151
|
Elhefnawy ME, Patson N, Mouksassi S, Pillai G, Shcherbinin S, Chigutsa E, Gueorguieva I. Quantifying natural amyloid plaque accumulation in the continuum of Alzheimer's disease using ADNI. J Pharmacokinet Pharmacodyn 2025; 52:15. [PMID: 39862333 DOI: 10.1007/s10928-024-09959-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025]
Abstract
Brain amyloid beta neuritic plaque accumulation is associated with an increased risk of progression to Alzheimer's disease (AD) [Pfeil, J., et al. in Neurobiol Aging 106: 119-129, 2021]. Several studies estimate rates of change in amyloid plaque over time in clinically heterogeneous cohorts with different factors impacting amyloid plaque accumulation from ADNI and AIBL [Laccarino, L., et al. in Annals Clin and Trans Neurol 6: 1113 1120, 2019, Vos, S.J., et al. in Brain 138: 1327-1338, 2015, Lim, Y.Y., et al. in Alzheimer's Dementia 9: 538-545, 2013], but there are no reports using non-linear mixed effect model for amyloid plaque progression over time similar to that existing of disease-modifying biomarkers for other diseases [Cook, S.F. and R.R. Bies in Current Pharmacol Rep 2: 221-230, 2016, Gueorguieva, I., et al. in Alzheimer's Dementia 19: 2253-2264, 2023]. This study describes the natural progression of amyloid accumulation with population mean and between-participant variability for baseline and intrinsic progression rates quantified across the AD spectrum. 1340 ADNI participants were followed over a 10-year period with 18F-florbetapir PET scans used for amyloid plaque detection. Non-linear mixed effect with stepwise covariate modelling (scm) was used. Change in natural amyloid plaque levels over 10 year period followed an exponential growth model with an intrinsic rate of approx. 3 centiloid units/year. Age, gender, APOE4 genotype and disease stage were important factors on the baseline in the natural amyloid model. In APOE4 homozygous carriers mean baseline amyloid was increased compared to APOE4 non carriers. These results demonstrate natural progression of amyloid plaque in the continuum of AD.
Collapse
Affiliation(s)
- Marwa E Elhefnawy
- Applied Pharmacometrics Training-Africa Program, c/o Pharmacometrics Africa NPC, Cape Town, South Africa
- Pumas-AI, Inc, Dover, Delaware, USA
| | - Noel Patson
- Applied Pharmacometrics Training-Africa Program, c/o Pharmacometrics Africa NPC, Cape Town, South Africa
- School of Global and Public Health, Kamuzu University of Health Sciences, Chichiri BT3, Blantyre, Malawi
| | - Samer Mouksassi
- Applied Pharmacometrics Training-Africa Program, c/o Pharmacometrics Africa NPC, Cape Town, South Africa
- Integrated Drug Development, Certara, 100 Overlook Ctr Site 101, Princeton, NJ, USA
| | - Goonaseelan Pillai
- Applied Pharmacometrics Training-Africa Program, c/o Pharmacometrics Africa NPC, Cape Town, South Africa
- Division of Clinical Pharmacology, University of Cape Town, Rondebosch, 7701, South Africa
| | - Sergey Shcherbinin
- Eli Lilly and Company, 16 893 South Delaware Street, Indianapolis, IN, USA
| | - Emmanuel Chigutsa
- Eli Lilly and Company, 16 893 South Delaware Street, Indianapolis, IN, USA
| | - Ivelina Gueorguieva
- Global PK/PD/PMx, Eli Lilly and Company, 8 Arlington Square West, Downshire Way, Bracknell, Berkshire, RG12 1PU, UK.
| |
Collapse
|
152
|
Lin Y, Zheng L, Xu Y, Wang X, Li J, Zheng L, Liang G, Chen L. Interleukin-1 Receptor-Associated Kinase 4 (IRAK4) Degraders for Treating Inflammatory Diseases: Advances and Prospects. J Med Chem 2025; 68:902-914. [PMID: 39762193 DOI: 10.1021/acs.jmedchem.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is involved in various inflammation-related diseases. Both the kinase and scaffolding functions of IRAK4 initiate pro-inflammatory factor transcription and expression. The scaffolding function of IRAK4 is essential for Myddosome assembly and NF-κB activation. Conventional small-molecule inhibitors effectively inhibit the kinase function of IRAK4 but do not block its scaffolding function. Recently, various IRAK4 degraders have shown promising therapeutic potential in inflammatory diseases. The most advanced IRAK4-selective degrader, KT-474 (SAR444656), significantly reduced inflammatory biomarker levels in patients and demonstrated high safety and tolerability. This perspective introduces and discusses the physiological biology of IRAK4, its associated diseases, and the current development of IRAK4 degraders, thereby offering insights into future research directions.
Collapse
Affiliation(s)
- Yaoxiang Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
- School of Medicine, Hangzhou Normal University, Hangzhou 311121, China
| | - Lulu Zheng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310000, China
| | - Ying Xu
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
| | - Xinyan Wang
- School of Medicine, Zhejiang University City College, Huzhou Road, Hangzhou 310015, China
| | - Jie Li
- School of Medicine, Zhejiang University City College, Huzhou Road, Hangzhou 310015, China
| | - Lei Zheng
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
| | - Guang Liang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
| | - Lingfeng Chen
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310014, China
| |
Collapse
|
153
|
Römer M, Lange-Asschenfeldt C, Müller-Schmitz K, Seitz RJ. Cerebrospinal Fluid Biomarkers and Neuropsychological Abnormalities in Dementia: A Monocentric Study of Consecutive Patients. J Clin Med 2025; 14:710. [PMID: 39941381 PMCID: PMC11818742 DOI: 10.3390/jcm14030710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025] Open
Abstract
Background: In search of indicators for dementia, this study investigated the association of cerebrospinal fluid (CSF) biomarkers and neuropsychological test results with disease stage in patients with early manifestations of dementia. Methods: In 190 consecutive patients with symptoms of dementia, the CSF parameters amyloid-β 1-42 (Aβ1-42), phosphorylated tau protein (pTau), total tau protein (tTau), neuron-specific enolase (NSE), protein S100B (S100B), and Aβ (1-42)/(1-40) ratio (Aβ ratio), as well as the results of the CERAD-Plus test battery supplemented by the Clock Drawing Test (CDT), were analysed. Patients were divided into two groups based on the median duration of reported symptom onset. Results: Most prominent in the early phase of the disease were the relationships between Aβ1-42 and neuropsychological memory subtests, which were absent in the later phase. Less pronounced relationships to memory function were detectable for Aβ ratio and pTau. Conclusions: The results substantiate the relevance of Aβ1-42 for memory deficits and support the amyloid cascade hypothesis for Alzheimer's dementia (AD). Our data suggest other pathomechanisms for visuospatial impairments in AD.
Collapse
Affiliation(s)
- Martin Römer
- Department of Neurology, Centre for Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40629 Düsseldorf, Germany; (M.R.); (K.M.-S.)
| | | | - Katharina Müller-Schmitz
- Department of Neurology, Centre for Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40629 Düsseldorf, Germany; (M.R.); (K.M.-S.)
| | - Rüdiger J. Seitz
- Department of Neurology, Centre for Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, 40629 Düsseldorf, Germany; (M.R.); (K.M.-S.)
| |
Collapse
|
154
|
Ghosh P, Mukhopadhyay S, Kandasamy T, Mondal S, Ghosh SS, Iyer PK. Multifunctional hydroxyquinoline-derived turn-on fluorescent probe for Alzheimer's disease detection and therapy. J Mater Chem B 2025; 13:1412-1423. [PMID: 39679875 DOI: 10.1039/d4tb01740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Understanding molecular motifs that can interfere with amyloid fibrillation through non-covalent interactions is essential for addressing abnormal protein aggregation and associated human diseases. The pursuit of efficient diagnostic and treatment approaches for Alzheimer's disease (AD) has resulted in the development of M8HQ, a multifaceted small molecule turn-on probe derived from 8-hydroxyquinoline with versatile capabilities. M8HQ shows a strong affinity for amyloid beta (Aβ) fibrils, and its ability to target lysosomes enhances therapeutic precision by localizing within these organelles. This localization is essential for restoring cellular balance and maintaining LAMP1 expression, both of which are crucial for addressing AD. It also displays the ability to disaggregate Aβ fibrils and inhibit their formation, thus addressing therapeutic processes in AD progression. M8HQ further blocks reactive oxygen species (ROS)-mediated apoptosis, providing neuroprotective effects. Additionally, it chelates metal ions like Cu(II) and Fe(III), mitigating metal-induced aggregation and oxidative stress. Molecular docking and simulation studies have elucidated the interactions between M8HQ and Aβ, confirming its binding efficacy and stability. These combined properties highlight M8HQ's potential as a comprehensive diagnostic and therapeutic tool for AD.
Collapse
Affiliation(s)
- Priyam Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Sayantani Mukhopadhyay
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Thirukumaran Kandasamy
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Subrata Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Siddhartha Sankar Ghosh
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Science and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Science and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
155
|
Silva CFM, Guerrinha APDDMS, Carvalho S, Pinto DCGA, Silva AMS. 1,3,5-Triazine: A Promising Molecular Scaffold for Novel Agents for the Treatment of Alzheimer's Disease. Int J Mol Sci 2025; 26:882. [PMID: 39940653 PMCID: PMC11817377 DOI: 10.3390/ijms26030882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Currently, Alzheimer's disease (AD) is one of the most frequent forms of dementia. From a molecular perspective, the molecular characteristics that better define this disease consist of abnormal protein deposits between neuronal cells, namely senile plaques (SPs) and neurofibrillary tangles (NFTs), consisting of protein aggregates of amyloid-β and hyperphosphorylated tau protein, respectively. In addition to these protein aggregates, a third molecular hallmark of AD consists of depleted neurotransmitter acetylcholine levels. To date, the treatments developed for this disease are mostly focused on the use of AChE inhibitors, presenting only a symptomatic approach against the disease instead of a cure. Triazines are nitrogen-containing heterocyclic compounds that, throughout the years, have attracted a lot of curiosity from medicinal chemists for presenting numerous biological properties and being widely present in nature. In particular, this class of compounds has been associated with inhibiting several biological targets, emerging as a promising class for developing new pharmacological agents. However, there is still a scarcity of knowledge regarding the potential of this type of compound against any of the hallmarks of AD. For this reason, this paper intends to fulfill this absence by highlighting the potential of a subclass of triazines, 1,3,5-triazines (sym-triazines), as promising molecules for developing novel AD treatments. Thus, an in-depth analysis of 1,3,5-triazine derivatives is performed regarding its inhibitory activity against AChE (cholinergic hypothesis) and its capability to inhibit amyloid-β formation and aggregation (amyloid hypothesis). Through this analysis, it is possible to indicate some structural features optimal for each described activity, a compilation that we believe to be essential for the scientific community in this never-ending pursuit.
Collapse
Affiliation(s)
| | | | | | | | - Artur M. S. Silva
- Laboratório Associado para a Química Verde-Rede de Química e Tecnologia (LAQV-REQUIMTE), Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (C.F.M.S.); (A.P.D.d.M.S.G.); (S.C.); (D.C.G.A.P.)
| |
Collapse
|
156
|
Cacabelos R, Martínez-Iglesias O, Cacabelos N, Carrera J, Rodríguez D, Naidoo V. The impact of genetic variability on Alzheimer's therapies: obstacles for pharmacogenetic progress. Expert Opin Drug Metab Toxicol 2025:1-28. [PMID: 39835706 DOI: 10.1080/17425255.2024.2433626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/20/2024] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Genetic load influences the therapeutic response to conventional drugs in Alzheimer's disease (AD). Pharmacogenetics (PGx) is the best option to reduce drug-drug interactions and adverse drug reactions in patients undergoing polypharmacy regimens. However, there are important limitations that make it difficult to incorporate pharmacogenetics into routine clinical practice. AREAS COVERED This article analyzes the pharmacogenetic apparatus made up of pathogenic, mechanistic, metabolic, transporter, and pleiotropic genes responsible for the efficacy and safety of pharmacological treatment, the impact of genetic load on the outcome of multifactorial treatments, and practical aspects for the effective use of PGx. EXPERT OPINION Over 120 genes are closely associated with AD. There is an accumulation of cerebrovascular (CVn) and neurodegenerative (ADn) genes in AD. APOE-4 carriers accumulate more deleterious genetic load related to other CVn and ADn genes, develop the disease earlier, and are at a biological disadvantage compared to APOE-4 non-carriers. CYP2D6-PMs and APOE-4 carriers are the worst responders to anti-dementia drugs. Some limitations hinder the implementation of PGx in clinical practice, including lack of pharmacogenetic information for many drugs, low number of genes in PGx screening protocols, and educational deficiencies in the medical community regarding PGx and genomic medicine.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Corunna, Spain
| | - Olaia Martínez-Iglesias
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Corunna, Spain
| | - Natalia Cacabelos
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Corunna, Spain
| | - Jairo Carrera
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Corunna, Spain
| | - Daniel Rodríguez
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Corunna, Spain
| | - Vinogran Naidoo
- EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Corunna, Spain
| |
Collapse
|
157
|
Debatisse J, Leng F, Ashraf A, Edison P. Cortical Diffusivity, a Biomarker for Early Neuronal Damage, Is Associated with Amyloid-β Deposition: A Pilot Study. Cells 2025; 14:155. [PMID: 39936947 PMCID: PMC11817142 DOI: 10.3390/cells14030155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 02/13/2025] Open
Abstract
Pathological alterations in Alzheimer's disease (AD) begin several years prior to symptom onset. Cortical mean diffusivity (cMD) may be used as a measure of early grey matter damage in AD as it reflects the breakdown of microstructural barriers preceding volumetric changes and affecting cognitive function. We investigated cMD changes early in the disease trajectory and evaluated the influence of amyloid-β (Aβ) and tau deposition. In this cross-sectional study, we analysed multimodal PET, DTI, and MRI data of 87 participants, and stratified them into Aβ-negative and -positive, cognitively normal, mildly cognitively impaired, and AD patients. cMD was significantly increased in Aβ-positive MCI and AD compared with CN in the frontal, parietal, temporal cortex, hippocampus, and medial temporal lobe. cMD was significantly correlated with cortical thickness only in patients without Aβ deposition but not in Aβ-positive patients. Our results suggest that cMD is an early marker of neuronal damage since it is observed simultaneously with Aβ deposition and is correlated with cortical thickness only in subjects without Aβ deposition. cMD changes may be driven by Aβ but not tau, suggesting that direct Aβ toxicity or associated inflammation causes damage to neurons. cMD may provide information about early microstructural changes before macrostructural changes.
