151
|
Barrera C, Burca C, Betoret E, García‐Hernández J, Hernández M, Betoret N. Improving antioxidant properties and probiotic effect of clementine juice inoculated with
Lactobacillus salivarius
spp.
salivarius
(CECT 4063) by trehalose addition and/or sublethal homogenisation. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Cristina Barrera
- Instituto de Ingeniería de Alimentos para el desarrollo Universitat Politècnica de València Camino de Vera s/n 46022 Valencia Spain
| | - Cristina Burca
- Instituto de Ingeniería de Alimentos para el desarrollo Universitat Politècnica de València Camino de Vera s/n 46022 Valencia Spain
| | - Ester Betoret
- Instituto de Agroquímica y Tecnología de Alimentos Consejo Superior de Investigaciones Científicas C/ Catedrático Agustín Escardino Benlloch 7 46980 Paterna Spain
| | - Jorge García‐Hernández
- Departamento de Biotecnología Universitat Politècnica de València Camino de Vera s/n 46022 Valencia Spain
| | - Manuel Hernández
- Departamento de Biotecnología Universitat Politècnica de València Camino de Vera s/n 46022 Valencia Spain
| | - Noelia Betoret
- Instituto de Ingeniería de Alimentos para el desarrollo Universitat Politècnica de València Camino de Vera s/n 46022 Valencia Spain
| |
Collapse
|
152
|
Liu J, Chen C, Lu C, Li W. Different mechanisms on the stabilization of POPC membrane by trehalose upon varied mechanical stress. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
153
|
Zhang Y, Wang F, Feng Q, Wang H, Tang T, Huang D, Liu F. Involvement of trehalose-6-phosphate synthase in innate immunity of Musca domestica. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:85-92. [PMID: 30385314 DOI: 10.1016/j.dci.2018.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/24/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
Trehalose-6-phosphate synthase (TPS) is responsible for synthesizing trehalose, which is prevalent in crustaceans and insects as blood-sugar. In this paper, a TPS gene from Musca domestica(MdTPS)has been cloned and characterized. MdTPS promoter was analyzed, and its transcriptional activity was verified in vitro by Sf9 cell. Quantitative RT-PCR analysis revealed that the MdTPS transcription was up-regulated following bacterial challenge by Escherichia coli or Staphylococcus aureus. Meanwhile, trehalose is accumulated in larvae upon bacterial challenge. Significantly increased mortality can be observed in MdTPS depleted (RNA interference, RNAi) larvae under bacterial infection. Interestingly, feeding trehalose led to increasing trehalose content in larvae, and the effects of RNAi targeting MdTPS on host survival against bacterial challenge was partly counteracted. Taken together, these results suggest that MdTPS acts as an inducible anti-stress gene that takes part in immune defense in M. domestica via synthesizing its product trehalose.
Collapse
Affiliation(s)
- Yuming Zhang
- Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fan Wang
- Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Qin Feng
- Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Hongxin Wang
- Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Ting Tang
- Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Dawei Huang
- Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fengsong Liu
- Key Laboratory of Invertebrate Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|
154
|
Glucose Can Protect Membranes against Dehydration Damage by Inducing a Glassy Membrane State at Low Hydrations. MEMBRANES 2019; 9:membranes9010015. [PMID: 30650602 PMCID: PMC6359629 DOI: 10.3390/membranes9010015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 01/26/2023]
Abstract
The physical effects of small sugars on membranes have been studied for decades, primarily because of their membrane stabilization in cold or dehydrated environments. We studied the effects of up to 20 mol% glucose in bilayers made of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) at low hydration by combining X-ray diffraction and Molecular Dynamics (MD) simulations. In agreement with previous studies, we observe membrane thinning at low and membrane thickening at high sugar concentrations. Glucose was found to preferentially localize to the outer head region of phospholipid bilayers at all concentrations, and partitioning of sugar in the membranes was found to monotonically increase with increasing sugar concentration. While the number of gauche defects in the lipid acyl tails and the lipid packing in the presence of sugar resembled values of a fluid lipid bilayer, tail dynamics, as assessed by autocorrelation of the carbon atoms in the phospholipid tails, were slowed down significantly with increasing glucose content. Thus, our findings suggest that sugar leads to a a disordered, glassy state of the hydrophobic membrane core. The non-monotonic effect of glucose on membrane thickness was found to be an effect of fluidification at low concentrations and decreased interdigitation in the higher sugar concentration regime.
Collapse
|
155
|
Shen Y, Du K, Zou L, Zhou X, Lv R, Gao D, Qiu B, Ding W. Rapid and continuous on-chip loading of trehalose into erythrocytes. Biomed Microdevices 2019; 21:5. [PMID: 30607639 DOI: 10.1007/s10544-018-0352-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Freeze-drying is a promising approach for the long-term storage of erythrocytes at room temperature. Studies have shown that trehalose loaded into erythrocytes plays an important role in protecting erythrocytes against freeze-drying damage. Due to the impermeability of the erythrocyte membrane to trehalose, many methods have been developed to load trehalose into erythrocytes. However, these methods usually require multistep manual manipulation and long processing time; the adopted protocols are also diverse and not standardized. Thus, we develop an osmotically-based trehalose-loading microdevice (TLM) to rapidly, continuously, and automatically produce erythrocytes with loaded trehalose. In the TLM, trehalose is loaded through the erythrocyte membrane pores induced by hypotonic shock; then, the trehalose-loaded erythrocytes are rinsed to remove hemoglobin molecules and cell fragments, and the extracellular solution is restored to the isotonic state by integrating a rinsing-recovering design. First, the mixing function and the rinsing-recovering function were confirmed using a fluorescent solution. Then, the performance of the TLM was evaluated under various operating conditions with respect to the loading efficiency of trehalose, the hemolysis rate of erythrocytes (ϕ), the recovery rate of hemoglobin in erythrocytes (φ), and the separation efficiency of the TLM. Finally, the preliminary study of the freeze-drying of erythrocytes with loaded trehalose was accomplished using the TLM. The results showed that under the designated operating conditions, the loading efficiency for human erythrocytes reached ~21 mM in ~2 min with a ϕ value of ~17% and a φ value of ~74%. This study provides insights into the design of the on-chip loading of trehalose into erythrocytes and promotes the automation of life science studies on biochips.
Collapse
Affiliation(s)
- Yiren Shen
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Kun Du
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Lili Zou
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xiaoming Zhou
- School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Rong Lv
- Hefei Blood Center, Hefei, 230000, Anhui, China
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Weiping Ding
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|
156
|
Mallikarjunaiah KJ, Kinnun JJ, Petrache HI, Brown MF. Flexible lipid nanomaterials studied by NMR spectroscopy. Phys Chem Chem Phys 2019; 21:18422-18457. [DOI: 10.1039/c8cp06179c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advances in solid-state nuclear magnetic resonance spectroscopy inform the emergence of material properties from atomistic-level interactions in membrane lipid nanostructures.
Collapse
Affiliation(s)
- K. J. Mallikarjunaiah
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson
- USA
- Department of Physics
| | - Jacob J. Kinnun
- Department of Physics
- Indiana University-Purdue University
- Indianapolis
- USA
| | - Horia I. Petrache
- Department of Physics
- Indiana University-Purdue University
- Indianapolis
- USA
| | - Michael F. Brown
- Department of Chemistry and Biochemistry
- University of Arizona
- Tucson
- USA
- Department of Physics
| |
Collapse
|
157
|
Rapoport A, Golovina EA, Gervais P, Dupont S, Beney L. Anhydrobiosis: Inside yeast cells. Biotechnol Adv 2019; 37:51-67. [DOI: 10.1016/j.biotechadv.2018.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/01/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022]
|
158
|
Wolde-Kidan A, Pham QD, Schlaich A, Loche P, Sparr E, Netz RR, Schneck E. Influence of polar co-solutes and salt on the hydration of lipid membranes. Phys Chem Chem Phys 2019; 21:16989-17000. [DOI: 10.1039/c9cp01953g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The influence of the co-solutes TMAO, urea, and NaCl on the hydration repulsion between lipid membranes is investigated in a combined experimental/simulation approach.
