151
|
Domínguez-Bendala J, Ricordi C. Present and future cell therapies for pancreatic beta cell replenishment. World J Gastroenterol 2012; 18:6876-84. [PMID: 23322984 PMCID: PMC3531670 DOI: 10.3748/wjg.v18.i47.6876] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/27/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
If only at a small scale, islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy: the functional replenishment of damaged tissue in patients. After years of less-than-optimal approaches to immunosuppression, recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation. Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this pioneering intervention. Progress in stem cell research over the past decade, coupled with our decades-long experience with islet transplantation, is shaping the future of cell therapies for the treatment of diabetes. Here we review the most promising avenues of research aimed at generating an inexhaustible supply of insulin-producing cells for islet regeneration, including the differentiation of pluripotent and multipotent stem cells of embryonic and adult origin along the beta cell lineage and the direct reprogramming of non-endocrine tissues into insulin-producing cells.
Collapse
|
152
|
Garnaas MK, Cutting CC, Meyers A, Kelsey PB, Harris JM, North TE, Goessling W. Rargb regulates organ laterality in a zebrafish model of right atrial isomerism. Dev Biol 2012; 372:178-89. [PMID: 22982668 PMCID: PMC3697125 DOI: 10.1016/j.ydbio.2012.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 07/26/2012] [Accepted: 09/06/2012] [Indexed: 02/02/2023]
Abstract
Developmental signals determine organ morphology and position during embryogenesis. To discover novel modifiers of liver development, we performed a chemical genetic screen in zebrafish and identified retinoic acid as a positive regulator of hepatogenesis. Knockdown of the four RA receptors revealed that all receptors affect liver formation, however specific receptors exert differential effects. Rargb knockdown results in bilateral livers but does not impact organ size, revealing a unique role for Rargb in conferring left-right positional information. Bilateral populations of hepatoblasts are detectable in rargb morphants, indicating Rargb acts during hepatic specification to position the liver, and primitive endoderm is competent to form liver on both sides. Hearts remain at the midline and gut looping is perturbed in rargb morphants, suggesting Rargb affects lateral plate mesoderm migration. Overexpression of Bmp during somitogenesis similarly results in bilateral livers and midline hearts, and inhibition of Bmp signaling rescues the rargb morphant phenotype, indicating Rargb functions upstream of Bmp to regulate organ sidedness. Loss of rargb causes biliary and organ laterality defects as well as asplenia, paralleling symptoms of the human condition right atrial isomerism. Our findings uncover a novel role for RA in regulating organ laterality and provide an animal model of one form of human heterotaxia.
Collapse
Affiliation(s)
- Maija K Garnaas
- Genetics Division, Brigham and Women's Hospital, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
153
|
Mavila N, James D, Utley S, Cu N, Coblens O, Mak K, Rountree CB, Kahn M, Wang KS. Fibroblast growth factor receptor-mediated activation of AKT-β-catenin-CBP pathway regulates survival and proliferation of murine hepatoblasts and hepatic tumor initiating stem cells. PLoS One 2012; 7:e50401. [PMID: 23308088 PMCID: PMC3540100 DOI: 10.1371/journal.pone.0050401] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/19/2012] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Fibroblast Growth Factor (FGF)-10 promotes the proliferation and survival of murine hepatoblasts during early stages of hepatogenesis through a Wnt-β-catenin dependent pathway. To determine the mechanism by which this occurs, we expanded primary culture of hepatoblasts enriched for progenitor markers CD133 and CD49f from embryonic day (E) 12.5 fetal liver and an established tumor initiating stem cell line from Mat1a(-/-) livers in media conditioned with recombinant (r) FGF10 or rFGF7. FGF Receptor (R) activation resulted in the downstream activation of MAPK, PI3K-AKT, and β-catenin pathways, as well as cellular proliferation. Additionally, increased levels of nuclear β-catenin phosphorylated at Serine-552 in cultured primary hepatoblasts, Mat1a(-/-) cells, and also in ex vivo embryonic liver explants indicate AKT-dependent activation of β-catenin downstream of FGFR activation; conversely, the addition of AKT inhibitor Ly294002 completely abrogated β-catenin activation. FGFR activation-induced cell proliferation and survival were also inhibited by the compound ICG-001, a small molecule inhibitor of β-catenin-CREB Binding Protein (CBP) in hepatoblasts, further indicating a CBP-dependent regulatory mechanism of β-catenin activity. CONCLUSION FGF signaling regulates the proliferation and survival of embryonic and transformed progenitor cells in part through AKT-mediated activation of β-catenin and downstream interaction with the transcriptional co-activator CBP.
Collapse
Affiliation(s)
- Nirmala Mavila
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - David James
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Sarah Utley
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Nguyen Cu
- Department of Biochemistry and Molecular Biology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Orly Coblens
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - Katrina Mak
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
| | - C. Bart Rountree
- Pediatric Gastroenterology, Bon Secours St. Mary’s Hospital, Richmond, Virginia, United States of America
| | - Michael Kahn
- Department of Biochemistry and Molecular Biology and Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kasper S. Wang
- Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
154
|
Abstract
The liver has an enormous potential to restore the parenchymal tissue loss due to injury. This is accomplished by the proliferation of either the hepatocytes or liver progenitor cells in cases where massive damage prohibits hepatocytes from entering the proliferative response. Under debate is still whether hepatic stem cells are involved in liver tissue maintenance and regeneration or even whether they exist at all. The definition of an adult tissue-resident stem cell comprises basic functional stem cell criteria like the potential of self-renewal, multipotent, i.e. at least bipotent differentiation capacity and serial transplantability featuring the ability of functional tissue repopulation. The relationship between a progenitor and its progeny should exemplify the lineage commitment from the putative stem cell to the differentiated cell. This is mainly assessed by lineage tracing and immunohistochemical identification of markers specific to progenitors and their descendants. Flow cytometry approaches revealed that the liver stem cell population in animals is likely to be heterogeneous giving rise to progeny with different molecular signatures, depending on the stimulus to activate the putative stem cell compartment. The stem cell criteria are met by a variety of cells identified in the fetal and adult liver both under normal and injury conditions. It is the purpose of this review to verify hepatic stem cell candidates in the light of the stem cell definition criteria mentioned. Also from this point of view adult stem cells from non-hepatic tissues such as bone marrow, umbilical cord blood or adipose tissue, have the potential to differentiate into cells featuring functional hepatocyte characteristics. This has great impact because it opens the possibility of generating hepatocyte-like cells from adult stem cells in a sufficient amount and quality for their therapeutical application to treat end-stage liver diseases by stem cell-based hepatocytes in place of whole organ transplantation.
