151
|
Piontek MC, Lira RB, Roos WH. Active probing of the mechanical properties of biological and synthetic vesicles. Biochim Biophys Acta Gen Subj 2019; 1865:129486. [PMID: 31734458 DOI: 10.1016/j.bbagen.2019.129486] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/05/2019] [Accepted: 11/09/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND The interest in mechanics of synthetic and biological vesicles has been continuously growing during the last decades. Liposomes serve as model systems for investigating fundamental membrane processes and properties. More recently, extracellular vesicles (EVs) have been investigated mechanically as well. EVs are widely studied in fundamental and applied sciences, but their material properties remained elusive until recently. Elucidating the mechanical properties of vesicles is essential to unveil the mechanisms behind a variety of biological processes, e.g. budding, vesiculation and cellular uptake mechanisms. SCOPE OF REVIEW The importance of mechanobiology for studies of vesicles and membranes is discussed, as well as the different available techniques to probe their mechanical properties. In particular, the mechanics of vesicles and membranes as obtained by nanoindentation, micropipette aspiration, optical tweezers, electrodeformation and electroporation experiments is addressed. MAJOR CONCLUSIONS EVs and liposomes possess an astonishing rich, diverse behavior. To better understand their properties, and for optimization of their applications in nanotechnology, an improved understanding of their mechanical properties is needed. Depending on the size of the vesicles and the specific scientific question, different techniques can be chosen for their mechanical characterization. GENERAL SIGNIFICANCE Understanding the mechanical properties of vesicles is necessary to gain deeper insight in the fundamental biological mechanisms involved in vesicle generation and cellular uptake. This furthermore facilitates technological applications such as using vesicles as targeted drug delivery vehicles. Liposome studies provide insight into fundamental membrane processes and properties, whereas the role and functioning of EVs in biology and medicine are increasingly elucidated.
Collapse
Affiliation(s)
- Melissa C Piontek
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Rafael B Lira
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
152
|
Ionic transport through a protein nanopore: a Coarse-Grained Molecular Dynamics Study. Sci Rep 2019; 9:15740. [PMID: 31673049 PMCID: PMC6823379 DOI: 10.1038/s41598-019-51942-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 07/17/2019] [Indexed: 11/09/2022] Open
Abstract
The MARTINI coarse-grained (CG) force field is used to test the ability of CG models to simulate ionic transport through protein nanopores. The ionic conductivity of CG ions in solution was computed and compared with experimental results. Next, we studied the electrostatic behavior of a solvated CG lipid bilayer in salt solution under an external electric field. We showed this approach correctly describes the experimental conditions under a potential bias. Finally, we performed CG molecular dynamics simulations of the ionic transport through a protein nanopore (α-hemolysin) inserted in a lipid bilayer, under different electric fields, for 2-3 microseconds. The resulting I - V curve is qualitatively consistent with experiments, although the computed current is one order of magnitude smaller. Current saturation was observed for potential biases over ±350 mV. We also discuss the time to reach a stationary regime and the role of the protein flexibility in our CG simulations.
Collapse
|
153
|
Bruno A, Costantino G, Sartori L, Radi M. The In Silico Drug Discovery Toolbox: Applications in Lead Discovery and Optimization. Curr Med Chem 2019; 26:3838-3873. [PMID: 29110597 DOI: 10.2174/0929867324666171107101035] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/04/2023]
Abstract
BACKGROUND Discovery and development of a new drug is a long lasting and expensive journey that takes around 20 years from starting idea to approval and marketing of new medication. Despite R&D expenditures have been constantly increasing in the last few years, the number of new drugs introduced into market has been steadily declining. This is mainly due to preclinical and clinical safety issues, which still represent about 40% of drug discontinuation. To cope with this issue, a number of in silico techniques are currently being used for an early stage evaluation/prediction of potential safety issues, allowing to increase the drug-discovery success rate and reduce costs associated with the development of a new drug. METHODS In the present review, we will analyse the early steps of the drug-discovery pipeline, describing the sequence of steps from disease selection to lead optimization and focusing on the most common in silico tools used to assess attrition risks and build a mitigation plan. RESULTS A comprehensive list of widely used in silico tools, databases, and public initiatives that can be effectively implemented and used in the drug discovery pipeline has been provided. A few examples of how these tools can be problem-solving and how they may increase the success rate of a drug discovery and development program have been also provided. Finally, selected examples where the application of in silico tools had effectively contributed to the development of marketed drugs or clinical candidates will be given. CONCLUSION The in silico toolbox finds great application in every step of early drug discovery: (i) target identification and validation; (ii) hit identification; (iii) hit-to-lead; and (iv) lead optimization. Each of these steps has been described in details, providing a useful overview on the role played by in silico tools in the decision-making process to speed-up the discovery of new drugs.
Collapse
Affiliation(s)
- Agostino Bruno
- Experimental Therapeutics Unit, IFOM - The FIRC Institute for Molecular Oncology Foundation, Via Adamello 16 - 20139 Milano, Italy
| | - Gabriele Costantino
- Dipartimento di Scienze degli Alimenti e del Farmaco, Universita degli Studi di Parma, Viale delle Scienze, 27/A, 43124 Parma, Italy
| | - Luca Sartori
- Experimental Therapeutics Unit, IFOM - The FIRC Institute for Molecular Oncology Foundation, Via Adamello 16 - 20139 Milano, Italy
| | - Marco Radi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Universita degli Studi di Parma, Viale delle Scienze, 27/A, 43124 Parma, Italy
| |
Collapse
|
154
|
Varga K, Jiang ZJ, Gong LW. Phosphatidylserine is critical for vesicle fission during clathrin-mediated endocytosis. J Neurochem 2019; 152:48-60. [PMID: 31587282 DOI: 10.1111/jnc.14886] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
Phosphatidylserine (PS), a negatively charged phospholipid present predominantly at the inner leaflet of the plasma membrane, has been widely implicated in many cellular processes including membrane trafficking. Along this line, PS has been demonstrated to be important for endocytosis, however, the involved mechanisms remain uncertain. By monitoring clathrin-mediated endocytosis (CME) of single vesicles in mouse chromaffin cells using cell-attached capacitance measurements that offer millisecond time resolution, we demonstrate in the present study that the fission-pore duration is reduced by PS addition, indicating a stimulatory role of PS in regulating the dynamics of vesicle fission during CME. Furthermore, our results show that the PS-mediated effect on the fission-pore duration is Ca2+ -dependent and abolished in the absence of synaptotagmin 1 (Syt1), implying that Syt1 is necessary for the stimulatory role of PS in vesicle fission during CME. Consistently, a Syt1 mutant with a defective PS-Syt1 interaction increases the fission-pore duration. Taken together, our study suggests that PS-Syt1 interaction may be critical in regulating fission dynamics during CME.
Collapse
Affiliation(s)
- Kelly Varga
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Biological Sciences, University of North Texas at Dallas, Dallas, Texas, USA
| | - Zhong-Jiao Jiang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Liang-Wei Gong
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
155
|
Li Y, Liu H, Wu K, Liu H, Huang T, Chen ZJ, Zhao S, Ma J, Zhao H. Melatonin promotes human oocyte maturation and early embryo development by enhancing clathrin-mediated endocytosis. J Pineal Res 2019; 67:e12601. [PMID: 31361919 DOI: 10.1111/jpi.12601] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/06/2019] [Accepted: 07/21/2019] [Indexed: 01/02/2023]
Abstract
Embryo development potential and reproductive clinical outcomes are all deeply rooted in oocyte maturation. Melatonin has been reported to promote oocyte maturation as an antioxidant in nonprimate species. Its antioxidative functions also help reduce plasma membrane rigidity, which facilitates clathrin-mediated endocytosis (CME). Whether melatonin has effects on human oocyte maturation by regulating CME is worthy of exploration. In this study, we found that the optimal melatonin concentration for human oocyte maturation was 10-11 M, and the maturation rate of this group was 71.9% (P = .03). The metaphase II (MII) stage oocytes obtained by in vitro maturation with 10-11 M melatonin had a significantly higher fertilization rate (81.4% vs 61.4%, respectively, P = .017) and blastocyst rate (32.2% vs 15.8%, respectively, P = .039) compared to controls. During maturation, antioxidative melatonin greatly enhanced CME and decreased intra-oocyte cAMP level. The former was evidenced by the increasing numbers of coated pits and vesicles, and the upregulated expression of two major CME markers-clathrin and adaptor protein-2 (AP2). CME inhibitor dynasore increased intra-oocyte cAMP level and blocked oocyte maturation, and melatonin could partly rescue oocyte maturation and significantly elevate the expression of clathrin and AP2 in the presence of dynasore. Therefore, we conclude that melatonin could promote human oocyte maturation and early embryo development through enhancing CME.
Collapse
Affiliation(s)
- Yue Li
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Hui Liu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Keliang Wu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Shigang Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| | - Han Zhao
- Center for Reproductive Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
- The Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
| |
Collapse
|
156
|
Parkinson's disease-associated iPLA2-VIA/PLA2G6 regulates neuronal functions and α-synuclein stability through membrane remodeling. Proc Natl Acad Sci U S A 2019; 116:20689-20699. [PMID: 31548400 PMCID: PMC6789907 DOI: 10.1073/pnas.1902958116] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The mechanisms of α-synuclein aggregation and subsequent Lewy body formation are a key pathogenesis of Parkinson’s disease (PD). PARK14-linked PD, which is caused by mutations of the iPLA2-VIA/PLA2G6 gene, exhibits a marked Lewy body pathology. iPLA2-VIA, which belongs to the phospholipase A2 family, is another causative gene of neurodegeneration with brain iron accumulation (NBIA). Here, we demonstrate that iPLA2-VIA loss results in acyl-chain shortening in phospholipids, which affects ER homeostasis and neurotransmission and promotes α-synuclein aggregation. The administration of linoleic acid or the overexpression of C19orf12, one of the NBIA-causative genes, also suppresses the acyl-chain shortening by iPLA2-VIA loss. The rescue of iPLA2-VIA phenotypes by C19orf12 provides significant molecular insight into the underlying common pathogenesis of PD and NBIA. Mutations in the iPLA2-VIA/PLA2G6 gene are responsible for PARK14-linked Parkinson’s disease (PD) with α-synucleinopathy. However, it is unclear how iPLA2-VIA mutations lead to α-synuclein (α-Syn) aggregation and dopaminergic (DA) neurodegeneration. Here, we report that iPLA2-VIA–deficient Drosophila exhibits defects in neurotransmission during early developmental stages and progressive cell loss throughout the brain, including degeneration of the DA neurons. Lipid analysis of brain tissues reveals that the acyl-chain length of phospholipids is shortened by iPLA2-VIA loss, which causes endoplasmic reticulum (ER) stress through membrane lipid disequilibrium. The introduction of wild-type human iPLA2-VIA or the mitochondria–ER contact site-resident protein C19orf12 in iPLA2-VIA–deficient flies rescues the phenotypes associated with altered lipid composition, ER stress, and DA neurodegeneration, whereas the introduction of a disease-associated missense mutant, iPLA2-VIA A80T, fails to suppress these phenotypes. The acceleration of α-Syn aggregation by iPLA2-VIA loss is suppressed by the administration of linoleic acid, correcting the brain lipid composition. Our findings suggest that membrane remodeling by iPLA2-VIA is required for the survival of DA neurons and α-Syn stability.
