151
|
Caspase-1 autoproteolysis is differentially required for NLRP1b and NLRP3 inflammasome function. Proc Natl Acad Sci U S A 2014; 111:17254-9. [PMID: 25404286 DOI: 10.1073/pnas.1415756111] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Inflammasomes are caspase-1-activating multiprotein complexes. The mouse nucleotide-binding domain and leucine rich repeat pyrin containing 1b (NLRP1b) inflammasome was identified as the sensor of Bacillus anthracis lethal toxin (LT) in mouse macrophages from sensitive strains such as BALB/c. Upon exposure to LT, the NLRP1b inflammasome activates caspase-1 to produce mature IL-1β and induce pyroptosis. Both processes are believed to depend on autoproteolysed caspase-1. In contrast to human NLRP1, mouse NLRP1b lacks an N-terminal pyrin domain (PYD), indicating that the assembly of the NLRP1b inflammasome does not require the adaptor apoptosis-associated speck-like protein containing a CARD (ASC). LT-induced NLRP1b inflammasome activation was shown to be impaired upon inhibition of potassium efflux, which is known to play a major role in NLRP3 inflammasome formation and ASC dimerization. We investigated whether NLRP3 and/or ASC were required for caspase-1 activation upon LT stimulation in the BALB/c background. The NLRP1b inflammasome activation was assessed in both macrophages and dendritic cells lacking either ASC or NLRP3. Upon LT treatment, the absence of NLRP3 did not alter the NLRP1b inflammasome activity. Surprisingly, the absence of ASC resulted in IL-1β cleavage and pyroptosis, despite the absence of caspase-1 autoprocessing activity. By reconstituting caspase-1/caspase-11(-/-) cells with a noncleavable or catalytically inactive mutant version of caspase-1, we directly demonstrated that noncleavable caspase-1 is fully active in response to the NLRP1b activator LT, whereas it is nonfunctional in response to the NLRP3 activator nigericin. Taken together, these results establish variable requirements for caspase-1 cleavage depending on the pathogen and the responding NLR.
Collapse
|
152
|
Maize KM, Zhang X, Amin EA. Statistical analysis, optimization, and prioritization of virtual screening parameters for zinc enzymes including the anthrax toxin lethal factor. Curr Top Med Chem 2014; 14:2105-14. [PMID: 25373478 DOI: 10.2174/1568026614666141106163011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 09/01/2014] [Accepted: 09/09/2014] [Indexed: 11/22/2022]
Abstract
The anthrax toxin lethal factor (LF) and matrix metalloproteinase-3 (MMP-3, stromelysin-1) are popular zinc metalloenzyme drug targets, with LF primarily responsible for anthrax-related toxicity and host death, while MMP-3 is involved in cancer- and rheumatic disease-related tissue remodeling. A number of in silico screening techniques, most notably docking and scoring, have proven useful for identifying new potential drug scaffolds targeting LF and MMP-3, as well as for optimizing lead compounds and investigating mechanisms of action. However, virtual screening outcomes can vary significantly depending on the specific docking parameters chosen, and systematic statistical significance analyses are needed to prioritize key parameters for screening small molecules against these zinc systems. In the current work, we present a series of chi-square statistical analyses of virtual screening outcomes for cocrystallized LF and MMP-3 inhibitors docked into their respective targets, evaluated by predicted enzyme-inhibitor dissociation constant and root-mean-square deviation (RMSD) between predicted and experimental bound configurations, and we present a series of preferred parameters for use with these systems in the industry-standard Surflex-Dock screening program, for use by researchers utilizing in silico techniques to discover and optimize new scaffolds.
Collapse
Affiliation(s)
| | | | - Elizabeth Ambrose Amin
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, 717 Delaware St SE, Minneapolis, MN 55416 USA.
| |
Collapse
|
153
|
Lo SY, Säbel CE, Webb MI, Walsby CJ, Siemann S. High metal substitution tolerance of anthrax lethal factor and characterization of its active copper-substituted analogue. J Inorg Biochem 2014; 140:12-22. [DOI: 10.1016/j.jinorgbio.2014.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/27/2014] [Accepted: 06/16/2014] [Indexed: 01/19/2023]
|
154
|
Awad MM, Johanesen PA, Carter GP, Rose E, Lyras D. Clostridium difficile virulence factors: Insights into an anaerobic spore-forming pathogen. Gut Microbes 2014; 5:579-93. [PMID: 25483328 PMCID: PMC4615314 DOI: 10.4161/19490976.2014.969632] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The worldwide emergence of epidemic strains of Clostridium difficile linked to increased disease severity and mortality has resulted in greater research efforts toward determining the virulence factors and pathogenesis mechanisms used by this organism to cause disease. C. difficile is an opportunist pathogen that employs many factors to infect and damage the host, often with devastating consequences. This review will focus on the role of the 2 major virulence factors, toxin A (TcdA) and toxin B (TcdB), as well as the role of other putative virulence factors, such as binary toxin, in C. difficile-mediated infection. Consideration is given to the importance of spores in both the initiation of disease and disease recurrence and also to the role that surface proteins play in host interactions.
Collapse
Key Words
- AAD, antibiotic associated diarrhea
- C. difficile,Clostridium difficile
- CDI, C. difficile infection
- CDT, Clostridium difficile transferase
- CDTLoc, CDT locus
- CDTa, CDT enzymatic component
- CDTb, CDT binding/translocation component
- CST, Clostridium spiroforme toxin
- CWPs, cell wall protein
- Clostridium
- ECF, extracytoplasmic function
- HMW, high molecular weight
- LMW, low molecular weight
- LSR, lipolysis-stimulated lipoprotein receptor
- PCR, polymerase chain reaction
- PFGE, pulsed field gel electrophoresis
- PaLoc, pathogenicity locus
- REA, restriction endonuclease analysis
- S-layer, surface layer
- SLPs, S-layer proteins
- TcdA, toxin A
- TcdB, toxin B
- antibiotic
- colitis
- difficile
- infection
- nosocomial
- toxin
- virulence factor
- ι-toxin, iota toxin
Collapse
Affiliation(s)
- Milena M Awad
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | | | - Glen P Carter
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | - Edward Rose
- Department of Microbiology; Monash University; Clayton, Victoria, Australia
| | - Dena Lyras
- Department of Microbiology; Monash University; Clayton, Victoria, Australia,Correspondence to: Dena Lyras;
| |
Collapse
|
155
|
Abstract
Eukaryotic, prokaryotic and viral pathogens are known to interfere with signaling pathways of their host to promote their own survival and proliferation. Here, we present selected examples of modulation of PAK activity in human cells by both intracellular and extracellular pathogens, focusing on one eukaryotic pathogen, the human malaria parasite Plasmodium falciparum, two Gram-negative bacteria (Helicobacter pylori and Pseudomonas aeruginosa), and two viruses belonging to distinct groups, the lentivirus HIV and the orthomyxovirus Influenza virus A.
Collapse
|
156
|
Hutt JA, Lovchik JA, Drysdale M, Sherwood RL, Brasel T, Lipscomb MF, Lyons CR. Lethal factor, but not edema factor, is required to cause fatal anthrax in cynomolgus macaques after pulmonary spore challenge. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3205-16. [PMID: 25285720 DOI: 10.1016/j.ajpath.2014.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 08/01/2014] [Accepted: 08/21/2014] [Indexed: 11/27/2022]
Abstract
Inhalational anthrax is caused by inhalation of Bacillus anthracis spores. The ability of B. anthracis to cause anthrax is attributed to the plasmid-encoded A/B-type toxins, edema toxin (edema factor and protective antigen) and lethal toxin (lethal factor and protective antigen), and a poly-d-glutamic acid capsule. To better understand the contribution of these toxins to the disease pathophysiology in vivo, we used B. anthracis Ames strain and isogenic toxin deletion mutants derived from the Ames strain to examine the role of lethal toxin and edema toxin after pulmonary spore challenge of cynomolgus macaques. Lethal toxin, but not edema toxin, was required to induce sustained bacteremia and death after pulmonary challenge with spores delivered via bronchoscopy. After intravenous challenge with bacilli to model the systemic phase of infection, lethal toxin contributed to bacterial proliferation and subsequent host death to a greater extent than edema toxin. Deletion of protective antigen resulted in greater loss of virulence after intravenous challenge with bacilli than deletion of lethal toxin or edema toxin alone. These findings are consistent with the ability of anti-protective antigen antibodies to prevent anthrax and suggest that lethal factor is the dominant toxin that contributes to the escape of significant numbers of bacilli from the thoracic cavity to cause anthrax after inhalation challenge with spores.
Collapse
Affiliation(s)
- Julie A Hutt
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico; Center for Infectious Disease & Immunity, University of New Mexico Health Science Center, Albuquerque, New Mexico.
| | - Julie A Lovchik
- Center for Infectious Disease & Immunity, University of New Mexico Health Science Center, Albuquerque, New Mexico; Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, New Mexico
| | - Melissa Drysdale
- Center for Infectious Disease & Immunity, University of New Mexico Health Science Center, Albuquerque, New Mexico; Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, New Mexico
| | | | - Trevor Brasel
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico
| | - Mary F Lipscomb
- Department of Pathology, University of New Mexico Health Science Center, Albuquerque, New Mexico
| | - C Rick Lyons
- Center for Infectious Disease & Immunity, University of New Mexico Health Science Center, Albuquerque, New Mexico; Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, New Mexico
| |
Collapse
|
157
|
Nablo BJ, Panchal RG, Bavari S, Nguyen TL, Gussio R, Ribot W, Friedlander A, Chabot D, Reiner JE, Robertson JWF, Balijepalli A, Halverson KM, Kasianowicz JJ. Anthrax toxin-induced rupture of artificial lipid bilayer membranes. J Chem Phys 2014; 139:065101. [PMID: 23947891 DOI: 10.1063/1.4816467] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm.