Collapse
Affiliation(s)
- Bruno Christ
- Translational Centre for Regenerative Medicine-TRM, University of Leipzig, Philipp-Rosenthal-Straße 55, D-04103 Leipzig, Germany.
| | | |
Collapse
|
155
|
Wang Y, Zhang Y, Zhang S, Peng G, Liu T, Li Y, Xiang D, Wassler MJ, Shelat HS, Geng Y. Rotating Microgravity-Bioreactor Cultivation Enhances the Hepatic Differentiation of Mouse Embryonic Stem Cells on Biodegradable Polymer Scaffolds. Tissue Eng Part A 2012; 18:2376-85. [DOI: 10.1089/ten.tea.2012.0097] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yingjie Wang
- The Artificial Liver Lab., Southwest Hospital, The Third Military Medical University, Chongqing, China
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| | - Yunping Zhang
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
- Department of Emergency Medicine, JaoTong University, Shanghai, China
| | - Shichang Zhang
- The Artificial Liver Lab., Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Guangyong Peng
- Division of Immunobiology, Department of Internal Medicine, Saint Louis University School of Medicine, Edward A Doisy Research Center, St. Louis, Missouri
| | - Tao Liu
- The Artificial Liver Lab., Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Yangxin Li
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| | - Dedong Xiang
- The Artificial Liver Lab., Southwest Hospital, The Third Military Medical University, Chongqing, China
| | - Michael J. Wassler
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| | - Harnath S. Shelat
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| | - Yongjian Geng
- The University of Texas Health Science Center and Texas Heart Institute, Houston, Texas
| |
Collapse
|
156
|
Nejak-Bowen K, Monga SP. Wnt/beta-catenin signaling in hepatic organogenesis. Organogenesis 2012; 4:92-9. [PMID: 19279720 DOI: 10.4161/org.4.2.5855] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 02/07/2023] Open
Abstract
Wnt/beta-catenin signaling has come to the forefront of liver biology in recent years. This pathway regulates key pathophysiological events inherent to the liver including development, regeneration and cancer, by dictating several biological processes such as proliferation, apoptosis, differentiation, adhesion, zonation and metabolism in various cells of the liver. This review will examine the studies that have uncovered the relevant roles of Wnt/beta-catenin signaling during the process of liver development. We will discuss the potential roles of Wnt/beta-catenin signaling during the phases of development, including competence, hepatic induction, expansion and morphogenesis. In addition, we will discuss the role of negative and positive regulation of this pathway and how the temporal expression of Wnt/beta-catenin can direct key processes during hepatic development. We will also identify some of the major deficits in the current understanding of the role of Wnt/beta-catenin signaling in liver development in order to provide a perspective for future studies. Thus, this review will provide a contextual overview of the role of Wnt/beta-catenin signaling during hepatic organogenesis.
Collapse
Affiliation(s)
- Kari Nejak-Bowen
- Department of Pathology University of Pittsburgh School of Medcine; Pittsburgh, Pennsylvania USA
| | | |
Collapse
|
157
|
Verzi MP, Shivdasani RA. Wnt signaling in gut organogenesis. Organogenesis 2012; 4:87-91. [PMID: 19279719 DOI: 10.4161/org.4.2.5854] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/06/2008] [Indexed: 01/11/2023] Open
Abstract
Wnt signaling regulates some aspect of development of nearly all endoderm-derived organs and Wnts mediate both differentiation and proliferation at different steps during visceral organogenesis. Wnt2b induces liver formation in zebrafish 1 and may combine with other inducers, Fibroblast Growth Factors 1 & 4 and Bone Morphogenetic Protein 4, to specify the mammalian liver.2-5 Later in development, Wnts are critical for liver expansion and, finally, for terminal hepatocyte differentiation,6-12 as reviewed elsewhere in this issue (Monga). Likewise, in the pancreas, Wnts drive proliferation of exocrine and endocrine cells13,14 and promote acinar cell differentiation,13,15 as reviewed in the chapter by Murtaugh. Here we examine the intricate involvement of Wnt signaling in growth and differentiation of the digestive tract.