Collapse
Affiliation(s)
- Justine Debatisse
- Division of Neurology, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; (J.D.); (F.L.); (A.A.)
| | - Fangda Leng
- Division of Neurology, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; (J.D.); (F.L.); (A.A.)
| | - Azhaar Ashraf
- Division of Neurology, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; (J.D.); (F.L.); (A.A.)
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK; (J.D.); (F.L.); (A.A.)
- School of Medicine, Cardiff University, Wales CF14 4YS, UK
| |
Collapse
|
158
|
Ferreira da Silva A, Gomes A, Gonçalves LMD, Fernandes A, Almeida AJ. Exploring the Link Between Periodontitis and Alzheimer's Disease-Could a Nanoparticulate Vaccine Break It? Pharmaceutics 2025; 17:141. [PMID: 40006510 PMCID: PMC11858903 DOI: 10.3390/pharmaceutics17020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, as approximately 55 million people worldwide are affected, with a significant tendency to increase. It reveals three main pathological features: amyloid plaques, neurofibrillary tangles, and neuroinflammation, responsible for the neurodegenerative changes that slowly lead to deterioration of personality and cognitive control. Over a century after the first case report, effective treatments remain elusive, likely due to an incomplete understanding of the precise mechanisms driving its pathogenesis. Recent studies provide growing evidence of an infectious aetiology for AD, a hypothesis reinforced by findings that amyloid beta functions as an antimicrobial peptide. Among the microorganisms already associated with AD, Porphyromonas gingivalis (Pg), the keystone pathogen of periodontitis (PeD), has received particular attention as a possible aetiological agent for AD development. Herein, we review the epidemiological and genetic evidence linking PeD and Pg to AD, highlighting the identification of periodontal bacteria in post mortem analysis of AD patients' brains and identifying putative mechanistic links relevant to the biological plausibility of the association. With the focus on AD research shifting from cure to prevention, the proposed mechanisms linking PeD to AD open the door for unravelling new prophylactic approaches able to reduce the global burden of AD. As hypothesised in this review, these could include a bionanotechnological approach involving the development of an oral nanoparticulate vaccine based on Pg-specific antigens. Such a vaccine could prevent Pg antigens from progressing to the brain and triggering AD pathology, representing a promising step toward innovative and effective AD prevention.
Collapse
Affiliation(s)
| | | | | | | | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal; (A.F.d.S.); (A.G.); (L.M.D.G.); (A.F.)
| |
Collapse
|
159
|
Ramsden CE, Cutler RG, Li X, Keyes GS. Lipid-protecting disulfide bridges are the missing molecular link between ApoE4 and sporadic Alzheimer's disease in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633633. [PMID: 39868210 PMCID: PMC11761642 DOI: 10.1101/2025.01.17.633633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
As the principal lipid transporter in the human brain, apolipoprotein E (ApoE) is tasked with the transport and protection of highly vulnerable lipids required to support and remodel neuronal membranes, in a process that is dependent on ApoE receptors. Human APOE allele variants that encode proteins differing only in the number of cysteine (Cys)-to-arginine (Arg) exchanges (ApoE2 [2 Cys], ApoE3 [1 Cys], ApoE4 [0 Cys]) comprise the strongest genetic risk factor for sporadic Alzheimer's disease (AD); however, the specific molecular feature(s) and resultant mechanisms that underlie these isoform-dependent effects are unknown. One signature feature of Cys is the capacity to form disulfide (Cys-Cys) bridges, which are required to form disulfide bridge-linked dimers and multimers. Here we propose the overarching hypothesis that the super-ability (for ApoE2), intermediate ability (for ApoE3) or inability (for ApoE4) to form lipid-protecting intermolecular disulfide bridges, is the central molecular determinant accounting for the disparate effects of APOE alleles on AD risk and amyloid-β and Tau pathologies in humans. We posit that presence and abundance of Cys in human ApoE3 and ApoE2 respectively, conceal and protect vulnerable lipids transported by ApoE from peroxidation by enabling formation of ApoE homo-dimers/multimers and heteromeric ApoE complexes such as ApoE-ApoJ and ApoE-ApoD. We thus propose that the inability to form intermolecular disulfide bridges makes ApoE4-containing lipoproteins uniquely vulnerable to peroxidation and its downstream consequences. Consistent with our model, we found that brain-enriched polyunsaturated fatty acid-containing phospholipids induce disulfide-dependent dimerization and multimerization of ApoE3 and ApoE2 (but not ApoE4). By contrast, incubation with the peroxidation-resistant lipid DMPC or cholesterol alone had minimal effects on dimerization. These novel concepts and findings are integrated into our unifying model implicating peroxidation of ApoE-containing lipoproteins, with consequent ApoE receptor-ligand disruption, as the initiating molecular events that ultimately lead to AD in humans.
Collapse
Affiliation(s)
- Christopher E. Ramsden
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD, 21224, USA
- Intramural Program of the National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Roy G. Cutler
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Xiufeng Li
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD, 21224, USA
| | - Gregory S. Keyes
- Lipid Peroxidation Unit, Laboratory of Clinical Investigation, National Institute on Aging, NIH 251 Bayview Blvd., Baltimore, MD, 21224, USA
| |
Collapse
|
160
|
Ma X, Wang XM, Tang GZ, Wang Y, Liu XC, Wang SD, Peng P, Qi XH, Qin XY, Wang YJ, Wang CW, Zhou JN. Alterations of amino acids in older adults with Alzheimer's Disease and Vascular Dementia. Amino Acids 2025; 57:10. [PMID: 39825947 PMCID: PMC11742867 DOI: 10.1007/s00726-024-03442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/31/2024] [Indexed: 01/20/2025]
Abstract
Metabolomics provide a promising tool for understanding dementia pathogenesis and identifying novel biomarkers. This study aimed to identify amino acid biomarkers for Alzheimer's Disease (AD) and Vascular Dementia (VD). By amino acid metabolomics, the concentrations of amino acids were determined in the serum of AD and VD patients as well as age-matched healthy controls. Several differences in the concentration of amino acids were observed in AD patients compared to both healthy controls and VD patients. However, no significant distinction was found between healthy controls and VD patients. Considering comorbidities, cystine levels were higher in AD than in VD among non-diabetic patients, but not in those with diabetes. Notably, creatine, spermidine, cystine, and tyrosine demonstrated favorable results in decision curve analyses and good discriminative performances, suggesting their potential for clinical application. These fundings give novel perspectives of serum amino acids for predicting metabolic pathways in AD and VD pathogenesis.
Collapse
Affiliation(s)
- Xin Ma
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Xin-Meng Wang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Guo-Zhang Tang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Yi Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Xue-Chun Liu
- Department of Neurology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, Anhui, 230011, P. R. China
| | - Shuai-Deng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Peng Peng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- First School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Xiu-Hong Qi
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, 230026, P. R. China
| | - Xin-Ya Qin
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, Anhui, 230026, P. R. China
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| | - Yue-Ju Wang
- Department of Geriatrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, P. R. China.
| | - Chen-Wei Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, P. R. China.
| | - Jiang-Ning Zhou
- Institute of Brain Science, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| |
Collapse
|
161
|
Flynn CM, Omoluabi T, Janes AM, Rodgers EJ, Torraville SE, Negandhi BL, Nobel TE, Mayengbam S, Yuan Q. Targeting early tau pathology: probiotic diet enhances cognitive function and reduces inflammation in a preclinical Alzheimer's model. Alzheimers Res Ther 2025; 17:24. [PMID: 39827356 PMCID: PMC11742226 DOI: 10.1186/s13195-025-01674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) remains incurable, yet its long prodromal phase offers a crucial window for early intervention. Pretangle tau, a precursor to neurofibrillary tangles, plays a key role in early AD pathogenesis. Intervening in pretangle tau pathology could significantly delay the progression of AD. The gut-brain axis, increasingly recognized as a contributor to AD, represents a promising therapeutic target due to its role in regulating neuroinflammation and neurodegeneration. While probiotics have shown cognitive benefits in amyloid-centered AD models, their effect on pretangle tau pathology remains elusive. METHODS This study evaluates the effects of probiotics in a rat model of preclinical AD, specifically targeting hyperphosphorylated pretangle tau in the locus coeruleus. TH-CRE rats (N = 47; 24 females and 23 males) received either AAV carrying pseudophosphorylated human tau (htauE14) or a control virus at 3 months of age. Probiotic or control diets were administered at 9-12 months, with blood and fecal samples collected for ELISA and 16S rRNA gene sequencing. Behavioral assessments were conducted at 13-14 months, followed by analysis of brain inflammation, blood-brain barrier integrity, and GSK-3β activation. RESULTS Rats expressing pseudophosphorylated tau displayed impairment in spatial Y-maze (F1,39 = 4.228, p = 0.046), spontaneous object location (F1,39 = 6.240, p = 0.017), and olfactory discrimination (F1,39 = 7.521, p = 0.009) tests. Phosphorylation of tau at S262 (t3 = -4.834) and S356 (t3 = -3.258) in the locus coeruleus was parallelled by GSK-3β activation in the hippocampus (F1,24 = 10.530, p = 0.003). Probiotic supplementation increased gut microbiome diversity (F1,31 = 8.065, p = 0.007) and improved bacterial composition (F1,31 = 3.4867, p = 0.001). The enhancement in gut microbiomes was associated with enhanced spatial learning (p < 0.05), reduced inflammation indexed by Iba-1 (F1,25 = 5.284, p = 0.030) and CD-68 (F1,26 = 8.441, p = 0.007) expression, and inhibited GSK-3β in female rats (p < 0.01 compared to control females). CONCLUSIONS This study underscores the potential of probiotics to modulate the gut-brain axis and mitigate pretangle tau-related pathology in preclinical AD. Probiotic supplementation could offer a novel early intervention strategy for AD, highlighting the pivotal role of gut health in neurodegeneration.
Collapse
Affiliation(s)
- Cassandra M Flynn
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Tamunotonye Omoluabi
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Alyssa M Janes
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
- Biochemistry Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Emma J Rodgers
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
- Psychology Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Sarah E Torraville
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Brenda L Negandhi
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Timothy E Nobel
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Shyamchand Mayengbam
- Biochemistry Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
162
|
Christodoulou CC, Pitsillides M, Hadjisavvas A, Zamba-Papanicolaou E. Dietary Intake, Mediterranean and Nordic Diet Adherence in Alzheimer's Disease and Dementia: A Systematic Review. Nutrients 2025; 17:336. [PMID: 39861466 PMCID: PMC11767999 DOI: 10.3390/nu17020336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Dementia is not a single disease but an umbrella term that encompasses a range of symptoms, such as memory loss and cognitive impairments, which are severe enough to disrupt daily life. One of the most common forms of dementia is Alzheimer's Disease (AD), a complex neurodegenerative condition influenced by both genetic and environmental factors. Recent research has highlighted diet as a potential modifiable risk factor for AD. Decades of research have explored the role of dietary patterns, including the Mediterranean Diet (MD) and its components, in neuroprotection and cognitive health. Systematic review examines studies investigating the impact of the Mediterranean Diet, Mediterranean-like diets, the Nordic Diet (ND), dietary intake patterns, and specific components such as extra virgin olive oil and rapeseed oil on cognitive function, disease onset, and progression in AD and dementia. METHODS A comprehensive search of PubMed, the Directory of Open Access Journals, and the Social Science Research Network was conducted independently by two reviewers using predefined search terms. The search period included studies from 2006 to 2024. Eligible studies meeting the inclusion criteria were systematically reviewed, yielding 88 studies: 85 focused on the MD and its relationship to AD and dementia, while only 3 investigated the ND. RESULTS The findings suggest that adherence to the Mediterranean and Nordic diets is generally associated with improved cognitive function and delayed cognitive decline and that adherence to both these diets can improve cognitive function. Some studies identified that higher legume consumption decreased dementia incidence, while fruits and vegetables, carbohydrates, and eggs lowered dementia prevalence. Most studies demonstrated that high MD or ND adherence was associated with better cognitive function and a lower risk of poor cognition in comparison to individuals with lower MD or ND adherence. However, some studies reported no significant benefits of the MD on cognitive outcomes, while two studies indicated that higher red meat consumption was linked to better cognitive function. CONCLUSION Despite promising trends, the evidence remains varying across studies, underscoring the need for further research to establish definitive associations between diet and cognitive function. These findings highlight the essential role of dietary interventions in the prevention and management of dementia and AD, therefore offering critical insights into the underlying mechanisms by which the diet may impact brain health.