Collapse
Affiliation(s)
| | - Quoc Dat Pham
- Division of Physical Chemistry
- Chemistry Department
- Lund University
- 22100 Lund
- Sweden
| | | | - Philip Loche
- Fachbereich Physik
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Emma Sparr
- Division of Physical Chemistry
- Chemistry Department
- Lund University
- 22100 Lund
- Sweden
| | - Roland R. Netz
- Fachbereich Physik
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - Emanuel Schneck
- Biomaterials Department
- Max Planck Institute of Colloids and Interfaces
- 14476 Potsdam
- Germany
| |
Collapse
|
159
|
Reinbothe S, Bartsch S, Rossig C, Davis MY, Yuan S, Reinbothe C, Gray J. A Protochlorophyllide (Pchlide) a Oxygenase for Plant Viability. FRONTIERS IN PLANT SCIENCE 2019; 10:593. [PMID: 31156665 PMCID: PMC6530659 DOI: 10.3389/fpls.2019.00593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/24/2019] [Indexed: 05/19/2023]
Abstract
Higher plants contain a small, 5-member family of Rieske non-heme oxygenases that comprise the inner plastid envelope protein TIC55, phaeophorbide a oxygenasee (PAO), chlorophyllide a oxygenase (CAO), choline monooxygenase, and a 52 kDa protein (PTC52) associated with the precursor NADPH:protochlorophyllide (Pchlide) oxidoreductase A (pPORA) A translocon (PTC). Some of these chloroplast proteins have documented roles in chlorophyll biosynthesis (CAO) and degradation (PAO and TIC55), whereas the function of PTC52 remains unresolved. Biochemical evidence provided here identifies PTC52 as Pchlide a oxygenase of the inner plastid envelope linking Pchlide b synthesis to pPORA import. Protochlorophyllide b is the preferred substrate of PORA and its lack no longer allows pPORA import. The Pchlide b-dependent import pathway of pPORA thus operates in etiolated seedlings and is switched off during greening. Using dexamethasone-induced RNA interference (RNAi) we tested if PTC52 is involved in controlling both, pPORA import and Pchlide homeostasis in planta. As shown here, RNAi plants deprived of PTC52 transcript and PTC52 protein were unable to import pPORA and died as a result of excess Pchlide a accumulation causing singlet oxygen formation during greening. In genetic studies, no homozygous ptc52 knock-out mutants could be obtained presumably as a result of embryo lethality, suggesting a role for PTC52 in the initial greening of plant embryos. Phylogenetic studies identified PTC52-like genes amongst unicellular photosynthetic bacteria and higher plants, suggesting that the biochemical function associated with PTC52 may have an ancient evolutionary origin. PTC52 also harbors conserved motifs with bacterial oxygenases such as the terminal oxygenase component of 3-ketosteroid 9-alpha-hydroxylase (KshA) from Rhodococcus rhodochrous. 3D-modeling of PTC52 structure permitted the prediction of amino acid residues that contribute to the substrate specificity of this enzyme. In vitro-mutagenesis was used to test the predicted PTC52 model and provide insights into the reaction mechanism of this Rieske non-heme oxygenase.
Collapse
Affiliation(s)
- Steffen Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
- *Correspondence: Steffen Reinbothe, John Gray,
| | - Sandra Bartsch
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - Claudia Rossig
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | | | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Christiane Reinbothe
- Laboratoire de Génétique Moléculaire des Plantes and Biologie Environnementale et Systémique (BEeSy), Université Grenoble Alpes, Grenoble, France
| | - John Gray
- Department of Biological Sciences, The University of Toledo, Toledo, OH, United States
- *Correspondence: Steffen Reinbothe, John Gray,
| |
Collapse
|
160
|
Characteristic responses of a 1,2-dipalmitoleoyl-sn-glycero-3- phosphoethanolamine molecular layer depending on the number of CH(OH) groups in polyols. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
161
|
Weng L, Stott SL, Toner M. Exploring Dynamics and Structure of Biomolecules, Cryoprotectants, and Water Using Molecular Dynamics Simulations: Implications for Biostabilization and Biopreservation. Annu Rev Biomed Eng 2018; 21:1-31. [PMID: 30525930 DOI: 10.1146/annurev-bioeng-060418-052130] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Successful stabilization and preservation of biological materials often utilize low temperatures and dehydration to arrest molecular motion. Cryoprotectants are routinely employed to help the biological entities survive the physicochemical and mechanical stresses induced by cold or dryness. Molecular interactions between biomolecules, cryoprotectants, and water fundamentally determine the outcomes of preservation. The optimization of assays using the empirical approach is often limited in structural and temporal resolution, whereas classical molecular dynamics simulations can provide a cost-effective glimpse into the atomic-level structure and interaction of individual molecules that dictate macroscopic behavior. Computational research on biomolecules, cryoprotectants, and water has provided invaluable insights into the development of new cryoprotectants and the optimization of preservation methods. We describe the rapidly evolving state of the art of molecular simulations of these complex systems, summarize the molecular-scale protective and stabilizing mechanisms, and discuss the challenges that motivate continued innovation in this field.
Collapse
Affiliation(s)
- Lindong Weng
- Center for Engineering in Medicine and BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA; , , .,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Shannon L Stott
- Center for Engineering in Medicine and BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA; , , .,Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA.,Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Mehmet Toner
- Center for Engineering in Medicine and BioMEMS Resource Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA; , , .,Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.,Shriners Hospital for Children, Boston, Massachusetts 02114, USA
| |
Collapse
|
162
|
Al-Ayoubi SR, Schinkel PKF, Berghaus M, Herzog M, Winter R. Combined effects of osmotic and hydrostatic pressure on multilamellar lipid membranes in the presence of PEG and trehalose. SOFT MATTER 2018; 14:8792-8802. [PMID: 30339170 DOI: 10.1039/c8sm01343h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We studied the interaction of lipid membranes with the disaccharide trehalose (TRH), which is known to stabilize biomembranes against various environmental stress factors. Generally, stress factors include low/high temperature, shear, osmotic and hydrostatic pressure. Small-angle X-ray-scattering was applied in combination with fluorescence spectroscopy and calorimetric measurements to get insights into the influence of trehalose on the supramolecular structure, hydration level, and elastic and thermodynamic properties as well as phase behavior of the model biomembrane DMPC, covering a large region of the temperature, osmotic and hydrostatic pressure phase space. We observed distinct effects of trehalose on the topology of the lipid's supramolecular structure. Trehalose, unlike osmotic pressure induced by polyethylene glycol, leads to a decrease of lamellar order and a swelling of multilamellar vesicles, which is attributable to direct interactions between the membrane and trehalose. Our results revealed a distinct biphasic concentration dependence of the observed effects of trehalose. While trehalose intercalates between the polar head groups at low concentrations, the effects after saturation are dominated by the exclusion of trehalose from the membrane surface.
Collapse
Affiliation(s)
- Samy R Al-Ayoubi
- Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227 Dortmund, Germany.
| | | | | | | | | |
Collapse
|
163
|
Di Gioacchino M, Bruni F, Ricci MA. Protection against Dehydration: A Neutron Diffraction Study on Aqueous Solutions of a Model Peptide and Trehalose. J Phys Chem B 2018; 122:10291-10295. [PMID: 30339006 DOI: 10.1021/acs.jpcb.8b08046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ability of a wide class of organisms to reversibly go through cycles of suspended life and active metabolism, depending on the turnover of drought and normal water availability conditions, represents a challenging issue. The interest in the natural mechanism for drought survival has grown over time along with the request for always more efficient conservation techniques for biological materials. Carbohydrates, such as trehalose, accumulated in the cytoplasm of drought resistant cells, are considered responsible for desiccation tolerance. Nonetheless, a detailed description of the interaction between trehalose and biomolecules is not yet established. Neutron diffraction experiments show that trehalose entraps a layer of water molecules in the first shell of a model peptide, N-methylacetamide, without direct bonding with it. This evidence contrasts the hypothesis that trehalose substitutes water and supports the opposite view, namely, of trehalose forming a protective shell which entraps a layer of water molecules at the surface of proteins, thus avoiding structural damage due to drought conditions.