Collapse
|
157
|
Zhang P, Villanueva V, Kalkowski J, Liu C, Pham T, Perez-Salas U, Bu W, Lin B, Liu Y. Polyunsaturated Phospholipid Modified Membrane Degradation Catalyzed by a Secreted Phospholipase A2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11643-11650. [PMID: 31401834 DOI: 10.1021/acs.langmuir.9b01476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To optimize the compositions of the lipid-based nanomedicine and to advance understanding of the roles of polyunsaturated phospholipids in biological membranes, this study examined the effects of polyunsaturated phospholipids on the degradation of giant unilamellar vesicles catalyzed by a secreted phospholipase A2 (sPLA2) using fluorescence microscopy. Molecular interfacial packing, interaction, and degradation of the films containing various mixing ratios of saturated and polyunsaturated phospholipids were quantified using a Langmuir trough integrated with synchrotron X-ray surface scattering techniques. It was found that a high molar fraction (0.63 and above) of polyunsaturated phospholipids not only enhanced the rate of sPLA2-catalyzed vesicle degradation but also changed the vesicle deformation process and degradation product morphology. Hydrolysis of the saturated phospholipids generated highly ordered liquid crystal domains, which was reduced or prohibited by the presence of the polyunsaturated phospholipids in the reactant film.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Bu
- NSF's ChemMatCARS , University of Chicago , Chicago , Illinois 60637 , United States
| | - Binhua Lin
- NSF's ChemMatCARS , University of Chicago , Chicago , Illinois 60637 , United States
| | | |
Collapse
|
158
|
Bi J, Ichu TA, Zanca C, Yang H, Zhang W, Gu Y, Chowdhry S, Reed A, Ikegami S, Turner KM, Zhang W, Villa GR, Wu S, Quehenberger O, Yong WH, Kornblum HI, Rich JN, Cloughesy TF, Cavenee WK, Furnari FB, Cravatt BF, Mischel PS. Oncogene Amplification in Growth Factor Signaling Pathways Renders Cancers Dependent on Membrane Lipid Remodeling. Cell Metab 2019; 30:525-538.e8. [PMID: 31303424 PMCID: PMC6742496 DOI: 10.1016/j.cmet.2019.06.014] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/28/2019] [Accepted: 06/12/2019] [Indexed: 01/11/2023]
Abstract
Advances in DNA sequencing technologies have reshaped our understanding of the molecular basis of cancer, providing a precise genomic view of tumors. Complementary biochemical and biophysical perspectives of cancer point toward profound shifts in nutrient uptake and utilization that propel tumor growth and major changes in the structure of the plasma membrane of tumor cells. The molecular mechanisms that bridge these fundamental aspects of tumor biology remain poorly understood. Here, we show that the lysophosphatidylcholine acyltransferase LPCAT1 functionally links specific genetic alterations in cancer with aberrant metabolism and plasma membrane remodeling to drive tumor growth. Growth factor receptor-driven cancers are found to depend on LPCAT1 to shape plasma membrane composition through enhanced saturated phosphatidylcholine content that is, in turn, required for the transduction of oncogenic signals. These results point to a genotype-informed strategy that prioritizes lipid remodeling pathways as therapeutic targets for diverse cancers.
Collapse
Affiliation(s)
- Junfeng Bi
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Taka-Aki Ichu
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ciro Zanca
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Huijun Yang
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wei Zhang
- Department of Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Yuchao Gu
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular and Medical Pharmacology David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Sudhir Chowdhry
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alex Reed
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shiro Ikegami
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Kristen M Turner
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wenjing Zhang
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Genaro R Villa
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular and Medical Pharmacology David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Sihan Wu
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Oswald Quehenberger
- Department of Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA; Department of Pharmacology, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - William H Yong
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Harley I Kornblum
- Department of Molecular and Medical Pharmacology David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Timothy F Cloughesy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Webster K Cavenee
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Medicine, UCSD School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Frank B Furnari
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pathology, UCSD School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pathology, UCSD School of Medicine, La Jolla, CA 92093, USA; Moores Cancer Center, UCSD School of Medicine, La Jolla, CA 92093, USA.
| |
Collapse
|
159
|
Danylchuk DI, Moon S, Xu K, Klymchenko AS. Switchable Solvatochromic Probes for Live-Cell Super-resolution Imaging of Plasma Membrane Organization. Angew Chem Int Ed Engl 2019; 58:14920-14924. [PMID: 31392763 DOI: 10.1002/anie.201907690] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/01/2019] [Indexed: 12/25/2022]
Abstract
Visualization of the nanoscale organization of cell membranes remains challenging because of the lack of appropriate fluorescent probes. Herein, we introduce a new design concept for super-resolution microscopy probes that combines specific membrane targeting, on/off switching, and environment sensing functions. A functionalization strategy for solvatochromic dye Nile Red that improves its photostability is presented. The dye is grafted to a newly developed membrane-targeting moiety composed of a sulfonate group and an alkyl chain of varied lengths. While the long-chain probe with strong membrane binding, NR12A, is suitable for conventional microscopy, the short-chain probe NR4A, owing to the reversible binding, enables first nanoscale cartography of the lipid order exclusively at the surface of live cells. The latter probe reveals the presence of nanoscopic protrusions and invaginations of lower lipid order in plasma membranes, suggesting a subtle connection between membrane morphology and lipid organization.
Collapse
Affiliation(s)
- Dmytro I Danylchuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| | - Seonah Moon
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| |
Collapse
|
160
|
Switchable Solvatochromic Probes for Live‐Cell Super‐resolution Imaging of Plasma Membrane Organization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907690] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
161
|
Bestard-Escalas J, Maimó-Barceló A, Pérez-Romero K, Lopez DH, Barceló-Coblijn G. Ins and Outs of Interpreting Lipidomic Results. J Mol Biol 2019; 431:5039-5062. [PMID: 31422112 DOI: 10.1016/j.jmb.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Membrane lipids are essential for life; however, research on how cells regulate cell lipid composition has been falling behind for quite some time. One reason was the difficulty in establishing analytical methods able to cope with the cell lipid repertoire. Development of a diversity of mass spectrometry-based technologies, including imaging mass spectrometry, has helped to demonstrate beyond doubt that the cell lipidome is not only greatly cell type dependent but also highly sensitive to any pathophysiological alteration such as differentiation or tumorigenesis. Interestingly, the current popularization of metabolomic studies among numerous disciplines has led many researchers to rediscover lipids. Hence, it is important to underscore the peculiarities of these metabolites and their metabolism, which are both radically different from protein and nucleic acid metabolism. Once differences in lipid composition have been established, researchers face a rather complex scenario, to investigate the signaling pathways and molecular mechanisms accounting for their results. Thus, a detail often overlooked, but of crucial relevance, is the complex networks of enzymes involved in controlling the level of each one of the lipid species present in the cell. In most cases, these enzymes are redundant and promiscuous, complicating any study on lipid metabolism, since the modification of one particular lipid enzyme impacts simultaneously on many species. Altogether, this review aims to describe the difficulties in delving into the regulatory mechanisms tailoring the lipidome at the activity, genetic, and epigenetic level, while conveying the numerous, stimulating, and sometimes unexpected research opportunities afforded by this type of studies.
Collapse
Affiliation(s)
- Joan Bestard-Escalas
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Albert Maimó-Barceló
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Karim Pérez-Romero
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Daniel H Lopez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain.
| |
Collapse
|
162
|
Saveanu L, Zucchetti AE, Evnouchidou I, Ardouin L, Hivroz C. Is there a place and role for endocyticTCRsignaling? Immunol Rev 2019; 291:57-74. [DOI: 10.1111/imr.12764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Loredana Saveanu
- National French Institute of Health and Medical Research (INSERM) 1149 Center of Research on Inflammation Paris France
- National French Center of Scientific Research (CNRS) ERL8252 Paris France
- Laboratory of Inflamex Excellency Faculty of Medicine Xavier Bichat Site Paris France
- Paris Diderot UniversitySorbonne Paris Cité Paris France
| | - Andres E. Zucchetti
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| | - Irini Evnouchidou
- National French Institute of Health and Medical Research (INSERM) 1149 Center of Research on Inflammation Paris France
- National French Center of Scientific Research (CNRS) ERL8252 Paris France
- Laboratory of Inflamex Excellency Faculty of Medicine Xavier Bichat Site Paris France
- Paris Diderot UniversitySorbonne Paris Cité Paris France
- Inovarion Paris France
| | - Laurence Ardouin
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| | - Claire Hivroz
- Institut Curie PSL Research UniversityINSERMU932 “Integrative analysis of T cell activation” team Paris France
| |
Collapse
|
163
|
Nguyen VC, Nakamura Y, Kanehara K. Membrane lipid polyunsaturation mediated by FATTY ACID DESATURASE 2 (FAD2) is involved in endoplasmic reticulum stress tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:478-493. [PMID: 31001857 DOI: 10.1111/tpj.14338] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 05/22/2023]
Abstract
Unsaturation of membrane glycerolipid classes at their hydrophobic fatty acid tails critically affects the physical nature of the lipid molecule. In Arabidopsis thaliana, 7 fatty acid desaturases (FADs) differently desaturate each glycerolipid class in plastids and the endoplasmic reticulum (ER). Here, we showed that polyunsaturation of ER glycerolipids is required for the ER stress response. Through systematic screening of FAD mutants, we found that a mutant of FAD2 resulted in a hypersensitive response to tunicamycin, a chemical inducer of ER stress. FAD2 converts oleic acid to linoleic acid of the fatty acyl groups of ER-synthesized phospholipids. Our functional in vivo reporter assay revealed the ER localization and distinct tissue-specific expression patterns of FAD2. Moreover, glycerolipid profiling of both mutants and overexpressors of FAD2 under tunicamycin-induced ER stress conditions, along with phenotypic screening of the mutants of the FAD family, suggested that the ratio of monounsaturated fatty acids to polyunsaturated fatty acids, particularly 18:1 to 18:2 species, may be an important factor in allowing the ER membrane to cope with ER stress. Therefore, our results suggest that membrane lipid polyunsaturation mediated by FAD2 is involved in ER stress tolerance in Arabidopsis.