Collapse
Affiliation(s)
- Christiana C. Christodoulou
- Neuroepidemiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (C.C.C.); (M.P.)
| | - Michalis Pitsillides
- Neuroepidemiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (C.C.C.); (M.P.)
| | - Andreas Hadjisavvas
- Cancer Genetics, Therapeutics and Ultrastructural Pathology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus
| | - Eleni Zamba-Papanicolaou
- Neuroepidemiology Department, The Cyprus Institute of Neurology and Genetics, Nicosia 2371, Cyprus; (C.C.C.); (M.P.)
| |
Collapse
|
163
|
Ortiz-Islas E, Montes P, Rodríguez-Pérez CE, Ruiz-Sánchez E, Sánchez-Barbosa T, Pichardo-Rojas D, Zavala-Tecuapetla C, Carvajal-Aguilera K, Campos-Peña V. Evolution of Alzheimer's Disease Therapeutics: From Conventional Drugs to Medicinal Plants, Immunotherapy, Microbiotherapy and Nanotherapy. Pharmaceutics 2025; 17:128. [PMID: 39861773 PMCID: PMC11768419 DOI: 10.3390/pharmaceutics17010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) represents an escalating global health crisis, constituting the leading cause of dementia among the elderly and profoundly impairing their quality of life. Current FDA-approved drugs, such as rivastigmine, donepezil, galantamine, and memantine, offer only modest symptomatic relief and are frequently associated with significant adverse effects. Faced with this challenge and in line with advances in the understanding of the pathophysiology of this neurodegenerative condition, various innovative therapeutic strategies have been explored. Here, we review novel approaches inspired by advanced knowledge of the underlying pathophysiological mechanisms of the disease. Among the therapeutic alternatives, immunotherapy stands out, employing monoclonal antibodies to specifically target and eliminate toxic proteins implicated in AD. Additionally, the use of medicinal plants is examined, as their synergistic effects among components may confer neuroprotective properties. The modulation of the gut microbiota is also addressed as a peripheral strategy that could influence neuroinflammatory and degenerative processes in the brain. Furthermore, the therapeutic potential of emerging approaches, such as the use of microRNAs to regulate key cellular processes and nanotherapy, which enables precise drug delivery to the central nervous system, is analyzed. Despite promising advances in these strategies, the incidence of Alzheimer's disease continues to rise. Therefore, it is proposed that achieving effective treatment in the future may require the integration of combined approaches, maximizing the synergistic effects of different therapeutic interventions.
Collapse
Affiliation(s)
- Emma Ortiz-Islas
- Laboratorio de Neurofarmacologia Molecular y Nanotecnologia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Pedro Montes
- Laboratorio de Neuroinmunoendocrinología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacologia Molecular y Nanotecnologia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (E.O.-I.); (C.E.R.-P.)
| | - Elizabeth Ruiz-Sánchez
- Laboratorio de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Talía Sánchez-Barbosa
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Diego Pichardo-Rojas
- Programa Prioritario de Epilepsia, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | - Cecilia Zavala-Tecuapetla
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
| | - Karla Carvajal-Aguilera
- Laboratorio de Nutrición Experimental, Instituto Nacional de Pediatría, Mexico City 04530, Mexico;
| | - Victoria Campos-Peña
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez, Mexico City 14269, Mexico; (T.S.-B.); (C.Z.-T.)
| |
Collapse
|
164
|
Menendez-Gonzalez M. Targeting Soluble Amyloid Oligomers in Alzheimer's Disease: A Hypothetical Model Study Comparing Intrathecal Pseudodelivery of mAbs Against Intravenous Administration. Diseases 2025; 13:17. [PMID: 39851481 PMCID: PMC11764272 DOI: 10.3390/diseases13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVE Neurotoxic soluble amyloid-β (Aβ) oligomers are key drivers of Alzheimer's pathology, with evidence suggesting that early targeting of these soluble forms may slow disease progression. Traditional intravenous (IV) monoclonal antibodies (mAbs) face challenges, including limited brain penetration and risks such as amyloid-related imaging abnormalities (ARIA). This hypothetical study aimed to model amyloid dynamics in early-to-moderate Alzheimer's disease (AD) and compare the efficacy of IV mAn with intrathecal pseudodelivery, a novel method that confines mAbs in a subcutaneous reservoir for selective amyloid clearance in cerebrospinal fluid (CSF) without systemic exposure. METHODS A mathematical framework was employed to simulate Aβ dynamics in patients with early-to-moderate AD. Two therapeutic approaches were compared: IV mAb and intrathecal pseudodelivery of mAb. The model incorporated amyloid kinetics, mAb affinity, protofibril size, and therapy-induced clearance rates to evaluate the impact of both methods on amyloid reduction, PET negativity timelines, and the risk of ARIA. RESULTS Intrathecal pseudodelivery significantly accelerated Aβ clearance compared to IV administration, achieving amyloid PET scan negativity by month 132, as opposed to month 150 with IV mAb. This method demonstrated no ARIA risk and reduced amyloid reaccumulation. By targeting soluble Aβ species more effectively, intrathecal pseudodelivery emerged as a safer and more efficient strategy for early AD intervention. CONCLUSIONS Intrathecal pseudodelivery offers a promising alternative to IV mAbs, overcoming challenges associated with blood-brain barrier penetration and systemic side effects. Further research should focus on optimizing this approach and exploring combination therapies to enhance clinical outcomes in AD.
Collapse
Affiliation(s)
- Manuel Menendez-Gonzalez
- Departamento de Medicina, Facultad de Ciencias de la Salud, Universidad de Oviedo, ES-33006 Oviedo, Spain;
- Servicio de Neurología, Hospital Universitario Central de Asturias, ES-33011 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), ES-33011 Oviedo, Spain
| |
Collapse
|
165
|
Wijaya SR, Martins A, Morris K, Quinn SD, Krauss TF. Resonant Young's Slit Interferometer for Sensitive Detection of Low-Molecular-Weight Biomarkers. BIOSENSORS 2025; 15:50. [PMID: 39852100 PMCID: PMC11763694 DOI: 10.3390/bios15010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/13/2024] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
The detection of low-molecular-weight biomarkers is essential for diagnosing and managing various diseases, including neurodegenerative conditions such as Alzheimer's disease. A biomarker's low molecular weight is a challenge for label-free optical modalities, as the phase change they detect is directly proportional to the mass bound on the sensor's surface. To address this challenge, we used a resonant Young's slit interferometer geometry and implemented several innovations, such as phase noise matching and optimisation of the fringe spacing, to maximise the signal-to-noise ratio. As a result, we achieved a limit of detection of 2.9 × 10-6 refractive index units (RIU). We validated our sensor's low molecular weight capability by demonstrating the detection of Aβ-42, a 4.5 kDa peptide indicative of Alzheimer's disease, and reached the clinically relevant pg/mL regime. This system builds on the guided mode resonance modality we previously showed to be compatible with handheld operation using low-cost components. We expect this development will have far-reaching applications beyond Aβ-42 and become a workhorse tool for the label-free detection of low-molecular-weight biomarkers across a range of disease types.
Collapse
Affiliation(s)
- Stefanus Renaldi Wijaya
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK; (A.M.); (K.M.); (S.D.Q.); (T.F.K.)
| | - Augusto Martins
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK; (A.M.); (K.M.); (S.D.Q.); (T.F.K.)
| | - Katie Morris
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK; (A.M.); (K.M.); (S.D.Q.); (T.F.K.)
| | - Steven D. Quinn
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK; (A.M.); (K.M.); (S.D.Q.); (T.F.K.)
- York Biomedical Research Institute, University of York, York YO10 5DD, UK
| | - Thomas F. Krauss
- School of Physics, Engineering and Technology, University of York, York YO10 5DD, UK; (A.M.); (K.M.); (S.D.Q.); (T.F.K.)
| |
Collapse
|
166
|
Gladen-Kolarsky N, Neff CJ, Hack W, Brandes MS, Wiedrick J, Meza-Romero R, Lockwood DR, Quinn JF, Offner H, Vandenbark AA, Gray NE. The CD74 inhibitor DRhQ improves short-term memory and mitochondrial function in 5xFAD mouse model of Aβ accumulation. Metab Brain Dis 2025; 40:95. [PMID: 39808341 DOI: 10.1007/s11011-024-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/29/2024] [Indexed: 01/16/2025]
Abstract
Neuroinflammation and mitochondrial dysfunction are early events in Alzheimer's disease (AD) and contribute to neurodegeneration and cognitive impairment. Evidence suggests that the inflammatory axis mediated by macrophage migration inhibitory factor (MIF) binding to its receptor, CD74, plays an important role in many central nervous system (CNS) disorders such as AD. Our group has developed DRhQ, a novel CD74 binding construct which competitively inhibits MIF binding, blocks macrophage activation and migration into the CNS, enhances anti-inflammatory microglia cell numbers and reduces pro-inflammatory gene expression. Here, we evaluate its effects in amyloid-β (Aβ) overexpressing mice. 5xFAD mice and their wild type littermates were treated with DRhQ (100 µg) or vehicle for 4 weeks. DRhQ improved cognition and cortical mitochondrial function in both male and female 5xFAD mice. Aβ plaque burden in 5xFAD animals was not robustly impacted by DRhQ treatment in either the hippocampus or the cortex. Cortical microglial activation was similarly not apparently affected by DRhQ treatment, although in the hippocampus there was evidence of a reduction in activated microglia for female 5xFAD mice. Future studies are needed to confirm this possible sex-dependent response on microglial activation, as well as to optimize the dose and timing of DRhQ treatment and gain a better understanding of its mechanism of action in AD.
Collapse
Affiliation(s)
- Noah Gladen-Kolarsky
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Cody J Neff
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Wyatt Hack
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Mikah S Brandes
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Jack Wiedrick
- Biostatistics & Design Program, OHSU-PSU School of Public Health, Portland, OR, 97201, USA
| | - Roberto Meza-Romero
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, 97239, USA
| | - Denesa R Lockwood
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, 97239, USA
| | - Joseph F Quinn
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Department of Neurology and Parkinson's Disease Research Education and Clinical Care Center (PADRECC), VA Portland Healthcare System, Portland, OR, 97239, USA
| | - Halina Offner
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, 97239, USA
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Arthur A Vandenbark
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
- Neuroimmunology Research, VA Portland Healthcare System, Portland, OR, 97239, USA
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Nora E Gray
- Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| |
Collapse
|
167
|
Koppula S, Wankhede N, Kyada A, Ballal S, Arya R, Singh AK, Gulati M, Sute A, Sarode S, Polshettiwar S, Marde V, Taksande B, Upaganlawar A, Fareed M, Umekar M, Kopalli SR, Kale M. The gut-brain axis: Unveiling the impact of xenobiotics on neurological health and disorders. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111237. [PMID: 39732317 DOI: 10.1016/j.pnpbp.2024.111237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/12/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The Gut-Brain Axis (GBA) is a crucial link between the gut microbiota and the central nervous system. Xenobiotics, originating from diverse sources, play a significant role in shaping this interaction. This review examines how these compounds influence neurotransmitter dynamics within the GBA. Environmental pollutants can disrupt microbial populations, impacting neurotransmitter synthesis-especially serotonin, gamma-aminobutyric acid (GABA), and dopamine pathways. Such disruptions affect mood regulation, cognition, and overall neurological function. Xenobiotics also contribute to the pathophysiology of neurological disorders, with changes in serotonin levels linked to mood disorders and imbalances in GABA and dopamine associated with anxiety, stress, and reward pathway disorders. These alterations extend beyond the GBA, leading to complications in neurological health, including increased risk of neurodegenerative diseases due to neuroinflammation triggered by neurotransmitter imbalances. This review provides a comprehensive overview of how xenobiotics influence the GBA and their implications for neurological well-being.
Collapse
Affiliation(s)
- Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea
| | - Nitu Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Ashishkumar Kyada
- Marwadi University Research Center, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Marwadi University, Rajkot, -360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Renu Arya
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | | | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 1444411, India; ARCCIM, Faculty of Health, University of Technology Sydney, Ultimo, NSW 20227, Australia
| | - Astha Sute
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Sanskruti Sarode
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Shruti Polshettiwar
- National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, India
| | - Vaibhav Marde
- Indian Institute of Technology (IIT), Hyderabad, Telangana 502284, India
| | - Brijesh Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Aman Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Mohammad Fareed
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia
| | - Milind Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Mayur Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
168
|
Rana M, Terpstra K, Gutierrez C, Xu K, Arya H, Bhatt TK, Mirica LM, Sharma AK. Evaluation of Anti-Alzheimer's Potential of Azo-Stilbene-Thioflavin-T derived Multifunctional Molecules: Synthesis, Metal and Aβ Species Binding and Cholinesterase Activity. Chemistry 2025; 31:e202402748. [PMID: 39476334 DOI: 10.1002/chem.202402748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024]
Abstract
Inhibition of amyloid β (Aβ) aggregation and cholinesterase activity are two major therapeutic targets for Alzheimer's disease (AD). Multifunctional Molecules (MFMs) specifically designed to address other contributing factors, such as metal ion induced abnormalities, oxidative stress, toxic Aβ aggregates etc. are very much required. Several multifunctional molecules have been developed using different molecular scaffolds. Reported herein is a new series of four MFMs based on ThT, Azo-stilbene and metal ion chelating pockets. The synthesis, characterization, and metal chelation ability for [Cu2+ and Zn2+] are presented herein. Furthermore, we explored their multifunctionality w.r.t. to their (i) recognition of Aβ aggregates and monomeric form, (ii) utility in modulating the aggregation pathways of both metal-free and metal-bound amyloid-β, (iii) ex-vivo staining of amyloid plaques in 5xFAD mice brain sections, (iv) ability to scavenge free radicals and (v) ability to inhibit cholinesterase activity. Molecular docking studies were also performed with Aβ peptides and acetylcholinesterase enzyme to understand the observed inhibitory effect on activity. Overall, the studies presented here establish the multifunctional nature of these molecules and qualify them as promising candidates for furthermore investigation in the quest for finding Alzheimer's disease treatment.