Collapse
Affiliation(s)
- Michael Di Gioacchino
- Dipartimento di Scienze , Universitá degli Studi Roma Tre , via della Vasca Navale 84 , 00146 Roma , Italy
| | - Fabio Bruni
- Dipartimento di Scienze , Universitá degli Studi Roma Tre , via della Vasca Navale 84 , 00146 Roma , Italy
| | - Maria Antonietta Ricci
- Dipartimento di Scienze , Universitá degli Studi Roma Tre , via della Vasca Navale 84 , 00146 Roma , Italy
| |
Collapse
|
164
|
Zeidler S, Müller V. The role of compatible solutes in desiccation resistance of Acinetobacter baumannii. Microbiologyopen 2018; 8:e00740. [PMID: 30277310 PMCID: PMC6528591 DOI: 10.1002/mbo3.740] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/30/2018] [Accepted: 08/31/2018] [Indexed: 01/03/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen which can persist in the hospital environment not only due to the acquirement of multiple antibiotic resistances, but also because of its exceptional resistance against disinfectants and desiccation. A suitable desiccation assay was established in which A. baumannii ATCC 19606T survived for ca. 1 month. The growth medium slightly influenced survival after subsequent desiccation. A significant effect could be attributed to the growth phase in which bacteria were dried: In exponential phase, cells were much more desiccation sensitive. The main focus of the present study was the elucidation of the role of compatible solutes, which are known to protect many bacteria under low water activity conditions, in desiccation survival of A. baumannii. Exogenous trehalose was shown to efficiently protect A. baumannii on dry surfaces, in contrast to other compatible solutes tested such as mannitol or glycine betaine. To analyze the importance of intracellularly accumulated solutes, a double mutant lacking biosynthesis pathways for mannitol and trehalose was generated. This mutant accumulated glutamate as sole solute in the presence of high NaCl concentrations and showed severe growth defects under osmotic stress conditions. However, no effect on desiccation tolerance could be seen, neither when cells were dried in water nor in the presence of NaCl.
Collapse
Affiliation(s)
- Sabine Zeidler
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Frankfurt, Germany
| |
Collapse
|
165
|
Dhall S, Sathyamoorthy M, Kuang JQ, Hoffman T, Moorman M, Lerch A, Jacob V, Sinclair SM, Danilkovitch A. Properties of viable lyopreserved amnion are equivalent to viable cryopreserved amnion with the convenience of ambient storage. PLoS One 2018; 13:e0204060. [PMID: 30278042 PMCID: PMC6168127 DOI: 10.1371/journal.pone.0204060] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/31/2018] [Indexed: 12/29/2022] Open
Abstract
Human amniotic membrane (AM) has a long history of clinical use for wound treatment. AM serves as a wound protective barrier maintaining proper moisture. AM is anti-inflammatory, anti-microbial and antifibrotic, and supports angiogenesis, granulation tissue formation and wound re-epithelialization. These properties of AM are attributed to its native extracellular matrix, growth factors, and endogenous cells including mesenchymal stem cells. Advances in tissue preservation have helped to overcome the short shelf life of fresh AM and led to the development of AM products for clinical use. Viable cryopreserved amnion (VCAM), which retains all native components of fresh AM, has shown positive outcomes in clinical trials for wound management. However, cryopreservation requires ultra-low temperature storage and shipment that limits widespread use of VCAM. We have developed a lyopreservation technique to allow for ambient storage of living tissues. Here, we compared the structural, molecular, and functional properties of a viable lyopreserved human amniotic membrane (VLAM) with properties of VCAM using in vitro and in vivo wound models. We found that the structure, growth factors, and cell viability of VLAM is similar to that of VCAM and fresh AM. Both, VCAM and VLAM inhibited TNF-α secretion and upregulated VEGF expression in vitro under conditions designed to mimic inflammation and hypoxia in a wound microenvironment, and resulted in wound closure in a diabetic mouse chronic wound model. Taken together, these data demonstrate that VLAM structural and functional properties are equivalent to VCAM but without the constraints of ultra-low temperature storage.
Collapse
Affiliation(s)
- Sandeep Dhall
- Osiris Therapeutics Inc., Columbia, MD, United States of America
- * E-mail:
| | | | - Jin-Qiang Kuang
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | - Tyler Hoffman
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | - Matthew Moorman
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | - Anne Lerch
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | - Vimal Jacob
- Osiris Therapeutics Inc., Columbia, MD, United States of America
| | | | | |
Collapse
|
166
|
Maserati A, Lourenco A, Diez-Gonzalez F, Fink RC. iTRAQ-Based Global Proteomic Analysis of Salmonella enterica Serovar Typhimurium in Response to Desiccation, Low Water Activity, and Thermal Treatment. Appl Environ Microbiol 2018; 84:e00393-18. [PMID: 29959250 PMCID: PMC6121987 DOI: 10.1128/aem.00393-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/26/2018] [Indexed: 01/21/2023] Open
Abstract
In this study, the changes in the global proteome of Salmonella in response to desiccation and thermal treatment were investigated by using an iTRAQ multiplex technique. A Salmonella enterica serovar Typhimurium strain was dried, equilibrated at high (1.0) and low (0.11) water activity (aw), and thermally treated at 75°C. The proteomes were characterized after every treatment. The proteomes of the different treatments differed in the expression of 175 proteins. On the basis of their proteomic expression profiles, the samples were clustered into two major groups, namely, "dry" samples and "moist" samples. The groups had different levels of proteins involved in DNA synthesis and transcription and in metabolic reactions, indicating that cells under either of the aw conditions need to strictly control energy metabolism, the rate of replication, and protein synthesis. The proteins with higher expression levels in moist samples were flagellar proteins (FlgEFGH), membrane proteins, and export systems (SecF, SecD, the Bam complex), as well as stress response proteins, suggesting that rehydration can trigger stress responses in moist cells. Dry samples had higher levels of ribosomal proteins, indicating that ribosomal proteins might be important for additional regulation of the cellular response, even when the synthesis of proteins is slowed down. At both aws, no differences in protein expression were observed between the thermally treated samples and the nonheated cells. In conclusion, our study indicates that the preadaptation to a dry condition was linked to increased thermal tolerance, while reversion from a dry state to a moist state induced a significant change in protein expression, possibly linked to the observed loss of thermal tolerance.IMPORTANCESalmonella enterica is able to survive in dry environments for very long periods. While it is well known that the initial exposure to desiccation is fundamental to trigger thermal tolerance in this organism, the specific physiological and molecular processes involved in this cross-protection phenomenon have not been fully characterized. Several studies have focused on the low-aw transcriptome of this pathogen when inoculated in different food matrices or on abiotic surfaces, but proteomic analyses have not been reported in the literature. Our study investigated the changes in proteomic expression in Salmonella enterica serovar Typhimurium during desiccation, exposure to low aw, and thermal treatment. A better knowledge of the systems involved in the response to desiccation and thermal tolerance, as well as a better understanding of their interplay, is fundamental to identify the most effective combination of interventions to prevent Salmonella's contamination of foods.