Collapse
Affiliation(s)
- Michael P Verzi
- Department of Medical Oncology; Dana-Farber Cancer Institute; and Department of Medicine; Harvard Medical School; Boston, Massachusetts, USA
| | | |
Collapse
|
158
|
Schievenbusch S, Sauer E, Curth HM, Schulte S, Demir M, Toex U, Goeser T, Nierhoff D. Neighbor of Punc E 11: Expression Pattern of the New Hepatic Stem/Progenitor Cell Marker During Murine Liver Development. Stem Cells Dev 2012; 21:2656-66. [DOI: 10.1089/scd.2011.0579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
| | - Elisabeth Sauer
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Harald-Morten Curth
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Sigrid Schulte
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Münevver Demir
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Ulrich Toex
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Tobias Goeser
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| | - Dirk Nierhoff
- Department of Gastroenterology and Hepatology, University of Cologne, Cologne, Germany
| |
Collapse
|
159
|
Shifley ET, Kenny AP, Rankin SA, Zorn AM. Prolonged FGF signaling is necessary for lung and liver induction in Xenopus. BMC DEVELOPMENTAL BIOLOGY 2012; 12:27. [PMID: 22988910 PMCID: PMC3514138 DOI: 10.1186/1471-213x-12-27] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 09/10/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND FGF signaling plays numerous roles during organogenesis of the embryonic gut tube. Mouse explant studies suggest that different thresholds of FGF signaling from the cardiogenic mesoderm induce lung, liver, and pancreas lineages from the ventral foregut progenitor cells. The mechanisms that regulate FGF dose in vivo are unknown. Here we use Xenopus embryos to examine the hypothesis that a prolonged duration of FGF signaling from the mesoderm is required to induce foregut organs. RESULTS We show that both mesoderm and FGF signaling are required for liver and lung development in Xenopus; formally demonstrating that this important step in organ induction is conserved with other vertebrate species. Prolonged contact with the mesoderm and persistent FGF signaling through both MEK and PI3K over an extended period of time are required for liver and lung specification. Inhibition of FGF signaling results in reduced liver and lung development, with a modest expansion of the pancreas/duodenum progenitor domain. Hyper-activation of FGF signaling has the opposite effect expanding liver and lung gene expression and repressing pancreatic markers. We show that FGF signaling is cell autonomously required in the endoderm and that a dominant negative FGF receptor decreases the ability of ventral foregut progenitor cells to contribute to the lung and liver buds. CONCLUSIONS These results suggest that the liver and lungs are specified at progressively later times in development requiring mesoderm contact for different lengths of time. Our data suggest that this is achieved at least in part through prolonged FGF signaling. In addition to providing a foundation for further mechanistic studies on foregut organogenesis using the experimental advantages of the Xenopus system, these data have implications for the directed differentiation of stem cells into foregut lineages.
Collapse
Affiliation(s)
- Emily T Shifley
- Perinatal Institute, Divisions of Developmental Biology, University of Cincinnati, Cincinnati, OH 45229, USA
| | | | | | | |
Collapse
|
160
|
Sheaffer KL, Kaestner KH. Transcriptional networks in liver and intestinal development. Cold Spring Harb Perspect Biol 2012; 4:a008284. [PMID: 22952394 DOI: 10.1101/cshperspect.a008284] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of the gastrointestinal tract is a complex process that integrates signaling processes with downstream transcriptional responses. Here, we discuss the regionalization of the primitive gut and formation of the intestine and liver. Anterior-posterior position in the primitive gut is important for establishing regions that will become functional organs. Coordination of signaling between the epithelium and mesenchyme and downstream transcriptional responses is required for intestinal development and homeostasis. Liver development uses a complex transcriptional network that controls the establishment of organ domains, cell differentiation, and adult function. Discussion of these transcriptional mechanisms gives us insight into how the primitive gut, composed of simple endodermal cells, develops into multiple diverse cell types that are organized into complex mature organs.
Collapse
Affiliation(s)
- Karyn L Sheaffer
- Department of Genetics, Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | |
Collapse
|
161
|
Seymour PA, Shih HP, Patel NA, Freude KK, Xie R, Lim CJ, Sander M. A Sox9/Fgf feed-forward loop maintains pancreatic organ identity. Development 2012; 139:3363-72. [PMID: 22874919 DOI: 10.1242/dev.078733] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
All mature pancreatic cell types arise from organ-specific multipotent progenitor cells. Although previous studies have identified cell-intrinsic and -extrinsic cues for progenitor cell expansion, it is unclear how these cues are integrated within the niche of the developing organ. Here, we present genetic evidence in mice that the transcription factor Sox9 forms the centerpiece of a gene regulatory network that is crucial for proper organ growth and maintenance of organ identity. We show that pancreatic progenitor-specific ablation of Sox9 during early pancreas development causes pancreas-to-liver cell fate conversion. Sox9 deficiency results in cell-autonomous loss of the fibroblast growth factor receptor (Fgfr) 2b, which is required for transducing mesenchymal Fgf10 signals. Likewise, Fgf10 is required to maintain expression of Sox9 and Fgfr2 in epithelial progenitors, showing that Sox9, Fgfr2 and Fgf10 form a feed-forward expression loop in the early pancreatic organ niche. Mirroring Sox9 deficiency, perturbation of Fgfr signaling in pancreatic explants or genetic inactivation of Fgf10 also result in hepatic cell fate conversion. Combined with previous findings that Fgfr2b or Fgf10 are necessary for pancreatic progenitor cell proliferation, our results demonstrate that organ fate commitment and progenitor cell expansion are coordinately controlled by the activity of a Sox9/Fgf10/Fgfr2b feed-forward loop in the pancreatic niche. This self-promoting Sox9/Fgf10/Fgfr2b loop may regulate cell identity and organ size in a broad spectrum of developmental and regenerative contexts.
Collapse
Affiliation(s)
- Philip A Seymour
- Departments of Pediatrics and Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093-0695, USA
| | | | | | | | | | | | | |
Collapse
|
162
|
Tsai SM, Liu DW, Wang WP. Fibroblast growth factor (Fgf) signaling pathway regulates liver homeostasis in zebrafish. Transgenic Res 2012; 22:301-14. [DOI: 10.1007/s11248-012-9636-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/05/2012] [Indexed: 02/08/2023]
|
163
|
So J, Martin BL, Kimelman D, Shin D. Wnt/β-catenin signaling cell-autonomously converts non-hepatic endodermal cells to a liver fate. Biol Open 2012; 2:30-6. [PMID: 23336074 PMCID: PMC3545266 DOI: 10.1242/bio.20122857] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/24/2012] [Indexed: 01/05/2023] Open
Abstract
Wnt/β-catenin signaling plays multiple roles in liver development including hepatoblast proliferation and differentiation, hepatocyte differentiation, and liver zonation. A positive role for Wnt/β-catenin signaling in liver specification was recently identified in zebrafish; however, its underlying cellular mechanisms are unknown. Here, we present two cellular mechanisms by which Wnt/β-catenin signaling regulates liver specification. First, using lineage tracing we show that ectopic hepatoblasts, which form in the endoderm posterior to the liver upon activation of Wnt/β-catenin signaling, are derived from the direct conversion of non-hepatic endodermal cells, but not from the posterior migration of hepatoblasts. We found that endodermal cells at the 4-6(th) somite levels, which normally give rise to the intestinal bulb or intestine, gave rise to hepatoblasts in Wnt8a-overexpressing embryos, and that the distribution of traced endodermal cells in Wnt8a-overexpressing embryos was similar to that in controls. Second, by using an endoderm-restricted cell-transplantation technique and mosaic analysis with transgenic lines that cell-autonomously suppress or activate Wnt/β-catenin signaling upon heat-shock, we show that Wnt/β-catenin signaling acts cell-autonomously in endodermal cells to induce hepatic conversion. Altogether, these data demonstrate that Wnt/β-catenin signaling can induce the fate-change of non-hepatic endodermal cells into a liver fate in a cell-autonomous manner. These findings have potential application to hepatocyte differentiation protocols for the generation of mature hepatocytes from induced pluripotent stem cells, supplying a sufficient amount of hepatocytes for cell-based therapies to treat patients with severe liver diseases.