Collapse
Affiliation(s)
- Brian J Nablo
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8120, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Gurnev PA, Nestorovich EM. Channel-forming bacterial toxins in biosensing and macromolecule delivery. Toxins (Basel) 2014; 6:2483-540. [PMID: 25153255 PMCID: PMC4147595 DOI: 10.3390/toxins6082483] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 12/19/2022] Open
Abstract
To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on "Intracellular Traffic and Transport of Bacterial Protein Toxins", reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their "second life" in a variety of developing medical and technological applications.
Collapse
Affiliation(s)
- Philip A Gurnev
- Physics Department, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
159
|
Legionella pneumophila type IV effectors hijack the transcription and translation machinery of the host cell. Trends Cell Biol 2014; 24:771-8. [PMID: 25012125 DOI: 10.1016/j.tcb.2014.06.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 06/09/2014] [Accepted: 06/10/2014] [Indexed: 01/26/2023]
Abstract
Intracellular bacterial pathogens modulate the host response to persist and replicate inside a eukaryotic cell and cause disease. Legionella pneumophila, the causative agent of Legionnaires' disease, is present in freshwater environments and represents one of these pathogens. During coevolution with protozoan cells, L. pneumophila has acquired highly sophisticated and diverse strategies to hijack host cell processes. It secretes hundreds of effectors into the host cell, and these manipulate host signaling pathways and key cellular processes. Recently it has been shown that L. pneumophila is also able to alter the transcription and translation machinery of the host and to exploit epigenetic mechanisms in the cells it resides in to counteract host responses.
Collapse
|
160
|
Förstner P, Bayer F, Kalu N, Felsen S, Förtsch C, Aloufi A, Ng DYW, Weil T, Nestorovich EM, Barth H. Cationic PAMAM dendrimers as pore-blocking binary toxin inhibitors. Biomacromolecules 2014; 15:2461-74. [PMID: 24954629 PMCID: PMC4215879 DOI: 10.1021/bm500328v] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dendrimers are unique highly branched macromolecules with numerous groundbreaking biomedical applications under development. Here we identified poly(amido amine) (PAMAM) dendrimers as novel blockers for the pore-forming B components of the binary anthrax toxin (PA63) and Clostridium botulinum C2 toxin (C2IIa). These pores are essential for delivery of the enzymatic A components of the internalized toxins from endosomes into the cytosol of target cells. We demonstrate that at low μM concentrations cationic PAMAM dendrimers block PA63 and C2IIa to inhibit channel-mediated transport of the A components, thereby protecting HeLa and Vero cells from intoxication. By channel reconstitution and high-resolution current recording, we show that the PAMAM dendrimers obstruct transmembrane PA63 and C2IIa pores in planar lipid bilayers at nM concentrations. These findings suggest a new potential role for the PAMAM dendrimers as effective polyvalent channel-blocking inhibitors, which can protect human target cells from intoxication with binary toxins from pathogenic bacteria.
Collapse
Affiliation(s)
- Philip Förstner
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center , D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Schiffmiller A, Finkelstein A. Ion conductance of the stem of the anthrax toxin channel during lethal factor translocation. J Mol Biol 2014; 427:1211-23. [PMID: 24996036 DOI: 10.1016/j.jmb.2014.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 11/18/2022]
Abstract
The tripartite anthrax toxin consists of protective antigen, lethal factor (LF), and edema factor. PA63 (the 63-kDa, C-terminal part of protective antigen) forms heptameric channels in cell membranes that allow for the transport of LF and edema factor into the cytosol. These channels are mushroom shaped, with a ring of seven phenylalanine residues (known as the phenylalanine clamp) lining the junction between the cap and the stem. It is known that when LF is translocated through the channel, the phenylalanine clamp creates a seal that causes an essentially complete block of conduction. In order to examine ion conductance in the stem of the channel, we used Venus yellow fluorescent protein as a molecular stopper to trap LFN (the 30-kDa, 263-residue N-terminal segment of LF), as well as various truncated constructs of LFN, in mutant channels in which the phenylalanine clamp residues were mutated to alanines. Here we present evidence that ion movement occurs within the channel stem (but is stopped, of course, at the phenylalanine clamp) during protein translocation. Furthermore, we also propose that the lower region of the stem plays an important role in securing peptide chains during translocation.
Collapse
Affiliation(s)
- Aviva Schiffmiller
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | - Alan Finkelstein
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
162
|
Lee WR, Kim KH, An HJ, Kim JY, Chang YC, Chung H, Park YY, Lee ML, Park KK. The protective effects of melittin on Propionibacterium acnes-induced inflammatory responses in vitro and in vivo. J Invest Dermatol 2014; 134:1922-1930. [PMID: 24496237 DOI: 10.1038/jid.2014.75] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 01/03/2014] [Accepted: 01/13/2014] [Indexed: 11/08/2022]
Abstract
Melittin is the main component in the venom of the honey bee (Apis mellifera). It has multiple effects including antibacterial, antiviral, and anti-inflammatory activities in various cell types. However, the anti-inflammatory mechanisms of melittin have not been elucidated in Propionibactierium acnes (P. acnes)-induced keratinocyte or inflammatory skin disease animal models. In this study, we examined the effects of melittin on the production of inflammatory cytokines in heat-killed P. acnes-induced HaCaT cells. Heat-killed P. acnes-treated keratinocytes increased the expression of pro-inflammatory cytokines and Toll-like receptor 2. However, melittin treatment significantly suppressed the expression of these cytokines through regulation of the NF-κB and MAPK signaling pathways. Subsequently, the living P. acnes (1 × 10(7) CFU) were intradermally injected into the ear of mice. Living P. acnes-injected ears showed cutaneous erythema, swelling, and granulomatous response at 24 hours after injection. However, melittin-treated ears showed markedly reduced swelling and granulomatous responses compared with ears injected with only living P. acnes. These results demonstrate the feasibility of applying melittin for the prevention of inflammatory skin diseases induced by P. acnes.
Collapse
Affiliation(s)
- Woo-Ram Lee
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Kyung-Hyun Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Hyun-Jin An
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Jung-Yeon Kim
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Young-Chae Chang
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Hyun Chung
- Department of dermatology, College of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Yoon-Yub Park
- Department of Physiology, College of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Myeong-Lyeol Lee
- Department of Agricultural Biology, National Institute of Agricultural Science and Technology, Suwon, South Korea
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, South Korea.
| |
Collapse
|
163
|
Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities. Toxicol Appl Pharmacol 2014; 279:220-9. [PMID: 24971906 DOI: 10.1016/j.taap.2014.06.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 01/24/2023]
Abstract
We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5-3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers.
Collapse
|
164
|
Brenton AA, Souvannaseng L, Cheung K, Anishchenko M, Brault AC, Luckhart S. Engineered single nucleotide polymorphisms in the mosquito MEK docking site alter Plasmodium berghei development in Anopheles gambiae. Parasit Vectors 2014; 7:287. [PMID: 24957684 PMCID: PMC4077580 DOI: 10.1186/1756-3305-7-287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/13/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Susceptibility to Plasmodium infection in Anopheles gambiae has been proposed to result from naturally occurring polymorphisms that alter the strength of endogenous innate defenses. Despite the fact that some of these mutations are known to introduce non-synonymous substitutions in coding sequences, these mutations have largely been used to rationalize knockdown of associated target proteins to query the effects on parasite development in the mosquito host. Here, we assay the effects of engineered mutations on an immune signaling protein target that is known to control parasite sporogonic development. By this proof-of-principle work, we have established that naturally occurring mutations can be queried for their effects on mosquito protein function and on parasite development and that this important signaling pathway can be genetically manipulated to enhance mosquito resistance. METHODS We introduced SNPs into the A. gambiae MAPK kinase MEK to alter key residues in the N-terminal docking site (D-site), thus interfering with its ability to interact with the downstream kinase target ERK. ERK phosphorylation levels in vitro and in vivo were evaluated to confirm the effects of MEK D-site mutations. In addition, overexpression of various MEK D-site alleles was used to assess P. berghei infection in A. gambiae. RESULTS The MEK D-site contains conserved lysine residues predicted to mediate protein-protein interaction with ERK. As anticipated, each of the D-site mutations (K3M, K6M) suppressed ERK phosphorylation and this inhibition was significant when both mutations were present. Tissue-targeted overexpression of alleles encoding MEK D-site polymorphisms resulted in reduced ERK phosphorylation in the midgut of A. gambiae. Furthermore, as expected, inhibition of MEK-ERK signaling due to D-site mutations resulted in reduction in P. berghei development relative to infection in the presence of overexpressed catalytically active MEK. CONCLUSION MEK-ERK signaling in A. gambiae, as in model organisms and humans, depends on the integrity of conserved key residues within the MEK D-site. Disruption of signal transmission via engineered SNPs provides a purposeful proof-of-principle model for the study of naturally occurring mutations that may be associated with mosquito resistance to parasite infection as well as an alternative genetic basis for manipulation of this important immune signaling pathway.