Collapse
Affiliation(s)
- Van Cam Nguyen
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yuki Nakamura
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Kazue Kanehara
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei, 11529, Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 40227, Taiwan
- Department of Applied Science and Engineering, Muroran Institute of Technology, Muroran, Hokkaido, 050-8585, Japan
| |
Collapse
|
164
|
The lipidome of primary murine white, brite, and brown adipocytes-Impact of beta-adrenergic stimulation. PLoS Biol 2019; 17:e3000412. [PMID: 31369546 PMCID: PMC6692052 DOI: 10.1371/journal.pbio.3000412] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/13/2019] [Accepted: 07/15/2019] [Indexed: 12/17/2022] Open
Abstract
Lipid species patterns are conserved within cells to maintain physicochemical properties of membranes and cellular functions. We present the lipidome, including sterols, glycerolipids (GLs), glycerophospholipids (GPLs), and sphingolipids (SLs), of primary ex vivo differentiated (I) white, (II) brite, and (III) brown adipocytes derived from primary preadipocytes isolated from (I) epididymal white, (II) inguinal white, and (III) intrascapular brown adipose tissue. Quantitative lipidomics revealed significantly decreased fractions of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), with longer (C > 36) and more polyunsaturated species, as well as lower levels of cardiolipin (CL) in white than in brite and brown adipocytes. Together, the brite and brown lipidome was comparable and indicates differences in membrane lipid packing density compared with white adipocytes. Changes in ceramide species profile could be related to the degree of browning. Beta-adrenergic stimulation of brown adipocytes led to generation of saturated lyso-PC (LPC) increasing uncoupling protein (UCP) 1-mediated leak respiration. Application of stable isotope labeling showed that LPC formation was balanced by an increased de novo synthesis of PC. Quantitative lipidomics reveal that the cell membrane lipidome of brite and brown adipocytes is comparable, but significantly different to that of white adipocytes. Beta-adrenergic stimulation of brown adipocytes induces generation of saturated lysophosphatidylcholine from phosphatidylcholine, increasing uncoupling protein (UCP) 1-mediated leak respiration.
Collapse
|
165
|
The late stage of COPI vesicle fission requires shorter forms of phosphatidic acid and diacylglycerol. Nat Commun 2019; 10:3409. [PMID: 31363100 PMCID: PMC6667475 DOI: 10.1038/s41467-019-11324-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/21/2019] [Indexed: 12/19/2022] Open
Abstract
Studies on vesicle formation by the Coat Protein I (COPI) complex have contributed to a basic understanding of how vesicular transport is initiated. Phosphatidic acid (PA) and diacylglycerol (DAG) have been found previously to be required for the fission stage of COPI vesicle formation. Here, we find that PA with varying lipid geometry can all promote early fission, but only PA with shortened acyl chains promotes late fission. Moreover, diacylglycerol (DAG) acts after PA in late fission, with this role of DAG also requiring shorter acyl chains. Further highlighting the importance of the short-chain lipid geometry for late fission, we find that shorter forms of PA and DAG promote the vesiculation ability of COPI fission factors. These findings advance a general understanding of how lipid geometry contributes to membrane deformation for vesicle fission, and also how proteins and lipids coordinate their actions in driving this process.
Collapse
|
166
|
Kolašinac R, Jaksch S, Dreissen G, Braeutigam A, Merkel R, Csiszár A. Influence of Environmental Conditions on the Fusion of Cationic Liposomes with Living Mammalian Cells. NANOMATERIALS 2019; 9:nano9071025. [PMID: 31319557 PMCID: PMC6669649 DOI: 10.3390/nano9071025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 12/12/2022]
Abstract
Lipid-based nanoparticles, also called vesicles or liposomes, can be used as carriers for drugs or many types of biological macromolecules, including DNA and proteins. Efficiency and speed of cargo delivery are especially high for carrier vesicles that fuse with the cellular plasma membrane. This occurs for lipid mixture containing equal amounts of the cationic lipid DOTAP and a neutral lipid with an additional few percents of an aromatic substance. The fusion ability of such particles depends on lipid composition with phosphoethanolamine (PE) lipids favoring fusion and phosphatidyl-choline (PC) lipids endocytosis. Here, we examined the effects of temperature, ionic strength, osmolality, and pH on fusion efficiency of cationic liposomes with Chinese hamster ovary (CHO) cells. The phase state of liposomes was analyzed by small angle neutron scattering (SANS). Our results showed that PC containing lipid membranes were organized in the lamellar phase. Here, fusion efficiency depended on buffer conditions and remained vanishingly small at physiological conditions. In contrast, SANS indicated the coexistence of very small (~50 nm) objects with larger, most likely lamellar structures for PE containing lipid particles. The fusion of such particles to cell membranes occurred with very high efficiency at all buffer conditions. We hypothesize that the altered phase state resulted in a highly reduced energetic barrier against fusion.
Collapse
Affiliation(s)
- Rejhana Kolašinac
- Forschungszentrum Jülich GmbH, Institute of Complex Systems: ICS-7 Biomechanics, 52428 Jülich, Germany
| | - Sebastian Jaksch
- Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), 85748 Garching, Germany
| | - Georg Dreissen
- Forschungszentrum Jülich GmbH, Institute of Complex Systems: ICS-7 Biomechanics, 52428 Jülich, Germany
| | - Andrea Braeutigam
- Forschungszentrum Jülich GmbH, Institute of Complex Systems: ICS-2 Theoretical Soft Matter and Biophysics, 52428 Jülich, Germany
| | - Rudolf Merkel
- Forschungszentrum Jülich GmbH, Institute of Complex Systems: ICS-7 Biomechanics, 52428 Jülich, Germany
| | - Agnes Csiszár
- Forschungszentrum Jülich GmbH, Institute of Complex Systems: ICS-7 Biomechanics, 52428 Jülich, Germany.
| |
Collapse
|
167
|
Cao Z, Hao Y, Fung CW, Lee YY, Wang P, Li X, Xie K, Lam WJ, Qiu Y, Tang BZ, Shui G, Liu P, Qu J, Kang BH, Mak HY. Dietary fatty acids promote lipid droplet diversity through seipin enrichment in an ER subdomain. Nat Commun 2019; 10:2902. [PMID: 31263173 PMCID: PMC6602954 DOI: 10.1038/s41467-019-10835-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Exogenous metabolites from microbial and dietary origins have profound effects on host metabolism. Here, we report that a sub-population of lipid droplets (LDs), which are conserved organelles for fat storage, is defined by metabolite-modulated targeting of the C. elegans seipin ortholog, SEIP-1. Loss of SEIP-1 function reduces the size of a subset of LDs while over-expression of SEIP-1 has the opposite effect. Ultrastructural analysis reveals SEIP-1 enrichment in an endoplasmic reticulum (ER) subdomain, which co-purifies with LDs. Analyses of C. elegans and bacterial genetic mutants indicate a requirement of polyunsaturated fatty acids (PUFAs) and microbial cyclopropane fatty acids (CFAs) for SEIP-1 enrichment, as confirmed by dietary supplementation experiments. In mammalian cells, heterologously expressed SEIP-1 engages nascent lipid droplets and promotes their subsequent expansion in a conserved manner. Our results suggest that microbial and polyunsaturated fatty acids serve unexpected roles in regulating cellular fat storage by promoting LD diversity. Lipid droplets (LDs) are fat storage organelles that are initiated and expanded by seipins at ER contact sites. Here the authors show that the C. elegans seipin ortholog SEIP-1 is recruited to these sites by certain dietary fatty acids to support the expansion of a subset of LDs.
Collapse
Affiliation(s)
- Zhe Cao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yan Hao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chun Wing Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yiu Yiu Lee
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Pengfei Wang
- School of Life Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xuesong Li
- Biophotonics Research Laboratory, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kang Xie
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wen Jiun Lam
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yifei Qiu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ben Zhong Tang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Guanghou Shui
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Pingsheng Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianan Qu
- Biophotonics Research Laboratory, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Byung-Ho Kang
- School of Life Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ho Yi Mak
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
168
|
Marrink SJ, Corradi V, Souza PC, Ingólfsson HI, Tieleman DP, Sansom MS. Computational Modeling of Realistic Cell Membranes. Chem Rev 2019; 119:6184-6226. [PMID: 30623647 PMCID: PMC6509646 DOI: 10.1021/acs.chemrev.8b00460] [Citation(s) in RCA: 472] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/15/2022]
Abstract
Cell membranes contain a large variety of lipid types and are crowded with proteins, endowing them with the plasticity needed to fulfill their key roles in cell functioning. The compositional complexity of cellular membranes gives rise to a heterogeneous lateral organization, which is still poorly understood. Computational models, in particular molecular dynamics simulations and related techniques, have provided important insight into the organizational principles of cell membranes over the past decades. Now, we are witnessing a transition from simulations of simpler membrane models to multicomponent systems, culminating in realistic models of an increasing variety of cell types and organelles. Here, we review the state of the art in the field of realistic membrane simulations and discuss the current limitations and challenges ahead.