Collapse
Affiliation(s)
- Juhoon So
- Department of Developmental Biology, University of Pittsburgh , Pittsburgh, PA 15260 , USA
| | | | | | | |
Collapse
|
164
|
McCracken KW, Wells JM. Molecular pathways controlling pancreas induction. Semin Cell Dev Biol 2012; 23:656-62. [PMID: 22743233 DOI: 10.1016/j.semcdb.2012.06.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 06/13/2012] [Indexed: 01/02/2023]
Abstract
Recent advances in generating pancreatic cell types from human pluripotent stem cells has depended on our knowledge of the developmental processes that regulate pancreas development in vivo. The developmental events between gastrulation and formation of the embryonic pancreatic primordia are both rapid and dynamic and studies in frog, fish, chick, and mouse have identified the molecular basis of how the pancreas develops from multipotent endoderm progenitors. Here, we review the current status of our understanding of molecular mechanisms that control endoderm formation, endoderm patterning, and pancreas specification and highlight how these discoveries have allowed for the development of robust methods to generate pancreatic cells from human pluripotent stem cells.
Collapse
Affiliation(s)
- Kyle W McCracken
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|
165
|
Wang A, Sander M. Generating cells of the gastrointestinal system: current approaches and applications for the differentiation of human pluripotent stem cells. J Mol Med (Berl) 2012; 90:763-71. [DOI: 10.1007/s00109-012-0923-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 05/07/2012] [Accepted: 05/24/2012] [Indexed: 12/19/2022]
|
166
|
Combined transfection of the three transcriptional factors, PDX-1, NeuroD1, and MafA, causes differentiation of bone marrow mesenchymal stem cells into insulin-producing cells. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:672013. [PMID: 22761608 PMCID: PMC3385644 DOI: 10.1155/2012/672013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Revised: 04/01/2012] [Accepted: 04/30/2012] [Indexed: 01/09/2023]
Abstract
Aims. The goal of cell transcription for treatment of diabetes is to generate surrogate β-cells from an appropriate cell line. However, the induced replacement cells have showed less physiological function in producing insulin compared with normal β-cells. Methods. Here, we report a procedure for induction of insulin-producing cells (IPCs) from bone marrow murine mesenchymal stem cells (BM-mMSCs). These BM-mMSCs have the potential to differentiate into insulin-producing cells when a combination of PDX-1 (pancreatic and duodenal homeobox-1), NeuroD1 (neurogenic differentiation-1), and MafA (V-maf musculoaponeurotic fibrosarcoma oncogene homolog A) genes are transfected into them and expressed in these cells. Results. Insulin biosynthesis and secretion were induced in mMSCs into which these three genes have been transfected and expressed. The amount of induced insulin in the mMSCs which have been transfected with the three genes together is significantly higher than in those mMSCs that were only transfected with one or two of these three genes. Transplantation of the transfected cells into mice with streptozotocin-induced diabetes results in insulin expression and the reversal of the glucose challenge. Conclusions. These findings suggest major implications for cell replacement strategies in generation of surrogate β-cells for the treatment of diabetes.
Collapse
|
167
|
Xu L, Yin W, Xia J, Peng M, Li S, Lin S, Pei D, Shu X. An antiapoptotic role of sorting nexin 7 is required for liver development in zebrafish. Hepatology 2012; 55:1985-93. [PMID: 22213104 DOI: 10.1002/hep.25560] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/15/2011] [Indexed: 12/29/2022]
Abstract
UNLABELLED Sorting nexin (SNX) family proteins are best characterized for their abilities to regulate protein trafficking during processes such as endocytosis of membrane receptors, endosomal sorting, and protein degradation, but their in vivo functions remain largely unknown. We started to investigate the biological functions of SNXs using the zebrafish model. In this study, we demonstrated that SNX7 was essential for embryonic liver development. Hepatoblasts were specified normally, and the proliferation of these cells was not affected when SNX7 was knocked down by gene-specific morpholinos; however, they underwent massive apoptosis during the early budding stage. SNX7 mainly regulated the survival of cells in the embryonic liver and did not affect the viability of cells in other endoderm-derived organs. We further demonstrated that down-regulation of SNX7 by short interfering RNAs induced apoptosis in cell culture. At the molecular level, the cellular FLICE-like inhibitory protein (c-FLIP)/caspase 8 pathway was activated when SNX7 was down-regulated. Furthermore, overexpression of c-FLIP(S) was able to rescue the SNX7 knockdown-induced liver defect. CONCLUSION SNX7 is a liver-enriched antiapoptotic protein that is indispensable for the survival of hepatoblasts during zebrafish early embryogenesis.