Collapse
Affiliation(s)
- Ashley A Brenton
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 95616 Davis, CA, USA
| | - Lattha Souvannaseng
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 95616 Davis, CA, USA
| | - Kong Cheung
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 95616 Davis, CA, USA
| | - Michael Anishchenko
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd, 80521 Fort Collins, CO, USA
| | - Aaron C Brault
- Division of Vector-Borne Diseases, National Center for Emerging Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, 3156 Rampart Rd, 80521 Fort Collins, CO, USA
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, 95616 Davis, CA, USA
| |
Collapse
|
165
|
Abstract
The innate immune system has evolved under selective pressure since the radiation of multicellular life approximately 600 million years ago. Because of this long history, innate immune mechanisms found in modern eukaryotic organisms today are highly complex but yet built from common molecular strategies. It is now clear that evolution has selected a conserved set of antimicrobial peptides as well as pattern-recognition receptors (PRRs) that initiate cellular-based signals as a first line of defense against invading pathogens. Conversely, microbial pathogens employ their own strategies in order to evade, inhibit, or otherwise manipulate the innate immune response. Here, we discuss recent discoveries that have changed our view of immune modulatory mechanisms employed by bacterial pathogens, focusing specifically on the initial sites of microbial recognition and extending to host cellular signal transduction, proinflammatory cytokine production, and alteration of protein trafficking and secretion.
Collapse
|
166
|
Lightfoot YL, Yang T, Sahay B, Zadeh M, Cheng SX, Wang GP, Owen JL, Mohamadzadeh M. Colonic immune suppression, barrier dysfunction, and dysbiosis by gastrointestinal bacillus anthracis Infection. PLoS One 2014; 9:e100532. [PMID: 24945934 PMCID: PMC4063899 DOI: 10.1371/journal.pone.0100532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 05/24/2014] [Indexed: 11/18/2022] Open
Abstract
Gastrointestinal (GI) anthrax results from the ingestion of Bacillus anthracis. Herein, we investigated the pathogenesis of GI anthrax in animals orally infected with toxigenic non-encapsulated B. anthracis Sterne strain (pXO1+ pXO2−) spores that resulted in rapid animal death. B. anthracis Sterne induced significant breakdown of intestinal barrier function and led to gut dysbiosis, resulting in systemic dissemination of not only B. anthracis, but also of commensals. Disease progression significantly correlated with the deterioration of innate and T cell functions. Our studies provide critical immunologic and physiologic insights into the pathogenesis of GI anthrax infection, whereupon cleavage of mitogen-activated protein kinases (MAPKs) in immune cells may play a central role in promoting dysfunctional immune responses against this deadly pathogen.
Collapse
Affiliation(s)
- Yaíma L. Lightfoot
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Tao Yang
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Bikash Sahay
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mojgan Zadeh
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Sam X. Cheng
- Division of Gastroenterology, Department of Pediatrics, University of Florida, Gainesville, Florida, United States of America
| | - Gary P. Wang
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jennifer L. Owen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, Florida, United States of America
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
167
|
Van Roey K, Uyar B, Weatheritt RJ, Dinkel H, Seiler M, Budd A, Gibson TJ, Davey NE. Short Linear Motifs: Ubiquitous and Functionally Diverse Protein Interaction Modules Directing Cell Regulation. Chem Rev 2014; 114:6733-78. [DOI: 10.1021/cr400585q] [Citation(s) in RCA: 347] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kim Van Roey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Bora Uyar
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Robert J. Weatheritt
- MRC
Laboratory of Molecular Biology (LMB), Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | - Holger Dinkel
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Markus Seiler
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Aidan Budd
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Toby J. Gibson
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Norman E. Davey
- Structural
and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Department
of Physiology, University of California, San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
168
|
Vourtsis DJ, Chasapis CT, Pairas G, Bentrop D, Spyroulias GA. NMR conformational properties of an Anthrax Lethal Factor domain studied by multiple amino acid-selective labeling. Biochem Biophys Res Commun 2014; 450:335-40. [PMID: 24944022 DOI: 10.1016/j.bbrc.2014.05.123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 05/25/2014] [Indexed: 11/28/2022]
Abstract
NMR-based structural biology urgently needs cost- and time-effective methods to assist both in the process of acquiring high-resolution NMR spectra and their subsequent analysis. Especially for bigger proteins (>20 kDa) selective labeling is a frequently used means of sequence-specific assignment. In this work we present the successful overexpression of a polypeptide of 233 residues, corresponding to the structured part of the N-terminal domain of Anthrax Lethal Factor, using Escherichia coli expression system. The polypeptide was subsequently isolated in pure, soluble form and analyzed structurally by solution NMR spectroscopy. Due to the non-satisfying quality and resolution of the spectra of this 27 kDa protein, an almost complete backbone assignment became feasible only by the combination of uniform and novel amino acid-selective labeling schemes. Moreover, amino acid-type selective triple-resonance NMR experiments proved to be very helpful.
Collapse
Affiliation(s)
| | | | - George Pairas
- Department of Pharmacy, University of Patras, GR-26504 Patras, Greece
| | - Detlef Bentrop
- Institute of Physiology II, University of Freiburg, D-79104 Freiburg, Germany
| | | |
Collapse
|
169
|
Ascough S, Ingram RJ, Chu KK, Reynolds CJ, Musson JA, Doganay M, Metan G, Ozkul Y, Baillie L, Sriskandan S, Moore SJ, Gallagher TB, Dyson H, Williamson ED, Robinson JH, Maillere B, Boyton RJ, Altmann DM. Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4+ T cell immunity. PLoS Pathog 2014; 10:e1004085. [PMID: 24788397 PMCID: PMC4006929 DOI: 10.1371/journal.ppat.1004085] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/07/2014] [Indexed: 11/23/2022] Open
Abstract
Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified. Anthrax is of concern with respect to human exposure in endemic regions, concerns about bioterrorism and the considerable global burden of livestock infections. The immunology of this disease remains poorly understood. Vaccination has been based on B. anthracis filtrates or attenuated spore-based vaccines, with more recent trials of next-generation recombinant vaccines. Approaches generally require extensive vaccination regimens and there have been concerns about immunogenicity and adverse reactions. An ongoing need remains for rationally designed, effective and safe anthrax vaccines. The importance of T cell stimulating vaccines is inceasingly recognized. An essential step is an understanding of immunodominant epitopes and their relevance across the diverse HLA immune response genes of human populations. We characterized CD4 T cell immunity to anthrax Lethal Factor (LF), using HLA transgenic mice, as well as testing candidate peptide epitopes for binding to a wide range of HLA alleles. We identified anthrax epitopes, noteworthy in that they elicit exceptionally strong immunity with promiscuous binding across multiple HLA alleles and isotypes. T cell responses in humans exposed to LF through either natural anthrax infection or vaccination were also examined. Epitopes identified as candidates were used to protect HLA transgenic mice from anthrax challenge.
Collapse
Affiliation(s)
- Stephanie Ascough
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Rebecca J. Ingram
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, United Kingdom
| | - Karen K. Chu
- Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Julie A. Musson
- Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Mehmet Doganay
- Department of Infectious Disease, Erciyes University Hospital, Kayseri, Turkey
| | - Gökhan Metan
- Department of Infectious Disease, Erciyes University Hospital, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Erciyes University Hospital, Kayseri, Turkey
| | - Les Baillie
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | | | - Stephen J. Moore
- BIOMET, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Theresa B. Gallagher
- BIOMET, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Hugh Dyson
- Defence Science Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - E. Diane Williamson
- Defence Science Technology Laboratory, Porton Down, Salisbury, United Kingdom
| | - John H. Robinson
- Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bernard Maillere
- CEA, iBiTecS, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), Gif Sur Yvette, France
| | | | - Daniel M. Altmann
- Department of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
170
|
Lowe DE, Ya J, Glomski IJ. In trans complementation of lethal factor reveal roles in colonization and dissemination in a murine mouse model. PLoS One 2014; 9:e95950. [PMID: 24763227 PMCID: PMC3999102 DOI: 10.1371/journal.pone.0095950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/02/2014] [Indexed: 12/04/2022] Open
Abstract
Lethal factor (LF) is a component of the B. anthracis exotoxin and critical for pathogenesis. The roles of LF in early anthrax pathogenesis, such as colonization and dissemination from the initial site of infection, are poorly understood. In mice models of infection, LF-deficient strains either have altered dissemination patterns or do not colonize, precluding analysis of the role of LF in colonization and dissemination from the portal of entry. Previous reports indicate rabbit and guinea pig models infected with LF-deficient strains have decreased virulence, yet the inability to use bioluminescent imaging techniques to track B. anthracis growth and dissemination in these hosts makes analysis of early pathogenesis challenging. In this study, the roles of LF early in infection were analyzed using bioluminescent signature tagged libraries of B. anthracis with varying ratios of LF-producing and LF-deficient clones. Populations where all clones produced LF and populations where only 40% of clones produce LF were equally virulent. The 40% LF-producing clones trans complimented the LF mutants and permitted them to colonize and disseminate. Decreases of the LF producing strains to 10% or 0.3% of the population led to increased host survival and decreased trans complementation of the LF mutants. A library with 10% LF producing clones could replicate and disseminate, but fewer clones disseminated and the mutant clones were less competitive than wild type. The inoculum with 0.3% LF producing clones could not colonize the host. This strongly suggests that between 10% and 0.3% of the population must produce LF in order to colonize. In total, these findings suggest that a threshold of LF must be produced in order for colonization and dissemination to occur in vivo. These observations suggest that LF has a major role in the early stages of colonization and dissemination.
