowitz JA, Grotzinger JP, Fischer WW, McLennan SM, Milliken RE, Stein N, Vasavada AR, Blake DF, Dehouck E, Eigenbrode JL, Fairén AG, Frydenvang J, Gellert R, Grant JA, Gupta S, Herkenhoff KE, Ming DW, Rampe EB, Schmidt ME, Siebach KL, Stack-Morgan K, Sumner DY, Wiens RC. Redox stratification of an ancient lake in Gale crater, Mars. Science 2017; 356:356/6341/eaah6849. [PMID: 28572336 DOI: 10.1126/science.aah6849] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 04/19/2017] [Indexed: 11/02/2022]
Abstract
In 2012, NASA's Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical and mineralogical data from lake-bed mudstones collected during the first 1300 martian solar days of rover operations in Gale. We present evidence for lake redox stratification, established by depth-dependent variations in atmospheric oxidant and dissolved-solute concentrations. Paleoclimate proxy data indicate that a transition from colder to warmer climate conditions is preserved in the stratigraphy. Finally, a late phase of geochemical modification by saline fluids is recognized.
Collapse
Affiliation(s)
- J A Hurowitz
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA.
| | - J P Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - W W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - S M McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA
| | - R E Milliken
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | - N Stein
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - A R Vasavada
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - D F Blake
- Department of Space Sciences, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - E Dehouck
- Institut de Recherche en Astrophysique et Planétologie, University Paul Sabatier, 31028 Toulouse, France
| | - J L Eigenbrode
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - A G Fairén
- Centro de Astrobiología, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial (CSIC-INTA), 28850 Madrid, Spain.,Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
| | - J Frydenvang
- Space Remote Sensing, Los Alamos National Laboratory, Los Alamos, NM 87544, USA.,University of Copenhagen, 1350 Copenhagen, Denmark
| | - R Gellert
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - J A Grant
- Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC 20560, USA
| | - S Gupta
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | | | - D W Ming
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - E B Rampe
- NASA Johnson Space Center, Houston, TX 77058, USA
| | - M E Schmidt
- Department of Earth Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - K L Siebach
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - K Stack-Morgan
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - D Y Sumner
- Department of Earth and Planetary Sciences, University of California-Davis, Davis, CA 95616, USA
| | - R C Wiens
- Space Remote Sensing, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| |
Collapse
|
180
|
Managadze GG, Safronova AA, Luchnikov KA, Vorobyova EA, Duxbury NS, Wurz P, Managadze NG, Chumikov AE, Khamizov RK. A New Method and Mass-Spectrometric Instrument for Extraterrestrial Microbial Life Detection Using the Elemental Composition Analyses of Martian Regolith and Permafrost/Ice. ASTROBIOLOGY 2017; 17:448-458. [PMID: 28520473 DOI: 10.1089/ast.2016.1511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We propose a new technique for the detection of microorganisms by elemental composition analyses of a sample extracted from regolith, permafrost, and ice of extraterrestrial bodies. We also describe the design of the ABIMAS instrument, which consists of the onboard time-of-flight laser mass-reflectron (TOF LMR) and the sample preparation unit (SPU) for biomass extraction. This instrument was initially approved to fly on board the ExoMars 2020 lander mission. The instrument can be used to analyze the elemental composition of possible extraterrestrial microbial communities and compare it to that of terrestrial microorganisms. We have conducted numerous laboratory studies to confirm the possibility of biomass identification via the following biomarkers: P/S and Ca/K ratios, and C and N abundances. We underline that only the combination of these factors will allow one to discriminate microbial samples from geological ones. Our technique has been tested experimentally in numerous laboratory trials on cultures of microorganisms and polar permafrost samples as terrestrial analogues for martian polar soils. We discuss various methods of extracting microorganisms and sample preparation. The developed technique can be used to search for and identify microorganisms in different martian samples and in the subsurface of other planets, satellites, comets, and asteroids-in particular, Europa, Ganymede, and Enceladus. Key Words: Mass spectrometry-Life-detection instruments-Biomarkers-Earth Mars-Biomass spectra. Astrobiology 17, 448-458.
Collapse
Affiliation(s)
- G G Managadze
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
| | - A A Safronova
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
| | - K A Luchnikov
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
| | - E A Vorobyova
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
- 2 Soil Science Faculty, Lomonosov Moscow State University , Moscow, Russian Federation
| | - N S Duxbury
- 3 Department of Physics, Astronomy and Computational Sciences, George Mason University , Fairfax, Virginia, USA
- 4 Geology Faculty, Lomonosov Moscow State University , Moscow, Russian Federation
| | - P Wurz
- 5 Physics Institute, University of Bern , Bern, Switzerland
| | - N G Managadze
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
| | - A E Chumikov
- 1 Space Research Institute , Russian Academy of Sciences, Moscow, Russian Federation
| | - R Kh Khamizov
- 6 Institute of Geological Chemistry , Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
181
|
Malherbe C, Hutchinson IB, McHugh M, Ingley R, Jehlička J, Edwards HGM. Accurate Differentiation of Carotenoid Pigments Using Flight Representative Raman Spectrometers. ASTROBIOLOGY 2017; 17:351-362. [PMID: 28418705 DOI: 10.1089/ast.2016.1547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Raman spectrometers will be utilized on two Mars rover missions, ExoMars and Mars 2020, in the near future, to search for evidence of life and habitable geological niches on Mars. Carotenoid pigments are recognized target biomarkers, and as they are highly active in Raman spectroscopy, they can be readily used to characterize the capabilities of space representative instrumentation. As part of the preparatory work being performed for the ExoMars mission, a gypsum crust colonized by microorganisms was interrogated with commercial portable Raman instruments and a flight representative Raman laser spectrometer. Four separate layers, each exhibiting different coloration resulting from specific halophilic microorganism activities within the gypsum crust, were studied by using two excitation wavelengths: 532 and 785 nm. Raman or fluorescence data were readily obtained during the present study. Gypsum, the main constituent of the crust, was detected with both excitation wavelengths, while the resonance Raman signal associated with carotenoid pigments was only detected with a 532 nm excitation wavelength. The fluorescence originating from bacteriochlorophyll a was found to overwhelm the Raman signal for the layer colonized by sulfur bacteria when interrogated with a 785 nm excitation wavelength. Finally, it was demonstrated that portable instruments and the prototype were capable of detecting a statistically significant difference in band positions of carotenoid signals between the sample layers. Key Words: Gypsum-Raman spectrometers-Carotenoids-ExoMars-Mars exploration-Band position shift. Astrobiology 17, 351-362.