Collapse
Affiliation(s)
- Monika Rana
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Karna Terpstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Citlali Gutierrez
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Kerui Xu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Tarun K Bhatt
- Department of Biotechnology, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois, 61801, USA
| | - Anuj K Sharma
- Department of Chemistry, Central University of Rajasthan, Bandarsindri, Ajmer, 305817, India
| |
Collapse
|
169
|
Kuziak A, Heczko P, Pietrzyk A, Strus M. Iron Homeostasis Dysregulation, Oro-Gastrointestinal Microbial Inflammatory Factors, and Alzheimer's Disease: A Narrative Review. Microorganisms 2025; 13:122. [PMID: 39858890 PMCID: PMC11767265 DOI: 10.3390/microorganisms13010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive neurodegenerative disorder that profoundly impacts cognitive function and the nervous system. Emerging evidence highlights the pivotal roles of iron homeostasis dysregulation and microbial inflammatory factors in the oral and gut microbiome as potential contributors to the pathogenesis of AD. Iron homeostasis disruption can result in excessive intracellular iron accumulation, promoting the generation of reactive oxygen species (ROS) and oxidative damage. Additionally, inflammatory agents produced by pathogenic bacteria may enter the body via two primary pathways: directly through the gut or indirectly via the oral cavity, entering the bloodstream and reaching the brain. This infiltration disrupts cellular homeostasis, induces neuroinflammation, and exacerbates AD-related pathology. Addressing these mechanisms through personalized treatment strategies that target the underlying causes of AD could play a critical role in preventing its onset and progression.
Collapse
Affiliation(s)
- Agata Kuziak
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, św. Łazarza 16 Street, 31-008 Cracow, Poland;
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Piotr Heczko
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Agata Pietrzyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland; (P.H.); (A.P.)
| |
Collapse
|
170
|
Wang M, Zhang H, Liang J, Huang J, Wu T, Chen N. Calcium signaling hypothesis: A non-negligible pathogenesis in Alzheimer's disease. J Adv Res 2025:S2090-1232(25)00026-8. [PMID: 39793962 DOI: 10.1016/j.jare.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/23/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) presents a significant challenge to global healthcare systems, with an exacerbation by an aging population. Although the plethora of hypotheses are proposed to elucidate the underlying mechanisms of AD, from amyloid-beta (Aβ) accumulation and Tau protein aggregation to neuroinflammation, a comprehensive understanding of its pathogenesis remains elusive. Recent research has highlighted the critical role of calcium (Ca2+) signaling pathway in the progression of AD, indicating a complex interplay between Ca2+ dysregulation and various pathological processes. AIM OF REVIEW This review aims to consolidate the current understanding of the role of Ca2+ signaling dysregulation in AD, thus emphasizing its central role amidst various pathological hypotheses. We aim to evaluate the potential of the Ca2+ signaling hypothesis to unify existing theories of AD pathogenesis and explore its implications for developing innovative therapeutic strategies through targeting Ca2+ dysregulation. KEY SCIENTIFIC CONCEPTS OF REVIEW The review focuses on three principal concepts. First, the indispensable role of Ca2+ homeostasis in neuronal function and its disruption in AD. Second, the interaction between Ca2+ signaling dysfunction and established AD hypotheses posited that Ca2+ dysregulation is a unifying pathway. Third, the dual role of Ca2+ in neurodegeneration and neuroprotection, highlighting the nuanced effects of Ca2+ levels on AD pathology.
Collapse
Affiliation(s)
- Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
171
|
De Cleene N, Schwarzová K, Labrecque S, Cerejo C, Djamshidian A, Seppi K, Heim B. Olfactory dysfunction as potential biomarker in neurodegenerative diseases: a narrative review. Front Neurosci 2025; 18:1505029. [PMID: 39840019 PMCID: PMC11747286 DOI: 10.3389/fnins.2024.1505029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
Neurodegenerative diseases represent a group of disorders characterized by progressive degeneration of neurons in the central nervous system, leading to a range of cognitive, motor, and sensory impairments. In recent years, there has been growing interest in the association between neurodegenerative diseases and olfactory dysfunction (OD). Characterized by a decline in the ability to detect or identify odors, OD has been observed in various conditions, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS). This phenomenon often precedes the onset of other clinical symptoms, suggesting its potential utility as an early marker or prodromal symptom of neurodegenerative diseases. This review provides a vast literature overview on the current knowledge of OD in PD, AD, ALS, and HD in order to evaluate its potential as a biomarker, particularly in the early and prodromal stages of these diseases. We summarize the most common methods used to measure olfactory function and delve into neuropathological correlations and the alterations in neurotransmitter systems associated with OD in those neurodegenerative diseases, including differences in genetic variants if applicable, and cater to current pitfalls and shortcomings in the research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Beatrice Heim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
172
|
Santoro A, Ricci A, Rodriquez M, Buonocore M, D’Ursi AM. A Structural Effect of the Antioxidant Curcuminoids on the Aβ(1-42) Amyloid Peptide. Antioxidants (Basel) 2025; 14:53. [PMID: 39857387 PMCID: PMC11759820 DOI: 10.3390/antiox14010053] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/02/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Investigating amyloid-β (Aβ) peptides in solution is essential during the initial stages of developing lead compounds that can influence Aβ fibrillation while the peptide is still in a soluble state. The tendency of the Aβ(1-42) peptide to misfold in solution, correlated to the aetiology of Alzheimer's disease (AD), is one of the main hindrances to characterising its aggregation kinetics in a cell-mimetic environment. Moreover, the Aβ(1-42) aggregation triggers the unfolded protein response (UPR) in the endoplasmic reticulum (ER), leading to cellular dysfunction and multiple cell death modalities, exacerbated by reactive oxygen species (ROS), which damage cellular components and trigger inflammation. Antioxidants like curcumin, a derivative of Curcuma longa, help mitigate ER stress by scavenging ROS and enhancing antioxidant enzymes. Furthermore, evidence in the literature highlights the effect of curcumin on the secondary structure of Aβ(1-42). This explorative study investigates the Aβ(1-42) peptide conformational behaviour in the presence of curcumin and six derivatives using circular dichroism (CD) to explore their interactions with lipid bilayers, potentially preventing aggregate formation. The results suggest that the synthetic tetrahydrocurcumin (THC) derivative interacts with the amyloid peptide in all the systems presented, while cyclocurcumin (CYC) and bisdemethoxycurcumin (BMDC) only interact when the peptide is in a less stable conformation. Molecular dynamics simulations helped visualise the curcuminoids' effect in an aqueous system and hypothesise the importance of the peptide surface exposition to the solvent, differently modulated by the curcumin derivatives.
Collapse
Affiliation(s)
- Angelo Santoro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Antonio Ricci
- Fresenius Kabi iPSUM, Via San Leonardo, 23, 45010 Villadose, Italy;
| | - Manuela Rodriquez
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano, 49, 80131 Naples, Italy;
| | - Michela Buonocore
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
- Department of Chemical Sciences and Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, Strada Comunale Cintia, 80126 Naples, Italy
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| |
Collapse
|
173
|
Volloch V, Rits-Volloch S. Production of Amyloid-β in the Aβ-Protein-Precursor Proteolytic Pathway Is Discontinued or Severely Suppressed in Alzheimer's Disease-Affected Neurons: Contesting the 'Obvious'. Genes (Basel) 2025; 16:46. [PMID: 39858593 PMCID: PMC11764795 DOI: 10.3390/genes16010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
A notion of the continuous production of amyloid-β (Aβ) via the proteolysis of Aβ-protein-precursor (AβPP) in Alzheimer's disease (AD)-affected neurons constitutes both a cornerstone and an article of faith in the Alzheimer's research field. The present Perspective challenges this assumption. It analyses the relevant empirical data and reaches an unexpected conclusion, namely that in AD-afflicted neurons, the production of AβPP-derived Aβ is either discontinued or severely suppressed, a concept that, if proven, would fundamentally change our understanding of the disease. This suppression, effectively self-suppression, occurs in the context of the global inhibition of the cellular cap-dependent protein synthesis as a consequence of the neuronal integrated stress response (ISR) elicited by AβPP-derived intraneuronal Aβ (iAβ; hence self-suppression) upon reaching certain levels. Concurrently with the suppression of the AβPP proteolytic pathway, the neuronal ISR activates in human neurons, but not in mouse neurons, the powerful AD-driving pathway generating the C99 fragment of AβPP independently of AβPP. The present study describes molecular mechanisms potentially involved in these phenomena, propounds novel approaches to generate transgenic animal models of AD, advocates for the utilization of human neuronal cells-based models of the disease, makes verifiable predictions, suggests experiments designed to validate the proposed concept, and considers its potential research and therapeutic implications. Remarkably, it opens up the possibility that the conventional production of AβPP, BACE enzymes, and γ-secretase components is also suppressed under the neuronal ISR conditions in AD-affected neurons, resulting in the dyshomeostasis of AβPP. It follows that whereas conventional AD is triggered by AβPP-derived iAβ accumulated to the ISR-eliciting levels, the disease, in its both conventional and unconventional (triggered by the neuronal ISR-eliciting stressors distinct from iAβ) forms, is driven not (or not only) by iAβ produced in the AβPP-independent pathway, as we proposed previously, but mainly, possibly exclusively, by the C99 fragment generated independently of AβPP and not cleaved at the γ-site due to the neuronal ISR-caused deficiency of γ-secretase (apparently, the AD-driving "substance X" predicted in our previous study), a paradigm consistent with a dictum by George Perry that Aβ is "central but not causative" in AD. The proposed therapeutic strategies would not only deplete the driver of the disease and abrogate the AβPP-independent production of C99 but also reverse the neuronal ISR and ameliorate the AβPP dyshomeostasis, a potentially significant contributor to AD pathology.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Sophia Rits-Volloch
- Division of Molecular Medicine, Children’s Hospital, Boston, MA 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
174
|
Rymo I, Zetterberg H, Blennow K, Kern S, Skoog I, Sacuiu S, Waern M. High CSF neurogranin level is related to lifetime reports of passive suicidal ideation in a population-based sample of older adults. J Psychiatr Res 2025; 181:340-347. [PMID: 39642472 DOI: 10.1016/j.jpsychires.2024.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
OBJECTIVE To investigate the association of cerebrospinal fluid (CSF) levels of markers of synaptic dysfunction and neuronal damage, neurogranin (Ng) and neurofilament light chain (NfL), with suicidal ideation in older adults. METHOD The sample was obtained from the Gothenburg H70 Birth Cohort Studies and included 316 dementia free individuals (151 women, 165 men, mean age 70.6) who underwent extensive psychiatric examinations and lumbar puncture (LP). Suicidal ideation was assessed using the Paykel questions. RESULTS Past year suicidal ideation (any severity level) was reported by 9 (2.8%) participants while 58 (18.4%) reported experiencing such ideation during their lifetime. High CSF Ng level was associated with lifetime reports of life weariness (OR 2.03, 95% CI 1.01-4.11, P = 0.048), death wishes (OR 2.26, 95% CI 1.02-4.98, P = 0.044) and thoughts of taking one's own life (OR 3.17, 95% CI 1.31-7.65, P = 0.010) in adjusted logistic regression models including self-reported lifetime depression as a covariate. The association between high CSF Ng level and lifetime suicidal ideation (all severity levels) remained in models adjusted for CSF levels of amyloid beta 42 (Aβ42), T-Tau and P-Tau. No relationship was seen between high CSF NfL and suicidal ideation. CONCLUSION The association between high CSF Ng level and history of suicidal ideation suggests that synaptic dysfunction may be involved in the diathesis of passive suicidal ideation. CSF markers of neurodegeneration did not modify these findings.
Collapse
Affiliation(s)
- Irma Rymo
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health AGECAP at the University of Gothenburg, Gothenburg, Sweden; Addiction Disorders Clinic, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; UCL Institute of Neurology, Department of Neurodegenerative Disease, Queen Square, London, United Kingdom; UK Dementia Research Institute at UCL, London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris, France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, And Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, China
| | - Silke Kern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health AGECAP at the University of Gothenburg, Gothenburg, Sweden; Department of Neuropsychiatry, Sahlgrenska University Hospital, Region Västra Götaland, Sweden
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health AGECAP at the University of Gothenburg, Gothenburg, Sweden; Department of Neuropsychiatry, Sahlgrenska University Hospital, Region Västra Götaland, Sweden
| | - Simona Sacuiu
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health AGECAP at the University of Gothenburg, Gothenburg, Sweden; Department of Neuropsychiatry, Sahlgrenska University Hospital, Region Västra Götaland, Sweden; Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Cognitive Disorders Clinic, Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Margda Waern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health AGECAP at the University of Gothenburg, Gothenburg, Sweden; Department of Psychotic Disorders, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
175
|
Röhr D, Helfrich M, Höring M, Großerüschkamp F, Liebisch G, Gerwert K. Unsaturated Fatty Acids Are Decreased in Aβ Plaques in Alzheimer's Disease. J Neurochem 2025; 169:e16306. [PMID: 39825731 PMCID: PMC11742699 DOI: 10.1111/jnc.16306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/27/2024] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue. IR imaging revealed decreased lipid unsaturation within plaques, evidenced by a reduction in the alkene (=C-H) stretching vibration band. The high spatial resolution of IR imaging, coupled with machine learning-based plaque detection, enabled precise and label-free extraction of plaques via LMD. Subsequent FIA-MS analysis confirmed a significant increase in short-chain saturated lipids and a concomitant decrease in long-chain unsaturated lipids within plaques compared to the surrounding tissue. These findings highlight a substantial depletion of unsaturated fatty acids (UFAs) in Aβ plaques, suggesting a pivotal role for lipid dysregulation and oxidative stress in AD pathology. This study advances our understanding of the molecular landscape of Aβ plaques and underscores the potential of lipid-based therapeutic strategies in AD.