Collapse
Affiliation(s)
- David E. Lowe
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jason Ya
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ian J. Glomski
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
171
|
Liu S, Moayeri M, Leppla SH. Anthrax lethal and edema toxins in anthrax pathogenesis. Trends Microbiol 2014; 22:317-25. [PMID: 24684968 DOI: 10.1016/j.tim.2014.02.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/23/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
The pathophysiological effects resulting from many bacterial diseases are caused by exotoxins released by the bacteria. Bacillus anthracis, a spore-forming bacterium, is such a pathogen, causing anthrax through a combination of bacterial infection and toxemia. B. anthracis causes natural infection in humans and animals and has been a top bioterrorism concern since the 2001 anthrax attacks in the USA. The exotoxins secreted by B. anthracis use capillary morphogenesis protein 2 (CMG2) as the major toxin receptor and play essential roles in pathogenesis during the entire course of the disease. This review focuses on the activities of anthrax toxins and their roles in initial and late stages of anthrax infection.
Collapse
Affiliation(s)
- Shihui Liu
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Mahtab Moayeri
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Stephen H Leppla
- Microbial Pathogenesis Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
172
|
Qian L, Cai C, Yuan P, Jeong SY, Yang X, Dealmeida V, Ernst J, Costa M, Cohen SN, Wei W. Bidirectional effect of Wnt signaling antagonist DKK1 on the modulation of anthrax toxin uptake. SCIENCE CHINA-LIFE SCIENCES 2014; 57:469-81. [PMID: 24671437 DOI: 10.1007/s11427-014-4646-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/07/2014] [Indexed: 01/07/2023]
Abstract
LRP6, a co-receptor for the morphogen Wnt, aids endocytosis of anthrax complexes. Here we report that Dickkopf1 (DKK1) protein, a secreted LRP6 ligand and antagonist, is also a modulator of anthrax toxin sensitivity. shRNA-mediated gene silencing or TALEN-mediated gene knockout of DKK1 reduced sensitivity of cells to PA-dependent hybrid toxins. However, unlike the solely inhibitory effect on Wnt signaling, the effects of DKK1 overexpression on anthrax toxicity were bidirectional, depending on its endogenous expression and cell context. Fluorescence microscopy and biochemical analyses showed that DKK1 facilitates internalization of anthrax toxins and their receptors, an event mediated by DKK1-LRP6-Kremen2 complex. Monoclonal antibodies against DKK1 provided dose-dependent protection to macrophages from killing by anthrax lethal toxin (LT). Our discovery that DKK1 forms ternary structure with LRP6 and Kremen2 in promoting PA-mediated toxin internalization provides a paradigm for bacterial exploitation of mechanisms that host cells use to internalize signaling proteins.
Collapse
Affiliation(s)
- LiLi Qian
- College of Life Sciences and State Key Laboratory of Protein and Plant Gene Research, Peking University, Beijing, 100871, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Zhou C, Yan Y, Fang J, Cheng B, Fan J. A new fusion protein platform for quantitatively measuring activity of multiple proteases. Microb Cell Fact 2014; 13:44. [PMID: 24649897 PMCID: PMC4000059 DOI: 10.1186/1475-2859-13-44] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 03/05/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recombinant proteins fused with specific cleavage sequences are widely used as substrate for quantitatively analyzing the activity of proteases. Here we propose a new fusion platform for multiple proteases, by using diaminopropionate ammonia-lyase (DAL) as the fusion protein. It was based on the finding that a fused His6-tag could significantly decreases the activities of DAL from E. coli (eDAL) and Salmonella typhimurium (sDAL). Previously, we have shown that His6GST-tagged eDAL could be used to determine the activity of tobacco etch virus protease (TEVp) under different temperatures or in the denaturant at different concentrations. In this report, we will assay different tags and cleavage sequences on DAL for expressing yield in E. coli, stability of the fused proteins and performance of substrate of other common proteases. RESULTS We tested seven different protease cleavage sequences (rhinovirus 3C, TEV protease, factor Xa, Ssp DnaB intein, Sce VMA1 intein, thrombin and enterokinase), three different tags (His6, GST, CBD and MBP) and two different DALs (eDAL and sDAL), for their performance as substrate to the seven corresponding proteases. Among them, we found four active DAL-fusion substrates suitable for TEVp, factor Xa, thrombin and DnaB intein. Enterokinase cleaved eDAL at undesired positions and did not process sDAL. Substitution of GST with MBP increase the expression level of the fused eDAL and this fusion protein was suitable as a substrate for analyzing activity of rhinovirus 3C. We demonstrated that SUMO protease Ulp1 with a N-terminal His6-tag or MBP tag displayed different activity using the designed His6SUMO-eDAL as substrate. Finally, owing to the high level of the DAL-fusion protein in E. coli, these protein substrates can also be detected directly from the crude extract. CONCLUSION The results show that our designed DAL-fusion proteins can be used to quantify the activities of both sequence- and conformational-specific proteases, with sufficient substrate specificity.
Collapse
Affiliation(s)
- Chengdong Zhou
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, 130#, Changjiang West Road, Hefei City, Anhui Province 230036, PR. China
| | - Yanping Yan
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, 130#, Changjiang West Road, Hefei City, Anhui Province 230036, PR. China
| | - Jie Fang
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, 130#, Changjiang West Road, Hefei City, Anhui Province 230036, PR. China
| | - Beijiu Cheng
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, 130#, Changjiang West Road, Hefei City, Anhui Province 230036, PR. China
| | - Jun Fan
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, 130#, Changjiang West Road, Hefei City, Anhui Province 230036, PR. China
| |
Collapse
|
174
|
Identification of exosite-targeting inhibitors of anthrax lethal factor by high-throughput screening. ACTA ACUST UNITED AC 2014; 19:875-82. [PMID: 22840775 DOI: 10.1016/j.chembiol.2012.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/10/2012] [Accepted: 05/17/2012] [Indexed: 12/24/2022]
Abstract
Protease inhibitor discovery has focused almost exclusively on compounds that bind to the active site. Inhibitors targeting protease exosites, regions outside of the active site that influence catalysis, offer potential advantages of increased specificity but are difficult to systematically discover. Here, we describe an assay suitable for detecting exosite-targeting inhibitors of the metalloproteinase anthrax lethal factor (LF) based on cleavage of a full-length mitogen-activated protein kinase kinase (MKK) substrate. We used this assay to screen a small-molecule library and then subjected hits to a secondary screen to exclude compounds that efficiently blocked cleavage of a peptide substrate. We identified a compound that preferentially inhibited cleavage of MKKs compared with peptide substrates and could suppress LF-induced macrophage cytolysis. This approach should be generally applicable to the discovery of exosite-targeting inhibitors of many additional proteases.
Collapse
|
175
|
Structure-based pharmacophore modeling and virtual screening to identify novel inhibitors for anthrax lethal factor. Med Chem Res 2014. [DOI: 10.1007/s00044-014-0947-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
176
|
Advax-adjuvanted recombinant protective antigen provides protection against inhalational anthrax that is further enhanced by addition of murabutide adjuvant. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:580-6. [PMID: 24554695 DOI: 10.1128/cvi.00019-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Subunit vaccines against anthrax based on recombinant protective antigen (PA) potentially offer more consistent and less reactogenic anthrax vaccines but require adjuvants to achieve optimal immunogenicity. This study sought to determine in a murine model of pulmonary anthrax infection whether the polysaccharide adjuvant Advax or the innate immune adjuvant murabutide alone or together could enhance PA immunogenicity by comparison to an alum adjuvant. A single immunization with PA plus Advax adjuvant afforded significantly greater protection against aerosolized Bacillus anthracis Sterne strain 7702 than three immunizations with PA alone. Murabutide had a weaker adjuvant effect than Advax when used alone, but when murabutide was formulated together with Advax, an additive effect on immunogenicity and protection was observed, with complete protection after just two doses. The combined adjuvant formulation stimulated a robust, long-lasting B-cell memory response that protected mice against an aerosol challenge 18 months postimmunization with acceleration of the kinetics of the anamnestic IgG response to B. anthracis as reflected by ∼4-fold-higher anti-PA IgG titers by day 2 postchallenge versus mice that received PA with Alhydrogel. In addition, the combination of Advax plus murabutide induced approximately 3-fold-less inflammation than Alhydrogel as measured by in vivo imaging of cathepsin cleavage resulting from injection of ProSense 750. Thus, the combination of Advax and murabutide provided enhanced protection against inhalational anthrax with reduced localized inflammation, making this a promising next-generation anthrax vaccine adjuvanting strategy.