Collapse
Affiliation(s)
- Cedric Malherbe
- 1 Department of Physics, University of Leicester , UK
- 2 Laboratory of Inorganic Analytical Chemistry, Department of Chemistry, University of Liège , Belgium
| | | | | | | | - Jan Jehlička
- 3 Institute of Geochemistry, Mineralogy and Mineral Resources, Charles University in Prague , Czech Republic
| | | |
Collapse
|
182
|
Smith SA, Benardini JN, Anderl D, Ford M, Wear E, Schrader M, Schubert W, DeVeaux L, Paszczynski A, Childers SE. Identification and Characterization of Early Mission Phase Microorganisms Residing on the Mars Science Laboratory and Assessment of Their Potential to Survive Mars-like Conditions. ASTROBIOLOGY 2017; 17:253-265. [PMID: 28282220 PMCID: PMC5373329 DOI: 10.1089/ast.2015.1417] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/04/2016] [Indexed: 05/23/2023]
Abstract
Planetary protection is governed by the Outer Space Treaty and includes the practice of protecting planetary bodies from contamination by Earth life. Although studies are constantly expanding our knowledge about life in extreme environments, it is still unclear what the probability is for terrestrial organisms to survive and grow on Mars. Having this knowledge is paramount to addressing whether microorganisms transported from Earth could negatively impact future space exploration. The objectives of this study were to identify cultivable microorganisms collected from the surface of the Mars Science Laboratory, to distinguish which of the cultivable microorganisms can utilize energy sources potentially available on Mars, and to determine the survival of the cultivable microorganisms upon exposure to physiological stresses present on the martian surface. Approximately 66% (237) of the 358 microorganisms identified are related to members of the Bacillus genus, although surprisingly, 22% of all isolates belong to non-spore-forming genera. A small number could grow by reduction of potential growth substrates found on Mars, such as perchlorate and sulfate, and many were resistant to desiccation and ultraviolet radiation (UVC). While most isolates either grew in media containing ≥10% NaCl or at 4°C, many grew when multiple physiological stresses were applied. The study yields details about the microorganisms that inhabit the surfaces of spacecraft after microbial reduction measures, information that will help gauge whether microorganisms from Earth pose a forward contamination risk that could impact future planetary protection policy. Key Words: Planetary protection-Spore-Bioburden-MSL-Curiosity-Contamination-Mars. Astrobiology 17, 253-265.
Collapse
Affiliation(s)
| | - James N Benardini
- 2 Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - David Anderl
- 1 School of Food Science, University of Idaho , Moscow, Idaho
| | - Matt Ford
- 3 Department of Biological Sciences, Idaho State University , Pocatello, Idaho
| | - Emmaleen Wear
- 1 School of Food Science, University of Idaho , Moscow, Idaho
| | | | - Wayne Schubert
- 2 Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Linda DeVeaux
- 4 Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology , Rapid City, South Dakota
| | | | | |
Collapse
|
183
|
Yingst R, Berger J, Cohen B, Hynek B, Schmidt M. Determining best practices in reconnoitering sites for habitability potential on Mars using a semi-autonomous rover: A GeoHeuristic Operational Strategies Test. ACTA ASTRONAUTICA 2017; 132:268-281. [PMID: 29307922 PMCID: PMC5754930 DOI: 10.1016/j.actaastro.2016.12.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We tested science operations strategies developed for use in remote mobile spacecraft missions, to determine whether reconnoitering a site of potential habitability prior to in-depth study (a walkabout-first strategy) can be a more efficient use of time and resources than the linear approach commonly used by planetary rover missions. Two field teams studied a sedimentary sequence in Utah to assess habitability potential. At each site one team commanded a human "rover" to execute observations and conducted data analysis and made follow-on decisions based solely on those observations. Another team followed the same traverse using traditional terrestrial field methods, and the results of the two teams were compared. Test results indicate that for a mission with goals similar to our field case, the walkabout-first strategy may save time and other mission resources, while improving science return. The approach enabled more informed choices and higher team confidence in choosing where to spend time and other consumable resources. The walkabout strategy may prove most efficient when many close sites must be triaged to a smaller subset for detailed study or sampling. This situation would arise when mission goals include finding, identifying, characterizing or sampling a specific material, feature or type of environment within a certain area.