Collapse
Affiliation(s)
- Dominik Röhr
- Center for Protein Diagnostics (PRODI) Biospectroscopy, Ruhr University BochumBochumGermany
- Department of BiophysicsFaculty of Biology and Biotechnology, Ruhr University BochumBochumGermany
| | - Melina Helfrich
- Center for Protein Diagnostics (PRODI) Biospectroscopy, Ruhr University BochumBochumGermany
- Department of BiophysicsFaculty of Biology and Biotechnology, Ruhr University BochumBochumGermany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital RegensburgRegensburgGermany
| | - Frederik Großerüschkamp
- Center for Protein Diagnostics (PRODI) Biospectroscopy, Ruhr University BochumBochumGermany
- Department of BiophysicsFaculty of Biology and Biotechnology, Ruhr University BochumBochumGermany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital RegensburgRegensburgGermany
| | - Klaus Gerwert
- Center for Protein Diagnostics (PRODI) Biospectroscopy, Ruhr University BochumBochumGermany
- Department of BiophysicsFaculty of Biology and Biotechnology, Ruhr University BochumBochumGermany
| |
Collapse
|
176
|
Yamaguchi T, Sasaki H, Yatsu G, Koyama K, Kinoshita K. Meroterpenoids with BACE1-inhibitory activity from the fruiting bodies of Suillus bovinus and Boletinus cavipes. J Nat Med 2025; 79:233-241. [PMID: 39614969 DOI: 10.1007/s11418-024-01862-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 11/10/2024] [Indexed: 01/18/2025]
Abstract
Alzheimer disease (AD) is the most common type of dementia and accounts for the largest proportion of dementia cases. The amyloid cascade hypothesis is known for the pathogenesis of AD, in which excessive accumulation of amyloid-β (Aβ) leads to the formation of senile plaques and ultimately to AD. Inhibition of β-secretase (BACE1) may contribute to the treatment of AD by suppressing Aβ production. In this study, we isolated and characterized the activity of new and known BACE1-inhibiting compounds from two mushrooms of the Boletales order, Suillus bovinus and Boletinus cavipes, using a BACE1-inhibitory activity-guided separation approach. Three compounds (1-3) were isolated from Suillus bovinus CHCl3 extract and three compounds (4-6) were isolated from Boletinus cavipes CHCl3 extract. Compound 1 was a new compound. The structures were elucidated using MS, IR, and NMR. Compounds 1-6 showed BACE1-inhibitory activity (IC50; 21.2, 17.8, 1.0, 1.6, 23.7, and 22.8 μM, respectively). To examine the structure-activity relationship, we also evaluated the activity of geranylgerniol, farnesol, 2,5-dihydroxy-1,4-benzoquinone and mesaconic acid. These compounds showed no activity, and these results indicate that chain terpenes alone do not show BACE1-inhibitory activity, but only when mesaconic acid or a quinone with a hydroxyl group is bound. In addition, the mode of inhibition of 2 and 3 were competitive and 4 was uncompetitive inhibition, respectively, as determined by analysis of Lineweaver-Burk and Dixon plots.
Collapse
Affiliation(s)
- Takamasa Yamaguchi
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, 204-8588, Japan
| | - Hiroaki Sasaki
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, 204-8588, Japan
| | - Genki Yatsu
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, 204-8588, Japan
| | - Kiyotaka Koyama
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, 204-8588, Japan
| | - Kaoru Kinoshita
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, 204-8588, Japan.
| |
Collapse
|
177
|
Vakhnina NV, Novikov DK, Vekhova KA, Zhuk AM, Klimanovich DL, Isaikin AI, Zakharov VV. [Prospects for treating Alzheimer's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2025; 125:54-60. [PMID: 40420451 DOI: 10.17116/jnevro202512504254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Currently, the treatment of Alzheimer's disease (AD) is limited to symptomatic therapy with acetylcholinesterase inhibitors and memantine, which contribute to a temporary improvement in cognitive functions and increased independence in everyday life but have little effect on the progression rate of the neurodegenerative process. The purpose of the review is to analyze current studies of pathogenetic (disease-modifying therapy) of AD. According to modern concepts, AD pathogenesis is associated with the accumulation of amyloid protein, hyperphosphorylation of tau protein, neuroinflammation, mitochondrial dysfunction, etc. The most promising pathogenetic therapy is currently considered anti-amyloid antibodies, anti-tau therapies, and antidiabetic and anti-inflammatory therapy. Anti-amyloid therapies such as aducanumab, lecanumab, and donanemab have recently been officially approved for practical use in some countries around the world. Therapeutic strategies for tau protein-related disorders, neuroinflammation, insulin resistance, and other neurodegeneration mechanisms are also being actively studied. Along with drug therapy, noninvasive brain stimulation methods such as transcranial magnetic stimulation and transcranial electrical stimulation, which have a high safety profile and proven effectiveness, are actively developing.
Collapse
Affiliation(s)
- N V Vakhnina
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - D K Novikov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - K A Vekhova
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - A M Zhuk
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - D L Klimanovich
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - A I Isaikin
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - V V Zakharov
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
178
|
Aisen P, Bateman RJ, Crowther D, Cummings J, Dwyer J, Iwatsubo T, Kosco‐Vilbois M, McDade E, Mohs R, Scheltens P, Sperling R, Selkoe D. The case for regulatory approval of amyloid-lowering immunotherapies in Alzheimer's disease based on clearcut biomarker evidence. Alzheimers Dement 2025; 21:e14342. [PMID: 39535341 PMCID: PMC11772734 DOI: 10.1002/alz.14342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Decades of research have provided evidence that Alzheimer's disease (AD) is caused in part by cerebral accumulation of amyloid beta-protein (Aβ). In 2023, the US Food and Drug Administration gave full regulatory approval to a disease-modifying Aβ antibody for early AD. Secondary prevention trials with Aβ antibodies are underway. We summarize peer-reviewed evidence for targeting Aβ and argue that regulators should consider approving new agents working by similar mechanisms (Aβ antibodies and vaccines) based on robust amyloid lowering and reasonable safety. The urgent need to provide treatments to millions of mildly symptomatic patients suggests that AD should join other diseases for which standard approval is based on significant changes in mechanistically meaningful biomarkers coupled with safety. Robust amyloid lowering in secondary prevention trials of people who have amyloid plaques but are asymptomatic could also provide evidence of a change in the pathophysiological progression of AD as a basis for regulatory approval. HIGHLIGHTS: Thirteen key findings support amyloid beta as a cause of Alzheimer's disease (AD). Three immunotherapies lower amyloid and slow decline, allowing regulatory approval. New such agents could be considered for approval due to amyloid lowering and safety. Urgency suggests AD may join diseases with approval due to a key biomarker + safety.
Collapse
Affiliation(s)
- Paul Aisen
- USC Alzheimer's Therapeutic Research InstituteSan DiegoCaliforniaUSA
| | - Randall J. Bateman
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Damian Crowther
- TRIMTECH Therapeutics Ltd and Medical and More LtdBostonMassachusettsUSA
| | - Jeff Cummings
- School of Integrated Health SciencesUniversity of Nevada Las VegasLas VegasNevadaUSA
| | - John Dwyer
- Global Alzheimer's Platform Foundation WashingtonWashingtonDistrict of ColumbiaUSA
| | | | | | - Eric McDade
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Richard Mohs
- Global Alzheimer's Platform Foundation WashingtonWashingtonDistrict of ColumbiaUSA
| | - Philip Scheltens
- Medical Center and EQT Life SciencesAmsterdam UniversityAmsterdamThe Netherlands
| | - Reisa Sperling
- Dpartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Dennis Selkoe
- Dpartment of NeurologyBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
179
|
Abuduwaili Z, Fan Y, Tao W, Chen Y, Xu Y, Zhu X. The Role of circRNAs in the Pathological Mechanisms of Alzheimer's Disease: Potential Biomarkers for Diagnosis. Curr Neuropharmacol 2025; 23:635-649. [PMID: 39449333 PMCID: PMC12163498 DOI: 10.2174/011570159x337659241014140824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 10/26/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease leading to dementia in the elderly, and the mechanisms of AD have not been fully defined. Circular RNAs (circRNAs), covalently closed RNAs produced by reverse splicing, have critical effects in the pathogenesis of AD. CircRNAs participate in production and clearance of Aβ and tau, regulate neuroinflammation, synaptic plasticity and the process of apoptosis and autophagy, indicating that circRNAs may be alternative biomarkers and therapeutic targets. Our review summarizes the functions of circRNAs in the progression and development of AD, which provide insights into the prospect of circRNAs in the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Zulalai Abuduwaili
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yingao Fan
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Wenyuan Tao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China
| | - Yanting Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing, Jiangsu, China
- Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing, Jiangsu, China
- Nanjing Neuropsychiatry Clinic Medical Center, Nanjing, Jiangsu, China
| |
Collapse
|
180
|
Zakharova NV, Kononikhin AS, Indeykina MI, Bugrova AE, Strelnikova P, Pekov S, Kozin SA, Popov IA, Mitkevich V, Makarov AA, Nikolaev EN. Mass spectrometric studies of the variety of beta-amyloid proteoforms in Alzheimer's disease. MASS SPECTROMETRY REVIEWS 2025; 44:3-21. [PMID: 35347731 DOI: 10.1002/mas.21775] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
This review covers the results of the application of mass spectrometric (MS) techniques to study the diversity of beta-amyloid (Aβ) peptides in human samples. Since Aβ is an important hallmark of Alzheimer's disease (AD), which is a socially significant neurodegenerative disorder of the elderly worldwide, analysis of its endogenous variations is of particular importance for elucidating the pathogenesis of AD, predicting increased risks of the disease onset, and developing effective therapy. MS approaches have no alternative for the study of complex samples, including a wide variety of Aβ proteoforms, differing in length and modifications. Approaches based on matrix-assisted laser desorption/ionization time-of-flight and liquid chromatography with electrospray ionization tandem MS are most common in Aβ studies. However, Aβ forms with isomerized and/or racemized Asp and Ser residues require the use of special methods for separation and extra sensitive and selective methods for detection. Overall, this review summarizes current knowledge of Aβ species found in human brain, cerebrospinal fluid, and blood plasma; focuses on application of different MS approaches for Aβ studies; and considers the potential of MS techniques for further studies of Aβ-peptides.
Collapse
Affiliation(s)
- Natalia V Zakharova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Alexey S Kononikhin
- CMCB, Skolkovo Institute of Science and Technology, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maria I Indeykina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Anna E Bugrova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- CMCB, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Polina Strelnikova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
- Laboratory of ion and molecular physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Stanislav Pekov
- CMCB, Skolkovo Institute of Science and Technology, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Laboratory of ion and molecular physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Sergey A Kozin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Igor A Popov
- Laboratory of ion and molecular physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- N.N. Semenov Federal Center of Chemical Physics, V.L. Talrose Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
181
|
Hirabayashi S, Fujihara K, Saito T, Sasaki H, Koike S, Ogasawara Y, Koyama K, Kinoshita K. Inhibition of amyloid β aggregation and BACE1, and protective effect on SH-SY5Y cells, by p-terphenyl compounds from mushroom Thelephora aurantiotincta. J Nat Med 2025; 79:268-277. [PMID: 39612118 DOI: 10.1007/s11418-024-01865-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
The number of patients with Alzheimer's disease (AD) is expected to increase as the population ages. The amyloid cascade hypothesis is proposed as the pathogenic mechanism of AD. We report the isolation and structural determination of three new p-terphenyl compounds, thelephantin P (1), thelephantin Q (2), and thelephantin R (3), with four known compounds (4-7), from the fruiting bodies of Thelephora aurantiotincta Corner. We evaluated Aβ aggregation and BACE1 inhibitory activities and neuroprotective activities of these isolated compounds. Compound 1 was shown to be multi-inhibitors for AD. Compound 1 had an IC50 = 12.9 μM (Aβ), 6.3 μM (BACE1), and EC50 = 8.0 μM (neuroprotection), respectively. Therefore, these compounds are potential therapeutic agents for AD.