Collapse
Affiliation(s)
- Liangliang Xu
- Laboratory of Stem Cell Biology, Department of Biological Sciences and Biotechnology, Institute of Biomedicine, School of Medicine, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Huang Z, Zhu G, Sun C, Zhang J, Zhang Y, Zhang Y, Ye C, Wang X, Ilghari D, Li X. A novel solid-phase site-specific PEGylation enhances the in vitro and in vivo biostabilty of recombinant human keratinocyte growth factor 1. PLoS One 2012; 7:e36423. [PMID: 22574160 PMCID: PMC3344868 DOI: 10.1371/journal.pone.0036423] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/02/2012] [Indexed: 11/19/2022] Open
Abstract
Keratinocyte growth factor 1 (KGF-1) has proven useful in the treatment of pathologies associated with dermal adnexae, liver, lung, and the gastrointestinal tract diseases. However, poor stability and short plasma half-life of the protein have restricted its therapeutic applications. While it is possible to improve the stability and extend the circulating half-life of recombinant human KGF-1 (rhKGF-1) using solution-phase PEGylation, such preparations have heterogeneous structures and often low specific activities due to multiple and/or uncontrolled PEGylation. In the present study, a novel solid-phase PEGylation strategy was employed to produce homogenous mono-PEGylated rhKGF-1. RhKGF-1 protein was immobilized on a Heparin-Sepharose column and then a site-selective PEGylation reaction was carried out by a reductive alkylation at the N-terminal amino acid of the protein. The mono-PEGylated rhKGF-1, which accounted for over 40% of the total rhKGF-1 used in the PEGylation reaction, was purified to homogeneity by SP Sepharose ion-exchange chromatography. Our biophysical and biochemical studies demonstrated that the solid-phase PEGylation significantly enhanced the in vitro and in vivo biostability without affecting the over all structure of the protein. Furthermore, pharmacokinetic analysis showed that modified rhKGF-1 had considerably longer plasma half-life than its intact counterpart. Our cell-based analysis showed that, similar to rhKGF-1, PEGylated rhKGF-1 induced proliferation in NIH 3T3 cells through the activation of MAPK/Erk pathway. Notably, PEGylated rhKGF-1 exhibited a greater hepatoprotection against CCl(4)-induced injury in rats compared to rhKGF-1.
Collapse
Affiliation(s)
- Zhifeng Huang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical College, Wenzhou, China
| | - Guanghui Zhu
- The 2nd Affiliated Hospital Medical Center, Wenzhou Medical College, Wenzhou, China
| | - Chuanchuan Sun
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical College, Wenzhou, China
| | - Jingui Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical College, Wenzhou, China
| | - Yi Zhang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical College, Wenzhou, China
| | - Youting Zhang
- The 2nd Affiliated Hospital Medical Center, Wenzhou Medical College, Wenzhou, China
| | - Chaohui Ye
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical College, Wenzhou, China
| | - Xiaojie Wang
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical College, Wenzhou, China
| | - Dariush Ilghari
- Department of Pharmacology, New York University School of Medicine, New York, New York, United States of America
- * E-mail: (DI); (XL)
| | - Xiaokun Li
- Key Laboratory of Biotechnology and Pharmaceutical Engineering of Zhejiang Province, Wenzhou Medical College, Wenzhou, China
- Normal Bethune Medical College, Jilin University, Changchun, China
- * E-mail: (DI); (XL)
| |
Collapse
|
169
|
Bukong TN, Lo T, Szabo G, Dolganiuc A. Novel developmental biology-based protocol of embryonic stem cell differentiation to morphologically sound and functional yet immature hepatocytes. Liver Int 2012; 32:732-41. [PMID: 22292891 DOI: 10.1111/j.1478-3231.2011.02743.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 12/08/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND/AIMS Liver diseases are common in the United States and often require liver transplantation; however, donated organs are limited and thus alternative sources for liver cells are in high demand. Embryonic stem cells (ESC) can provide a continuous and readily available source of liver cells. ESC differentiation to liver cells is yet to be fully understood and comprehensive differentiation protocols are yet to be defined. Here, we aimed to achieve human (h)ESC differentiation into mature hepatocytes using defined recombinant differentiation factors and metabolites. METHODS Embryonic stem cell H1 line was sub-cultured on feeder layer. We induced hESCs into endodermal differentiation succeeded by early/late hepatic specification and finally into hepatocyte maturation using step combinations of Activin A and fibroblast growth factor (FGF)-2 for 7 days; followed by FGF-4 and bone morphogenic protein 2 (BMP2) for 7 days, succeeded by FGF-10 + hepatocyte growth factor 4 + epidermal growth factor for 14 days. Specific inhibitors/stimulators were added sequentially throughout differentiation. Cells were analysed by PCR, flow cytometry, microscopy or functional assays. RESULTS Our hESC differentiation protocol resulted in viable cells with hepatocyte shape and morphology. We observed gradual changes in cell transcriptome, including up-regulation of differentiation-promoting GATA4, GATA6, POU5F1 and HNF4 transcription factors, steady levels of stemness-promoting SOX-2 and low levels of Nanog, as defined by PCR. The hESC-derived hepatocytes expressed alpha-antitrypsin, CD81, cytokeratin 8 and low density lipoprotein (LDL) receptor. The levels of alpha-fetoprotein and proliferation marker Ki-67 in hESC-derived hepatocytes remained elevated. Unlike stem cells, the hESC-derived hepatocytes performed LDL uptake, produced albumin and alanine aminotransferase and had functional alcohol dehydrogenase. CONCLUSION We report a novel protocol for hESC differentiation into morphological and functional yet immature hepatocytes as an alternative method for hepatocyte generation.