Collapse
Affiliation(s)
- R.A. Yingst
- Planetary Science Institute, 1700 E. Ft. Lowell, Suite 106, Tucson, AZ 85719 USA
| | - J. Berger
- Department of Earth Sciences, University of Western Ontario, London, ON, Canada N6A 5B7
| | - B.A. Cohen
- NASA Marshall Space Flight Center, VP62, 320 Sparkman Dr., Huntsville, AL 35805 USA
| | - B. Hynek
- Laboratory for Atmospheric and Space Physics and Geological Sciences, University of Colorado, 392 UCB, Boulder, CO 80309 USA
| | - M.E. Schmidt
- Dept. of Earth Sciences, Brock University, St. Catharines, ON, Canada L2S 3A1
| |
Collapse
|
184
|
Low Hesperian PCO2 constrained from in situ mineralogical analysis at Gale Crater, Mars. Proc Natl Acad Sci U S A 2017; 114:2166-2170. [PMID: 28167765 DOI: 10.1073/pnas.1616649114] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Carbon dioxide is an essential atmospheric component in martian climate models that attempt to reconcile a faint young sun with planetwide evidence of liquid water in the Noachian and Early Hesperian. In this study, we use mineral and contextual sedimentary environmental data measured by the Mars Science Laboratory (MSL) Rover Curiosity to estimate the atmospheric partial pressure of CO2 (PCO2) coinciding with a long-lived lake system in Gale Crater at ∼3.5 Ga. A reaction-transport model that simulates mineralogy observed within the Sheepbed member at Yellowknife Bay (YKB), by coupling mineral equilibria with carbonate precipitation kinetics and rates of sedimentation, indicates atmospheric PCO2 levels in the 10s mbar range. At such low PCO2 levels, existing climate models are unable to warm Hesperian Mars anywhere near the freezing point of water, and other gases are required to raise atmospheric pressure to prevent lake waters from being lost to the atmosphere. Thus, either lacustrine features of Gale formed in a cold environment by a mechanism yet to be determined, or the climate models still lack an essential component that would serve to elevate surface temperatures, at least locally, on Hesperian Mars. Our results also impose restrictions on the potential role of atmospheric CO2 in inferred warmer conditions and valley network formation of the late Noachian.
Collapse
|
185
|
Mitrofanov IG, Litvak ML, Nikiforov SY, Jun I, Bobrovnitsky YI, Golovin DV, Grebennikov AS, Fedosov FS, Kozyrev AS, Lisov DI, Malakhov AV, Mokrousov MI, Sanin AB, Shvetsov VN, Timoshenko GN, Tomilina TM, Tret'yakov VI, Vostrukhin AA. The ADRON-RM Instrument Onboard the ExoMars Rover. ASTROBIOLOGY 2017; 17:585-594. [PMID: 28731818 DOI: 10.1089/ast.2016.1566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This overview presents the physical principles, design, measurement capabilities, and summary of planned operations of the autonomous detector of radiation of neutrons onboard rover at Mars (ADRON-RM) on the surface of Mars. ADRON-RM is a Russian project selected for the joint European Space Agency-Roscosmos ExoMars 2020 landing mission. A compact passive neutron spectrometer, ADRON-RM, was designed to study the abundance and distribution of water and neutron absorption elements (such as Cl, Fe, and others) in the martian subsurface along the path of the ExoMars rover. Key Words: Mars exploration-Surface-Neutron Spectroscopy-Water. Astrobiology 17, 585-594.
Collapse
Affiliation(s)
- I G Mitrofanov
- 1 Institute for Space Research , Russian Academy of Sciences, Moscow, Russia
| | - M L Litvak
- 1 Institute for Space Research , Russian Academy of Sciences, Moscow, Russia
| | - S Y Nikiforov
- 1 Institute for Space Research , Russian Academy of Sciences, Moscow, Russia
| | - I Jun
- 2 Jet Propulsion Laboratory, California Institute of Technology , Pasadena, California
| | - Y I Bobrovnitsky
- 3 A.A. Blagonravov Institute of Mechanical Engineering , Russian Academy of Sciences, Moscow, Russia
| | - D V Golovin
- 1 Institute for Space Research , Russian Academy of Sciences, Moscow, Russia
| | - A S Grebennikov
- 3 A.A. Blagonravov Institute of Mechanical Engineering , Russian Academy of Sciences, Moscow, Russia
| | - F S Fedosov
- 1 Institute for Space Research , Russian Academy of Sciences, Moscow, Russia
| | - A S Kozyrev
- 1 Institute for Space Research , Russian Academy of Sciences, Moscow, Russia
| | - D I Lisov
- 1 Institute for Space Research , Russian Academy of Sciences, Moscow, Russia
| | - A V Malakhov
- 1 Institute for Space Research , Russian Academy of Sciences, Moscow, Russia
| | - M I Mokrousov
- 1 Institute for Space Research , Russian Academy of Sciences, Moscow, Russia
| | - A B Sanin
- 1 Institute for Space Research , Russian Academy of Sciences, Moscow, Russia
| | - V N Shvetsov
- 4 Joint Institute of Nuclear Research , Dubna, Russia
| | | | - T M Tomilina
- 3 A.A. Blagonravov Institute of Mechanical Engineering , Russian Academy of Sciences, Moscow, Russia
| | - V I Tret'yakov
- 1 Institute for Space Research , Russian Academy of Sciences, Moscow, Russia
| | - A A Vostrukhin
- 1 Institute for Space Research , Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
186
|
Abstract
Consider distributional limit of the Pearson chi-square statistic when the number of classes mn increases with the sample size n and [Formula: see text]. Under mild moment conditions, the limit is Gaussian for λ = ∞, Poisson for finite λ > 0, and degenerate for λ = 0.
Collapse
Affiliation(s)
- Grzegorz A Rempała
- Division of Biostatistics and Mathematical Biosciences Institute, The Ohio State University, 43210 Columbus, OH USA
| | - Jacek Wesołowski
- Wydział Matematyki i Nauk Informacyjnych, Politechnika Warszawska, Warsaw, Poland
| |
Collapse
|
187
|
Amazonian chemical weathering rate derived from stony meteorite finds at Meridiani Planum on Mars. Nat Commun 2016; 7:13459. [PMID: 27834377 PMCID: PMC5114618 DOI: 10.1038/ncomms13459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 09/26/2016] [Indexed: 11/08/2022] Open
Abstract
Spacecraft exploring Mars such as the Mars Exploration Rovers Spirit and Opportunity, as well as the Mars Science Laboratory or Curiosity rover, have accumulated evidence for wet and habitable conditions on early Mars more than 3 billion years ago. Current conditions, by contrast, are cold, extremely arid and seemingly inhospitable. To evaluate exactly how dry today's environment is, it is important to understand the ongoing current weathering processes. Here we present chemical weathering rates determined for Mars. We use the oxidation of iron in stony meteorites investigated by the Mars Exploration Rover Opportunity at Meridiani Planum. Their maximum exposure age is constrained by the formation of Victoria crater and their minimum age by erosion of the meteorites. The chemical weathering rates thus derived are ∼1 to 4 orders of magnitude slower than that of similar meteorites found in Antarctica where the slowest rates are observed on Earth. Little is known about the impacts of Mars' contemporary dryness on weathering processes. Here, using iron oxidation estimates from the Mars Rover Opportunity, the authors quantify chemical weathering rates for Mars, finding appreciably slower rates compared with the lowest values on Earth.