Collapse
Affiliation(s)
- Siewert J. Marrink
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Valentina Corradi
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Paulo C.T. Souza
- Groningen
Biomolecular Sciences and Biotechnology Institute & Zernike Institute
for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I. Ingólfsson
- Biosciences
and Biotechnology Division, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - D. Peter Tieleman
- Centre
for Molecular Simulation and Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mark S.P. Sansom
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| |
Collapse
|
169
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
170
|
Meher G, Chakraborty H. Membrane Composition Modulates Fusion by Altering Membrane Properties and Fusion Peptide Structure. J Membr Biol 2019; 252:261-272. [PMID: 31011762 PMCID: PMC7079885 DOI: 10.1007/s00232-019-00064-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/12/2019] [Indexed: 01/21/2023]
Abstract
Membrane fusion, one of the most essential processes in the life of eukaryotes, occurs when two separate lipid bilayers merge into a continuous bilayer and internal contents of two separated membranes mingle. There is a certain class of proteins that assist the binding of the viral envelope to the target host cell and catalyzing fusion. All class I viral fusion proteins contain a highly conserved 20–25 amino-acid amphipathic peptide at the N-terminus, which is essential for fusion activity and is termed as the ‘fusion peptide’. It has been shown that insertion of fusion peptides into the host membrane and the perturbation in the membrane generated thereby is crucial for membrane fusion. Significant efforts have been given in the last couple of decades to understand the lipid-dependence of structure and function of the fusion peptide in membranes to understand the role of lipid compositions in membrane fusion. In addition, the lipid compositions further change the membrane physical properties and alter the mechanism and extent of membrane fusion. Therefore, lipid compositions modulate membrane fusion by changing membrane physical properties and altering structure of the fusion peptide.
Collapse
Affiliation(s)
- Geetanjali Meher
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India
| | - Hirak Chakraborty
- School of Chemistry, Sambalpur University, Jyoti Vihar, Burla, Odisha, 768 019, India.
| |
Collapse
|
171
|
From Flat to Curved Clathrin: Controlling a Plastic Ratchet. Trends Cell Biol 2019; 29:241-256. [DOI: 10.1016/j.tcb.2018.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/04/2018] [Accepted: 12/09/2018] [Indexed: 01/13/2023]
|
172
|
Bore SL, Kolli HB, Kawakatsu T, Milano G, Cascella M. Mesoscale Electrostatics Driving Particle Dynamics in Nonhomogeneous Dielectrics. J Chem Theory Comput 2019; 15:2033-2041. [DOI: 10.1021/acs.jctc.8b01201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sigbjørn Løland Bore
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| | - Hima Bindu Kolli
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| | - Toshihiro Kawakatsu
- Department of Physics, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan
| | - Giuseppe Milano
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan ,Yonezawa, Yamagata-ken 992-8510, Japan
| | - Michele Cascella
- Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway
| |
Collapse
|
173
|
Lee JS, Saharia J, Bandara YMNDY, Karawdeniya BI, Goyal G, Darvish A, Wang Q, Kim MJ, Kim MJ. Stiffness measurement of nanosized liposomes using solid‐state nanopore sensor with automated recapturing platform. Electrophoresis 2019; 40:1337-1344. [DOI: 10.1002/elps.201800476] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Jung Soo Lee
- Department of Mechanical EngineeringLyle School of EngineeringSouthern Methodist University Dallas Texas USA
| | - Jugal Saharia
- Department of Mechanical EngineeringLyle School of EngineeringSouthern Methodist University Dallas Texas USA
| | - Y. M. Nuwan D. Y. Bandara
- Department of Mechanical EngineeringLyle School of EngineeringSouthern Methodist University Dallas Texas USA
| | | | - Gaurav Goyal
- Department of Biology and Biological EngineeringChalmers University of Technology Gothenburg Sweden
| | | | - Qingxiao Wang
- Department of Materials Science and EngineeringThe University of Texas at Dallas Richardson Texas USA
| | - Moon J. Kim
- Department of Materials Science and EngineeringThe University of Texas at Dallas Richardson Texas USA
| | - Min Jun Kim
- Department of Mechanical EngineeringLyle School of EngineeringSouthern Methodist University Dallas Texas USA
| |
Collapse
|
174
|
Advances and challenges in liposome digestion: Surface interaction, biological fate, and GIT modeling. Adv Colloid Interface Sci 2019; 263:52-67. [PMID: 30508694 DOI: 10.1016/j.cis.2018.11.007] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/09/2018] [Accepted: 11/25/2018] [Indexed: 11/22/2022]
Abstract
During the past 50 years, there has been increased interest in liposomes as carriers of pharmaceutical, cosmetic, and agricultural products. More recently, much progress has been made in the use of surface-modified formulas in experimental food matrices. However, before the viability and the applications of nutrients in liposomal form in the edible field can be determined, the digestion behavior along the human gastrointestinal tract (GIT) must be clarified. In vitro digestion models, from static models to dynamic mono-/bi-/multi-compartmental models, are increasingly being developed and applied as alternatives to in vivo assays. This review describes the surface interactions of liposomes with their encapsulated ingredients and with external food components and updates the biological fate of liposomes after ingestion. It summarizes current models for the human stomach and intestine that are available and their relevance in nutritional studies. It highlights limitations and challenges in the use of these models for liposomal colloid system digestion and discusses crucial factors, such as enzymes and bile salts, that affect liposomal bilayer degradation.
Collapse
|
175
|
Ruiz M, Bodhicharla R, Svensk E, Devkota R, Busayavalasa K, Palmgren H, Ståhlman M, Boren J, Pilon M. Membrane fluidity is regulated by the C. elegans transmembrane protein FLD-1 and its human homologs TLCD1/2. eLife 2018; 7:e40686. [PMID: 30509349 PMCID: PMC6279351 DOI: 10.7554/elife.40686] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/04/2018] [Indexed: 12/15/2022] Open
Abstract
Dietary fatty acids are the main building blocks for cell membranes in animals, and mechanisms must therefore exist that compensate for dietary variations. We isolated C. elegans mutants that improved tolerance to dietary saturated fat in a sensitized genetic background, including eight alleles of the novel gene fld-1 that encodes a homolog of the human TLCD1 and TLCD2 transmembrane proteins. FLD-1 is localized on plasma membranes and acts by limiting the levels of highly membrane-fluidizing long-chain polyunsaturated fatty acid-containing phospholipids. Human TLCD1/2 also regulate membrane fluidity by limiting the levels of polyunsaturated fatty acid-containing membrane phospholipids. FLD-1 and TLCD1/2 do not regulate the synthesis of long-chain polyunsaturated fatty acids but rather limit their incorporation into phospholipids. We conclude that inhibition of FLD-1 or TLCD1/2 prevents lipotoxicity by allowing increased levels of membrane phospholipids that contain fluidizing long-chain polyunsaturated fatty acids. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Mario Ruiz
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Rakesh Bodhicharla
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Emma Svensk
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Ranjan Devkota
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Kiran Busayavalasa
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Henrik Palmgren
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
- Diabetes Bioscience, Cardiovascular, Renal and Metabolism, IMED Biotech UnitAstraZenecaGothenburgSweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of MedicineUniversity of GothenburgGothenburgSweden
| | - Jan Boren
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of MedicineUniversity of GothenburgGothenburgSweden
| | - Marc Pilon
- Department of Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
176
|
De Santis A, Varela Y, Sot J, D'Errico G, Goñi FM, Alonso A. Omega-3 polyunsaturated fatty acids do not fluidify bilayers in the liquid-crystalline state. Sci Rep 2018; 8:16240. [PMID: 30389959 PMCID: PMC6214938 DOI: 10.1038/s41598-018-34264-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/11/2018] [Indexed: 11/21/2022] Open
Abstract
This work reports on the effects of two omega-3 fatty acids, namely docosahexaenoic (C22:64,7,10,13,16,19) acid (DHA), and eicosapentaenoic (C20:55,8,11,14,17) acid (EPA), with oleic (C18:19) acid (OA) as a control, on the gel-liquid crystalline phase transition of dipalmitoyl phosphatidylcholine (DPPC). Mainly differential scanning calorimetry has been used, together with Laurdan fluorescence, and confocal fluorescence microscopy. All three fatty acids DHA, EPA and OA exhibited fluidifying properties when added to the DPPC bilayers, decreasing the main transition temperature. DHA and EPA were somewhat more effective than OA in this respect, but the effects of all three were of the same order of magnitude, thus the long-chain omega-3 fatty acids failed to exhibit any peculiar fluidifying potency. The same was true when the omega-3 fatty acids were esterified in the sn-2 position of a phosphatidylcholine. Moreover the omega-3 fatty acids had very small or no effects on the fluidity of bilayers in the liquid-crystalline, or fluid disordered state (egg phosphatidylcholine and others), or in the fluid ordered state (phospholipid: cholesterol mixtures). The hypothesis that some physiological effects of long-chain omega-3 fatty acids could be related to their special fluidifying properties is not supported by these data.
Collapse
Affiliation(s)
- Augusta De Santis
- Instituto Biofisika (CSIC, UPV/EHU), B. Sarriena s/n, 48940, Leioa, Spain.,Department of Chemical Sciences, University of Naples "Federico II", Complesso di Monte S. Angelo, Via Cinthia, I-80126, Naples, Italy.,CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Yaiza Varela
- Instituto Biofisika (CSIC, UPV/EHU), B. Sarriena s/n, 48940, Leioa, Spain.,Departamento de Bioquímica, Universidad del País Vasco, 48940, Leioa, Spain
| | - Jesús Sot
- Instituto Biofisika (CSIC, UPV/EHU), B. Sarriena s/n, 48940, Leioa, Spain
| | - Gerardino D'Errico
- Department of Chemical Sciences, University of Naples "Federico II", Complesso di Monte S. Angelo, Via Cinthia, I-80126, Naples, Italy.,CSGI, Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Félix M Goñi
- Instituto Biofisika (CSIC, UPV/EHU), B. Sarriena s/n, 48940, Leioa, Spain.,Departamento de Bioquímica, Universidad del País Vasco, 48940, Leioa, Spain
| | - Alicia Alonso
- Instituto Biofisika (CSIC, UPV/EHU), B. Sarriena s/n, 48940, Leioa, Spain. .,Departamento de Bioquímica, Universidad del País Vasco, 48940, Leioa, Spain.
| |
Collapse
|
177
|
de Carvalho CCCR, Caramujo MJ. The Various Roles of Fatty Acids. Molecules 2018; 23:molecules23102583. [PMID: 30304860 PMCID: PMC6222795 DOI: 10.3390/molecules23102583] [Citation(s) in RCA: 441] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/01/2018] [Accepted: 10/06/2018] [Indexed: 12/31/2022] Open
Abstract
Lipids comprise a large group of chemically heterogeneous compounds. The majority have fatty acids (FA) as part of their structure, making these compounds suitable tools to examine processes raging from cellular to macroscopic levels of organization. Among the multiple roles of FA, they have structural functions as constituents of phospholipids which are the "building blocks" of cell membranes; as part of neutral lipids FA serve as storage materials in cells; and FA derivatives are involved in cell signalling. Studies on FA and their metabolism are important in numerous research fields, including biology, bacteriology, ecology, human nutrition and health. Specific FA and their ratios in cellular membranes may be used as biomarkers to enable the identification of organisms, to study adaptation of bacterial cells to toxic compounds and environmental conditions and to disclose food web connections. In this review, we discuss the various roles of FA in prokaryotes and eukaryotes and highlight the application of FA analysis to elucidate ecological mechanisms. We briefly describe FA synthesis; analyse the role of FA as modulators of cell membrane properties and FA ability to store and supply energy to cells; and inspect the role of polyunsaturated FA (PUFA) and the suitability of using FA as biomarkers of organisms.