Collapse
|
170
|
Kopper O, Benvenisty N. Stepwise differentiation of human embryonic stem cells into early endoderm derivatives and their molecular characterization. Stem Cell Res 2012; 8:335-45. [DOI: 10.1016/j.scr.2011.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 12/08/2011] [Accepted: 12/12/2011] [Indexed: 01/07/2023] Open
|
171
|
Zong Y, Stanger BZ. Molecular mechanisms of liver and bile duct development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:643-55. [DOI: 10.1002/wdev.47] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
172
|
Laurent T, Murase D, Tsukioka S, Matsuura T, Nagamori S, Oda H. A novel human hepatoma cell line, FLC-4, exhibits highly enhanced liver differentiation functions through the three-dimensional cell shape. J Cell Physiol 2012; 227:2898-906. [DOI: 10.1002/jcp.23033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
173
|
Xu CR, Zaret KS. Chromatin "pre-pattern" and epigenetic modulation in the cell fate choice of liver over pancreas in the endoderm. Nucleus 2012; 3:150-4. [PMID: 22555599 DOI: 10.4161/nucl.19321] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Understanding the basis for multipotency, whereby stem cells and other progenitors can differentiate into certain tissues and not others, provides insights into the mechanism of cell programming in development, homeostasis, and disease. We recently reported a screen of diverse chromatin marks to obtain clues about chromatin states in the multipotent embryonic endoderm. Genetic and pharmacologic tests of certain marks' function demonstrated that the relevant chromatin modifying factors modulate the fate choice for liver or pancreas induction in the endoderm. The information about chromatin states from embryonic studies can be used to predict lineage-specific developmental potential and chromatin modifiers to enhance particular cell fate transitions from stem cells.
Collapse
Affiliation(s)
- Cheng-Ran Xu
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
174
|
Liu SB, Ma Z, Sun WL, Sun XW, Hong Y, Ma L, Qin C, Stratton HJ, Liu Q, Jiang JT. The role of androgen-induced growth factor (FGF8) on genital tubercle development in a hypospadiac male rat model of prenatal exposure to di-n-butyl phthalate. Toxicology 2012; 293:53-58. [DOI: 10.1016/j.tox.2011.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 12/23/2011] [Accepted: 12/24/2011] [Indexed: 02/02/2023]
|
175
|
Shin D, Weidinger G, Moon RT, Stainier DYR. Intrinsic and extrinsic modifiers of the regulative capacity of the developing liver. Mech Dev 2012; 128:525-35. [PMID: 22313811 DOI: 10.1016/j.mod.2012.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 10/14/2022]
Abstract
Zebrafish wnt2bb mutants initially fail to form a liver, but surprisingly the liver eventually forms in a majority of these embryos which then develop into fertile adults. This unexpected result raised the possibility that identifying the mechanisms of liver formation in wnt2bb mutants could provide insights into the poorly understood yet general principle of regulative development, a process by which some cells can change fate in order to compensate for a deficiency. Here, we identify two factors that underlie the regulative capacity of endodermal tissues: an intrinsic factor, Sox32, a transcription factor of the SoxF subfamily, and an extrinsic factor, Fgf10a. sox32 is expressed in the extrahepatic duct primordium which is not affected in wnt2bb mutants. Blocking Sox32 function prevented liver formation in most wnt2bb mutants. fgf10a, which is expressed in the mesenchyme surrounding non-hepatic endodermal cells, negatively impacts the regulative capacity of endodermal tissues. In Wnt/β-catenin signaling deficient embryos, in which the liver completely fails to form, the repression of Fgf10a function allowed liver formation. Altogether, these studies reveal that there is more than one way to form a liver, and provide molecular insights into the phenomenon of tissue plasticity.
Collapse
Affiliation(s)
- Donghun Shin
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Institute for Regeneration Medicine, Diabetes Center and Liver Center, University of California, San Francisco, CA 94158, USA.
| | | | | | | |
Collapse
|
176
|
Abstract
Regenerative medicine using stem cells has attracted much attention, since stem cells are responsible for highly proliferative activity and multipotential ability of differentiation. Induced pluripotent stem cells and embryonic stem cells or the adult stem cells such as bone marrow-derived stem cells and adipose tissue-derived stem cells have been expected as a cell source of regenerative medicine. Since differentiating methods of human stem cells into the defined lineage of cells remains to be developed, we focus on the differentiating strategies of pluripotent stem cells and mesenchymal stem cells into liver lineage, especially on cytokine function and gene expression during hepatic differentiation. The survey of previously published papers discloses that the protocols that mimic the liver developmental process seem to be effective in obtaining functional hepatocytes. However, in order to develop hepatic regenerative medicine that is useful in a clinical setting, more effective and potent strategies that obtain mature hepatocytes are required.
Collapse
Affiliation(s)
- Goshi Shiota
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | | |
Collapse
|
177
|
Cellular reprogramming during mouse development. Results Probl Cell Differ 2012; 55:291-302. [PMID: 22918813 DOI: 10.1007/978-3-642-30406-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
States of terminal cell differentiation are often considered to be fixed. There are examples, however, in which cells of one type can be converted to a completely different cell type. The process whereby one cell type can be converted to another is referred to as cellular reprogramming. Cellular reprogramming is also referred to in the literature as transdifferentiation (or the direct conversion of one cell type to another without dedifferentiation to an intermediate cell type). Where the conversion between cell types occurs in the developing embryo, the process is referred to as transdetermination. Herein we examine some well-defined examples of transdetermination. Defining the molecular and cellular basis of transdetermination will help us to understand the normal developmental biology of the cells that interconvert, as well as identifying key regulatory transcription factors (master switch genes) that may be important for the reprogramming of stem cells. Harnessing the therapeutic potential of reprogramming and master genes is an important goal in regenerative medicine.