Collapse
|
188
|
Kereszturi A, Bradak B, Chatzitheodoridis E, Ujvari G. Indicators and Methods to Understand Past Environments from ExoMars Rover Drills. ORIGINS LIFE EVOL B 2016; 46:435-454. [PMID: 27029794 DOI: 10.1007/s11084-016-9492-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/15/2016] [Indexed: 11/26/2022]
Abstract
Great advances are expected during the analysis of drilled material acquired from 2 m depth by ExoMars rover, supported by the comparison to local context, and the joint use of different instruments. Textural information might be less detailed relatively to what is usually obtained at outcrops during classical geological field work on the Earth, partly because of the lack of optical imaging of the borehole wall and also because the collected samples are crushed. However sub-mm scale layering and some other sedimentary features might be identified in the borehole wall observations, or in the collected sample prior to crushing, and also at nearby outcrops. The candidate landing sites provide different targets and focus for research: Oxia Planum requires analysis of phyllosilicates and OH content, at Mawrth Vallis the layering of various phyllosilicates and the role of shallow-subsurface leaching should be emphasized. At Aram Dorsum the particle size and fluvial sedimentary features will be interesting. Hydrated perchlorates and sulphates are ideal targets possibly at every landing sites because of OH retention, especially if they are mixed with smectites, thus could point to even ancient wet periods. Extensive use of information from the infrared wall scanning will be complemented for geological context by orbital and rover imaging of nearby outcrops. Information from the context is especially useful to infer the possible action of past H2O. Separation of the ice and liquid water effects will be supported by cation abundance and sedimentary context. Shape of grains also helps here, and composition of transported grains points to the weathering potential of the environment in general. The work on Mars during the drilling and sample analysis will provide brand new experience and knowledge for future missions.
Collapse
Affiliation(s)
- A Kereszturi
- Research Centre for Astronomy and Earth Sciences, Budapest, Hungary.
| | - B Bradak
- Research Centre for Astronomy and Earth Sciences, Budapest, Hungary
- Department of Planetology, Kobe University, Kobe, Japan
| | | | - G Ujvari
- Research Centre for Astronomy and Earth Sciences, Budapest, Hungary
| |
Collapse
|
189
|
Barge LM, Cardoso SSS, Cartwright JHE, Doloboff IJ, Flores E, Macías-Sánchez E, Sainz-Díaz CI, Sobrón P. Self-assembling iron oxyhydroxide/oxide tubular structures: laboratory-grown and field examples from Rio Tinto. Proc Math Phys Eng Sci 2016; 472:20160466. [PMID: 27956875 DOI: 10.1098/rspa.2016.0466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rio Tinto in southern Spain has become of increasing astrobiological significance, in particular for its similarity to environments on early Mars. We present evidence of tubular structures from sampled terraces in the stream bed at the source of the river, as well as ancient, now dry, terraces. This is the first reported finding of tubular structures in this particular environment. We propose that some of these structures could be formed through self-assembly via an abiotic mechanism involving templated precipitation around a fluid jet, a similar mechanism to that commonly found in so-called chemical gardens. Laboratory experiments simulating the formation of self-assembling iron oxyhydroxide tubes via chemical garden/chemobrionic processes form similar structures. Fluid-mechanical scaling analysis demonstrates that the proposed mechanism is plausible. Although the formation of tube structures is not itself a biosignature, the iron mineral oxidation gradients across the tube walls in laboratory and field examples may yield information about energy gradients and potentially habitable environments.
Collapse
Affiliation(s)
- Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; NASA Astrobiology Institute, Icy Worlds, Pasadena, CA 91109, USA
| | - Silvana S S Cardoso
- Department of Chemical Engineering and Biotechnology , University of Cambridge , Cambridge CB2 3RA , UK
| | - Julyan H E Cartwright
- Instituto Andaluz de Ciencias de la Tierra, IACT, CSIC-UGR, Av. de las Palmeras, 4, 18100 Armilla, Granada, Spain; Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, 18071 Granada, Spain
| | - Ivria J Doloboff
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; NASA Astrobiology Institute, Icy Worlds, Pasadena, CA 91109, USA
| | - Erika Flores
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA; NASA Astrobiology Institute, Icy Worlds, Pasadena, CA 91109, USA
| | - Elena Macías-Sánchez
- Instituto Andaluz de Ciencias de la Tierra, IACT, CSIC-UGR, Av. de las Palmeras, 4, 18100 Armilla, Granada, Spain; Departamento de Estratigrafía y Paleontología, Universidad de Granada, 18071 Granada, Spain
| | - C Ignacio Sainz-Díaz
- Instituto Andaluz de Ciencias de la Tierra, IACT, CSIC-UGR , Av. de las Palmeras, 4, 18100 Armilla, Granada , Spain
| | - Pablo Sobrón
- Carl Sagan Center, SETI Institute, Mountain View, CA, USA; Impossible Sensing, St Louis, MO, USA
| |
Collapse
|
190
|
Ostrom NE, Gandhi H, Trubl G, Murray AE. Chemodenitrification in the cryoecosystem of Lake Vida, Victoria Valley, Antarctica. GEOBIOLOGY 2016; 14:575-587. [PMID: 27418276 DOI: 10.1111/gbi.12190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 04/22/2016] [Indexed: 06/06/2023]
Abstract