Collapse
|
177
|
Langel FD, Chiang CY, Lane D, Kenny T, Ojeda JF, Zhong Y, Che J, Zhou Y, Ribot W, Kota KP, Bavari S, Panchal RG. Alveolar macrophages infected with Ames or Sterne strain of Bacillus anthracis elicit differential molecular expression patterns. PLoS One 2014; 9:e87201. [PMID: 24516547 PMCID: PMC3917846 DOI: 10.1371/journal.pone.0087201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 12/20/2013] [Indexed: 11/25/2022] Open
Abstract
Alveolar macrophages (AMs) phagocytose Bacillus anthracis following inhalation and induce the production of pro-inflammatory cytokines and chemokines to mediate the activation of innate immunity. Ames, the virulent strain of B. anthracis, contains two plasmids that encode the antiphagocytic poly-γ-d-glutamic acid capsule and the lethal toxin. The attenuated Sterne strain of B. anthracis, which lacks the plasmid encoding capsule, is widely adapted as a vaccine strain. Although differences in the outcome of infection with the two strains may have originated from the presence or absence of an anti-phagocytic capsule, the disease pathogenesis following infection will be manifested via the host responses, which is not well understood. To gain understanding of the host responses at cellular level, a microarray analysis was performed using primary rhesus macaque AMs infected with either Ames or Sterne spores. Notably, 528 human orthologs were identified to be differentially expressed in AMs infected with either strain of the B. anthracis. Meta-analyses revealed genes differentially expressed in response to B. anthracis infection were also induced upon infections with multiple pathogens such as Francisella Novicida or Staphylococcus aureus. This suggests the existence of a common molecular signature in response to pathogen infections. Importantly, the microarray and protein expression data for certain cytokines, chemokines and host factors provide further insights on how cellular processes such as innate immune sensing pathways, anti-apoptosis versus apoptosis may be differentially modulated in response to the virulent or vaccine strain of B. anthracis. The reported differences may account for the marked difference in pathogenicity between these two strains.
Collapse
Affiliation(s)
- Felicia D. Langel
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Chih-Yuan Chiang
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Douglas Lane
- SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Tara Kenny
- SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jenifer F. Ojeda
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Yang Zhong
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Jianwei Che
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Wilson Ribot
- Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Krishna P. Kota
- Perkin Elmer, Waltham, Massachusetts, United States of America
| | - Sina Bavari
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| | - Rekha G. Panchal
- Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland, United States of America
| |
Collapse
|
178
|
Abstract
INTRODUCTION Present-day rational drug design approaches are based on exploiting unique features of the target biomolecules, small- or macromolecule drug candidates and physical forces that govern their interactions. The 2013 Nobel Prize in chemistry awarded 'for the development of multiscale models for complex chemical systems' once again demonstrated the importance of the tailored drug discovery that reduces the role of the trial-and-error approach to a minimum. The intentional dissemination of Bacillus anthracis spores in 2001 via the so-called anthrax letters has led to increased efforts, politically and scientifically, to develop medical countermeasures that will protect people from the threat of anthrax bioterrorism. AREAS COVERED This article provides an overview of the recent rational drug design approaches for discovering inhibitors of anthrax toxin. The review also directs the readers to the vast literature on the recognized advances and future possibilities in the field. EXPERT OPINION Existing options to combat anthrax toxin lethality are limited. With the only anthrax toxin inhibiting therapy (protective antigen-targeting with a monoclonal antibody, raxibacumab) approved to treat inhalational anthrax, the situation, in our view, is still insecure. Further, the FDA's animal rule for drug approval, which clears compounds without validated efficacy studies on humans, creates a high level of uncertainty, especially when a well-characterized animal model does not exist. Better identification and validation of anthrax toxin therapeutic targets at the molecular level as well as elucidation of the parameters determining the corresponding therapeutic windows are still necessary for more effective therapeutic options.
Collapse
Affiliation(s)
- Ekaterina M Nestorovich
- The Catholic University of America, Department of Biology , Washington, DC , USA +1 202 319 6723 ;
| | | |
Collapse
|
179
|
Maier NK, Crown D, Liu J, Leppla SH, Moayeri M. Arsenic trioxide and other arsenical compounds inhibit the NLRP1, NLRP3, and NAIP5/NLRC4 inflammasomes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:763-70. [PMID: 24337744 PMCID: PMC3884817 DOI: 10.4049/jimmunol.1301434] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inflammasomes are large cytoplasmic multiprotein complexes that activate caspase-1 in response to diverse intracellular danger signals. Inflammasome components termed nucleotide-binding oligomerization domain-like receptor (NLR) proteins act as sensors for pathogen-associated molecular patterns, stress, or danger stimuli. We discovered that arsenicals, including arsenic trioxide and sodium arsenite, inhibited activation of the NLRP1, NLRP3, and NAIP5/NLRC4 inflammasomes by their respective activating signals, anthrax lethal toxin, nigericin, and flagellin. These compounds prevented the autoproteolytic activation of caspase-1 and the processing and secretion of IL-1β from macrophages. Inhibition was independent of protein synthesis induction, proteasome-mediated protein breakdown, or kinase signaling pathways. Arsenic trioxide and sodium arsenite did not directly modify or inhibit the activity of preactivated recombinant caspase-1. Rather, they induced a cellular state inhibitory to both the autoproteolytic and substrate cleavage activities of caspase-1, which was reversed by the reactive oxygen species scavenger N-acetylcysteine but not by reducing agents or NO pathway inhibitors. Arsenicals provided protection against NLRP1-dependent anthrax lethal toxin-mediated cell death and prevented NLRP3-dependent neutrophil recruitment in a monosodium urate crystal inflammatory murine peritonitis model. These findings suggest a novel role in inhibition of the innate immune response for arsenical compounds that have been used as therapeutics for a few hundred years.
Collapse
Affiliation(s)
- Nolan K. Maier
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Devorah Crown
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jie Liu
- Center for Molecular Medicine, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephen H. Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
180
|
Tournier JN, Ulrich RG, Quesnel-Hellmann A, Mohamadzadeh M, Stiles BG. Anthrax, toxins and vaccines: a 125-year journey targetingBacillus anthracis. Expert Rev Anti Infect Ther 2014; 7:219-36. [DOI: 10.1586/14787210.7.2.219] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
181
|
|
182
|
Ramachandran G. Gram-positive and gram-negative bacterial toxins in sepsis: a brief review. Virulence 2014; 5:213-8. [PMID: 24193365 PMCID: PMC3916377 DOI: 10.4161/viru.27024] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/28/2013] [Accepted: 10/31/2013] [Indexed: 12/31/2022] Open
Abstract
Bacterial sepsis is a major cause of fatality worldwide. Sepsis is a multi-step process that involves an uncontrolled inflammatory response by the host cells that may result in multi organ failure and death. Both gram-negative and gram-positive bacteria play a major role in causing sepsis. These bacteria produce a range of virulence factors that enable them to escape the immune defenses and disseminate to remote organs, and toxins that interact with host cells via specific receptors on the cell surface and trigger a dysregulated immune response. Over the past decade, our understanding of toxins has markedly improved, allowing for new therapeutic strategies to be developed. This review summarizes some of these toxins and their role in sepsis.
Collapse
Affiliation(s)
- Girish Ramachandran
- Center for Vaccine Development; Department of Medicine; University of Maryland School of Medicine; Baltimore, MD USA
| |
Collapse
|
183
|
Wolpaw AJ, Stockwell BR. Multidimensional profiling in the investigation of small-molecule-induced cell death. Methods Enzymol 2014; 545:265-302. [PMID: 25065894 DOI: 10.1016/b978-0-12-801430-1.00011-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Numerous morphological variations of cell death have been described. These processes depend on a complex and overlapping cellular signaling network, making molecular definition of the pathways challenging. This review describes one solution to this problem for small-molecule-induced death, the creation of high-dimensionality profiles for compounds that can be used to define and compare pathways. Such profiles have been assembled from gene expression measurements, protein quantification, chemical-genetic interactions, chemical combination interactions, cancer cell line sensitivity profiling, quantitative imaging, and modulatory profiling. We discuss the advantages and limitations of these techniques in the study of cell death.
Collapse
Affiliation(s)
- Adam J Wolpaw
- Residency Program in Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, USA; Department of Chemistry, Columbia University, New York, USA; Howard Hughes Medical Institute, Columbia University, New York, USA.
| |
Collapse
|
184
|
Brojatsch J, Casadevall A, Goldman DL. Molecular determinants for a cardiovascular collapse in anthrax. Front Biosci (Elite Ed) 2014; 6:139-47. [PMID: 24389148 DOI: 10.2741/e697] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacillus anthracis releases two bipartite proteins, lethal toxin and edema factor, that contribute significantly to the progression of anthrax-associated shock. As blocking the anthrax toxins prevents disease, the toxins are considered the main virulence factors of the bacterium. The anthrax bacterium and the anthrax toxins trigger multi-organ failure associated with enhanced vascular permeability, hemorrhage and cardiac dysfunction in animal challenge models. A recent study using mice that either lacked the anthrax toxin receptor in specific cells and corresponding mice expressing the receptor in specific cell types demonstrated that cardiovascular cells are critical for disease mediated by anthrax lethal toxin. These studies are consistent with involvement of the cardiovascular system, and with an increase of cardiac failure markers observed in human anthrax and in animal models using B. anthracis and anthrax toxins. This review discusses the current state of knowledge regarding the pathophysiology of anthrax and tries to provide a mechanistic model and molecular determinants for the circulatory shock in anthrax.