Collapse
Affiliation(s)
- Alice Maserati
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | - Antonio Lourenco
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, Minnesota, USA
| | | | - Ryan C Fink
- Department of Biology, Saint Cloud State University, Saint Cloud, Minnesota, USA
| |
Collapse
|
167
|
Affiliation(s)
- C. S. Tan
- Centraalbureau voor Schimmelcultures, P.O. Box 273, 3740 AG Baarn, The Netherlands
| | - J. A. Stalpers
- Centraalbureau voor Schimmelcultures, P.O. Box 273, 3740 AG Baarn, The Netherlands
| | - C. W. van Ingen
- Foundation for the Advancement of Public Health and Environmental Protection, P.O. Box 457, 3720 AL Bilthoven, The Netherlands
| |
Collapse
|
168
|
Berny JF, Hennebert GL. Viability and Stability of Yeast Cells and Filamentous Fungus Spores During Freeze-Drying: Effects of Protectants and Cooling Rates. Mycologia 2018. [DOI: 10.1080/00275514.1991.12026086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- J.-F. Berny
- Laboratoire de Mycologie Systématique et Appliquée, Mycothèque de l'Université Catholique de Louvain, Place Croix du Sud, 3, B-1348 Louvain-la-Neuve, Belgium
| | - G. L. Hennebert
- Laboratoire de Mycologie Systématique et Appliquée, Mycothèque de l'Université Catholique de Louvain, Place Croix du Sud, 3, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
169
|
Homayun B, Kumar A, Nascimento PTH, Choi HJ. Macropored microparticles with a core–shell architecture for oral delivery of biopharmaceuticals. Arch Pharm Res 2018; 41:848-860. [DOI: 10.1007/s12272-018-1062-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/30/2018] [Indexed: 11/28/2022]
|
170
|
Kanojia G, ten Have R, Brugmans D, Soema PC, Frijlink HW, Amorij JP, Kersten G. The effect of formulation on spray dried Sabin inactivated polio vaccine. Eur J Pharm Biopharm 2018; 129:21-29. [DOI: 10.1016/j.ejpb.2018.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/20/2018] [Accepted: 05/18/2018] [Indexed: 10/16/2022]
|
171
|
Ntai A, La Spada A, De Blasio P, Biunno I. Trehalose to cryopreserve human pluripotent stem cells. Stem Cell Res 2018; 31:102-112. [PMID: 30071393 DOI: 10.1016/j.scr.2018.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/22/2018] [Accepted: 07/23/2018] [Indexed: 02/08/2023] Open
Abstract
The successful exploitation of human pluripotent stem cells (hPSCs) for research, translational or commercial reasons requires the implementation of a simple and efficient cryopreservation method. Cryopreservation is usually performed with dimethylsulphoxide (DMSO), in addition to animal proteins. However, even at sub-toxic levels, DMSO diminishes the pluripotency capacity of hPSCs and affects their epigenetic system by acting on the three DNA methyltransferases (Dnmts) and histone modification enzymes. Our study aimed to test trehalose-based cryosolutions containing ethylene glycol (EG) or glycerol (GLY) on hESCs RC17, hiPSCs CTR2#6 and long-term neuroepithelial-like stem cells (lt-NES) AF22. Here, we demostrate the effectiveness of these cryosolutions in hPSCs by showing an acceptable rate of cell viability and high stability compared to standard 10% DMSO freezing medium (CS10). All cell lines retained their morphology, self renewal potential and pluripotency, and none of the cryosolutions affected their differentiation potential. Genotoxicity varied among different stem cells types, while trehalose-based cryopreservation did not sensibly alter the homeostasis of endoplasmic reticulum (ER). This study provides evidence that pluripotent and neural stem cells stored in trehalose alone or with other cryoprotectants (CPAs) maintain their functional properties, indicating their potential use in cell therapies if produced in good manufacturing practice (GMP) facility.
Collapse
Affiliation(s)
- Aikaterini Ntai
- Integrated Systems Engineering S.r.l. (ISENET), Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Alberto La Spada
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Pasquale De Blasio
- Integrated Systems Engineering S.r.l. (ISENET), Via G. Fantoli 16/15, 20138 Milan, Italy.
| | - Ida Biunno
- Institute of Genetic and Biomedical Research, National Research Council (IRGB-CNR), Via G. Fantoli 16/15, 20138 Milan, Italy; IRCCS Multimedica, via G. Fantoli 16/15, 20138 Milan, Italy.
| |
Collapse
|
172
|
Kanojia G, Raeven RHM, van der Maas L, Bindels THE, van Riet E, Metz B, Soema PC, Ten Have R, Frijlink HW, Amorij JP, Kersten GFA. Development of a thermostable spray dried outer membrane vesicle pertussis vaccine for pulmonary immunization. J Control Release 2018; 286:167-178. [PMID: 30048656 DOI: 10.1016/j.jconrel.2018.07.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 11/30/2022]
Abstract
Worldwide resurgence of whooping cough calls for improved, next-generation pertussis vaccines that induce broad and long-lasting immunity. A mucosal pertussis vaccine based on outer membrane vesicles (omvPV) is a promising candidate. Further, a vaccine that is stable outside the cold chain would be of substantial advantage for worldwide distribution and application. A vaccine formulated as a powder could both stabilize the vaccine as well as make it suitable for pulmonary vaccination. To that end, we developed a spray dried omvPV with improved stability compared to the liquid omvPV formulation. Spray drying did not affect the structural integrity of the omvPV. The antigenicity of Vag8, a major antigen in omvPV was diminished slightly and an altered tryptophan fluorescence indicated some changes in protein structure. However, when administered via the pulmonary route in mice after reconstitution, spray dried omvPV showed comparable immune responses and protection against challenge with live B. pertussis as liquid omvPV. Mucosal IgA and Th17 responses were established in addition to broad systemic IgG and Th1/Th17 responses, indicating the induction of an effective immunity profile. Overall, a spray dried omvPV was developed that maintained effective immunogenic properties and has an improved storage stability.
Collapse
Affiliation(s)
- Gaurav Kanojia
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Groningen, The Netherlands.
| | - René H M Raeven
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| | | | - Tim H E Bindels
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Elly van Riet
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Bernard Metz
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Peter C Soema
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Rimko Ten Have
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Henderik W Frijlink
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Groningen, The Netherlands
| | - Jean-Pierre Amorij
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Gideon F A Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; Division of Biotherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
173
|
Zhao X, Song X, Li Y, Yu C, Zhao Y, Gong M, Shen X, Chen M. Gene expression related to trehalose metabolism and its effect on Volvariella volvacea under low temperature stress. Sci Rep 2018; 8:11011. [PMID: 30030496 PMCID: PMC6054667 DOI: 10.1038/s41598-018-29116-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/05/2018] [Indexed: 12/17/2022] Open
Abstract
The mechanism of the low temperature autolysis of Volvariella volvacea (V. volvacea) has not been thoroughly explained, and trehalose is one of the most important osmolytes in the resistance of fungi to adversity. The present study used the low temperature sensitive V. volvacea strain V23 and the low temperature tolerant strain VH3 as test materials. Intracellular trehalose contents under low temperature stress in the two strains were measured by high performance liquid chromatography (HPLC). Quantitative real-time PCR (qPCR) analysis was carried out to study the transcriptional expression differences of enzymes related to trehalose metabolism. And trehalose solution was exogenously added during the cultivation of fruit bodies of V. volvacea. The effect of exogenous trehalose solution on the anti-hypothermia of fruit bodies was studied by evaluating the sensory changes under low temperature storage after harvest. The results showed that the intracellular trehalose content in VH3 was higher than that in V23 under low temperature stress. In the first 2 h of low temperature stress, the expression of trehalose-6-phosphate phosphatase (TPP) gene involved in trehalose synthesis decreased, while the expression of trehalose phosphorylase (TP) gene increased. The expression of TPP gene was almost unchanged in VH3, but it decreased dramatically in V23 at 4 h of low temperature stress. The expression levels of TPP and TP genes in VH3 was significantly higher than that in V23 from 6 h to 8 h of low temperature stress. TP gene may be a crucial gene of trehalose metabolism, which was more inclined to synthesize trehalose during low temperature stress. In addition, the sensory traits of V. volvacea fruit bodies stored at 4 °C were significantly improved by the application of exogenous trehalose compared with the controls. Thus, trehalose could help V. volvacea in response to low temperature stress and high content of it may be one of the reasons that why VH3 strain was more tolerant to the low temperature stress than V23 strain.