Collapse
Affiliation(s)
- Carla C C R de Carvalho
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Maria José Caramujo
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2-5º Piso, 1749-016 Lisboa, Portugal.
| |
Collapse
|
178
|
Emami S, Su WC, Purushothaman S, Ngassam VN, Parikh AN. Permeability and Line-Tension-Dependent Response of Polyunsaturated Membranes to Osmotic Stresses. Biophys J 2018; 115:1942-1955. [PMID: 30366629 DOI: 10.1016/j.bpj.2018.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/06/2018] [Accepted: 09/26/2018] [Indexed: 11/17/2022] Open
Abstract
The lipidome of plant plasma membranes-enriched in cellular phospholipids containing at least one polyunsaturated fatty acid tail and a variety of phytosterols and phytosphingolipids-is adapted to significant abiotic stresses. But how mesoscale membrane properties of these membranes such as permeability and deformability, which arise from their unique molecular compositions and corresponding lateral organization, facilitate response to global mechanical stresses is largely unknown. Here, using giant vesicles reconstituting mixtures of polyunsaturated lipids (soy phosphatidylcholine), glucosylceramide, and sitosterol common to plant membranes, we find that the membranes adopt "janus-like" domain morphologies and display anomalous solute permeabilities. The former textures the membrane with a single sterol-glucosylceramide-enriched, liquid-ordered domain separated from a liquid-disordered phase consisting primarily of soy phosphatidylcholine. When subject to osmotic downshifts, the giant unilamellar vesicles (GUVs) respond by transiently producing well-known swell-burst cycles. In each cycle, the influx of water swells the GUV, rendering the membrane tense. Subsequent rupture of the membrane through transient poration, which localizes in the liquid-disordered phase or at the domain boundaries, reduces the osmotic stress by expelling some of the excess osmolytes (and solvent) before sealing. When subject to abrupt hypertonic stress, they deform by nucleating buds at the domain phase boundaries. Remarkably, this incipient vesiculation is reversed in a statistically significant fraction of GUVs because of the interplay with solute permeation timescales, which render osmotic stresses short-lived. This, then, suggests a novel control mechanism in which an interplay of permeability and deformability regulates osmotically induced membrane deformation and limits vesiculation-induced loss of membrane material. Interestingly, recapitulation of such dynamic morphological reconfigurability-switching between budded and nonbudded morphologies-due to the interplay of membrane permeability, which temporally reverses the osmotic gradient, and domain boundaries, which select modes of deformations, might prove valuable in endowing synthetic cells with novel morphological responsiveness.
Collapse
Affiliation(s)
- Shiva Emami
- Departments of Biomedical Engineering, University of California, Davis, California; Chemical Engineering, University of California, Davis, California
| | - Wan-Chih Su
- Chemistry, University of California, Davis, California
| | - Sowmya Purushothaman
- Departments of Biomedical Engineering, University of California, Davis, California
| | - Viviane N Ngassam
- Departments of Biomedical Engineering, University of California, Davis, California
| | - Atul N Parikh
- Departments of Biomedical Engineering, University of California, Davis, California; Chemistry, University of California, Davis, California; Chemical Engineering, University of California, Davis, California; Materials Science & Engineering, University of California, Davis, California.
| |
Collapse
|
179
|
Kindt A, Liebisch G, Clavel T, Haller D, Hörmannsperger G, Yoon H, Kolmeder D, Sigruener A, Krautbauer S, Seeliger C, Ganzha A, Schweizer S, Morisset R, Strowig T, Daniel H, Helm D, Küster B, Krumsiek J, Ecker J. The gut microbiota promotes hepatic fatty acid desaturation and elongation in mice. Nat Commun 2018; 9:3760. [PMID: 30218046 PMCID: PMC6138742 DOI: 10.1038/s41467-018-05767-4] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 07/05/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023] Open
Abstract
Interactions between the gut microbial ecosystem and host lipid homeostasis are highly relevant to host physiology and metabolic diseases. We present a comprehensive multi-omics view of the effect of intestinal microbial colonization on hepatic lipid metabolism, integrating transcriptomic, proteomic, phosphoproteomic, and lipidomic analyses of liver and plasma samples from germfree and specific pathogen-free mice. Microbes induce monounsaturated fatty acid generation by stearoyl-CoA desaturase 1 and polyunsaturated fatty acid elongation by fatty acid elongase 5, leading to significant alterations in glycerophospholipid acyl-chain profiles. A composite classification score calculated from the observed alterations in fatty acid profiles in germfree mice clearly differentiates antibiotic-treated mice from untreated controls with high sensitivity. Mechanistic investigations reveal that acetate originating from gut microbial degradation of dietary fiber serves as precursor for hepatic synthesis of C16 and C18 fatty acids and their related glycerophospholipid species that are also released into the circulation.
Collapse
Affiliation(s)
- Alida Kindt
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany.,Department of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden, 2333, Netherlands
| | - Gerhard Liebisch
- Institute of Clinical Chemistry, Universitätsklinikum Regensburg, Regensburg, 93053, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, Universitätsklinikum Aachen, Aachen, 52074, Germany.,ZIEL Institute for Food and Health, Technische Universität München (TUM), Freising, 85354, Germany
| | - Dirk Haller
- ZIEL Institute for Food and Health, Technische Universität München (TUM), Freising, 85354, Germany.,Ernährung und Immunologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Gabriele Hörmannsperger
- ZIEL Institute for Food and Health, Technische Universität München (TUM), Freising, 85354, Germany.,Ernährung und Immunologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Hongsup Yoon
- ZIEL Institute for Food and Health, Technische Universität München (TUM), Freising, 85354, Germany.,Ernährung und Immunologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Daniela Kolmeder
- Ernährungsphysiologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Alexander Sigruener
- Institute of Clinical Chemistry, Universitätsklinikum Regensburg, Regensburg, 93053, Germany
| | - Sabrina Krautbauer
- Institute of Clinical Chemistry, Universitätsklinikum Regensburg, Regensburg, 93053, Germany
| | - Claudine Seeliger
- Ernährungsphysiologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Alexandra Ganzha
- Ernährungsphysiologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Sabine Schweizer
- Ernährungsphysiologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Rosalie Morisset
- Ernährungsphysiologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Till Strowig
- Research Group Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, 38124, Germany
| | - Hannelore Daniel
- Ernährungsphysiologie, Technische Universität München (TUM), Freising, 85354, Germany
| | - Dominic Helm
- Proteomics and Bioanalytics, Technische Universität München (TUM), Freising, 85354, Germany
| | - Bernhard Küster
- Proteomics and Bioanalytics, Technische Universität München (TUM), Freising, 85354, Germany
| | - Jan Krumsiek
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, 85764, Germany. .,German Center for Diabetes Research (DZD), Neuherberg, 85764, Germany. .,Institute for Computational Biomedicine, Englander Institute for Precision Medicine, Department of Physiology and Biophysics, Weill Cornell Medicine, New York, 10021, USA.
| | - Josef Ecker
- Ernährungsphysiologie, Technische Universität München (TUM), Freising, 85354, Germany.
| |
Collapse
|
180
|
Jamin N, Garrigos M, Jaxel C, Frelet-Barrand A, Orlowski S. Ectopic Neo-Formed Intracellular Membranes in Escherichia coli: A Response to Membrane Protein-Induced Stress Involving Membrane Curvature and Domains. Biomolecules 2018; 8:biom8030088. [PMID: 30181516 PMCID: PMC6163855 DOI: 10.3390/biom8030088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 11/16/2022] Open
Abstract
Bacterial cytoplasmic membrane stress induced by the overexpression of membrane proteins at high levels can lead to formation of ectopic intracellular membranes. In this review, we report the various observations of such membranes in Escherichia coli, compare their morphological and biochemical characterizations, and we analyze the underlying molecular processes leading to their formation. Actually, these membranes display either vesicular or tubular structures, are separated or connected to the cytoplasmic membrane, present mono- or polydispersed sizes and shapes, and possess ordered or disordered arrangements. Moreover, their composition differs from that of the cytoplasmic membrane, with high amounts of the overexpressed membrane protein and altered lipid-to-protein ratio and cardiolipin content. These data reveal the importance of membrane domains, based on local specific lipid⁻protein and protein⁻protein interactions, with both being crucial for local membrane curvature generation, and they highlight the strong influence of protein structure. Indeed, whether the cylindrically or spherically curvature-active proteins are actively curvogenic or passively curvophilic, the underlying molecular scenarios are different and can be correlated with the morphological features of the neo-formed internal membranes. Delineating these molecular mechanisms is highly desirable for a better understanding of protein⁻lipid interactions within membrane domains, and for optimization of high-level membrane protein production in E. coli.