Lake Vida, in the Victoria Valley of East Antarctica, is frozen, yet harbors liquid brine (~20% salt, >6 times seawater) intercalated in the ice below 16 m. The brine has been isolated from the surface for several thousand years. The brine conditions (permanently dark, -13.4 °C, lack of O2 , and pH of 6.2) and geochemistry are highly unusual. For example, nitrous oxide (N2 O) is present at a concentration among the highest reported for an aquatic environment. Only a minor 17 O anomaly was observed in N2 O, indicating that this gas was predominantly formed in the lake. In contrast, the 17 O anomaly in nitrate (NO3-) in Lake Vida brine indicates that approximately half or more of the NO3- present is derived from atmospheric deposition. Lake Vida brine was incubated in the presence of 15 N-enriched substrates for 40 days. We did not detect microbial nitrification, dissimilatory reduction of NO3- to ammonium (NH4+), anaerobic ammonium oxidation, or denitrification of N2 O under the conditions tested. In the presence of 15 N-enriched nitrite (NO2-), both N2 and N2 O exhibited substantial 15 N enrichments; however, isotopic enrichment declined with time, which is unexpected. Additions of 15 N-NO2- alone and in the presence of HgCl2 and ZnCl2 to aged brine at -13 °C resulted in linear increases in the δ15 N of N2 O with time. As HgCl2 and ZnCl2 are effective biocides, we interpret N2 O production in the aged brine to be the result of chemodenitrification. With this understanding, we interpret our results from the field incubations as the result of chemodenitrification stimulated by the addition of 15 N-enriched NO2- and ZnCl2 and determined rates of N2 O and N2 production of 4.11-41.18 and 0.55-1.75 nmol L-1 day-1 , respectively. If these rates are representative of natural production, the current concentration of N2 O in Lake Vida could have been reached between 6 and 465 years. Thus, chemodenitrification alone is sufficient to explain the high levels of N2 O present in Lake Vida.
Collapse
Affiliation(s)
- N E Ostrom
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA.
| | - H Gandhi
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - G Trubl
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, USA
| | - A E Murray
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, NV, USA
| |
Collapse
|
191
|
Maynard-Casely HE. ‘Peaks in space’ – crystallography in planetary science: past impacts and future opportunities. CRYSTALLOGR REV 2016. [DOI: 10.1080/0889311x.2016.1242127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
192
|
|
193
|
Domagal-Goldman SD, Wright KE, Adamala K, Arina de la Rubia L, Bond J, Dartnell LR, Goldman AD, Lynch K, Naud ME, Paulino-Lima IG, Singer K, Walther-Antonio M, Abrevaya XC, Anderson R, Arney G, Atri D, Azúa-Bustos A, Bowman JS, Brazelton WJ, Brennecka GA, Carns R, Chopra A, Colangelo-Lillis J, Crockett CJ, DeMarines J, Frank EA, Frantz C, de la Fuente E, Galante D, Glass J, Gleeson D, Glein CR, Goldblatt C, Horak R, Horodyskyj L, Kaçar B, Kereszturi A, Knowles E, Mayeur P, McGlynn S, Miguel Y, Montgomery M, Neish C, Noack L, Rugheimer S, Stüeken EE, Tamez-Hidalgo P, Imari Walker S, Wong T. The Astrobiology Primer v2.0. ASTROBIOLOGY 2016; 16:561-653. [PMID: 27532777 PMCID: PMC5008114 DOI: 10.1089/ast.2015.1460] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/06/2016] [Indexed: 05/09/2023]
Affiliation(s)
- Shawn D Domagal-Goldman
- 1 NASA Goddard Space Flight Center , Greenbelt, Maryland, USA
- 2 Virtual Planetary Laboratory , Seattle, Washington, USA
| | - Katherine E Wright
- 3 University of Colorado at Boulder , Colorado, USA
- 4 Present address: UK Space Agency, UK
| | - Katarzyna Adamala
- 5 Department of Genetics, Cell Biology and Development, University of Minnesota , Minneapolis, Minnesota, USA
| | | | - Jade Bond
- 7 Department of Physics, University of New South Wales , Sydney, Australia
| | | | | | - Kennda Lynch
- 10 Division of Biological Sciences, University of Montana , Missoula, Montana, USA
| | - Marie-Eve Naud
- 11 Institute for research on exoplanets (iREx) , Université de Montréal, Montréal, Canada
| | - Ivan G Paulino-Lima
- 12 Universities Space Research Association , Mountain View, California, USA
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | - Kelsi Singer
- 14 Southwest Research Institute , Boulder, Colorado, USA
| | | | - Ximena C Abrevaya
- 16 Instituto de Astronomía y Física del Espacio (IAFE) , UBA-CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Rika Anderson
- 17 Department of Biology, Carleton College , Northfield, Minnesota, USA
| | - Giada Arney
- 18 University of Washington Astronomy Department and Astrobiology Program , Seattle, Washington, USA
| | - Dimitra Atri
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | | | - Jeff S Bowman
- 19 Lamont-Doherty Earth Observatory, Columbia University , Palisades, New York, USA
| | | | | | - Regina Carns
- 22 Polar Science Center, Applied Physics Laboratory, University of Washington , Seattle, Washington, USA
| | - Aditya Chopra
- 23 Planetary Science Institute, Research School of Earth Sciences, Research School of Astronomy and Astrophysics, The Australian National University , Canberra, Australia
| | - Jesse Colangelo-Lillis
- 24 Earth and Planetary Science, McGill University , and the McGill Space Institute, Montréal, Canada
| | | | - Julia DeMarines
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
| | | | - Carie Frantz
- 27 Department of Geosciences, Weber State University , Ogden, Utah, USA
| | - Eduardo de la Fuente
- 28 IAM-Departamento de Fisica, CUCEI , Universidad de Guadalajara, Guadalajara, México
| | - Douglas Galante
- 29 Brazilian Synchrotron Light Laboratory , Campinas, Brazil
| | - Jennifer Glass
- 30 School of Earth and Atmospheric Sciences, Georgia Institute of Technology , Atlanta, Georgia , USA
| | | | | | - Colin Goldblatt
- 33 School of Earth and Ocean Sciences, University of Victoria , Victoria, Canada
| | - Rachel Horak
- 34 American Society for Microbiology , Washington, DC, USA