Collapse
Affiliation(s)
- Xu Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P.R. China.,National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, P.R. China
| | - Xiaoxia Song
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P.R. China.,National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, P.R. China
| | - Yapeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P.R. China.,National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, P.R. China
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P.R. China.,National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, P.R. China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P.R. China. .,National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, P.R. China.
| | - Ming Gong
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P.R. China.,National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, P.R. China
| | - Xuexiang Shen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P.R. China.,National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, P.R. China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, P.R. China. .,National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, P.R. China.
| |
Collapse
|
174
|
Abstract
Trehalose, commonly found in living organisms, is believed to help them survive severe environmental conditions, such as drought or extreme temperatures. With the aim of trying to understand these properties, two recent neutron scattering studies investigate the structure of trehalose water solutions but come to seemingly opposite conclusions. In the first study, which looks at two concentrations of trehalose-water mole ratios of 1:100 and 1:25, the conclusion is that trehalose hydrogen-bonds to water rather weakly and has a relatively minor impact on the structure of water in solution compared to bulk water. On the other hand, for the other, using a mole ratio of 1:38, the conclusion is that the water structure is rather substantially modified by the presence of trehalose and that the hydrogen bonding between water and trehalose hydroxyl groups is significant. In an attempt to try to understand the origin of these divergent views, which arise from similar but independent analyses of different neutron diffraction data, we have performed additional X-ray scattering experiments, which are highly sensitive to water structure, at the same trehalose-water concentrations used in the first study, and combined these with empirical potential structure refinement on the previously collected neutron data. The new analysis unequivocally confirms that trehalose does indeed have only a minor impact on the structure of water, at all three concentrations, and forms relatively weak hydrogen bonds with water. Far from being discrepant with the existing literature, our new analysis of the different datasets suggests a natural explanation for the increased glass-transition temperature of trehalose compared to other sugars and hence its enhanced effectiveness as a protectant against drought stress.
Collapse
Affiliation(s)
- Alan K Soper
- ISIS Facility, STFC Rutherford Appleton Laboratory , Harwell Campus , Didcot OX11 0QX , U.K
| | - Maria Antonietta Ricci
- Dipartimento di Scienze , Università degli Studi "Roma Tre" , via della Vasca Navale 84 , 00146 Roma , Italy
| | - Fabio Bruni
- Dipartimento di Scienze , Università degli Studi "Roma Tre" , via della Vasca Navale 84 , 00146 Roma , Italy
| | - Natasha H Rhys
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , U.K
| | - Sylvia E McLain
- Department of Biochemistry , University of Oxford , South Parks Road , Oxford OX1 3QU , U.K
| |
Collapse
|
175
|
Kim SX, Çamdere G, Hu X, Koshland D, Tapia H. Synergy between the small intrinsically disordered protein Hsp12 and trehalose sustain viability after severe desiccation. eLife 2018; 7:38337. [PMID: 30010539 PMCID: PMC6054528 DOI: 10.7554/elife.38337] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/15/2018] [Indexed: 01/03/2023] Open
Abstract
Anhydrobiotes are rare microbes, plants and animals that tolerate severe water loss. Understanding the molecular basis for their desiccation tolerance may provide novel insights into stress biology and critical tools for engineering drought-tolerant crops. Using the anhydrobiote, budding yeast, we show that trehalose and Hsp12, a small intrinsically disordered protein (sIDP) of the hydrophilin family, synergize to mitigate completely the inviability caused by the lethal stresses of desiccation. We show that these two molecules help to stabilize the activity and prevent aggregation of model proteins both in vivo and in vitro. We also identify a novel in vitro role for Hsp12 as a membrane remodeler, a protective feature not shared by another yeast hydrophilin, suggesting that sIDPs have distinct biological functions.
Collapse
Affiliation(s)
- Skylar Xantus Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Gamze Çamdere
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Xuchen Hu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Hugo Tapia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
176
|
Bruni F, Di Mino C, Imberti S, McLain SE, Rhys NH, Ricci MA. Hydrogen Bond Length as a Key To Understanding Sweetness. J Phys Chem Lett 2018; 9:3667-3672. [PMID: 29920095 DOI: 10.1021/acs.jpclett.8b01280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Neutron diffraction experiments have been performed to investigate and compare the structure of the hydration shell of three monosaccharides, namely, fructose, glucose, and mannose. It is found that despite their differences with respect to many thermodynamical quantities, bioprotective properties against environmental stresses, and taste, the influence of these monosaccharides on the bulk water solvent structure is virtually identical. Conversely, these sugars interact with the neighboring water molecules by forming H bonds of different length and strength. Interestingly, the sweetness of these monosaccharides, along with that of the disaccharide trehalose, is correlated with the length of these H bonds. This suggests that the small differences in stereochemistry between the different sugars determine a relevant change in polarity, which has a fundamental impact on the behavior of these molecules in vivo.
Collapse
Affiliation(s)
- F Bruni
- Dipartimento di Scienze, Sezione di Nanoscienze , Università degli Studi "Roma Tre" , Via della Vasca Navale 84 , 00146 Roma , Italy
| | - C Di Mino
- Dipartimento di Scienze, Sezione di Nanoscienze , Università degli Studi "Roma Tre" , Via della Vasca Navale 84 , 00146 Roma , Italy
| | - S Imberti
- ISIS Neutron and Muon Source, STFC, Rutherford Appleton Laboratory , Harwell Campus , Didcot , Oxfordshire OX11 0QX , United Kingdom
| | - S E McLain
- Department of Biochemistry , University of Oxford , South Park Road , Oxford , Oxfordshire OX1 3QU , United Kingdom
| | - N H Rhys
- Department of Biochemistry , University of Oxford , South Park Road , Oxford , Oxfordshire OX1 3QU , United Kingdom
| | - M A Ricci
- Dipartimento di Scienze, Sezione di Nanoscienze , Università degli Studi "Roma Tre" , Via della Vasca Navale 84 , 00146 Roma , Italy
| |
Collapse
|
177
|
Katyal N, Agarwal M, Sen R, Kumar V, Deep S. Paradoxical Effect of Trehalose on the Aggregation of α-Synuclein: Expedites Onset of Aggregation yet Reduces Fibril Load. ACS Chem Neurosci 2018; 9:1477-1491. [PMID: 29601727 DOI: 10.1021/acschemneuro.8b00056] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aggregation of α-synuclein is closely connected to the pathology of Parkinson's disease. The phenomenon involves multiple steps, commenced by partial misfolding and eventually leading to mature amyloid fibril formation. Trehalose, a widely accepted osmolyte, has been shown previously to inhibit aggregation of various globular proteins owing to its ability to prevent the initial unfolding of protein. In this study, we have examined if it behaves in a similar fashion with intrinsically disordered protein α-synuclein and possesses the potential to act as therapeutic agent against Parkinson's disease. It was observed experimentally that samples coincubated with trehalose fibrillate faster compared to the case in its absence. Molecular dynamics simulations suggested that this initial acceleration is manifestation of trehalose's tendency to perturb the conformational transitions between different conformers of monomeric protein. It stabilizes the aggregation prone "extended" conformer of α-synuclein, by binding to its exposed acidic residues of the C terminus. It also favors the β-rich oligomers once formed. Interestingly, the total fibrils formed are still promisingly less since it accelerates the competing pathway toward formation of amorphous aggregates.