Collapse
Affiliation(s)
- Shuntaro Hirabayashi
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Koji Fujihara
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Takehito Saito
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Hiroaki Sasaki
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Kiyotaka Koyama
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan
| | - Kaoru Kinoshita
- Department of Pharmacognosy and Phytochemistry, Meiji Pharmaceutical University, Noshio 2-522-1, Kiyose-Shi, Tokyo, 204-8588, Japan.
| |
Collapse
|
182
|
Siemers E, Feaster T, Sethuraman G, Sundell K, Skljarevski V, Cline EN, Zhang H, Jerecic J, Honig LS, Salloway S, Sperling R, Trame MN, Dodds MG, Johnson K. INTERCEPT-AD, a phase 1 study of intravenous sabirnetug in participants with mild cognitive impairment or mild dementia due to Alzheimer's disease. J Prev Alzheimers Dis 2025; 12:100005. [PMID: 39800458 DOI: 10.1016/j.tjpad.2024.100005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 05/02/2025]
Abstract
BACKGROUND Soluble species of multimeric amyloid-beta including globular amyloid-beta oligomers (AβOs) and linear amyloid-beta protofibrils are toxic to neurons. Sabirnetug (ACU193) is a humanized monoclonal antibody, raised against globular species of soluble AβO, that has over 650-fold greater binding affinity for AβOs over monomers and appears to have relatively little binding to amyloid plaque. OBJECTIVES To assess safety, pharmacokinetics, and exploratory measures including target engagement, biomarker effects, and clinical efficacy of sabirnetug in participants with early symptomatic Alzheimer's disease (AD; defined as mild cognitive impairment and mild dementia due to AD). DESIGN Randomized, double-blind, placebo-controlled, ascending dose first-in-human phase 1 study. SETTING Fifteen study centers in the United States. PARTICIPANTS Sixty-five participants with early symptomatic AD. INTERVENTION Participants received one infusion of sabirnetug 2 mg/kg, 10 mg/kg, 25 mg/kg, 60 mg/kg, or placebo (Part A) or three infusions of sabirnetug 10 mg/kg, 25 mg/kg, 60 mg/kg, or placebo (Part B). MEASUREMENTS Safety, tolerability, serum pharmacokinetics, and central target engagement of single and multiple doses of sabirnetug, cerebrospinal fluid (CSF) concentrations of sabirnetug, and amyloid plaque load, as determined by positron emission tomography. RESULTS Sabirnetug was generally well tolerated. A larger percentage of participants receiving sabirnetug (56.3%) versus placebo (42.9%) had at least one treatment emergent adverse event, with approximately 29% in each group considered related to study drug. Most events were mild-to-moderate in severity. Of 48 participants given sabirnetug, five developed amyloid related imaging abnormalities - edema/effusion, including one instance that was mildly symptomatic in a participant who had received one dose sabirnetug 60 mg/kg. Notably, none of the six apolipoprotein E Ɛ4 homozygotes who received sabirnetug developed amyloid related imaging abnormalities - edema/effusion or - hemorrhage/hemosiderin deposition. Infusion reactions, such as rash, pain, or erythema, were not frequent (6.3% for sabirnetug versus 0.0% for placebo). Sabirnetug exposure was dose proportional in both serum and CSF. Target engagement, defined as drug bound to AβOs in CSF, was shown to be dose and exposure dependent. Over three months, approximately 25% and 20% reduction in amyloid plaques, respectively, were observed in participants receiving three infusions of sabirnetug 60 mg/kg every four weeks and 25 mg/kg every two weeks. CONCLUSIONS The Phase 1 INTERCEPT-AD study provided safety, tolerability, dosing, and target engagement data that supported the design of the ongoing ALTITUDE-AD study (NCT06335173).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hao Zhang
- Acumen Pharmaceuticals, Newton, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Mohaupt P, Kindermans J, Vialaret J, Anderl-Straub S, Werner L, Lehmann S, Hirtz C, Otto M, Oeckl P. Blood-based biomarkers and plasma Aβ assays in the differential diagnosis of Alzheimer's disease and behavioral-variant frontotemporal dementia. Alzheimers Res Ther 2024; 16:279. [PMID: 39736793 DOI: 10.1186/s13195-024-01647-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 12/11/2024] [Indexed: 01/01/2025]
Abstract
INTRODUCTION The differentiation between Alzheimer's disease (AD) and behavioral-variant frontotemporal dementia (bvFTD) can be complicated in the initial phase by shared symptoms and pathophysiological traits. Nevertheless, advancements in understanding AD's diverse pathobiology suggest the potential for establishing blood-based methods for differential diagnosis. METHODS We devised a novel assay combining immunoprecipitation and mass spectrometry (IP-MS) to quantify Amyloid-beta (Aβ) peptides in plasma. We then assessed its performance against existing assays (Shimadzu and Simoa) and evaluated a range of other blood-based biomarkers, including GFAP, NfL, and pTau-181, for differentiating between AD and bvFTD. RESULTS The novel IP-MS assay measuring the Aβ42/40 ratio demonstrated an AUC of 0.82 for differentiating AD from control subjects. While it did not significantly outperform the composite biomarker score from the Shimadzu assay (AUC = 0.79, P = 0.67), it significantly outperformed the Shimadzu Aβ42/40 ratio (AUC = 0.65, P = 0.037) and the Simoa Aβ42/40 assay (AUC = 0.57, P = 0.023). Aβ biomarkers provided limited utility in distinguishing AD from bvFTD. In contrast, pTau181 and GFAP exhibited strong discriminatory power for differentiating AD from bvFTD, with AUCs of 0.90 and 0.87, respectively. Combining pTau181 and GFAP enhanced diagnostic accuracy, achieving an AUC of 0.94. CONCLUSION We introduced a novel IP-MS assay that demonstrated comparable precision to the Shimadzu composite score in differentiating AD from non-neurodegenerative control groups. However, Aβ levels did not enhance the discrimination between AD and bvFTD. Furthermore, our findings support the utility of combining pTau181 and GFAP as a robust strategy for the blood-based differentiation of AD and bvFTD.
Collapse
Affiliation(s)
- Pablo Mohaupt
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Jana Kindermans
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Jérôme Vialaret
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | | | - Leonie Werner
- Department of Neurology, Ulm University Hospital, 89081, Ulm, Germany
| | - Sylvain Lehmann
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Christophe Hirtz
- LBPC-PPC, Université de Montpellier, IRMB CHU de Montpellier, INM INSERM, Montpellier, France
| | - Markus Otto
- University Clinic and Polyclinic for Neurology, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Patrick Oeckl
- Department of Neurology, Ulm University Hospital, 89081, Ulm, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany.
| |
Collapse
|
184
|
Zhuang X, Lin J, Song Y, Ban R, Zhao X, Xia Z, Wang Z, Zhang G. The Interplay Between Accumulation of Amyloid-Beta and Tau Proteins, PANoptosis, and Inflammation in Alzheimer's Disease. Neuromolecular Med 2024; 27:2. [PMID: 39751702 DOI: 10.1007/s12017-024-08815-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/01/2024] [Indexed: 01/04/2025]
Abstract
Alzheimer's disease (AD) is a common progressive neurodegenerative disorder, and the vast majority of cases occur in elderly patients. Recently, the accumulation of Aβ and tau proteins has drawn considerable attention in AD research. This review explores the multifaceted interactions between these proteins and their contribution to the pathological landscape of AD, encompassing synaptic dysfunction, neuroinflammation, and PANoptosis. PANoptosis is a collective term for programmed cell death (PCD) modalities that encompass elements of apoptosis, pyroptosis, and necroptosis. The accumulation of Aβ peptides and tau proteins, along with the immune response in brain cells, may trigger PANoptosis, thus advancing the progression of the disease. Recent advancements in molecular imaging and genetics have provided deeper insights into the interactions between Aβ peptides, tau proteins, and the immune response. The review also discusses the role of mitochondrial dysregulation in AD. The exploration of the interplay between neurodegeneration, immune responses, and cell death offers promising avenues for the development of innovative treatments.
Collapse
Affiliation(s)
- Xianbo Zhuang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Jie Lin
- School of Basic Medicine Sciences, Shandong University, Jinan, China
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Yamin Song
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Ru Ban
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Xin Zhao
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China
| | - Zhangyong Xia
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China.
- Department of Neurology, Liaocheng People's Hospital, Shandong University, Jinan, 250012, China.
- Department of Neurology, the Second People's Hospital of Liaocheng, Liaocheng, China.
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, China.
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People's Hospital and Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng, 252000, China.
| |
Collapse
|
185
|
Weng Y, Xie G. Increased GABBR2 Expression on Cell Membranes Causes Increased Ca2 + Inward Flow, Associated with Cognitive Impairment in Early Alzheimer's Disease. Biochem Genet 2024:10.1007/s10528-024-11004-z. [PMID: 39724481 DOI: 10.1007/s10528-024-11004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD) and mild cognitive impairment (MCI) are a serious global public health problem. The aim of this study was to analyze the key molecular pathological mechanisms that occur in early AD progression as well as MCI. Expression profiling data from brain homogenates of 8 normal volunteers, and 6 patients with prodromal AD who had developed MCI were analyzed, and the data were obtained from GSE12685. Further, overexpression of GABBR2 was achieved in human neuroblastoma cell lines SH-SY5Y and BE(2)-M17 using expression plasmid transfection. GABBR2 was significantly overexpressed in brain tissues of patients with prodromal AD who had developed MCI, as compared to normal brains. Moreover, GABBR2 overexpressing cells showed a significant increase in intracellular Ca2+ concentration, a large amount of reactive oxygen species production, a large opening of the mitochondrial permeability transition pore and a significant increase in apoptosis compared with control cells. GABBR2 overexpression was significantly involved in early AD progression and MCI by causing cellular events such as intracellular Ca2+ imbalance, oxidative stress, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yifei Weng
- Department of Neurology, The Affiliated People's Hospital of Ningbo University, No.251 East Baizhang Road, Ningbo, 315040, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, No.57 Xingning Road, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
186
|
Choi SI, Jin Y, Choi Y, Seong BL. Beyond Misfolding: A New Paradigm for the Relationship Between Protein Folding and Aggregation. Int J Mol Sci 2024; 26:53. [PMID: 39795912 PMCID: PMC11720324 DOI: 10.3390/ijms26010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/19/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
Aggregation is intricately linked to protein folding, necessitating a precise understanding of their relationship. Traditionally, aggregation has been viewed primarily as a sequential consequence of protein folding and misfolding. However, this conventional paradigm is inherently incomplete and can be deeply misleading. Remarkably, it fails to adequately explain how intrinsic and extrinsic factors, such as charges and cellular macromolecules, prevent intermolecular aggregation independently of intramolecular protein folding and structure. The pervasive inconsistencies between protein folding and aggregation call for a new framework. In all combined reactions of molecules, both intramolecular and intermolecular rate (or equilibrium) constants are mutually independent; accordingly, intrinsic and extrinsic factors independently affect both rate constants. This universal principle, when applied to protein folding and aggregation, indicates that they should be treated as two independent yet interconnected processes. Based on this principle, a new framework provides groundbreaking insights into misfolding, Anfinsen's thermodynamic hypothesis, molecular chaperones, intrinsic chaperone-like activities of cellular macromolecules, intermolecular repulsive force-driven aggregation inhibition, proteome solubility maintenance, and proteinopathies. Consequently, this paradigm shift not only refines our current understanding but also offers a more comprehensive view of how aggregation is coupled to protein folding in the complex cellular milieu.
Collapse
Affiliation(s)
- Seong Il Choi
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
| | - Yoontae Jin
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yura Choi
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Integrative Biotechnology, Yonsei University, Incheon 21983, Republic of Korea
| | - Baik L. Seong
- Vaccine Innovative Technology ALliance (VITAL)-Korea, Seoul 03722, Republic of Korea; (Y.J.); (Y.C.)
- Department of Microbiology, College of Medicine, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
187
|
Ng LLH, Chow J, Lau KF. The AICD interactome: implications in neurodevelopment and neurodegeneration. Biochem Soc Trans 2024; 52:2539-2556. [PMID: 39670668 PMCID: PMC11668293 DOI: 10.1042/bst20241510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
The pathophysiological mechanism involving the proteolytic processing of amyloid precursor protein (APP) and the generation of amyloid plaques is of significant interest in research on Alzheimer's disease (AD). The increasing significance of the downstream AD-related pathophysiological mechanisms has sparked research interest in other products of the APP processing cascades, including the APP intracellular domain (AICD). The potential importance of AICD in various cellular processes in the central nervous system has been established through the identification of its interactors. The interaction between AICD and its physiological binding partners is implicated in cellular events including regulation of transcriptional activity, cytoskeletal dynamics, neuronal growth, APP processing and cellular apoptosis. On the contrary, AICD is also implicated in neurodegeneration, which is a potential outcome of the functional fluctuation of AICD-mediated neuronal processes within the neuronal network. In this review, we summarize the neuronal functions and pathological manifestations of the dynamic AICD interaction network.
Collapse
Affiliation(s)
- Laura Lok-Haang Ng
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica Chow
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kwok-Fai Lau
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
188
|
Zimbone S, Giuffrida ML, Sciacca MFM, Carrotta R, Librizzi F, Milardi D, Grasso G. A VEGF Fragment Encompassing Residues 10-30 Inhibits Aβ1-42 Amyloid Aggregation and Exhibits Neuroprotective Properties Matching the Full-Length Protein. ACS Chem Neurosci 2024; 15:4580-4590. [PMID: 39587417 DOI: 10.1021/acschemneuro.4c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024] Open
Abstract
The intricate relationship between brain vascular diseases and neurodegeneration has garnered increased attention in the scientific community. With an aging population, the incidence of these two conditions is likely to increase, making it imperative to understand the underlying common molecular mechanisms and unveiling novel avenues for therapy. Prompted by the observation that Aβ peptide aggregation has been implicated in the development of cerebral amyloid angiopathy (CAA) and that elevated concentrations of vascular endothelial growth factor (VEGF) in the cerebrospinal fluid (CSF) have been correlated with less cognitive decline in Alzheimer's disease (AD), we demonstrate that a small peptide (Pep9) encompassing the 10-30 sequence of VEGF exhibits significant ability to inhibit the aggregation of the Aβ1-42 peptide, as well as the formation of toxic oligomers. AFM studies confirmed this inhibitory capacity, which is also paralleled by a significant reduction of the random coil to a beta-sheet conformational transition. Further studies have shown that Pep9 protects differentiated neuroblastoma SH-SY5Y cells from Aβ toxicity, being even more effective than full-length protein in preventing amyloid-induced neuronal death. The use of a control peptide wherein two histidines are substituted with glycines (H11G and H12G) suggests a close relationship between the peptide amino acid sequence and its antiaggregating/neuroprotective activity. Overall, this study provides insight into the role of VEGF in AD and suggests that specific VEGF fragments could be beneficial in the treatment of this condition.