| | | | - Betül Kaçar
- 36 Harvard University , Organismic and Evolutionary Biology, Cambridge, Massachusetts, USA
| | - Akos Kereszturi
- 37 Research Centre for Astronomy and Earth Sciences , Hungarian Academy of Sciences, Budapest, Hungary
| | - Emily Knowles
- 38 Johnson & Wales University , Denver, Colorado, USA
| | - Paul Mayeur
- 39 Rensselaer Polytechnic Institute , Troy, New York, USA
| | - Shawn McGlynn
- 40 Earth Life Science Institute, Tokyo Institute of Technology , Tokyo, Japan
| | - Yamila Miguel
- 41 Laboratoire Lagrange, UMR 7293, Université Nice Sophia Antipolis , CNRS, Observatoire de la Côte d'Azur, Nice, France
| | | | - Catherine Neish
- 43 Department of Earth Sciences, The University of Western Ontario , London, Canada
| | - Lena Noack
- 44 Royal Observatory of Belgium , Brussels, Belgium
| | - Sarah Rugheimer
- 45 Department of Astronomy, Harvard University , Cambridge, Massachusetts, USA
- 46 University of St. Andrews , St. Andrews, UK
| | - Eva E Stüeken
- 47 University of Washington , Seattle, Washington, USA
- 48 University of California , Riverside, California, USA
| | | | - Sara Imari Walker
- 13 Blue Marble Space Institute of Science , Seattle, Washington, USA
- 50 School of Earth and Space Exploration and Beyond Center for Fundamental Concepts in Science, Arizona State University , Tempe, Arizona, USA
| | - Teresa Wong
- 51 Department of Earth and Planetary Sciences, Washington University in St. Louis , St. Louis, Missouri, USA
| |
Collapse
|
194
|
Ruecker A, Schröder C, Byrne J, Weigold P, Behrens S, Kappler A. Geochemistry and Mineralogy of Western Australian Salt Lake Sediments: Implications for Meridiani Planum on Mars. ASTROBIOLOGY 2016; 16:525-538. [PMID: 27258848 DOI: 10.1089/ast.2015.1429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
UNLABELLED Hypersaline lakes are characteristic for Western Australia and display a rare combination of geochemical and mineralogical properties that make these lakes potential analogues for past conditions on Mars. In our study, we focused on the geochemistry and mineralogy of Lake Orr and Lake Whurr. While both lakes are poor in organic carbon (<1%), the sediments' pH values differ and range from 3.8 to 4.8 in Lake Orr and from 5.4 to 6.3 in Lake Whurr sediments. Lake Whurr sediments were dominated by orange and red sediment zones in which the main Fe minerals were identified as hematite, goethite, and tentatively jarosite and pyrite. Lake Orr was dominated by brownish and blackish sediments where the main Fe minerals were goethite and another paramagnetic Fe(III)-phase that could not be identified. Furthermore, a likely secondary Fe(II)-phase was observed in Lake Orr sediments. The mineralogy of these two salt lakes in the sampling area is strongly influenced by events such as flooding, evaporation, and desiccation, processes that explain at least to some extent the observed differences between Lake Orr and Lake Whurr. The iron mineralogy of Lake Whurr sediments and the high salinity make this lake a suitable analogue for Meridiani Planum on Mars, and in particular the tentative identification of pyrite in Lake Whurr sediments has implications for the interpretation of the Fe mineralogy of Meridiani Planum sediments. KEY WORDS Western Australia-Salt lakes-Jarosite-Hematite-Pyrite-Mars analogue. Astrobiology 16, 525-538.
Collapse
Affiliation(s)
- A Ruecker
- 1 Geomicrobiology, Center for Applied Geosciences, University of Tübingen , Tübingen, Germany
| | - C Schröder
- 2 Biological and Environmental Sciences, School of Natural Sciences, University of Stirling , Stirling, Scotland, UK
| | - J Byrne
- 1 Geomicrobiology, Center for Applied Geosciences, University of Tübingen , Tübingen, Germany
| | - P Weigold
- 1 Geomicrobiology, Center for Applied Geosciences, University of Tübingen , Tübingen, Germany
| | - S Behrens
- 1 Geomicrobiology, Center for Applied Geosciences, University of Tübingen , Tübingen, Germany
| | - A Kappler
- 1 Geomicrobiology, Center for Applied Geosciences, University of Tübingen , Tübingen, Germany
| |
Collapse
|
195
|
Fox-Powell MG, Hallsworth JE, Cousins CR, Cockell CS. Ionic Strength Is a Barrier to the Habitability of Mars. ASTROBIOLOGY 2016; 16:427-42. [PMID: 27213516 DOI: 10.1089/ast.2015.1432] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
UNLABELLED The thermodynamic availability of water (water activity) strictly limits microbial propagation on Earth, particularly in hypersaline environments. A considerable body of evidence indicates the existence of hypersaline surface waters throughout the history of Mars; therefore it is assumed that, as on Earth, water activity is a major limiting factor for martian habitability. However, the differing geological histories of Earth and Mars have driven variations in their respective aqueous geochemistry, with as-yet-unknown implications for habitability. Using a microbial community enrichment approach, we investigated microbial habitability for a suite of simulated martian brines. While the habitability of some martian brines was consistent with predictions made from water activity, others were uninhabitable even when the water activity was biologically permissive. We demonstrate experimentally that high ionic strength, driven to extremes on Mars by the ubiquitous occurrence of multivalent ions, renders these environments uninhabitable despite the presence of biologically available water. These findings show how the respective geological histories of Earth and Mars, which have produced differences in the planets' dominant water chemistries, have resulted in different physicochemical extremes which define the boundary space for microbial habitability. KEY WORDS Habitability-Mars-Salts-Water activity-Life in extreme environments. Astrobiology 16, 427-442.