Collapse
Affiliation(s)
- Jurgen Brojatsch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY
| | - Arturo Casadevall
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY
| | - David L Goldman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY
| |
Collapse
|
185
|
Jacquez P, Lei N, Weigt D, Xiao C, Sun J. Expression and purification of the functional ectodomain of human anthrax toxin receptor 2 in Escherichia coli Origami B cells with assistance of bacterial Trigger Factor. Protein Expr Purif 2013; 95:149-55. [PMID: 24380801 DOI: 10.1016/j.pep.2013.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 11/15/2022]
Abstract
The ectodomain of anthrax toxin receptor 2 (ANTXR2) is composed of a von Willebrand factor A (VWA) domain that binds to anthrax toxin protective antigen (PA) and a newly defined immunoglobulin-like (Ig) domain, in which the disulfide bonds are required for PA pore formation and for the folding of ANTXR2. While the VWA domain has been well characterized, the structure and function of the whole ectodomain (VWA-Ig) are poorly defined, which is mainly due to the limited production of the soluble recombinant protein of the ectodomain. In the present study, the ANTXR2 ectodomain was fused to the C-terminus of bacterial Trigger Factor (TF), a chaperone that mediates the ribosome-associated, co-translational folding of newly synthesized polypeptides in Escherichia coli. Under the control of a cold shock promoter, the fusion protein was overly expressed as a dominant soluble protein at a low temperature in the oxidative cytoplasm of Origami B cells, where formation of the disulfide bonds is favored. Through a series of chromatography, the ANTXR2 ectodomain was purified into homogeneity. The purified ectodomain is functional in binding to PA and mediating PA pore formation on the liposomal membranes, and the yield is applicable for future biochemical and structural characterization.
Collapse
Affiliation(s)
- Pedro Jacquez
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519, United States
| | - Ningjing Lei
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519, United States
| | - David Weigt
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519, United States
| | - Chuan Xiao
- Department of Chemistry, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519, United States
| | - Jianjun Sun
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0519, United States.
| |
Collapse
|
186
|
Identification of a novel zinc metalloprotease through a global analysis of Clostridium difficile extracellular proteins. PLoS One 2013; 8:e81306. [PMID: 24303041 PMCID: PMC3841139 DOI: 10.1371/journal.pone.0081306] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 10/11/2013] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is a major cause of infectious diarrhea worldwide. Although the cell surface proteins are recognized to be important in clostridial pathogenesis, biological functions of only a few are known. Also, apart from the toxins, proteins exported by C. difficile into the extracellular milieu have been poorly studied. In order to identify novel extracellular factors of C. difficile, we analyzed bacterial culture supernatants prepared from clinical isolates, 630 and R20291, using liquid chromatography-tandem mass spectrometry. The majority of the proteins identified were non-canonical extracellular proteins. These could be largely classified into proteins associated to the cell wall (including CWPs and extracellular hydrolases), transporters and flagellar proteins. Seven unknown hypothetical proteins were also identified. One of these proteins, CD630_28300, shared sequence similarity with the anthrax lethal factor, a known zinc metallopeptidase. We demonstrated that CD630_28300 (named Zmp1) binds zinc and is able to cleave fibronectin and fibrinogen in vitro in a zinc-dependent manner. Using site-directed mutagenesis, we identified residues important in zinc binding and enzymatic activity. Furthermore, we demonstrated that Zmp1 destabilizes the fibronectin network produced by human fibroblasts. Thus, by analyzing the exoproteome of C. difficile, we identified a novel extracellular metalloprotease that may be important in key steps of clostridial pathogenesis.
Collapse
|
187
|
Abstract
Cyclic dinucleotides (CDNs) have been previously recognized as important secondary signaling molecules in bacteria and, more recently, in mammalian cells. In the former case, they represent secondary messengers affecting numerous responses of the prokaryotic cell, whereas in the latter, they act as agonists of the innate immune response. Remarkable new discoveries have linked these two patterns of utilization of CDNs as secondary messengers and have revealed unexpected influences they likely had on shaping human genetic variation. This Review summarizes these recent insights and provides a perspective on future unanswered questions in this exciting field.
Collapse
|
188
|
Weiner ZP, Ernst SM, Boyer AE, Gallegos-Candela M, Barr JR, Glomski IJ. Circulating lethal toxin decreases the ability of neutrophils to respond toBacillus anthracis. Cell Microbiol 2013; 16:504-18. [DOI: 10.1111/cmi.12232] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/24/2013] [Accepted: 10/15/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Zachary P. Weiner
- Department of Microbiology, Immunology, and Cancer Biology; University of Virginia; Charlottesville VA USA
| | - Stephen M. Ernst
- Department of Microbiology, Immunology, and Cancer Biology; University of Virginia; Charlottesville VA USA
| | - Anne E. Boyer
- National Center for Environmental Health; Centers for Disease Control and Prevention; Atlanta GA 30341 USA
| | - Maribel Gallegos-Candela
- National Center for Environmental Health; Centers for Disease Control and Prevention; Atlanta GA 30341 USA
| | - John R. Barr
- National Center for Environmental Health; Centers for Disease Control and Prevention; Atlanta GA 30341 USA
| | - Ian J. Glomski
- Department of Microbiology, Immunology, and Cancer Biology; University of Virginia; Charlottesville VA USA
| |
Collapse
|
189
|
Selective inhibitor of endosomal trafficking pathways exploited by multiple toxins and viruses. Proc Natl Acad Sci U S A 2013; 110:E4904-12. [PMID: 24191014 DOI: 10.1073/pnas.1302334110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pathogenic microorganisms and toxins have evolved a variety of mechanisms to gain access to the host-cell cytosol and thereby exert virulent effects upon the host. One common mechanism of cellular entry requires trafficking to an acidified endosome, which promotes translocation across the host membrane. To identify small-molecule inhibitors that block this process, a library of 30,000 small molecules was screened for inhibitors of anthrax lethal toxin. Here we report that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone, the most active compound identified in the screen, inhibits intoxication by lethal toxin and blocks the entry of multiple other acid-dependent bacterial toxins and viruses into mammalian cells. This compound, which we named EGA, also delays lysosomal targeting and degradation of the EGF receptor, indicating that it targets host-membrane trafficking. In contrast, EGA does not block endosomal recycling of transferrin, retrograde trafficking of ricin, phagolysosomal trafficking, or phagosome permeabilization by Franciscella tularensis. Furthermore, EGA does not neutralize acidic organelles, demonstrating that its mechanism of action is distinct from pH-raising agents such as ammonium chloride and bafilomycin A1. EGA is a powerful tool for the study of membrane trafficking and represents a class of host-targeted compounds for therapeutic development to treat infectious disease.
Collapse
|
190
|
Chun JH, Choi OJ, Cho MH, Hong KJ, Seong WK, Oh HB, Rhie GE. Serological Correlate of Protection in Guinea Pigs for a Recombinant Protective Antigen Anthrax Vaccine Produced from Bacillus brevis. Osong Public Health Res Perspect 2013; 3:170-6. [PMID: 24159510 PMCID: PMC3738701 DOI: 10.1016/j.phrp.2012.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 11/30/2022] Open
Abstract
Objective Recombinant protective antigen (rPA) is the active pharmaceutical ingredient of a second generation anthrax vaccine undergoing clinical trials both in Korea and the USA. By using the rPA produced from Bacillus brevis pNU212 expression system, correlations of serological immune response to anthrax protection efficacy were analyzed in a guinea pig model. Methods Serological responses of rPA anthrax vaccine were investigated in guinea pigs that were given single or two injections (interval of 4 weeks) of various amounts of rPA combined with aluminumhydroxide adjuvant. Guinea pigs were subsequently challenged by the intramuscular injection with 30 half-lethal doses (30LD50) of virulent Bacillus anthracis spores. Serumantibody titerswere determined by anti-PA IgGELISA and the ability of antibodies to neutralize the cytotoxicity of lethal toxin on J774A.1 cell was measured through the toxin neutralizing antibody (TNA) assay. Results To examine correlations between survival rate and antibody titers, correlation between neutralizing antibody titers and the extent of protection was determined. Toxin neutralization titers of at least 1176 were sufficient to confer protection against a dose of 30LD50 of virulent anthrax spores of the H9401 strain. Such consistency in the correlation was not observed from those antibody titers determined by ELISA. Conclusion Neutralizing-antibody titers can be used as a surrogate marker.