Collapse
Affiliation(s)
- Nidhi Katyal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Manish Agarwal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Raktim Sen
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Vinay Kumar
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| |
Collapse
|
178
|
Mechanism of neuroprotection by trehalose: controversy surrounding autophagy induction. Cell Death Dis 2018; 9:712. [PMID: 29907758 PMCID: PMC6003909 DOI: 10.1038/s41419-018-0749-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 01/13/2023]
Abstract
Trehalose is a non-reducing disaccharide with two glucose molecules linked through an α, α-1,1-glucosidic bond. Trehalose has received attention for the past few decades for its role in neuroprotection especially in animal models of various neurodegenerative diseases, such as Parkinson and Huntington diseases. The mechanism underlying the neuroprotective effects of trehalose remains elusive. The prevailing hypothesis is that trehalose protects neurons by inducing autophagy, thereby clearing protein aggregates. Some of the animal studies showed activation of autophagy and reduced protein aggregates after trehalose administration in neurodegenerative disease models, seemingly supporting the autophagy induction hypothesis. However, results from cell studies have been less certain; although many studies claim that trehalose induces autophagy and reduces protein aggregates, the studies have their weaknesses, failing to provide sufficient evidence for the autophagy induction theory. Furthermore, a recent study with a thorough examination of autophagy flux showed that trehalose interfered with the flux from autophagosome to autolysosome, raising controversy on the direct effects of trehalose on autophagy. This review summarizes the fundamental properties of trehalose and the studies on its effects on neurodegenerative diseases. We also discuss the controversy related to the autophagy induction theory and seek to explain how trehalose works in neuroprotection.
Collapse
|
179
|
Kanojia G, Have RT, Soema PC, Frijlink H, Amorij JP, Kersten G. Developments in the formulation and delivery of spray dried vaccines. Hum Vaccin Immunother 2018; 13:2364-2378. [PMID: 28925794 PMCID: PMC5647985 DOI: 10.1080/21645515.2017.1356952] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spray drying is a promising method for the stabilization of vaccines, which are usually formulated as liquids. Usually, vaccine stability is improved by spray drying in the presence of a range of excipients. Unlike freeze drying, there is no freezing step involved, thus the damage related to this step is avoided. The edge of spray drying resides in its ability for particles to be engineered to desired requirements, which can be used in various vaccine delivery methods and routes. Although several spray dried vaccines have shown encouraging preclinical results, the number of vaccines that have been tested in clinical trials is limited, indicating a relatively new area of vaccine stabilization and delivery. This article reviews the current status of spray dried vaccine formulations and delivery methods. In particular it discusses the impact of process stresses on vaccine integrity, the application of excipients in spray drying of vaccines, process and formulation optimization strategies based on Design of Experiment approaches as well as opportunities for future application of spray dried vaccine powders for vaccine delivery.
Collapse
Affiliation(s)
- Gaurav Kanojia
- a Intravacc (Institute for Translational Vaccinology) , Bilthoven , The Netherlands.,b Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | - Rimko Ten Have
- a Intravacc (Institute for Translational Vaccinology) , Bilthoven , The Netherlands
| | - Peter C Soema
- a Intravacc (Institute for Translational Vaccinology) , Bilthoven , The Netherlands
| | - Henderik Frijlink
- b Department of Pharmaceutical Technology and Biopharmacy , University of Groningen , Groningen , The Netherlands
| | | | - Gideon Kersten
- a Intravacc (Institute for Translational Vaccinology) , Bilthoven , The Netherlands.,c Division of Drug Delivery Technology, Leiden Academic Center for Drug Research , Leiden University , Leiden , The Netherlands
| |
Collapse
|
180
|
Improving total glutathione and trehalose contents in Saccharomyces cerevisiae cells to enhance their resistance to fluidized bed drying. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
181
|
Paulino de Souza J, Dias do Prado C, Eleutherio EC, Bonatto D, Malavazi I, Ferreira da Cunha A. Improvement of Brazilian bioethanol production – Challenges and perspectives on the identification and genetic modification of new strains of Saccharomyces cerevisiae yeasts isolated during ethanol process. Fungal Biol 2018; 122:583-591. [DOI: 10.1016/j.funbio.2017.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 10/18/2022]
|
182
|
Toxopeus J, Sinclair BJ. Mechanisms underlying insect freeze tolerance. Biol Rev Camb Philos Soc 2018; 93:1891-1914. [DOI: 10.1111/brv.12425] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Jantina Toxopeus
- Department of Biology; University of Western Ontario; 1151 Richmond Street N, London ON, N6A 5B7 Canada
| | - Brent J. Sinclair
- Department of Biology; University of Western Ontario; 1151 Richmond Street N, London ON, N6A 5B7 Canada
| |
Collapse
|
183
|
Cubillos C, Cáceres JC, Villablanca C, Villarreal P, Baeza M, Cabrera R, Graether SP, Veloso C. Cold tolerance mechanisms of two arthropods from the Andean Range of Central Chile: Agathemera crassa (Insecta: Agathemeridae) and Euathlus condorito (Arachnida: Theraphosidae). J Therm Biol 2018; 74:133-139. [DOI: 10.1016/j.jtherbio.2018.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/03/2018] [Accepted: 03/18/2018] [Indexed: 12/29/2022]
|
184
|
Pham QD, Wolde-Kidan A, Gupta A, Schlaich A, Schneck E, Netz RR, Sparr E. Effects of Urea and TMAO on Lipid Self-Assembly under Osmotic Stress Conditions. J Phys Chem B 2018; 122:6471-6482. [DOI: 10.1021/acs.jpcb.8b02159] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Quoc Dat Pham
- Division of Physical Chemistry, Chemistry Department, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Amanuel Wolde-Kidan
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Anirudh Gupta
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Alexander Schlaich
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Emanuel Schneck
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Roland R. Netz
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Emma Sparr
- Division of Physical Chemistry, Chemistry Department, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
185
|
Choi JH, Lee H, Choi HR, Cho M. Graph Theory and Ion and Molecular Aggregation in Aqueous Solutions. Annu Rev Phys Chem 2018; 69:125-149. [DOI: 10.1146/annurev-physchem-050317-020915] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jun-Ho Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Current affiliation: Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hochan Lee
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hyung Ran Choi
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
186
|
Han L, Pu T, Wang X, Liu B, Wang Y, Feng J, Zhang X. Optimization of a protective medium for enhancing the viability of freeze-dried Bacillus amyloliquefaciens B1408 based on response surface methodology. Cryobiology 2018; 81:101-106. [DOI: 10.1016/j.cryobiol.2018.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/28/2018] [Accepted: 02/06/2018] [Indexed: 10/18/2022]
|
187
|
Schneider H, Fischer D, Failing K, Ehling C, Meinecke-Tillmann S, Wehrend A, Lierz M. Investigations on a cryopreservation protocol for long-term storage of psittacine spermatozoa using cockatiel semen as an example. Theriogenology 2018; 110:8-17. [DOI: 10.1016/j.theriogenology.2017.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 10/18/2022]
|
188
|
Kulikova-Borovikova D, Lisi S, Dauss E, Alamae T, Buzzini P, Hallsworth JE, Rapoport A. Activity of the α-glucoside transporter Agt1 in Saccharomyces cerevisiae cells during dehydration-rehydration events. Fungal Biol 2018; 122:613-620. [PMID: 29801806 DOI: 10.1016/j.funbio.2018.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 11/26/2022]
Abstract
Microbial cells can enter a state of anhydrobiosis under desiccating conditions. One of the main determinants of viability during dehydration-rehydration cycles is structural integrity of the plasma membrane. Whereas much is known about phase transitions of the lipid bilayer, there is a paucity of information on changes in activity of plasma membrane proteins during dehydration-rehydration events. We selected the α-glucoside transporter Agt1 to gain insights into stress mechanisms/responses and ecophysiology during anhydrobiosis. As intracellular water content of S. cerevisiae strain 14 (a strain with moderate tolerance to dehydration-rehydration) was reduced to 1.5 g water/g dry weight, the activity of the Agt1 transporter decreased by 10-15 %. This indicates that functionality of this trans-membrane and relatively hydrophobic protein depends on water. Notably, however, levels of cell viability were retained. Prior incubation in the stress protectant xylitol increased stability of the plasma membrane but not Agt1. Studies were carried out using a comparator yeast which was highly resistant to dehydration-rehydration (S. cerevisiae strain 77). By contrast to S. cerevisiae strain 14, there was no significant reduction of Agt1 activity in S. cerevisiae strain 77 cells. These findings have implications for the ecophysiology of S. cerevisiae strains in natural and industrial systems.