Collapse
Affiliation(s)
- Mark G Fox-Powell
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , UK
| | - John E Hallsworth
- 2 Institute for Global Food Security, Queen's University Belfast , UK
| | - Claire R Cousins
- 3 Department of Earth and Environmental Sciences, University of St. Andrews , UK
| | - Charles S Cockell
- 1 UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh , UK
| |
Collapse
|
196
|
Horneck G, Walter N, Westall F, Grenfell JL, Martin WF, Gomez F, Leuko S, Lee N, Onofri S, Tsiganis K, Saladino R, Pilat-Lohinger E, Palomba E, Harrison J, Rull F, Muller C, Strazzulla G, Brucato JR, Rettberg P, Capria MT. AstRoMap European Astrobiology Roadmap. ASTROBIOLOGY 2016; 16:201-43. [PMID: 27003862 PMCID: PMC4834528 DOI: 10.1089/ast.2015.1441] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/27/2016] [Indexed: 05/07/2023]
Abstract
The European AstRoMap project (supported by the European Commission Seventh Framework Programme) surveyed the state of the art of astrobiology in Europe and beyond and produced the first European roadmap for astrobiology research. In the context of this roadmap, astrobiology is understood as the study of the origin, evolution, and distribution of life in the context of cosmic evolution; this includes habitability in the Solar System and beyond. The AstRoMap Roadmap identifies five research topics, specifies several key scientific objectives for each topic, and suggests ways to achieve all the objectives. The five AstRoMap Research Topics are • Research Topic 1: Origin and Evolution of Planetary Systems • Research Topic 2: Origins of Organic Compounds in Space • Research Topic 3: Rock-Water-Carbon Interactions, Organic Synthesis on Earth, and Steps to Life • Research Topic 4: Life and Habitability • Research Topic 5: Biosignatures as Facilitating Life Detection It is strongly recommended that steps be taken towards the definition and implementation of a European Astrobiology Platform (or Institute) to streamline and optimize the scientific return by using a coordinated infrastructure and funding system.
Collapse
Affiliation(s)
- Gerda Horneck
- European Astrobiology Network Association
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| | | | - Frances Westall
- Centre National de la Recherche Scientifique–Centre de Biophysique Moléculaire, Orleans, France
| | - John Lee Grenfell
- Institute for Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - William F. Martin
- Institute of Molecular Evolution, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Felipe Gomez
- INTA Centre for Astrobiology, Torrejón de Ardoz, Madrid, Spain
| | - Stefan Leuko
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| | - Natuschka Lee
- Department of Ecology and Environmental Science, Umeå University, Umeå, Sweden
- Department of Microbiology, Technical University München, München, Germany
| | - Silvano Onofri
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Kleomenis Tsiganis
- Department of Physics, Section of Astrophysics, Astronomy and Mechanics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Raffaele Saladino
- Department of Agrobiology and Agrochemistry, University of Tuscia, Viterbo, Italy
| | | | - Ernesto Palomba
- INAF–Institute for Space Astrophysics and Planetology, Rome, Italy
| | - Jesse Harrison
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Fernando Rull
- Department of Condensed Matter Physics, Crystallography and Mineralogy, Valladolid University, Valladolid, Spain
| | | | | | | | - Petra Rettberg
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Köln, Germany
| | | |
Collapse
|
197
|
Arvidson RE, Iagnemma KD, Maimone M, Fraeman AA, Zhou F, Heverly MC, Bellutta P, Rubin D, Stein NT, Grotzinger JP, Vasavada AR. Mars Science Laboratory Curiosity Rover Megaripple Crossings up to Sol 710 in Gale Crater. J FIELD ROBOT 2016. [DOI: 10.1002/rob.21647] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Raymond E. Arvidson
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences; Washington University in St. Louis; St. Louis Missouri 63130
| | - Karl D. Iagnemma
- Robotic Mobility Group; Massachusetts Institute of Technology; Cambridge Massachusetts 02139
| | - Mark Maimone
- California Institute of Technology/ Jet Propulsion Laboratory; Pasadena California 91011
| | - Abigail A. Fraeman
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California 91125
| | - Feng Zhou
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences; Washington University in St. Louis; St. Louis Missouri 63130
| | - Matthew C. Heverly
- California Institute of Technology/ Jet Propulsion Laboratory; Pasadena California 91011
| | - Paolo Bellutta
- California Institute of Technology/ Jet Propulsion Laboratory; Pasadena California 91011
| | - David Rubin
- Department of Earth and Planetary Sciences; University of California at Santa Cruz; Santa Cruz California 91125
| | - Nathan T. Stein
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences; Washington University in St. Louis; St. Louis Missouri 63130
| | - John P. Grotzinger
- Division of Geological and Planetary Sciences; California Institute of Technology; Pasadena California 91125
| | - Ashwin R. Vasavada
- California Institute of Technology/ Jet Propulsion Laboratory; Pasadena California 91011
| |
Collapse
|
198
|
Fairén AG, Dohm JM, Rodríguez JAP, Uceda ER, Kargel J, Soare R, Cleaves HJ, Oehler D, Schulze-Makuch D, Essefi E, Banks ME, Komatsu G, Fink W, Robbins S, Yan J, Miyamoto H, Maruyama S, Baker VR. The Argyre Region as a Prime Target for in situ Astrobiological Exploration of Mars. ASTROBIOLOGY 2016; 16:143-158. [PMID: 26836592 DOI: 10.1089/ast.2015.1396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
At the time before ∼3.5 Ga that life originated and began to spread on Earth, Mars was a wetter and more geologically dynamic planet than it is today. The Argyre basin, in the southern cratered highlands of Mars, formed from a giant impact at ∼3.93 Ga, which generated an enormous basin approximately 1800 km in diameter. The early post-impact environment of the Argyre basin possibly contained many of the ingredients that are thought to be necessary for life: abundant and long-lived liquid water, biogenic elements, and energy sources, all of which would have supported a regional environment favorable for the origin and the persistence of life. We discuss the astrobiological significance of some landscape features and terrain types in the Argyre region that are promising and accessible sites for astrobiological exploration. These include (i) deposits related to the hydrothermal activity associated with the Argyre impact event, subsequent impacts, and those associated with the migration of heated water along Argyre-induced basement structures; (ii) constructs along the floor of the basin that could mark venting of volatiles, possibly related to the development of mud volcanoes; (iii) features interpreted as ice-cored mounds (open-system pingos), whose origin and development could be the result of deeply seated groundwater upwelling to the surface; (iv) sedimentary deposits related to the formation of glaciers along the basin's margins, such as evidenced by the ridges interpreted to be eskers on the basin floor; (v) sedimentary deposits related to the formation of lakes in both the primary Argyre basin and other smaller impact-derived basins along the margin, including those in the highly degraded rim materials; and (vi) crater-wall gullies, whose morphology points to a structural origin and discharge of (wet) flows.