Collapse
|
178
|
Crawford JM, Burt AD. Anatomy, pathophysiology and basic mechanisms of disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2012:1-77. [DOI: 10.1016/b978-0-7020-3398-8.00001-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
179
|
Han S, Bourdon A, Hamou W, Dziedzic N, Goldman O, Gouon-Evans V. Generation of functional hepatic cells from pluripotent stem cells. ACTA ACUST UNITED AC 2012; Suppl 10:1-7. [PMID: 25364624 DOI: 10.4172/2157-7633.s10-008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver diseases affect millions of people worldwide, especially in developing country. According to the American Liver Foundation, nearly 1 in every 10 Americans suffers from some form of liver disease. Even though, the liver has great ability to self-repair, in end-stage liver diseases including fibrosis, cirrhosis, and liver cancer induced by viral hepatitis and drugs, the liver regenerative capacity is exhausted. The only successful treatment for chronic liver failure is the whole liver transplantation. More recently, some clinical trials using hepatocyte transplantation have shown some clinical improvement for metabolic liver diseases and acute liver failure. However, the shortage of donor livers remains a life-threatening challenge in liver disease patients. To overcome the scarcity of donor livers, hepatocytes generated from embryonic stem cell or induced pluripotent stem cell differentiation cultures could provide an unlimited supply of such cells for transplantation. This review provides an updated summary of hepatic differentiation protocols published so far, with a characterization of the hepatic cells generated in vitro and their ability to regenerate damaged livers in vivo following transplantation in pre-clinical liver deficient mouse models.
Collapse
Affiliation(s)
- Songyan Han
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | - Alice Bourdon
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | - Wissam Hamou
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | - Noelle Dziedzic
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | - Orit Goldman
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
180
|
Han S, Dziedzic N, Gadue P, Keller GM, Gouon-Evans V. An endothelial cell niche induces hepatic specification through dual repression of Wnt and Notch signaling. Stem Cells 2011; 29:217-28. [PMID: 21732480 DOI: 10.1002/stem.576] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Complex cross-talk between endoderm and the microenvironment is an absolute requirement to orchestrate hepatic specification and expansion. In the mouse, the septum transversum and cardiac mesoderm, through secreted bone morphogenetic proteins (BMP) and fibroblast growth factors (FGF), respectively, instruct the adjacent ventral endoderm to become hepatic endoderm. Consecutively, endothelial cells promote expansion of the specified hepatic endoderm. By using a mouse reporter embryonic stem cell line, in which hCD4 and hCD25 were targeted to the Foxa2 and Foxa3 loci, we reconstituted an in vitro culture system in which committed endoderm cells coexpressing hCD4-Foxa2 and hCD25-Foxa3 were isolated and cocultured with endothelial cells in the presence of BMP4 and bFGF. In this culture setting, we provide mechanistic evidence that endothelial cells function not only to promote hepatic endoderm expansion but are also required at an earlier step for hepatic specification, at least in part through regulation of the Wnt and Notch pathways. Activation of Wnt and Notch by chemical or genetic approaches increases endoderm cell numbers but inhibits hepatic specification, and conversely, chemical inhibition of both pathways enhances hepatic specification and reduces proliferation. By using identical coculture conditions, we defined a similar dependence of endoderm harvested from embryos on endothelial cells to support their growth and hepatic specification. Our findings (1) confirm a conserved role of Wnt repression for mouse hepatic specification, (2) uncover a novel role for Notch repression in the hepatic fate decision, and (3) demonstrate that repression of Wnt and Notch signaling in hepatic endoderm is controlled by the endothelial cell niche.
Collapse
Affiliation(s)
- Songyan Han
- Department of Gene and Cell Medicine, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
181
|
New approaches in the differentiation of human embryonic stem cells and induced pluripotent stem cells toward hepatocytes. Stem Cell Rev Rep 2011; 7:748-59. [PMID: 21336836 PMCID: PMC3137783 DOI: 10.1007/s12015-010-9216-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Orthotropic liver transplantation is the only established treatment for end-stage liver diseases. Utilization of hepatocyte transplantation and bio-artificial liver devices as alternative therapeutic approaches requires an unlimited source of hepatocytes. Stem cells, especially embryonic stem cells, possessing the ability to produce functional hepatocytes for clinical applications and drug development, may provide the answer to this problem. New discoveries in the mechanisms of liver development and the emergence of induced pluripotent stem cells in 2006 have provided novel insights into hepatocyte differentiation and the use of stem cells for therapeutic applications. This review is aimed towards providing scientists and physicians with the latest advancements in this rapidly progressing field.
Collapse
|
182
|
Funakoshi N, Duret C, Pascussi JM, Blanc P, Maurel P, Daujat-Chavanieu M, Gerbal-Chaloin S. Comparison of hepatic-like cell production from human embryonic stem cells and adult liver progenitor cells: CAR transduction activates a battery of detoxification genes. Stem Cell Rev Rep 2011; 7:518-31. [PMID: 21210253 PMCID: PMC3137774 DOI: 10.1007/s12015-010-9225-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In vitro production of human hepatocytes is of primary importance in basic research, pharmacotoxicology and biotherapy of liver diseases. We have developed a protocol of differentiation of human embryonic stem cells (ES) towards hepatocyte-like cells (ES-Hep). Using a set of human adult markers including CAAT/enhancer binding protein (C/EBPalpha), hepatocyte nuclear factor 4/7 ratio (HNF4alpha1/HNF4alpha7), cytochrome P450 7A1 (CYP7A1), CYP3A4 and constitutive androstane receptor (CAR), and fetal markers including alpha-fetoprotein, CYP3A7 and glutathione S-transferase P1, we analyzed the expression of a panel of 41 genes in ES-Hep comparatively with human adult primary hepatocytes, adult and fetal liver. The data revealed that after 21 days of differentiation, ES-Hep are representative of fetal hepatocytes at less than 20 weeks of gestation. The glucocorticoid receptor pathway was functional in ES-Hep. Extending protocols of differentiation to 4 weeks did not improve cell maturation. When compared with hepatocyte-like cells derived from adult liver non parenchymal epithelial (NPE) cells (NPE-Hep), ES-Hep expressed several adult and fetal liver makers at much greater levels (at least one order of magnitude), consistent with greater expression of liver-enriched transcription factors Forkhead box A2, C/EBPalpha, HNF4alpha and HNF6. It therefore seems that ES-Hep reach a better level of differentiation than NPE-Hep and that these cells use different lineage pathways towards the hepatic phenotype. Finally we showed that lentivirus-mediated expression of xenoreceptor CAR in ES-Hep induced the expression of several detoxification genes including CYP2B6, CYP2C9, CYP3A4, UDP-glycosyltransferase 1A1, solute carriers 21A6, as well as biotransformation of midazolam, a CYP3A4-specific substrate.