Collapse
Affiliation(s)
- Diana Kulikova-Borovikova
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - Silvia Lisi
- Department of Agricultural, Food and Environmental Science & Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, I-06121, Perugia, Italy
| | - Edgars Dauss
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia
| | - Tiina Alamae
- Department of Genetics, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Pietro Buzzini
- Department of Agricultural, Food and Environmental Science & Industrial Yeasts Collection DBVPG, University of Perugia, Borgo XX Giugno 74, I-06121, Perugia, Italy
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland, UK
| | - Alexander Rapoport
- Laboratory of Cell Biology, Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas Str., 1-537, LV-1004, Riga, Latvia.
| |
Collapse
|
189
|
Katyal N, Deep S. Inhibition of GNNQQNY prion peptide aggregation by trehalose: a mechanistic view. Phys Chem Chem Phys 2018; 19:19120-19138. [PMID: 28702592 DOI: 10.1039/c7cp02912h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deposition of amyloid fibrils is the seminal event in the pathogenesis of numerous neurodegenerative diseases. The formation of this amyloid assembly is the manifestation of a cascade of structural transitions including toxic oligomer formation in the early stages of aggregation. Thus a viable therapeutic strategy involves the use of small molecular ligands to interfere with this assembly. In this perspective, we have explored the kinetics of aggregate formation of the fibril forming GNNQQNY peptide fragment from the yeast prion protein SUP35 using multiple all atom MD simulations with explicit solvent and provided mechanistic insights into the way trehalose, an experimentally known aggregation inhibitor, modulates the aggregation pathway. The results suggest that the assimilation process is impeded by different barriers at smaller and larger oligomeric sizes: the initial one being easily surpassed at higher temperatures and peptide concentrations. The kinetic profile demonstrates that trehalose delays the aggregation process by increasing both these activation barriers, specifically the latter one. It increases the sampling of small-sized aggregates that lack the beta sheet conformation. Analysis reveals that the barrier in the growth of larger stable oligomers causes the formation of multiple stable small oligomers which then fuse together bimolecularly. The PCA of 26 properties was carried out to deconvolute the events within the temporary lag phases, which suggested dynamism in lags involving an increase in interchain contacts and burial of SASA. The predominant growth route is monomer addition, which changes to condensation on account of a large number of depolymerisation events in the presence of trehalose. The favourable interaction of trehalose specifically with the sidechain of the peptide promotes crowding of trehalose molecules in its vicinity - the combination of both these factors imparts the observed behaviour. Furthermore, increasing trehalose concentration leads to faster expulsion of water molecules than interpeptide interactions. These expelled water molecules have larger translational movement, suggesting an entropy factor to favor the assembly process. Different conformations observed under this condition suggest the role of water molecules in guiding the morphology of the aggregates as well. A similar scenario exists on increasing peptide concentration.
Collapse
Affiliation(s)
- Nidhi Katyal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauzkhas, New Delhi, India.
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauzkhas, New Delhi, India.
| |
Collapse
|
190
|
Arsiccio A, Pisano R. Water entrapment and structure ordering as protection mechanisms for protein structural preservation. J Chem Phys 2018; 148:055102. [DOI: 10.1063/1.5012884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- A. Arsiccio
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, Torino 10129, Italy
| | - R. Pisano
- Department of Applied Science and Technology, Politecnico di Torino, 24 Corso Duca Degli Abruzzi, Torino 10129, Italy
| |
Collapse
|
191
|
Majara M, O'Connor-Cox ESC, Axcell BC. Trehalose—A Stress Protectant and Stress Indicator Compound for Yeast Exposed to Adverse Conditions. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-54-0221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- M. Majara
- The South African Breweries Beer Division, P.O. Box 782178, Sandton 2146, South Africa;
| | - E. S. C. O'Connor-Cox
- The South African Breweries Beer Division, P.O. Box 782178, Sandton 2146, South Africa;
| | - B. C. Axcell
- The South African Breweries Beer Division, P.O. Box 782178, Sandton 2146, South Africa;
| |
Collapse
|
192
|
Majara M, O'Connor-Cox ESC, Axcell BC. Trehalose—An Osmoprotectant and Stress Indicator Compound in High and Very High Gravity Brewing. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-54-0149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- M. Majara
- Brewing Research and Development Department, South African Breweries Ltd., P. O. Box 782178, Sandton, 2146, Republic of South Africa;
| | - E. S. C. O'Connor-Cox
- Brewing Research and Development Department, South African Breweries Ltd., P. O. Box 782178, Sandton, 2146, Republic of South Africa;
| | - B. C. Axcell
- Brewing Research and Development Department, South African Breweries Ltd., P. O. Box 782178, Sandton, 2146, Republic of South Africa;
| |
Collapse
|
193
|
Powell C, Fischborn T. Serial Repitching of Dried Lager Yeast. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2010-0125-01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
194
|
Zhuang S, Smart K, Powell C. Impact of Extracellular Osmolality onSaccharomycesYeast Populations during Brewing Fermentations. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2017-3505-01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shiwen Zhuang
- Division of Food Sciences, School of Biosciences, University of Nottingham, Leicestershire, U.K
| | | | - Chris Powell
- Division of Food Sciences, School of Biosciences, University of Nottingham, Leicestershire, U.K
| |
Collapse
|
195
|
He AL, Niu SQ, Zhao Q, Li YS, Gou JY, Gao HJ, Suo SZ, Zhang JL. Induced Salt Tolerance of Perennial Ryegrass by a Novel Bacterium Strain from the Rhizosphere of a Desert Shrub Haloxylon ammodendron. Int J Mol Sci 2018; 19:ijms19020469. [PMID: 29401742 PMCID: PMC5855691 DOI: 10.3390/ijms19020469] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 01/31/2018] [Accepted: 02/01/2018] [Indexed: 11/16/2022] Open
Abstract
Drought and soil salinity reduce agricultural output worldwide. Plant-growth-promoting rhizobacteria (PGPR) can enhance plant growth and augment plant tolerance to biotic and abiotic stresses. Haloxylon ammodendron, a C4 perennial succulent xerohalophyte shrub with excellent drought and salt tolerance, is naturally distributed in the desert area of northwest China. In our previous work, a bacterium strain numbered as M30-35 was isolated from the rhizosphere of H. ammodendron in Tengger desert, Gansu province, northwest China. In current work, the effects of M30-35 inoculation on salt tolerance of perennial ryegrass were evaluated and its genome was sequenced to identify genes associated with plant growth promotion. Results showed that M30-35 significantly enhanced growth and salt tolerance of perennial ryegrass by increasing shoot fresh and dry weights, chlorophyll content, root volume, root activity, leaf catalase activity, soluble sugar and proline contents that contributed to reduced osmotic potential, tissue K⁺ content and K⁺/Na⁺ ratio, while decreasing malondialdehyde (MDA) content and relative electric conductivity (REC), especially under higher salinity. The genome of M30-35 contains 4421 protein encoding genes, 12 rRNA, 63 tRNA-encoding genes and four rRNA operons. M30-35 was initially classified as a new species in Pseudomonas and named as Pseudomonas sp. M30-35. Thirty-four genes showing homology to genes associated with PGPR traits and abiotic stress tolerance were identified in Pseudomonas sp. M30-35 genome, including 12 related to insoluble phosphorus solubilization, four to auxin biosynthesis, four to other process of growth promotion, seven to oxidative stress alleviation, four to salt and drought tolerance and three to cold and heat tolerance. Further study is needed to clarify the correlation between these genes from M30-35 and the salt stress alleviation of inoculated plants under salt stress. Overall, our research indicated that desert shrubs appear rich in PGPRs that can help important crops tolerate abiotic stress.