Collapse
Affiliation(s)
- Stefania Zimbone
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| | - M Laura Giuffrida
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| | - Michele F M Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| | - Rita Carrotta
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Palermo 90146, Italy
| | - Fabio Librizzi
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica, Palermo 90146, Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania 95126, Italy
| |
Collapse
|
189
|
Roe JM, Vidal-Piñeiro D, Sørensen Ø, Grydeland H, Leonardsen EH, Iakunchykova O, Pan M, Mowinckel A, Strømstad M, Nawijn L, Milaneschi Y, Andersson M, Pudas S, Bråthen ACS, Kransberg J, Falch ES, Øverbye K, Kievit RA, Ebmeier KP, Lindenberger U, Ghisletta P, Demnitz N, Boraxbekk CJ, Drevon CA, Penninx B, Bertram L, Nyberg L, Walhovd KB, Fjell AM, Wang Y. Brain change trajectories in healthy adults correlate with Alzheimer's related genetic variation and memory decline across life. Nat Commun 2024; 15:10651. [PMID: 39690174 PMCID: PMC11652687 DOI: 10.1038/s41467-024-53548-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/16/2024] [Indexed: 12/19/2024] Open
Abstract
Throughout adulthood and ageing our brains undergo structural loss in an average pattern resembling faster atrophy in Alzheimer's disease (AD). Using a longitudinal adult lifespan sample (aged 30-89; 2-7 timepoints) and four polygenic scores for AD, we show that change in AD-sensitive brain features correlates with genetic AD-risk and memory decline in healthy adults. We first show genetic risk links with more brain loss than expected for age in early Braak regions, and find this extends beyond APOE genotype. Next, we run machine learning on AD-control data from the Alzheimer's Disease Neuroimaging Initiative using brain change trajectories conditioned on age, to identify AD-sensitive features and model their change in healthy adults. Genetic AD-risk linked with multivariate change across many AD-sensitive features, and we show most individuals over age ~50 are on an accelerated trajectory of brain loss in AD-sensitive regions. Finally, high genetic risk adults with elevated brain change showed more memory decline through adulthood, compared to high genetic risk adults with less brain change. Our findings suggest quantitative AD risk factors are detectable in healthy individuals, via a shared pattern of ageing- and AD-related neurodegeneration that occurs along a continuum and tracks memory decline through adulthood.
Collapse
Grants
- U01 AG024904 NIA NIH HHS
- The infrastructure for the NESDA study (www.nesda.nl) is funded through the Geestkracht program of the Netherlands Organisation for Health Research and Development (ZonMw, grant number 10-000‐1002) and financial contributions by participating universities and mental health care organizations (VU University Medical Center, GGZ inGeest, Leiden University Medical Center, Leiden University, GGZ Rivierdu-inen, University Medical Center Groningen, University of Groningen, Lentis, GGZ Friesland, GGZ Drenthe, Rob Giel Onderzoekscentrum).
- Scholar grant from Knut and Alice Wallenberg’s (KAW) foundation to L.N.
- European Research Council 313440 (to K.B.W.) Norwegian Research Council (to A.M.F. and K.B.W.) under grants 249931 (TOPPFORSK)
- European Research Council under grants 283634, 725025 (to A.M.F.) Norwegian Research Council (to A.M.F. and K.B.W.) under grants 249931 (TOPPFORSK) The National Association for Public Health’s dementia research program, Norway (to A.M.F)
- Norwegian Research Council grant 302854 (FRIPRO; to Y.W.)
Collapse
Affiliation(s)
- James M Roe
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway.
| | - Didac Vidal-Piñeiro
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Øystein Sørensen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Håkon Grydeland
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Esten H Leonardsen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Olena Iakunchykova
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Mengyu Pan
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Athanasia Mowinckel
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Marie Strømstad
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Laura Nawijn
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Yuri Milaneschi
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Micael Andersson
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Sara Pudas
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Anne Cecilie Sjøli Bråthen
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Jonas Kransberg
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Emilie Sogn Falch
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Knut Øverbye
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Rogier A Kievit
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Klaus P Ebmeier
- Department of Psychiatry and Wellcome Centre for Integrative Neuroimaging, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
| | - Paolo Ghisletta
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Naiara Demnitz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Carl-Johan Boraxbekk
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Radiation Sciences, Diagnostic Radiology, and Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Science, Faculty of Medicine, University of Oslo, Oslo, Norway
- Vitas Ltd, Oslo Science Park, Oslo, Norway
| | - Brenda Penninx
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry and Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Lars Nyberg
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Department of Medical and Translational Biology, Umeå University, Umeå, Sweden
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
- Department of Diagnostics and Intervention, Umeå University, Umeå, Sweden
- Department of Health, Education and Technology, Luleå University of Technology, Luleå, Sweden
| | - Kristine B Walhovd
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Anders M Fjell
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
- Computational Radiology and Artificial Intelligence, Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Yunpeng Wang
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
190
|
Safiri S, Ghaffari Jolfayi A, Fazlollahi A, Morsali S, Sarkesh A, Daei Sorkhabi A, Golabi B, Aletaha R, Motlagh Asghari K, Hamidi S, Mousavi SE, Jamalkhani S, Karamzad N, Shamekh A, Mohammadinasab R, Sullman MJM, Şahin F, Kolahi AA. Alzheimer's disease: a comprehensive review of epidemiology, risk factors, symptoms diagnosis, management, caregiving, advanced treatments and associated challenges. Front Med (Lausanne) 2024; 11:1474043. [PMID: 39736972 PMCID: PMC11682909 DOI: 10.3389/fmed.2024.1474043] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Background Alzheimer's disease (AD) is a chronic, progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired reasoning. It is the leading cause of dementia in older adults, marked by the pathological accumulation of amyloid-beta plaques and neurofibrillary tangles. These pathological changes lead to widespread neuronal damage, significantly impacting daily functioning and quality of life. Objective This comprehensive review aims to explore various aspects of Alzheimer's disease, including its epidemiology, risk factors, clinical presentation, diagnostic advancements, management strategies, caregiving challenges, and emerging therapeutic interventions. Methods A systematic literature review was conducted across multiple electronic databases, including PubMed, MEDLINE, Cochrane Library, and Scopus, from their inception to May 2024. The search strategy incorporated a combination of keywords and Medical Subject Headings (MeSH) terms such as "Alzheimer's disease," "epidemiology," "risk factors," "symptoms," "diagnosis," "management," "caregiving," "treatment," and "novel therapies." Boolean operators (AND, OR) were used to refine the search, ensuring a comprehensive analysis of the existing literature on Alzheimer's disease. Results AD is significantly influenced by genetic predispositions, such as the apolipoprotein E (APOE) ε4 allele, along with modifiable environmental factors like diet, physical activity, and cognitive engagement. Diagnostic approaches have evolved with advances in neuroimaging techniques (MRI, PET), and biomarker analysis, allowing for earlier detection and intervention. The National Institute on Aging and the Alzheimer's Association have updated diagnostic criteria to include biomarker data, enhancing early diagnosis. Conclusion The management of AD includes pharmacological treatments, such as cholinesterase inhibitors and NMDA receptor antagonists, which provide symptomatic relief but do not slow disease progression. Emerging therapies, including amyloid-beta and tau-targeting treatments, gene therapy, and immunotherapy, offer potential for disease modification. The critical role of caregivers is underscored, as they face considerable emotional, physical, and financial burdens. Support programs, communication strategies, and educational interventions are essential for improving caregiving outcomes. While significant advancements have been made in understanding and managing AD, ongoing research is necessary to identify new therapeutic targets and enhance diagnostic and treatment strategies. A holistic approach, integrating clinical, genetic, and environmental factors, is essential for addressing the multifaceted challenges of Alzheimer's disease and improving outcomes for both patients and caregivers.
Collapse
Affiliation(s)
- Saeid Safiri
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghaffari Jolfayi
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Asra Fazlollahi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soroush Morsali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Aila Sarkesh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Daei Sorkhabi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnam Golabi
- Social Determinants of Health Research Center, Department of Community Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Aletaha
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kimia Motlagh Asghari
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sana Hamidi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Tabriz USERN Office, Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Seyed Ehsan Mousavi
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Jamalkhani
- Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Karamzad
- Department of Persian Medicine, School of Traditional, Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shamekh
- Neurosciences Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mohammadinasab
- Department of History of Medicine, School of Traditional Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mark J. M. Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Fikrettin Şahin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Ali-Asghar Kolahi
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
191
|
Engelhardt E, Resende EDPF, Gomes KB. Physiopathological mechanisms underlying Alzheimer's disease: a narrative review. Dement Neuropsychol 2024; 18:e2024VR01. [PMID: 39697643 PMCID: PMC11654088 DOI: 10.1590/1980-5764-dn-2024-vr01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 12/20/2024] Open
Abstract
The neuropathological signature of Alzheimer's disease (AD) comprises mainly amyloid plaques, and neurofibrillary tangles, resulting in synaptic and neuronal loss. These pathological structures stem from amyloid dysfunctional metabolism according to the amyloid cascade hypothesis, leading to the formation of plaques, and apparently inducing the initiation of the abnormal tau pathway, with phosphorylation and aggregation of these proteins, ultimately causing the formation of tangles. In this narrative review, the existing hypothesis related to the pathophysiology of AD were compiled, and biological pathways were highlighted in order to identify the molecules that could represent biological markers of the disease, necessary to establish early diagnosis, as well as the selection of patients for therapeutical interventional strategies.
Collapse
Affiliation(s)
- Eliasz Engelhardt
- Universidade Federal do Rio de Janeiro, Instituto de Neurologia Deolindo Couto, Rio de Janeiro RJ, Brazil
| | - Elisa de Paula França Resende
- Universidade Federal de Minas Gerais, Faculdade de Medicina, Belo Horizonte MG, Brazil
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte MG, Brazil
| | - Karina Braga Gomes
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Belo Horizonte MG, Brazil
| |
Collapse
|
192
|
Lauber MV, Bellitti M, Kapadia K, Jasodanand VH, Au R, Kolachalama VB. Global amyloid burden enhances network efficiency of tau propagation in the brain. J Alzheimers Dis 2024:13872877241294084. [PMID: 39686595 DOI: 10.1177/13872877241294084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BACKGROUND Amyloid-β (Aβ) and hyperphosphorylated tau are crucial biomarkers in Alzheimer's disease (AD) pathogenesis, interacting synergistically to accelerate disease progression. While Aβ initiates cascades leading to tau hyperphosphorylation and neurofibrillary tangles, PET imaging studies suggest a sequential progression from amyloidosis to tauopathy, closely linked with neurocognitive symptoms. OBJECTIVE To analyze the complex interactions between Aβ and tau in AD using probabilistic graphical models, assessing how regional tau accumulation is influenced by Aβ burden. METHODS Data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Anti-Aβ Treatment in Asymptomatic Alzheimer's (A4) study were utilized, involving participants across various cognitive stages and employing both Florbetapir and Flortaucipir as tracers. Tau standardized uptake value ratio values were harmonized across studies, and participants were stratified into quantile groups based on Aβ levels. A LASSO regularized Gaussian graphical model analyzed partial correlations among brain regions to discern patterns of tau accumulation across different Aβ levels. RESULTS Statistical analyses revealed significant differences in tau structure among low, medium, and high Aβ groups in both ADNI and A4 cohorts, with graph metrics, such as small-world coefficient, indicating increased tau efficiency as Aβ burden increased. CONCLUSIONS Our findings indicate that tau accumulates more efficiently with increasing Aβ burden, highlighting an interplay that could inform development of dual-targeting therapies in AD. This study underscores the importance of Aβ and tau interactions in AD progression and supports the hypothesis that targeting both pathologies could be crucial for therapeutic interventions.
Collapse
Affiliation(s)
- Meagan V Lauber
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Graduate Program for Neuroscience, Division of Graduate Medical Sciences, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Matteo Bellitti
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Krish Kapadia
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Varuna H Jasodanand
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Rhoda Au
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Anatomy and Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- The Framingham Heart Study, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Vijaya B Kolachalama
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Computer Science, Boston University, Boston, MA, USA
- Faculty of Computing & Data Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
193
|
Jamerlan AM, An SSA, Hulme JP. Current status of fluid biomarkers for early Alzheimer's disease and FDA regulation implications. J Neurol Sci 2024; 467:123325. [PMID: 39615439 DOI: 10.1016/j.jns.2024.123325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024]
Abstract
Many changes can now be seen in the development and use of tests, especially those incorporating fluid biomarkers, to diagnose Alzheimer's disease (AD), a devastating disease caused by the progressive but rapid degeneration of cortical tissue. Some biomarkers we already know have a significant association with AD, such as amyloid beta (Aβ) and tau, as well as the ratio of concentrations of other Aβ isoforms. In addition, several novel biomarkers are emerging that can also be used as diagnostic fluid biomarkers for AD, but many studies are still needed before we can consider them reliable. The U.S. Federal Food and Drug Administration recently announced its final ruling to regulate laboratory-developed tests (LDTs) as medical devices, which can significantly impact LDT development. In this narrative review, we discuss the current status of fluid biomarkers used to diagnose early AD, their potential and limitations, and the impact caused by the FDA's decision and strategies to help developers navigate the complex changes in the regulatory landscape of LDTs.