Collapse
|
191
|
Leysath CE, Phillips DD, Crown D, Fattah RJ, Moayeri M, Leppla SH. Anthrax edema factor toxicity is strongly mediated by the N-end rule. PLoS One 2013; 8:e74474. [PMID: 24015319 PMCID: PMC3755998 DOI: 10.1371/journal.pone.0074474] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/30/2013] [Indexed: 11/29/2022] Open
Abstract
Anthrax edema factor (EF) is a calmodulin-dependent adenylate cyclase that converts adenosine triphosphate (ATP) into 3’–5’-cyclic adenosine monophosphate (cAMP), contributing to the establishment of Bacillus anthracis infections and the resulting pathophysiology. We show that EF adenylate cyclase toxin activity is strongly mediated by the N-end rule, and thus is dependent on the identity of the N-terminal amino acid. EF variants having different N-terminal residues varied by more than 100-fold in potency in cultured cells and mice. EF variants having unfavorable, destabilizing N-terminal residues showed much greater activity in cells when the E1 ubiquitin ligase was inactivated or when proteasome inhibitors were present. Taken together, these results show that EF is uniquely affected by ubiquitination and/or proteasomal degradation.
Collapse
Affiliation(s)
- Clinton E. Leysath
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Damilola D. Phillips
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Devorah Crown
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rasem J. Fattah
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mahtab Moayeri
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen H. Leppla
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
192
|
Key tissue targets responsible for anthrax-toxin-induced lethality. Nature 2013; 501:63-8. [PMID: 23995686 DOI: 10.1038/nature12510] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/31/2013] [Indexed: 02/01/2023]
Abstract
Bacillus anthracis, the causative agent of anthrax disease, is lethal owing to the actions of two exotoxins: anthrax lethal toxin (LT) and oedema toxin (ET). The key tissue targets responsible for the lethal effects of these toxins are unknown. Here we generated cell-type-specific anthrax toxin receptor capillary morphogenesis protein-2 (CMG2)-null mice and cell-type-specific CMG2-expressing mice and challenged them with the toxins. Our results show that lethality induced by LT and ET occurs through damage to distinct cell types; whereas targeting cardiomyocytes and vascular smooth muscle cells is required for LT-induced mortality, ET-induced lethality occurs mainly through its action in hepatocytes. Notably, and in contradiction to what has been previously postulated, targeting of endothelial cells by either toxin does not seem to contribute significantly to lethality. Our findings demonstrate that B. anthracis has evolved to use LT and ET to induce host lethality by coordinately damaging two distinct vital systems.
Collapse
|
193
|
McCluskey AJ, Collier RJ. Receptor-directed chimeric toxins created by sortase-mediated protein fusion. Mol Cancer Ther 2013; 12:2273-81. [PMID: 23945077 DOI: 10.1158/1535-7163.mct-13-0358] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chimeric protein toxins that act selectively on cells expressing a designated receptor may serve as investigational probes and/or antitumor agents. Here, we report use of the enzyme sortase A (SrtA) to create four chimeric toxins designed to selectively kill cells bearing the tumor marker HER2. We first expressed and purified: (i) a receptor recognition-deficient form of diphtheria toxin that lacks its receptor-binding domain and (ii) a mutated, receptor-binding-deficient form of anthrax-protective antigen. Both proteins carried at the C terminus the sortase recognition sequence LPETGG and a H₆ affinity tag. Each toxin protein was mixed with SrtA plus either of two HER2-recognition proteins--a single-chain antibody fragment or an Affibody--both carrying an N-terminal G₅ tag. With wild-type SrtA, the fusion reaction between the toxin and receptor-recognition proteins approached completion only after several hours, whereas with an evolved form of the enzyme, SrtA*, the reaction was virtually complete within 5 minutes. The four fusion toxins were purified and shown to kill HER2-positive cells in culture with high specificity. Sortase-mediated ligation of binary combinations of diverse natively folded proteins offers a facile way to produce large sets of chimeric proteins for research and medicine.
Collapse
Affiliation(s)
- Andrew J McCluskey
- Corresponding Author: Andrew J. McCluskey, Department of Microbiology and Immunobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115.
| | | |
Collapse
|
194
|
Mujtaba S, Winer BY, Jaganathan A, Patel J, Sgobba M, Schuch R, Gupta YK, Haider S, Wang R, Fischetti VA. Anthrax SET protein: a potential virulence determinant that epigenetically represses NF-κB activation in infected macrophages. J Biol Chem 2013; 288:23458-72. [PMID: 23720780 PMCID: PMC5395026 DOI: 10.1074/jbc.m113.467696] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/17/2013] [Indexed: 01/08/2023] Open
Abstract
Toxins play a major role in the pathogenesis of Bacillus anthracis by subverting the host defenses. However, besides toxins, B. anthracis expresses effector proteins, whose role in pathogenesis are yet to be investigated. Here we present that suppressor-of-variegation, enhancer-of-zeste, trithorax protein from B. anthracis (BaSET) methylates human histone H1, resulting in repression of NF-κB functions. Notably, BaSET is secreted and undergoes nuclear translocation to enhance H1 methylation in B. anthracis-infected macrophages. Compared with wild type Sterne, delayed growth kinetics and altered septum formation were observed in the BaSET knock-out (BaΔSET) bacilli. Uncontrolled BaSET expression during complementation of the BaSET gene in BaΔSET partially restored growth during stationary phase but resulted in substantially shorter bacilli throughout the growth cycle. Importantly, in contrast to Sterne, the BaΔSET B. anthracis is avirulent in a lethal murine bacteremia model of infection. Collectively, BaSET is required for repression of host transcription as well as proper B. anthracis growth, making it a potentially unique virulence determinant.
Collapse
Affiliation(s)
| | - Benjamin Y. Winer
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York 10065, and
| | | | | | - Miriam Sgobba
- the Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Raymond Schuch
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York 10065, and
| | | | - Shozeb Haider
- the Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Rong Wang
- the Department of Genetics and Genomics Biology, Mount Sinai School of Medicine, New York, New York 10029
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York 10065, and
| |
Collapse
|
195
|
AMD-associated genes encoding stress-activated MAPK pathway constituents are identified by interval-based enrichment analysis. PLoS One 2013; 8:e71239. [PMID: 23940728 PMCID: PMC3734129 DOI: 10.1371/journal.pone.0071239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/26/2013] [Indexed: 11/19/2022] Open
Abstract
Purpose To determine whether common DNA sequence variants within groups of genes encoding elements of stress-activated mitogen-activated protein kinase (MAPK) signaling pathways are, in aggregate, associated with advanced AMD (AAMD). Methods We used meta-regression and exact testing methods to identify AAMD-associated SNPs in 1177 people with AAMD and 1024 AMD-free elderly peers from 3 large-scale genotyping projects on the molecular genetics of AMD. SNPs spanning independent AAMD-associated genomic intervals were examined with a multi-locus-testing method (INRICH) for enrichment within five sets of genes encoding constituents of stress-activated MAPK signaling cascades. Results Four-of-five pathway gene sets showed enrichment with AAMD-associated SNPs; findings persisted after adjustment for multiple testing in two. Strongest enrichment signals (P = 0.006) existed in a c-Jun N-terminal kinase (JNK)/MAPK cascade (Science Signaling, STKE CMP_10827). In this pathway, seven independent AAMD-associated regions were resident in 6 of 25 genes examined. These included sequence variants in: 1) three MAP kinase kinase kinases (MAP3K4, MAP3K5, MAP3K9) that phosphorylate and activate the MAP kinase kinases MAP2K4 and MAP2K7 (molecules that phosphorylate threonine and tyrosine residues within the activation loop of JNK); 2) a target of MAP2K7 (JNK3A1) that activates complexes involved in transcriptional regulation of stress related genes influencing cell proliferation, apoptosis, motility, metabolism and DNA repair; and 3) NR2C2, a transcription factor activated by JNK1A1 (a drugable molecule influencing retinal cell viability in model systems). We also observed AAMD-related sequence variants resident in genes encoding PPP3CA (a drugable molecule that inactivates MAP3K5), and two genes (TGFB2, TGFBR2) encoding factors involved in MAPK sensing of growth factors/cytokines. Conclusions Linkage disequilibrium (LD)-independent genomic enrichment analysis yielded associations of AAMD with aggregates of functionally related genes encoding constituents of the JNK MAPK signaling pathway. FDA-approved drugs now exist to target constituents of stress-activated MAPK pathways and may offer reasonable approaches to preventing or treating AAMD.
Collapse
|
196
|
Anthrax lethal toxin induces acute diastolic dysfunction in rats through disruption of the phospholamban signaling network. Int J Cardiol 2013; 168:3884-95. [PMID: 23907041 DOI: 10.1016/j.ijcard.2013.06.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/09/2013] [Accepted: 06/28/2013] [Indexed: 01/08/2023]
Abstract
BACKGROUND Anthrax lethal toxin (LT), secreted by Bacillus anthracis, causes severe cardiac dysfunction by unknown mechanisms. LT specifically cleaves the docking domains of MAPKK (MEKs); thus, we hypothesized that LT directly impairs cardiac function through dysregulation of MAPK signaling mechanisms. METHODS AND RESULTS In a time-course study of LT toxicity, echocardiography revealed acute diastolic heart failure accompanied by pulmonary regurgitation and left atrial dilation in adult Sprague-Dawley rats at time points corresponding to dysregulated JNK, phospholamban (PLB) and protein phosphatase 2A (PP2A) myocardial signaling. Using isolated rat ventricular myocytes, we identified the MEK7-JNK1-PP2A-PLB signaling axis to be important for regulation of intracellular calcium (Ca(2+)(i)) handling, PP2A activation and targeting of PP2A-B56α to Ca(2+)(i) handling proteins, such as PLB. Through a combination of gain-of-function and loss-of-function studies, we demonstrated that over-expression of MEK7 protects against LT-induced PP2A activation and Ca(2+)(i) dysregulation through activation of JNK1. Moreover, targeted phosphorylation of PLB-Thr(17) by Akt improved sarcoplasmic reticulum Ca(2+)(i) release and reuptake during LT toxicity. Co-immunoprecipitation experiments further revealed the pivotal role of MEK7-JNK-Akt complex formation for phosphorylation of PLB-Thr(17) during acute LT toxicity. CONCLUSIONS Our findings support a cardiogenic mechanism of LT-induced diastolic dysfunction, by which LT disrupts JNK1 signaling and results in Ca(2+)(i) dysregulation through diminished phosphorylation of PLB by Akt and increased dephosphorylation of PLB by PP2A. Integration of the MEK7-JNK1 signaling module with Akt represents an important stress-activated signalosome that may confer protection to sustain cardiac contractility and maintain normal levels of Ca(2+)(i) through PLB-T(17) phosphorylation.