Collapse
Affiliation(s)
- Ao-Lei He
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Shu-Qi Niu
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Qi Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Yong-Sheng Li
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Jing-Yi Gou
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Hui-Juan Gao
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Sheng-Zhou Suo
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
196
|
Tomobe K, Yamamoto E, Yasui M, Yasuoka K. Effects of temperature, concentration, and isomer on the hydration structure in monosaccharide solutions. Phys Chem Chem Phys 2018; 19:15239-15246. [PMID: 28569306 DOI: 10.1039/c7cp02392h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Water-monosaccharide coupled interactions are essential for the function, stability, and dynamics of all glycans. Using molecular dynamics simulations, we investigated the effects of temperature, concentration, and monosaccharide isomer on the hydration structure and water dynamics in the hydration shell of monosaccharides in solution. We found that perturbations of the hydrogen-bond (H-bond) network in the first hydration shell around each monosaccharide molecule can be separated into two regions: one rich in water molecules with donor H-bonds (in the 2.4-2.8 Å region) and the other rich in water molecules with abundant acceptor H-bonds (in the 2.8-3.3 Å region). Moreover, we investigated the dependencies of clustering and conversion of the conformers of the monosaccharides on temperature and concentration. Increasing the concentration enhances monosaccharide clustering in all the monosaccharide solutions, while cluster formation does not depend on temperature. In the clusters, some water molecules in the hydration shell are replaced with monosaccharide oxygen atoms, which contributes to the shrinkage of the hydration shell with increasing monosaccharide concentration. The monosaccharides basically adopt one of two conformers, the stable chair or the unstable boat conformer. We revealed that the hydration structures of the boat and chair conformers were dramatically different. As the temperature increases, the content of the chair conformer decreases. Thus, the conversion of conformers strongly affects the hydration structure around the monosaccharide. These results are critical to understand the important roles of the hydration structure in glycan solutions.
Collapse
Affiliation(s)
- Katsufumi Tomobe
- Department of Mechanical Engineering, Keio University, Yokohama, 223-8522, Japan.
| | | | | | | |
Collapse
|
197
|
Yang Y, Guo Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. THE NEW PHYTOLOGIST 2018; 217:523-539. [PMID: 29205383 DOI: 10.1111/nph.14920] [Citation(s) in RCA: 750] [Impact Index Per Article: 107.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/11/2017] [Indexed: 05/18/2023]
Abstract
Contents Summary 523 I. Introduction 523 II. Sensing salt stress 524 III. Ion homeostasis regulation 524 IV. Metabolite and cell activity responses to salt stress 527 V. Conclusions and perspectives 532 Acknowledgements 533 References 533 SUMMARY: Excess soluble salts in soil (saline soils) are harmful to most plants. Salt imposes osmotic, ionic, and secondary stresses on plants. Over the past two decades, many determinants of salt tolerance and their regulatory mechanisms have been identified and characterized using molecular genetics and genomics approaches. This review describes recent progress in deciphering the mechanisms controlling ion homeostasis, cell activity responses, and epigenetic regulation in plants under salt stress. Finally, we highlight research areas that require further research to reveal new determinants of salt tolerance in plants.
Collapse
Affiliation(s)
- Yongqing Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
198
|
Jiang XR, Lin YF, Chen PT. Trehalose production via merged secretion, purification, and immobilization of trehalose synthase in Bacillus subtilis. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
199
|
Seybold AC, Wharton DA, Thorne MAS, Marshall CJ. Investigating trehalose synthesis genes after cold acclimation in the Antarctic nematode Panagrolaimus sp. DAW1. Biol Open 2017; 6:1953-1959. [PMID: 29175859 PMCID: PMC5769639 DOI: 10.1242/bio.023341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Panagrolaimus sp. DAW1 is a freeze-tolerant Antarctic nematode which survives extensive intracellular ice formation. The molecular mechanisms of this extreme adaptation are still poorly understood. We recently showed that desiccation-enhanced RNA interference (RNAi) soaking can be used in conjunction with quantitative polymerase chain reaction (qPCR) to screen for phenotypes associated with reduced expression of candidate genes in Panagrolaimus sp. DAW1. Here, we present the use of this approach to investigate the role of trehalose synthesis genes in this remarkable organism. Previous studies have shown that acclimating Panagrolaimus sp. DAW1 at 5°C before freezing or desiccation substantially enhances survival. In this study, the expression of tps-2 and other genes associated with trehalose metabolism, as well as lea-1, hsp-70 and gpx-1, in cold-acclimated and non-acclimated nematodes was analyzed using qPCR. Pd-tps-2 and Pd-lea-1 were significantly upregulated after cold acclimation, indicating an inducible expression in the cold adaptation of Panagrolaimus sp. DAW1. The role of trehalose synthesis genes in Panagrolaimus sp. DAW1 was further investigated by RNAi. Compared to the controls, Pd-tps-2a(RNAi)-treated and cold-acclimated nematodes showed a significant decrease in mRNA, but no change in trehalose content or freezing survival. The involvement of two other trehalose synthesis genes (tps-2b and gob-1) was also investigated. These findings provide the first functional genomic investigation of trehalose synthesis genes in the non-model organism Panagrolaimus sp. DAW1. The presence of several trehalose synthesis genes with different RNAi sensitivities suggests the existence of multiple backup systems in Panagrolaimus sp. DAW1, underlining the importance of this sugar in preparation for freezing. Summary: Functional genomics was used to investigate trehalose synthesis genes after cold acclimation in Panagrolaimus sp. DAW1, an Antarctic nematode with the ability to survive intracellular freezing.
Collapse
Affiliation(s)
- Anna C Seybold
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - David A Wharton
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, Cambridge, CB3 0ET, United Kingdom
| | - Craig J Marshall
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand .,Genetics Otago, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
200
|
Zeidler S, Hubloher J, Schabacker K, Lamosa P, Santos H, Müller V. Trehalose, a temperature- and salt-induced solute with implications in pathobiology of Acinetobacter baumannii. Environ Microbiol 2017; 19:5088-5099. [PMID: 29124876 DOI: 10.1111/1462-2920.13987] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/03/2017] [Indexed: 01/01/2023]
Abstract
Acinetobacter baumannii is an opportunistic human pathogen that has become a global threat to healthcare institutions worldwide. A major factor contributing to success of this bacterium is its outstanding ability to survive on dry surfaces. The molecular basis for desiccation resistance is not completely understood. This study focused on growth under osmotic stress and aimed to identify the pool of compatible solutes synthesized in response to these low water activity conditions. A. baumannii produced mannitol as compatible solute, but in contrast to Acinetobacter baylyi, also trehalose was accumulated in response to increasing NaCl concentrations. The genome of A. baumannii encodes a trehalose-6-phosphate phosphatase (OtsB) and a trehalose-6-phosphate synthase (OtsA). Deletion of otsB abolished trehalose formation, demonstrating that otsB is essential for trehalose biosynthesis. Growth of the mutant was neither impaired at low salt nor at 500 mM NaCl, but it did not grow at high temperatures, indicating a dual function of trehalose in osmo- and thermoprotection. This led us to analyse temperature dependence of trehalose formation. Indeed, expression of otsB was not only induced by high osmolarity but also by high temperature. Concurrently, trehalose was accumulated in cells grown at high temperature. Taken together, these data point to an important role of trehalose in A. baumannii beyond osmoprotection.
Collapse
Affiliation(s)
- Sabine Zeidler
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Josephine Hubloher
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Kim Schabacker
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Pedro Lamosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| |
Collapse
|