Collapse
Affiliation(s)
- Alberto G Fairén
- 1 Department of Planetology and Habitability, Centro de Astrobiología (CSIC-INTA) , Madrid, Spain
- 2 Department of Astronomy, Cornell University , Ithaca, New York, USA
| | - James M Dohm
- 3 The University Museum, The University of Tokyo , Tokyo, Japan
| | | | - Esther R Uceda
- 5 Facultad de Ciencias, Universidad Autónoma de Madrid , Madrid, Spain
| | - Jeffrey Kargel
- 6 Department of Hydrology and Water Resources, University of Arizona , Tucson, Arizona, USA
| | - Richard Soare
- 7 Department of Geography, Dawson College , Montreal, Canada
| | - H James Cleaves
- 8 Earth-Life Science Institute, Tokyo Institute of Technology , Tokyo, Japan
- 9 The Institute for Advanced Study , Princeton, New Jersey, USA
| | - Dorothy Oehler
- 10 Jacobs/LZ Technology, JETS Contract, NASA Johnson Space Center , Houston, Texas, USA
| | - Dirk Schulze-Makuch
- 11 Center of Astronomy and Astrophysics, Technical University Berlin , Berlin, Germany
- 12 School of the Environment, Washington State University , Pullman, Washington, USA
| | - Elhoucine Essefi
- 13 Higher Institute of Applied Sciences and Technology, University of Gabes , Gabes, Tunisia
| | - Maria E Banks
- 4 Planetary Science Institute , Tucson, Arizona, USA
- 14 Smithsonian Institution, National Air and Space Museum, Center for Earth and Planetary Studies , Washington, DC, USA
| | - Goro Komatsu
- 15 International Research School of Planetary Sciences, Università d'Annunzio , Pescara, Italy
| | - Wolfgang Fink
- 16 College of Engineering, Department of Electrical and Computer Engineering, University of Arizona , Tucson, Arizona, USA
- 17 Division of Physics, Mathematics and Astronomy, California Institute of Technology , Pasadena, California, USA
| | - Stuart Robbins
- 18 Southwest Research Institute , Boulder, Colorado, USA
| | - Jianguo Yan
- 19 RISE Project Office, National Astronomical Observatory of Japan , Oshu, Japan
| | | | - Shigenori Maruyama
- 8 Earth-Life Science Institute, Tokyo Institute of Technology , Tokyo, Japan
| | - Victor R Baker
- 6 Department of Hydrology and Water Resources, University of Arizona , Tucson, Arizona, USA
| |
Collapse
|
199
|
Blacksberg J, Alerstam E, Maruyama Y, Cochrane CJ, Rossman GR. Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array. APPLIED OPTICS 2016; 55:739-748. [PMID: 26836075 DOI: 10.1364/ao.55.000739] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present recent developments in time-resolved Raman spectroscopy instrumentation and measurement techniques for in situ planetary surface exploration, leading to improved performance and identification of minerals and organics. The time-resolved Raman spectrometer uses a 532 nm pulsed microchip laser source synchronized with a single photon avalanche diode array to achieve sub-nanosecond time resolution. This instrument can detect Raman spectral signatures from a wide variety of minerals and organics relevant to planetary science while eliminating pervasive background interference caused by fluorescence. We present an overview of the instrument design and operation and demonstrate high signal-to-noise ratio Raman spectra for several relevant samples of sulfates, clays, and polycyclic aromatic hydrocarbons. Finally, we present an instrument design suitable for operation on a rover or lander and discuss future directions that promise great advancement in capability.
Collapse
|
200
|
Abstract
The evolution of habitable conditions on Mars is often tied to the existence of aquatic habitats and largely constrained to the first billion years of the planet. Here, we propose an alternate, lasting evolutionary trajectory that assumes the colonization of land habitats before the end of the Hesperian period (ca. 3 billion years ago) at a pace similar to life on Earth. Based on the ecological adaptations to increasing dryness observed in dryland ecosystems on Earth, we reconstruct the most likely sequence of events leading to a late extinction of land communities on Mars. We propose a trend of ecological change with increasing dryness from widespread edaphic communities to localized lithic communities and finally to communities exclusively found in hygroscopic substrates, reflecting the need for organisms to maximize access to atmospheric sources of water. If our thought process is correct, it implies the possibility of life on Mars until relatively recent times, perhaps even the present.
Collapse
Affiliation(s)
- Alfonso F Davila
- 1 Carl Sagan Center at the SETI Institute , Mountain View, California, USA
- 2 NASA Ames Research Center , Moffett Field, California, USA
| | - Dirk Schulze-Makuch
- 3 School of the Environment, Washington State University , Pullman, Washington, USA
- 4 Center of Astronomy and Astrophysics, Technical University Berlin , Berlin, Germany
| |
Collapse
|