Collapse
Affiliation(s)
- Nadège Jamin
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Manuel Garrigos
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Christine Jaxel
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| | - Annie Frelet-Barrand
- Institut FEMTO-ST, UMR CNRS 6174, Université Bourgogne Franche-Comté, 15B avenue des Montboucons, 25030 Besançon CEDEX, France.
| | - Stéphane Orlowski
- Institute for Integrative Biology of the Cell (I2BC), CEA/Institut des Sciences du Vivant Fréderic-Joliot/SB2SM, CNRS UMR 9198, Université Paris-Sud, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX, France.
| |
Collapse
|
181
|
Choi TS, Han JY, Heo CE, Lee SW, Kim HI. Electrostatic and hydrophobic interactions of lipid-associated α-synuclein: The role of a water-limited interfaces in amyloid fibrillation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1854-1862. [DOI: 10.1016/j.bbamem.2018.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
|
182
|
Navarro-Retamal C, Bremer A, Ingólfsson HI, Alzate-Morales J, Caballero J, Thalhammer A, González W, Hincha DK. Folding and Lipid Composition Determine Membrane Interaction of the Disordered Protein COR15A. Biophys J 2018; 115:968-980. [PMID: 30195939 DOI: 10.1016/j.bpj.2018.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/27/2018] [Accepted: 08/13/2018] [Indexed: 01/02/2023] Open
Abstract
Plants from temperate climates, such as the model plant Arabidopsis thaliana, are challenged with seasonal low temperatures that lead to increased freezing tolerance in fall in a process termed cold acclimation. Among other adaptations, this involves the accumulation of cold-regulated (COR) proteins, such as the intrinsically disordered chloroplast-localized protein COR15A. Together with its close homolog COR15B, it stabilizes chloroplast membranes during freezing. COR15A folds into amphipathic α-helices in the presence of high concentrations of low-molecular-mass crowders or upon dehydration. Under these conditions, the (partially) folded protein binds peripherally to membranes. In our study, we have used coarse-grained molecular dynamics simulations to elucidate the details of COR15A-membrane binding and its effects on membrane structure and dynamics. Simulation results indicate that at least partial folding of COR15A and the presence of highly unsaturated galactolipids in the membranes are necessary for efficient membrane binding. The bound protein is stabilized on the membrane by interactions of charged and polar amino acids with galactolipid headgroups and by interactions of hydrophobic amino acids with the upper part of the fatty acyl chains. Experimentally, the presence of liposomes made from a mixture of lipids mimicking chloroplast membranes induces additional folding in COR15A under conditions of partial dehydration, in agreement with the simulation results.
Collapse
Affiliation(s)
- Carlos Navarro-Retamal
- Center for Bioinformatics and Molecular Simulations, Universidad de Talca, Casilla, Talca, Chile
| | - Anne Bremer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Helgi I Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, AG Groningen, The Netherlands
| | - Jans Alzate-Morales
- Center for Bioinformatics and Molecular Simulations, Universidad de Talca, Casilla, Talca, Chile
| | - Julio Caballero
- Center for Bioinformatics and Molecular Simulations, Universidad de Talca, Casilla, Talca, Chile
| | - Anja Thalhammer
- Physikalische Biochemie, Universität Potsdam, Potsdam, Germany
| | - Wendy González
- Center for Bioinformatics and Molecular Simulations, Universidad de Talca, Casilla, Talca, Chile; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Universidad de Talca, Casilla, Talca, Chile
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany.
| |
Collapse
|
183
|
Gautier R, Bacle A, Tiberti ML, Fuchs PF, Vanni S, Antonny B. PackMem: A Versatile Tool to Compute and Visualize Interfacial Packing Defects in Lipid Bilayers. Biophys J 2018; 115:436-444. [PMID: 30055754 DOI: 10.1016/j.bpj.2018.06.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 11/18/2022] Open
Abstract
The analysis of the structural organization of lipid bilayers is generally performed across the direction normal to the bilayer/water interface, whereas the surface properties of the bilayer at the interface with water are often neglected. Here, we present PackMem, a bioinformatic tool that performs a topographic analysis of the bilayer surface from various molecular dynamics simulations. PackMem unifies and rationalizes previous analyses based on a Cartesian grid. The grid allows identification of surface regions defined as lipid-packing defects where lipids are loosely packed, leading to cavities in which aliphatic carbons are exposed to the solvent, either deep inside or close to the membrane surface. Examples are provided to show that the abundance of lipid-packing defects varies according to the temperature and to the bilayer composition. Because lipid-packing defects control the adsorption of peripheral proteins with hydrophobic insertions, PackMem is instrumental for us to understand and quantify the adhesive properties of biological membranes as well as their response to mechanical perturbations such as membrane deformation.
Collapse
Affiliation(s)
- Romain Gautier
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis, France.
| | - Amélie Bacle
- Institut Jacques Monod, CNRS Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Patrick F Fuchs
- Institut Jacques Monod, CNRS Université Paris-Diderot, Sorbonne Paris Cité, Paris, France; Laboratoire des biomolécules, Sorbonne Université, École normale supérieure, PSL University, CNRS, Paris, France
| | - Stefano Vanni
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis, France; Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Bruno Antonny
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis, France
| |
Collapse
|
184
|
Sun B, Fan P, Liao M, Zhang Y. Modeling endophilin-mediated Aβ disposal in glioma cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1385-1396. [PMID: 30049645 DOI: 10.1016/j.bbamcr.2018.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/26/2018] [Accepted: 06/28/2018] [Indexed: 12/17/2022]
Abstract
Autophagy dysregulation has emerged in age-related neurological diseases (Ulland et al.; Matheoud et al.; Ashkenazi et al.). Alzheimer Disease (AD), the most common progressive neurodegenerative disorder, is characterized by the accumulation of amyloid-β (Aβ) plaques caused by aberrant Aβ metabolism (Qiang et al.; Sevigny et al.; Ittner et al.). Glia constitute the brain immune system and ingest extracellular Aβ for degradation via the autophagy-lysosome machinery (Ries and Sastre; Cho et al.). Here, we model the molecular rationale for this clearance process in glioma cells by showing that miR34a inhibits autophagy-mediated disposal of Aβ fibrils and identifying two novel direct targets of miR34a, endophilin-3 and cathepsin B (CTSB, a previously reported enzyme for Aβ degrading (Sun et al.)). Bioinformatics analyses revealed that endophilin-3 expresses at a significantly lower level in neurodegenerative diseases. Its gain-of-function substantially promotes both uptake and degradation of Aβ while small interfering RNA (siRNA)-mediated endophilin-3 knockdown slowed down Aβ clearance and blocked autolysosome formation. Mechanistically, gene ontology (GO) analysis of the endophilin-3 interactome identified by mass spectrometry uncovered enriched components involved in actin binding (with the highest score). Importantly, we validated that the actin-binding protein phostensin interacted with endophilin-3. Phostensin knockdown restored endophilin-3-mediated up-regulation of Aβ clearance. Thus, our findings indicate that miR34a inhibits Aβ clearance by targeting endophilin-3 and CTSB at multiple steps including uptake and autophagy-mediated degradation.
Collapse
Affiliation(s)
- Bing Sun
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Ping Fan
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Meijian Liao
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China
| | - Yaou Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, PR China; Open FIESTA Center, Tsinghua University, Shenzhen, PR China.
| |
Collapse
|
185
|
Kulakowski G, Bousquet H, Manneville J, Bassereau P, Goud B, Oesterlin LK. Lipid packing defects and membrane charge control RAB GTPase recruitment. Traffic 2018; 19:536-545. [PMID: 29573133 PMCID: PMC6032855 DOI: 10.1111/tra.12568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/21/2022]
Abstract
Specific intracellular localization of RAB GTPases has been reported to be dependent on protein factors, but the contribution of the membrane physicochemical properties to this process has been poorly described. Here, we show that three RAB proteins (RAB1/RAB5/RAB6) preferentially bind in vitro to disordered and curved membranes, and that this feature is uniquely dependent on their prenyl group. Our results imply that the addition of a prenyl group confers to RAB proteins, and most probably also to other prenylated proteins, the ability to sense lipid packing defects induced by unsaturated conical-shaped lipids and curvature. Consistently, RAB recruitment increases with the amount of lipid packing defects, further indicating that these defects drive RAB membrane targeting. Membrane binding of RAB35 is also modulated by lipid packing defects but primarily dependent on negatively charged lipids. Our results suggest that a balance between hydrophobic insertion of the prenyl group into lipid packing defects and electrostatic interactions of the RAB C-terminal region with charged membranes tunes the specific intracellular localization of RAB proteins.
Collapse
Affiliation(s)
- Guillaume Kulakowski
- Institut CurieParis Sciences et Lettres Research University, Sorbonne Université, CNRS UMR144ParisFrance
| | - Hugo Bousquet
- Institut CurieParis Sciences et Lettres Research University, Sorbonne Université, CNRS UMR144ParisFrance
| | - Jean‐Baptiste Manneville
- Institut CurieParis Sciences et Lettres Research University, Sorbonne Université, CNRS UMR144ParisFrance
| | - Patricia Bassereau
- Laboratoire Physico Chimie, Institut CurieParis Sciences et Lettres Research University, Sorbonne Université, CNRS UMR168ParisFrance
| | - Bruno Goud
- Institut CurieParis Sciences et Lettres Research University, Sorbonne Université, CNRS UMR144ParisFrance
| | - Lena K. Oesterlin
- Institut CurieParis Sciences et Lettres Research University, Sorbonne Université, CNRS UMR144ParisFrance
| |
Collapse
|
186
|
Kadri L, Ferru-Clément R, Bacle A, Payet LA, Cantereau A, Hélye R, Becq F, Jayle C, Vandebrouck C, Ferreira T. Modulation of cellular membrane properties as a potential therapeutic strategy to counter lipointoxication in obstructive pulmonary diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3069-3084. [PMID: 29960042 DOI: 10.1016/j.bbadis.2018.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/04/2018] [Accepted: 06/25/2018] [Indexed: 02/08/2023]
Abstract
Maintaining the equilibrium between saturated and unsaturated fatty acids within membrane phospholipids (PLs) is crucial to sustain the optimal membrane biophysical properties, compatible with selective organelle-based processes. Lipointoxication is a pathological condition under which saturated PLs tend to accumulate within the cell at the expense of unsaturated species, with major impacts on organelle function. Here, we show that human bronchial epithelial cells extracted from lungs of patients with Obstructive Pulmonary Diseases (OPDs), i. e. Cystic Fibrosis (CF) individuals and Smokers, display a characteristic lipointoxication signature, with excessive amounts of saturated PLs. Reconstitution of this signature in cellulo and in silico revealed that such an imbalance results in altered membrane properties and in a dramatic disorganization of the intracellular network of bronchial epithelial cells, in a process which can account for several OPD traits. Such features include Endoplasmic Reticulum-stress, constitutive IL8 secretion, bronchoconstriction and, ultimately, epithelial cell death by apoptosis. We also demonstrate that a recently-identified lipid-like molecule, which has been shown to behave as a "membrane-reshaper", counters all the lipointoxication hallmarks tested. Altogether, these insights highlight the modulation of membrane properties as a potential new strategy to heal and prevent highly detrimental symptoms associated with OPDs.