Collapse
Affiliation(s)
- Angelo M Jamerlan
- Department of Bionanotechnology, Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Seong Soo A An
- Department of Bionanotechnology, Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
| | - John P Hulme
- Department of Bionanotechnology, Bionano Research Institute, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
194
|
Orsini F, Pascente R, Martucci A, Palacino S, Fraser P, Arancio O, Fioriti L. SUMO2 rescues neuronal and glial cells from the toxicity of P301L Tau mutant. Front Cell Neurosci 2024; 18:1437995. [PMID: 39726633 PMCID: PMC11669524 DOI: 10.3389/fncel.2024.1437995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Abnormal intracellular accumulation of Tau aggregates is a hallmark of Alzheimer's disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD). Tau deposits primarily affect neurons, but evidence indicates that glial cells may also be affected and contribute distinctively to disease progression. Cells can respond to toxic insults by orchestrating global changes in posttranslational modifications of their proteome. Previous studies suggest that SUMOylation, a posttranslational modification consisting of conjugation of SUMO (Small ubiquitin-like modifier) to target proteins, was decreased in the hippocampus of AD patients and in animal model of AD compared with controls. This decrease in SUMOylation was correlated with increased Tau pathology and cognitive decline. Other studies have reported increased levels of SUMO in AD brains. The goal of our study was to evaluate whether SUMO conjugation modifies the neurodegenerative disease pathology associated with the aggregation-prone mutant TauP301L, in neurons and in glial cells. Methods We used viral approaches to express mutant TauP301L and SUMO2 in the hippocampus of wild-type mice. We assessed Tau distribution by immunostaining and Tau aggregation by insolubility assays followed by western blotting. We assessed neuronal toxicity and performed cell count and shape descriptor analyses on astrocytes and microglial cells. Results We found that mutant TauP301L, when expressed exclusively in neurons, is toxic not only to neurons but also to glial cells, and that SUMO2 counteracts TauP301L toxicity in neurons as well as in glia. Discussion Our results uncover an endogenous neuroprotective mechanism, whereby SUMO2 conjugation reduces Tau neuropathology and protects against toxic effects of Tau in glial cells.
Collapse
Affiliation(s)
- Franca Orsini
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Rosaria Pascente
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Annacarla Martucci
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Sara Palacino
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Paul Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Taub Institute for Research of Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Luana Fioriti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Department of Pathology and Cell Biology, Taub Institute for Research of Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
| |
Collapse
|
195
|
Yao M, Miller GW, Vardarajan BN, Baccarelli AA, Guo Z, Liu Z. Deciphering proteins in Alzheimer's disease: A new Mendelian randomization method integrated with AlphaFold3 for 3D structure prediction. CELL GENOMICS 2024; 4:100700. [PMID: 39637861 DOI: 10.1016/j.xgen.2024.100700] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Hidden confounding biases hinder identifying causal protein biomarkers for Alzheimer's disease in non-randomized studies. While Mendelian randomization (MR) can mitigate these biases using protein quantitative trait loci (pQTLs) as instrumental variables, some pQTLs violate core assumptions, leading to biased conclusions. To address this, we propose MR-SPI, a novel MR method that selects valid pQTL instruments using Leo Tolstoy's Anna Karenina principle and performs robust post-selection inference. Integrating MR-SPI with AlphaFold3, we developed a computational pipeline to identify causal protein biomarkers and predict 3D structural changes. Applied to genome-wide proteomics data from 54,306 UK Biobank participants and 455,258 subjects (71,880 cases and 383,378 controls) for a genome-wide association study of Alzheimer's disease, we identified seven proteins (TREM2, PILRB, PILRA, EPHA1, CD33, RET, and CD55) with structural alterations due to missense mutations. These findings offer insights into the etiology and potential drug targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Minhao Yao
- Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong SAR, China
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Badri N Vardarajan
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
| | - Andrea A Baccarelli
- Office of the Dean, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zijian Guo
- Department of Statistics, Rutgers University, Piscataway, NJ, USA.
| | - Zhonghua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA.
| |
Collapse
|
196
|
Shen H, Liu W, Dou Y, Lu Y, Zhang C, Wang X, Kong F, Wang S. Guluronic acid disaccharide inhibits reactive oxygen species production and amyloid-β oligomer formation. Biochem Biophys Res Commun 2024; 737:150467. [PMID: 39133984 DOI: 10.1016/j.bbrc.2024.150467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 11/13/2024]
Abstract
In general, Cu(II) is the critical factor in catalyzing reactive oxygen species (ROS) production and accelerating amyloid-β (Aβ) oligomer formation in Alzheimer's disease (AD). Natural chelating agents with good biocompatibility and appropriate binding affinity with Cu(II) have emerged as potential candidates for AD therapy. Herein, we tested the capability of guluronic acid disaccharide (Di-GA), a natural chelating agent with the moderate association affinity to Cu(II), in inhibiting ROS production and Aβ oligomer formation. The results showed that Di-GA was capable of chelating with Cu(II) and reducing ROS production, even in solutions containing Fe(II), Zn(II), and Aβ. In addition, Di-GA can also capture Cu(II) from Cu-Aβ complexes and decrease Aβ oligomer formation. The cellular results confirmed that Di-GA prevented SH-SY5Y cells from ROS and Aβ oligomer damage by reducing the injury of ROS and Aβ oligomers on cell membrane and decreasing their intracellular damage on mitochondria. Notably, the slightly higher efficiency of Di-GA in chelating with Cu(I) than Cu(II) can be benefit for its in vivo applications, as Cu(I) is not only the most active but also the special intermediate specie during ROS production process. All of these results proved that Di-GA could be a promising marine drug candidate in reducing copper-related ROS damage and Aβ oligomer toxicity associated with AD.
Collapse
Affiliation(s)
- Hangyu Shen
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Wenhui Liu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Yun Dou
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Yongxin Lu
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Chunling Zhang
- Department of Rheumatology, Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong, 250013, China
| | - Xiaoying Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China; Shandong Haizhibao Ocean Science and Technology Co., Ltd, Weihai, Shandong, 264300, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China
| | - Shoujuan Wang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250353, China.
| |
Collapse
|
197
|
Pyka-Fościak G, Jasek-Gajda E, Wójcik B, Lis GJ, Litwin JA. Tau Protein and β-Amyloid Associated with Neurodegeneration in Myelin Oligodendrocyte Glycoprotein-Induced Experimental Autoimmune Encephalomyelitis (EAE), a Mouse Model of Multiple Sclerosis. Biomedicines 2024; 12:2770. [PMID: 39767677 PMCID: PMC11673016 DOI: 10.3390/biomedicines12122770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND The levels of β-amyloid precursor protein (β-APP), tau protein, and phosphorylation of tau (p-tau) protein were examined by quantitative immunohistochemistry in the spinal cord sections of mice suffering from experimental autoimmune encephalomyelitis (EAE) in the successive phases of the disease: onset, peak, and chronic. METHODS EAE was induced in C57BL/6 mice by immunization with MOG35-55 peptide. The degree of pathological changes was assessed in cross-sections of the entire spinal cord. RESULTS β-APP expression was observed in the white matter and colocalized with some Iba-1-positive macrophages/microglia. It increased in the peak phase of EAE and remained at the same level in the chronic phase. During the onset and peak phases of EAE, expression of tau protein was observed in nerve fibers and nerve cell perikaryons, with a predominance of nerve fibers, whereas in the chronic phase, tau was labeled mainly in the perikaryons of nerve cells, with its content significantly decreased. P-tau immunostaining was seen only in nerve fibers. CONCLUSIONS The expression of p-tau increased with the progression of EAE, reaching the maximum in the chronic phase. The correlation between these proteins and neurodegeneration/neuroinflammation highlights their potential roles in the progression of neurodegenerative mechanisms in MS.
Collapse
Affiliation(s)
- Grażyna Pyka-Fościak
- Department of Histology, Jagiellonian University Medical College, Kopernika 7, 31-034 Krakow, Poland; (E.J.-G.)
| | | | | | | | | |
Collapse
|
198
|
Habeck T, Zurmühl SS, Figueira AJ, Maciel EVS, Gomes CM, Lermyte F. Cross-Interactions of Aβ Peptides Implicated in Alzheimer's Disease Shape Amyloid Oligomer Structures and Aggregation. ACS Chem Neurosci 2024; 15:4295-4304. [PMID: 39561091 DOI: 10.1021/acschemneuro.4c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
A defining hallmark of Alzheimer's disease (AD) is the synaptic aggregation of the amyloid β (Aβ) peptide. In vivo, Aβ production results in a diverse mixture of variants, of which Aβ40, Aβ42, and Aβ43 are profusely present in the AD brain, and their relative abundance is recognized to play a role in disease onset and progression. Nonetheless, the occurrence of Aβ40, Aβ42, and Aβ43 hetero-oligomerization and the subsequent effects on Aβ aggregation remain elusive and were investigated here. Using thioflavin-T (ThT)-monitored aggregation assays and native mass spectrometry coupled to ion mobility analysis (IM-MS), we first show that all Aβ peptides are aggregation-competent and self-assemble into homo-oligomers with distinct conformational populations, which are more pronounced between Aβ40 than the longer variants. ThT assays were then conducted on binary mixtures of Aβ variants, revealing that Aβ42 and Aβ43 aggregate independently from Aβ40 but significantly speed up Aβ40 fibrillation. Aβ42 and Aβ43 were observed to aggregate concurrently and mutually accelerate fibril formation, which likely involves hetero-oligomerization. Accordingly, native MS analysis revealed pairwise oligomerization between all variants, with the formation of heterodimers and heterotrimers. Interestingly, IM-MS indicates that hetero-oligomers containing longer Aβ variants are enriched in conformers with lower collision cross-sections when compared to their homo-oligomer counterparts. This suggests that Aβ42 and Aβ43 are capable of remodeling the oligomer structure toward a higher compaction level. Altogether, our findings provide a mechanistic description for the hetero-oligomerization of Aβ variants implicated in AD, contributing to rationalizing their in vivo proteotoxic interplay.
Collapse
Affiliation(s)
- Tanja Habeck
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Silvana Smilla Zurmühl
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - António J Figueira
- BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | | | - Cláudio M Gomes
- BioISI-Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Frederik Lermyte
- Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, 64287 Darmstadt, Germany
| |
Collapse
|
199
|
Gentry C, Malek-Ahmadi M, Bolas S, Pena J. PET Imaging in Alzheimer Disease: Pathology and Research Insights for Technologists. J Nucl Med Technol 2024; 52:306-311. [PMID: 39532490 DOI: 10.2967/jnmt.124.268916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer disease (AD) is the sixth leading cause of death in the United States and is projected to affect over 13 million people by the year 2060. Although there is currently no cure for AD, disease-modifying treatments that target amyloid plaques have recently been approved for use. The advent of PET tracers that can reliably detect the presence of cortical amyloid plaques and tau pathologies has allowed researchers and clinicians to identify individuals who have pathologic markers of AD before the onset of cognitive decline. Although these tracers have been widely used in research settings for some time, they are now on the verge of being used to aid clinicians in the differential diagnosis of AD. As the use of these tracers increases, technologists will need to be educated on the best practices and potential problems they may encounter in their clinical populations. This article will review the available tracers for amyloid and tau PET scans and educate technologists about the most important practices and procedures that can be implemented to ensure patient safety and the capture of high-quality scans.
Collapse
Affiliation(s)
| | | | - Susan Bolas
- Banner Alzheimer's Institute, Phoenix, Arizona
| | - Jose Pena
- Banner Alzheimer's Institute, Phoenix, Arizona
| |
Collapse
|
200
|
Hacker RM, Grimard DM, Morgan KA, Saleh E, Wrublik MM, Meiss CJ, Kant CC, Jones MA, Brennessel WW, Webb MI. Ru(II)-arene azole complexes as anti-amyloid-β agents. Dalton Trans 2024; 53:18845-18855. [PMID: 39093049 DOI: 10.1039/d4dt01740d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
With the recent clinical success of anti-amyloid-β (Aβ) monoclonal antibodies, there is a renewed interest in agents which target the Aβ peptide of Alzheimer's disease (AD). Metal complexes are particularly well-suited for this development, given their structural versatility and ability to form stabile interactions with soluble Aβ. In this report, a small series of ruthenium-arene complexes were evaluated for their respective ability to modulate both the aggregation and cytotoxicity of Aβ. First, the stability of the complexes was evaluated in a variety of aqueous media where the complexes demonstrated exceptional stability. Next, the ability to coordinate and modulate the Aβ peptide was evaluated using several spectroscopic methods, including thioflavin T (ThT) fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM). Overall, the complex RuBO consistently gave the greatest inhibitory action towards Aβ aggregation, which correlated with its ability to coordinate to Aβ in solution. Furthermore, RuBO also had the lowest affinity for serum albumin, which is a key consideration for a neurotherapeutic, as this protein does not cross the blood brain barrier. Lastly, RuBO also displayed promising neuroprotective properties, as it had the greatest inhibition of Aβ-inducted cytotoxicity.
Collapse
Affiliation(s)
- Ryan M Hacker
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| | - Daniela M Grimard
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| | - Katie A Morgan
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| | - Eaman Saleh
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Morgan M Wrublik
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Cade J Meiss
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Caitlyn C Kant
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL, 61790, USA
| | | | - Michael I Webb
- Department of Chemistry and Biochemistry, SUNY Geneseo, Geneseo, NY, 14454, USA.
| |
Collapse
|