Collapse
|
197
|
Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog 2013; 9:e1003452. [PMID: 23818853 PMCID: PMC3688554 DOI: 10.1371/journal.ppat.1003452] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/08/2013] [Indexed: 01/24/2023] Open
Abstract
Inflammasomes are multimeric protein complexes that respond to infection by recruitment and activation of the Caspase-1 (CASP1) protease. Activated CASP1 initiates immune defense by processing inflammatory cytokines and by causing a rapid and lytic cell death called pyroptosis. Inflammasome formation is orchestrated by members of the nucleotide-binding domain and leucine-rich repeat (NLR) or AIM2-like receptor (ALR) protein families. Certain NLRs and ALRs have been shown to function as direct receptors for specific microbial ligands, such as flagellin or DNA, but the molecular mechanism responsible for activation of most NLRs is still poorly understood. Here we determine the mechanism of activation of the NLRP1B inflammasome in mice. NLRP1B, and its ortholog in rats, is activated by the lethal factor (LF) protease that is a key virulence factor secreted by Bacillus anthracis, the causative agent of anthrax. LF was recently shown to cleave mouse and rat NLRP1 directly. However, it is unclear if cleavage is sufficient for NLRP1 activation. Indeed, other LF-induced cellular events have been suggested to play a role in NLRP1B activation. Surprisingly, we show that direct cleavage of NLRP1B is sufficient to induce inflammasome activation in the absence of LF. Our results therefore rule out the need for other LF-dependent cellular effects in activation of NLRP1B. We therefore propose that NLRP1 functions primarily as a sensor of protease activity and thus could conceivably detect a broader spectrum of pathogens than just B. anthracis. By adding proteolytic cleavage to the previously established ligand-receptor mechanism of NLR activation, our results illustrate the remarkable flexibility with which the NLR architecture can be deployed for the purpose of pathogen-detection and host defense. Recognition of pathogens by the innate immune system is necessary for initiating an appropriate immune response. The innate immune system must distinguish pathogens from abundant harmless microbes present within the host and the environment, and scale the response appropriately. It has been proposed that the host can respond specifically to pathogens by monitoring common virulence-associated activities, previously termed “patterns of pathogenesis,” that are used by pathogens to survive and replicate within their hosts. For example, pathogens can manipulate host functions by delivering toxins into host cells. In response, the host encodes dedicated cytosolic sensors to detect these toxins, but the molecular basis for how the sensors recognize the toxins is poorly understood. Here we define the molecular mechanism by which a mouse sensor, NLRP1B, directly recognizes the activity of a bacterial toxin, lethal factor. Lethal factor is a protease secreted by Bacillus anthracis, the causative agent of anthrax. We show that anthrax lethal factor cleaves NLRP1B and this cleavage event is both necessary and sufficient for the activation of this sensor. Our findings raise the possibility that NLRP1B could sense the activity of other proteases encoded by diverse pathogens.
Collapse
|
198
|
Beitzinger C, Bronnhuber A, Duscha K, Riedl Z, Huber-Lang M, Benz R, Hajós G, Barth H. Designed azolopyridinium salts block protective antigen pores in vitro and protect cells from anthrax toxin. PLoS One 2013; 8:e66099. [PMID: 23840407 PMCID: PMC3688708 DOI: 10.1371/journal.pone.0066099] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/02/2013] [Indexed: 11/28/2022] Open
Abstract
Background Several intracellular acting bacterial protein toxins of the AB-type, which are known to enter cells by endocytosis, are shown to produce channels. This holds true for protective antigen (PA), the binding component of the tripartite anthrax-toxin of Bacillus anthracis. Evidence has been presented that translocation of the enzymatic components of anthrax-toxin across the endosomal membrane of target cells and channel formation by the heptameric/octameric PA63 binding/translocation component are related phenomena. Chloroquine and some 4-aminoquinolones, known as potent drugs against Plasmodium falciparium infection of humans, block efficiently the PA63-channel in a dose dependent way. Methodology/Principal Findings Here we demonstrate that related positively charged heterocyclic azolopyridinium salts block the PA63-channel in the µM range, when both, inhibitor and PA63 are added to the same side of the membrane, the cis-side, which corresponds to the lumen of acidified endosomal vesicles of target cells. Noise-analysis allowed the study of the kinetics of the plug formation by the heterocycles. In vivo experiments using J774A.1 macrophages demonstrated that the inhibitors of PA63-channel function also efficiently block intoxication of the cells by the combination lethal factor and PA63 in the same concentration range as they block the channels in vitro. Conclusions/Significance These results strongly argue in favor of a transport of lethal factor through the PA63-channel and suggest that the heterocycles used in this study could represent attractive candidates for development of novel therapeutic strategies against anthrax.
Collapse
Affiliation(s)
- Christoph Beitzinger
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Anika Bronnhuber
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
| | - Kerstin Duscha
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | - Zsuzsanna Riedl
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Markus Huber-Lang
- Institute of Traumatology, Hand- and Reconstructive Surgery, University of Ulm Medical Center, Ulm, Germany
| | - Roland Benz
- Rudolf-Virchow-Center, DFG-Research Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- * E-mail: (RB); (HB)
| | - György Hajós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Ulm, Germany
- * E-mail: (RB); (HB)
| |
Collapse
|
199
|
Small-molecule inhibitors of lethal factor protease activity protect against anthrax infection. Antimicrob Agents Chemother 2013; 57:4139-45. [PMID: 23774434 DOI: 10.1128/aac.00941-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bacillus anthracis, the causative agent of anthrax, manifests its pathogenesis through the action of two secreted toxins. The bipartite lethal and edema toxins, a combination of lethal factor or edema factor with the protein protective antigen, are important virulence factors for this bacterium. We previously developed small-molecule inhibitors of lethal factor proteolytic activity (LFIs) and demonstrated their in vivo efficacy in a rat lethal toxin challenge model. In this work, we show that these LFIs protect against lethality caused by anthrax infection in mice when combined with subprotective doses of either antibiotics or neutralizing monoclonal antibodies that target edema factor. Significantly, these inhibitors provided protection against lethal infection when administered as a monotherapy. As little as two doses (10 mg/kg) administered at 2 h and 8 h after spore infection was sufficient to provide a significant survival benefit in infected mice. Administration of LFIs early in the infection was found to inhibit dissemination of vegetative bacteria to the organs in the first 32 h following infection. In addition, neutralizing antibodies against edema factor also inhibited bacterial dissemination with similar efficacy. Together, our findings confirm the important roles that both anthrax toxins play in establishing anthrax infection and demonstrate the potential for small-molecule therapeutics targeting these proteins.
Collapse
|
200
|
Ghosh N, Gupta N, Gupta G, Boopathi M, Pal V, Goel AK. Detection of protective antigen, an anthrax specific toxin in human serum by using surface plasmon resonance. Diagn Microbiol Infect Dis 2013; 77:14-9. [PMID: 23773677 DOI: 10.1016/j.diagmicrobio.2013.05.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/05/2013] [Accepted: 05/07/2013] [Indexed: 02/08/2023]
Abstract
In this study, surface plasmon resonance (SPR) technology was used for the sensitive detection of protective antigen (PA), an anthrax specific toxin in spiked human serum samples. A monoclonal antibody raised against Bacillus anthracis PA was immobilized on carboxymethyldextran-modified gold chip, and its interaction with PA was characterized in situ by SPR. By using kinetic evaluation software, KD (equilibrium constant) and Bmax (maximum binding capacity of analyte) were found to be 20 fM and 18.74 m°, respectively. The change in Gibb's free energy (∆G= -78.04 kJ/mol) confirmed the spontaneous interaction between antigen and antibody. The assay could detect 1 pg/mL purified PA. In PA-spiked human serum samples, 10 pg/mL of PA could be detected. Presence of PA in blood samples serves as an important early diagnostic marker for B. anthracis infections. Thus, SPR test can be a sensitive assay for detection of anthrax at early stages of infection.
Collapse
Affiliation(s)
- Neha Ghosh
- Biotechnology Division, Defence Research & Development Establishment, Gwalior-474 002, India
| | | | | | | | | | | |
Collapse
|