Collapse
Affiliation(s)
- Linette Kadri
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Romain Ferru-Clément
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Amélie Bacle
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Laurie-Anne Payet
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Anne Cantereau
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Reynald Hélye
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Frédéric Becq
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Christophe Jayle
- Service de Chirurgie Cardiothoracique, CHU Poitiers, Poitiers, France
| | - Clarisse Vandebrouck
- Laboratoire "Signalisation et Transports Ioniques Membranaires (STIM)", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France
| | - Thierry Ferreira
- Laboratoire Coopératif "Lipotoxicity and Channelopathies - ConicMeds", Université de Poitiers, 1, rue Georges Bonnet, Poitiers, France.
| |
Collapse
|
187
|
Baoukina S, Ingólfsson HI, Marrink SJ, Tieleman DP. Curvature-Induced Sorting of Lipids in Plasma Membrane Tethers. ADVANCED THEORY AND SIMULATIONS 2018. [DOI: 10.1002/adts.201800034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Svetlana Baoukina
- Centre for Molecular Simulation and Department of Biological Sciences; University of Calgary, 2500 University Drive NW; Calgary, AB T2N 1N4 Canada
| | - Helgi I. Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials; University of Groningen, Nijenborgh 7; Groningen 9747 AG The Netherlands
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials; University of Groningen, Nijenborgh 7; Groningen 9747 AG The Netherlands
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences; University of Calgary, 2500 University Drive NW; Calgary, AB T2N 1N4 Canada
| |
Collapse
|
188
|
Sych T, Mély Y, Römer W. Lipid self-assembly and lectin-induced reorganization of the plasma membrane. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170117. [PMID: 29632269 PMCID: PMC5904303 DOI: 10.1098/rstb.2017.0117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2018] [Indexed: 01/10/2023] Open
Abstract
The plasma membrane represents an outstanding example of self-organization in biology. It plays a vital role in protecting the integrity of the cell interior and regulates meticulously the import and export of diverse substances. Its major building blocks are proteins and lipids, which self-assemble to a fluid lipid bilayer driven mainly by hydrophobic forces. Even if the plasma membrane appears-globally speaking-homogeneous at physiological temperatures, the existence of specialized nano- to micrometre-sized domains of raft-type character within cellular and synthetic membrane systems has been reported. It is hypothesized that these domains are the origin of a plethora of cellular processes, such as signalling or vesicular trafficking. This review intends to highlight the driving forces of lipid self-assembly into a bilayer membrane and the formation of small, transient domains within the plasma membrane. The mechanisms of self-assembly depend on several factors, such as the lipid composition of the membrane and the geometry of lipids. Moreover, the dynamics and organization of glycosphingolipids into nanometre-sized clusters will be discussed, also in the context of multivalent lectins, which cluster several glycosphingolipid receptor molecules and thus create an asymmetric stress between the two membrane leaflets, leading to tubular plasma membrane invaginations.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Taras Sych
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch Cedex, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch Cedex, France
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
189
|
Ernst R, Ballweg S, Levental I. Cellular mechanisms of physicochemical membrane homeostasis. Curr Opin Cell Biol 2018; 53:44-51. [PMID: 29787971 DOI: 10.1016/j.ceb.2018.04.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/19/2018] [Accepted: 04/29/2018] [Indexed: 12/11/2022]
Abstract
Biological membranes are vital, active contributors to cell function. In addition to specific interactions of individual lipid molecules and lateral organization produced by membrane domains, the bulk physicochemical properties of biological membranes broadly regulate protein structure and function. Therefore, these properties must be homeostatically maintained within a narrow range that is compatible with cellular physiology. Although such adaptiveness has been known for decades, recent observations have dramatically expanded its scope by showing the breadth of membrane properties that must be maintained, and revealing the remarkable diversity of biological membranes, both within and between cell types. Cells have developed a broad palette of sense-and-respond machineries to mediate physicochemical membrane homeostasis, and the molecular mechanisms of these are being discovered through combinations of cell biology, biophysical approaches, and computational modeling.
Collapse
Affiliation(s)
- Robert Ernst
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany.
| | - Stephanie Ballweg
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, 66421 Homburg, Germany
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, TX, USA.
| |
Collapse
|
190
|
Akimov SA, Polynkin MA, Jiménez-Munguía I, Pavlov KV, Batishchev OV. Phosphatidylcholine Membrane Fusion Is pH-Dependent. Int J Mol Sci 2018; 19:ijms19051358. [PMID: 29751591 PMCID: PMC5983597 DOI: 10.3390/ijms19051358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Membrane fusion mediates multiple vital processes in cell life. Specialized proteins mediate the fusion process, and a substantial part of their energy is used for topological rearrangement of the membrane lipid matrix. Therefore, the elastic parameters of lipid bilayers are of crucial importance for fusion processes and for determination of the energy barriers that have to be crossed for the process to take place. In the case of fusion of enveloped viruses (e.g., influenza) with endosomal membrane, the interacting membranes are in an acidic environment, which can affect the membrane’s mechanical properties. This factor is often neglected in the analysis of virus-induced membrane fusion. In the present work, we demonstrate that even for membranes composed of zwitterionic lipids, changes of the environmental pH in the physiologically relevant range of 4.0 to 7.5 can affect the rate of the membrane fusion notably. Using a continual model, we demonstrated that the key factor defining the height of the energy barrier is the spontaneous curvature of the lipid monolayer. Changes of this parameter are likely to be caused by rearrangements of the polar part of lipid molecules in response to changes of the pH of the aqueous solution bathing the membrane.
Collapse
Affiliation(s)
- Sergey A Akimov
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia.
- Department of Theoretical Physics and Quantum Technologies, National University of Science and Technology "MISiS", 4 Leninskiy Prospekt, 119049 Moscow, Russia.
| | - Michael A Polynkin
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia.
| | - Irene Jiménez-Munguía
- Department of Engineering of Technological Equipment, National University of Science and Technology "MISiS", 4 Leninskiy Prospekt, 119049 Moscow, Russia.
| | - Konstantin V Pavlov
- Laboratory of Electrophysiology, Federal Clinical Center of Physical-Chemical Medicine of FMBA, 1a Malaya Pirogovskaya Street, 119435 Moscow, Russia.
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia.
- Department of Physics of Living Systems, Moscow Institute of Physics and Technology (State University), 9 Institutskiy Lane, 141700 Dolgoprudniy Moscow Region, Russia.
| |
Collapse
|
191
|
Increasing Diversity of Biological Membrane Fission Mechanisms. Trends Cell Biol 2018; 28:274-286. [DOI: 10.1016/j.tcb.2017.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022]
|
192
|
Angelova A, Drechsler M, Garamus VM, Angelov B. Liquid Crystalline Nanostructures as PEGylated Reservoirs of Omega-3 Polyunsaturated Fatty Acids: Structural Insights toward Delivery Formulations against Neurodegenerative Disorders. ACS OMEGA 2018; 3:3235-3247. [PMID: 30023865 PMCID: PMC6044969 DOI: 10.1021/acsomega.7b01935] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 03/06/2018] [Indexed: 06/01/2023]
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are bioactive lipids with considerable impact in medicine and nutrition. These compounds exert structuring effects on the cellular membrane organization, regulate the gene expression, and modulate various signaling cascades and metabolic processes. The purpose of the present work is to demonstrate the structural features of ω-3 PUFA-containing three-dimensional supramolecular lipid assemblies suitable for pharmaceutical applications that require soft porous carriers. We investigate the liquid crystalline structures formed upon mixing of eicosapentaenoic acid (EPA, 20:5) with the lyotropic nonlamellar lipid monoolein and the formation of multicompartment assemblies. Starting with the monoolein-based lipid cubic phase, double membrane vesicles, cubosome precursors, sponge-type particles (spongosomes), mixed intermediate nonlamellar structures, and multicompartment assemblies are obtained through self-assembly at different amphiphilic compositions. The dispersions containing spongosomes as well as nanocarriers with oil and vesicular compartments are stabilized by PEGylation of the lipid/water interfaces using a phospholipid with a poly(ethylene glycol) chain. The microstructures of the bulk mixtures were examined by cross-polarized light optical microscopy. The dispersed liquid crystalline structures and intermediate states were studied by small-angle X-ray scattering, cryogenic transmission electron microscopy, and quasielastic light scattering techniques. They established that PUFA influences the phase type and the sizes of the aqueous compartments of the liquid crystalline carriers. The resulting multicompartment systems and stealth nanosponges may serve as mesoporous reservoirs for coencapsulation of ω-3 PUFA (e.g., EPA) with water-insoluble drugs and hydrophilic macromolecules toward development of combination treatment strategies of neurodegenerative and other diseases.
Collapse
Affiliation(s)
- Angelina Angelova
- Institut
Galien Paris-Sud, LabEx LERMIT, CNRS UMR
8612, Univ. Paris-Sud, Université Paris-Saclay, F-92290 Châtenay-Malabry Cedex, France
| | - Markus Drechsler
- Key
Lab “Electron and Optical Microscopy”, Bavarian Polymer
Institute (BPI), University of Bayreuth, D-95440 Bayreuth, Germany
| | - Vasil M. Garamus
- Helmholtz-Zentrum
Geesthacht: Centre for Materials and Coastal Research, D-21502 Geesthacht, Germany
| | - Borislav Angelov
- Institute
of Physics, ELI Beamlines, Academy of Sciences
of the Czech Republic, Na Slovance 2, CZ-18221 Prague, Czech Republic
| |
Collapse
|
193
|
Manni MM, Tiberti ML, Pagnotta S, Barelli H, Gautier R, Antonny B. Acyl chain asymmetry and polyunsaturation of brain phospholipids facilitate membrane vesiculation without leakage. eLife 2018. [PMID: 29543154 PMCID: PMC5903860 DOI: 10.7554/elife.34394] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Phospholipid membranes form cellular barriers but need to be flexible enough to divide by fission. Phospholipids generally contain a saturated fatty acid (FA) at position sn1 whereas the sn2-FA is saturated, monounsaturated or polyunsaturated. Our understanding of the impact of phospholipid unsaturation on membrane flexibility and fission is fragmentary. Here, we provide a comprehensive view of the effects of the FA profile of phospholipids on membrane vesiculation by dynamin and endophilin. Coupled to simulations, this analysis indicates that: (i) phospholipids with two polyunsaturated FAs make membranes prone to vesiculation but highly permeable; (ii) asymmetric sn1-saturated-sn2-polyunsaturated phospholipids provide a tradeoff between efficient membrane vesiculation and low membrane permeability; (iii) When incorporated into phospholipids, docosahexaenoic acid (DHA; omega-3) makes membranes more deformable than arachidonic acid (omega-6). These results suggest an explanation for the abundance of sn1-saturated-sn2-DHA phospholipids in synaptic membranes and for the importance of the omega-6/omega-3 ratio on neuronal functions. Surrounding each living cell is a membrane that is mainly made of fat molecules called phospholipids. Similar membranes also surround many of the structures inside cells. It is important for life that these membranes are impermeable to many molecules; for example, they do not allow ions to cross them freely. The membranes also need to be flexible and allow cells to form different shapes. Flexible membranes also allow cells to move molecules around and to divide to produce new cells. Each phospholipid includes two long chains of atoms called fatty acids. There are many fatty acids but they are typically grouped into saturated and unsaturated based on their chemical structures. The omega-3 and omega-6 fats are both groups of unsaturated fatty acids that are found in brain cells. Many phospholipids in cell membranes contain one saturated and one unsaturated fatty acid but it is not clear why. By studying fat molecules in the laboratory and combining this with simulations, Manni et al. have now examined the effects of fatty acids on membranes. The investigation showed that phospholipids with both saturated and unsaturated fatty acids strike a balance between impermeable and flexible membranes. More unsaturated fatty acids make more flexible membranes but they are too permeable to be used in cells. The experiments also revealed that omega-3 unsaturated fats aid flexibility more than omega-6. This finding may help to explain why the relative amounts of omega-3 and -6 are so important in the membranes of brain cells. The connection between the fats we eat and the fatty acids in our cells is complex. Yet, findings like these serve to remind us that we need a balanced diet of different fats to keep all our cells healthy.
Collapse
Affiliation(s)
- Marco M Manni
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur et CNRS, Valbonne, France.,Instituto Biofisika (UPV/EHU, CSIC), Leioa, Spain
| | - Marion L Tiberti
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur et CNRS, Valbonne, France
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée, Université Côte d'Azur, Nice, France
| | - Hélène Barelli
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur et CNRS, Valbonne, France
| | - Romain Gautier
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur et CNRS, Valbonne, France
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur et CNRS, Valbonne, France
| |
Collapse
|
194
|
Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors. Biochem Soc Trans 2018. [PMID: 29540508 DOI: 10.1042/bst20170322] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors.
Collapse
|
195
|
Hirama T, Fairn GD. Induction of spontaneous curvature and endocytosis: Unwanted consequences of cholesterol extraction using methyl-β-Cyclodextrin. Commun Integr Biol 2018; 11:1-4. [PMID: 30083284 PMCID: PMC6067860 DOI: 10.1080/19420889.2018.1444306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 02/20/2018] [Indexed: 02/06/2023] Open
Abstract
Membrane curvature is a property of biological membranes essential for organelle morphology and the formation of tubulovesicular carriers. Curvature generation is influenced by the lipid composition of the membrane and protein-mediated processes. Lipids with small headgroups, such as phosphatidic acid, are conical and impose negative curvature on a monolayer. Conversely, lipids with large headgroups relative to the hydrophobic tail(s), such as lysophosphatidylcholine, have an inverted conical shape and impose positive curvature. Due to its abundance and high rates of spontaneous flip-flop between membrane leaflets cholesterol is proposed to buffer the formation of membrane curvature. Recently, we demonstrated that cholesterol is also crucial for maintaining the proper spacing of anionic phospholipids. Upon extraction of cholesterol with cyclodextrin there is a sharp increase in the negative surface charge density of the plasma membrane, which promotes electrostatic repulsion between anionic headgroups, the generation of spontaneous positive curvature and rapid membrane internalization.
Collapse
Affiliation(s)
- Takashi Hirama
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Program of Lung Transplant, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada.,Nontuberculous Mycobacteria Program, Division of Respirology, Toronto Western Hospital, Toronto, ON, Canada
| | - Gregory D Fairn
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
196
|
Proanthocyanidins against Oxidative Stress: From Molecular Mechanisms to Clinical Applications. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8584136. [PMID: 29750172 PMCID: PMC5884402 DOI: 10.1155/2018/8584136] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/14/2018] [Indexed: 12/15/2022]
Abstract
Proanthocyanidins (PCs) are naturally occurring polyphenolic compounds abundant in many vegetables, plant skins (rind/bark), seeds, flowers, fruits, and nuts. Numerous in vitro and in vivo studies have demonstrated myriad effects potentially beneficial to human health, such as antioxidation, anti-inflammation, immunomodulation, DNA repair, and antitumor activity. Accumulation of prooxidants such as reactive oxygen species (ROS) exceeding cellular antioxidant capacity results in oxidative stress (OS), which can damage macromolecules (DNA, lipids, and proteins), organelles (membranes and mitochondria), and whole tissues. OS is implicated in the pathogenesis and exacerbation of many cardiovascular, neurodegenerative, dermatological, and metabolic diseases, both through direct molecular damage and secondary activation of stress-associated signaling pathways. PCs are promising natural agents to safely prevent acute damage and control chronic diseases at relatively low cost. In this review, we summarize the molecules and signaling pathways involved in OS and the corresponding therapeutic mechanisms of PCs.
Collapse
|
197
|
|
198
|
Manni MM, Derganc J, Čopič A. Crowd-Sourcing of Membrane Fission. Bioessays 2017; 39. [DOI: 10.1002/bies.201700117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/06/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Marco M. Manni
- Université Côte d'Azur; CNRS, IPMC; 06560 Valbonne France
| | - Jure Derganc
- Institute of Biophysics; Faculty of Medicine; University of Ljubljana; 1000 Ljubljana Slovenia
| | - Alenka Čopič
- Institut Jacques Monod, CNRS UMR 7592; Université Paris Diderot; Sorbonne Paris Cité 75013 Paris France
| |
Collapse
|
199
|
Hishikawa D, Valentine WJ, Iizuka-Hishikawa Y, Shindou H, Shimizu T. Metabolism and functions of docosahexaenoic acid-containing membrane glycerophospholipids. FEBS Lett 2017; 591:2730-2744. [PMID: 28833063 PMCID: PMC5639365 DOI: 10.1002/1873-3468.12825] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 08/13/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
Omega‐3 (ω‐3) fatty acids (FAs) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are known to have important roles in human health and disease. Besides being utilized as fuel, ω‐3 FAs have specific functions based on their structural characteristics. These functions include serving as ligands for several receptors, precursors of lipid mediators, and components of membrane glycerophospholipids (GPLs). Since ω‐3 FAs (especially DHA) are highly flexible, the levels of DHA in GPLs may affect membrane biophysical properties such as fluidity, flexibility, and thickness. Here, we summarize some of the cellular mechanisms for incorporating DHA into membrane GPLs and propose biological effects and functions of DHA‐containing membranes of several cell and tissue types.
Collapse
Affiliation(s)
- Daisuke Hishikawa
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - William J Valentine
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Yoshiko Iizuka-Hishikawa
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Lipid Science, The University of Tokyo, Bunkyo-ku, Japan.,AMED, Chiyoda-ku, Tokyo, Japan
| | - Takao Shimizu
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan.,Department of Lipidomics Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
200
|
Soares TA, Vanni S, Milano G, Cascella M. Toward Chemically Resolved Computer Simulations of Dynamics and Remodeling of Biological Membranes. J Phys Chem Lett 2017; 8:3586-3594. [PMID: 28707901 DOI: 10.1021/acs.jpclett.7b00493] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cellular membranes are fundamental constituents of living organisms. Apart from defining the boundaries of the cells, they are involved in a wide range of biological functions, associated with both their structural and the dynamical properties. Biomembranes can undergo large-scale transformations when subject to specific environmental changes, including gel-liquid phase transitions, change of aggregation structure, formation of microtubules, or rupture into vesicles. All of these processes are dependent on a delicate interplay between intermolecular forces, molecular crowding, and entropy, and their understanding requires approaches that are able to capture and rationalize the details of all of the involved interactions. Molecular dynamics-based computational models at atom-level resolution are, in principle, the best way to perform such investigations. Unfortunately, the relevant spatial and time dimensionalities involved in membrane remodeling phenomena would require computational costs that are today unaffordable on a routinely basis. Such hurdles can be removed by coarse-graining the representations of the individual molecular components of the systems. This procedure anyway reduces the possibility of describing the chemical variations in the lipid mixtures composing biological membranes. New hybrid particle field multiscale approaches offer today a promising alternative to the more traditional particle-based simulations methods. By combining chemically distinguishable molecular representations with mesoscale-based computationally affordable potentials, they appear as one of the most promising ways to keep an accurate description of the chemical complexity of biological membranes and, at the same time, cover the required scales to describe remodeling events.
Collapse
Affiliation(s)
- Thereza A Soares
- Department of Fundamental Chemistry, Federal University of Pernambuco, Cidade Universitária , Recife PE 50740-560, Brazil
| | - Stefano Vanni
- Department of Biology, University of Fribourg , 1700 Fribourg, Switzerland
| | - Giuseppe Milano
- Dipartimento di Chimica e Biologia, Università di Salerno , Via Giovanni Paolo II, 132, I-84084 Fisciano, Italy
| | - Michele Cascella
- Department of Chemistry and Centre for Theoretical and Computational Chemistry (CTCC) , Sem Saelands vei 26, 0371 Oslo, Norway
| |
Collapse
|