Collapse
|
183
|
Abstract
OBJECTIVE The objective of the study was to induce transdifferentiation of human hepatoma HepG2 cells into pancreatic-like cells without direct genetic intervention. METHODS HepG2 cells were transfected with plasmids for the hepatocyte marker protein green fluorescent protein (albumin-GFP) and the pancreatic cell marker Discosoma spp red fluorescent protein (elastase-DsRed) to create FAE-HepG2 cells. Fluorescent marker expression was used to monitor in vitro transdifferentiation stimulated 100 mM CCl₄, 2 mM D-galactosamine, or 200 μM ZnCl₂. Concentrations were selected for optimal cell survival rate. Transdifferentiation was also characterized by immunohistochemical detection of amylase, glucagon, and insulin and by polymerase change reaction analysis of amylase and insulin mRNA production. RESULTS Control cells expressed albumin-GFP but no elastase-DsRed. By 30 days of culture, all 3 agents induced expression of pancreatic-like cell marker elastase-DsRed. ZnCl₂ was the most effective as most cells expressed elastase-DsRed in the absence of simultaneous expression of albumin-GFP. For CCl₄ and D-galactosamine, elastase-DsRed was expressed in the same cells as albumin-GFP. Cells treated by each agent also expressed amylase, insulin, and glucagon proteins and mRNAs. CONCLUSIONS Without direct genetic intervention, select low small molecules can induce in vitro transformation of hepatoma cells into pancreatic-like cells.
Collapse
|
184
|
Okada K, Kamiya A, Ito K, Yanagida A, Ito H, Kondou H, Nishina H, Nakauchi H. Prospective isolation and characterization of bipotent progenitor cells in early mouse liver development. Stem Cells Dev 2011; 21:1124-33. [PMID: 21861758 DOI: 10.1089/scd.2011.0229] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Outgrowth of the foregut endoderm to form the liver bud is considered the initial event of liver development. Hepatic stem/progenitor cells (HSPCs) in the liver bud are postulated to migrate into septum transversum mesenchyme at around embryonic day (E) 9 in mice. The studies of liver development focused on the mid-fetal stage (E11.5-14.5) have identified HSPCs at this stage. However, the in vitro characteristics of HSPCs before E11.5 have not been elucidated. This is probably partly because purification and characterization of HSPCs in early fetal livers have not been fully established. To permit detailed phenotypic analyses of early fetal HSPC candidates, we developed a new coculture system, using mouse embryonic fibroblast cells. In this coculture system, CD13(+)Dlk(+) cells purified from mouse early fetal livers (E9.5 and E10.5) formed colonies composed of both albumin-positive hepatocytic cells and cytokeratin (CK) 19-positive cholangiocytic cells, indicating that early fetal CD13(+)Dlk(+) cells have properties of bipotent progenitor cells. Inhibition of signaling by Rho-associated coiled-coil containing protein kinase (Rock) or by nonmuscle myosin II (downstream from Rock) was necessary for effective expansion of early fetal CD13(+)Dlk(+) cells in vitro. In sorted CD13(+)Dlk(+) cells, expression of the hepatocyte marker genes albumin and α-fetoprotein increased with fetal liver age, whereas expression of CK19 and Sox17, endodermal progenitor cell markers, was highest at E9.5 but decreased dramatically thereafter. These first prospective studies of early fetal HSPC candidates demonstrate that bipotent stem/progenitor cells exist before E11.5 and implicate Rock-myosin II signaling in their development.
Collapse
Affiliation(s)
- Ken Okada
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Majumder S, Siamwala JH, Srinivasan S, Sinha S, Sridhara SRC, Soundararajan G, Seerapu HR, Chatterjee S. Simulated microgravity promoted differentiation of bipotential murine oval liver stem cells by modulating BMP4/Notch1 signaling. J Cell Biochem 2011; 112:1898-908. [PMID: 21433062 DOI: 10.1002/jcb.23110] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Faster growth and differentiation of liver stem cells to hepatocyte is one of the key factors during liver regeneration. In recent years, simulated microgravity, a physical force has shown to differentially regulate the differentiation and proliferation of stem cells. In the present work, we studied the effect of simulated microgravity on differentiation and proliferation of liver stem cells. The cells were subjected to microgravity, which was simulated using indigenously fabricated 3D clinostat. Proliferation, apoptosis, immunofluorescence assays and Western blot analysis were carried out to study the effects of simulated microgravity on liver stem cells. Microgravity treatment for 2 h enhanced proliferation of stem cells by twofold without inducing apoptosis and compromising cell viability. Analysis of hepatocyte nuclear factor 4-α (HNF4-α) expression after 2 h of microgravity treatment revealed that microgravity alone can induce the differentiation of stem cells within 2-3 days. Probing bone morphogenic protein 4 (BMP4) and Notch1 in microgravity treated stem cells elaborated downregulation of Notch1 and upregulation of BMP4 after 2 days of incubation. Further, blocking BMP4 using dorsomorphin and chordin conditioned media from chordin plasmid transfected cells attenuated microgravity mediated differentiation of liver stem cells. In conclusion, microgravity interplays with BMP4/Notch1 signaling in stem cells thus inducing differentiation of stem cells to hepatocytes. Present findings can be implicated in clinical studies where microgravity activated stem cells can regenerate the liver efficiently after liver injury.
Collapse
Affiliation(s)
- Syamantak Majumder
- Vascular Biology Lab, Life Sciences Division, AU-KBC Research Centre, Anna University, Chennai, Tamil Nadu, India
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Li CY, Wood DK, Hsu CM, Bhatia SN. DNA-templated assembly of droplet-derived PEG microtissues. LAB ON A CHIP 2011; 11:2967-75. [PMID: 21776518 PMCID: PMC3399244 DOI: 10.1039/c1lc20318e] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Patterning multiple cell types is a critical step for engineering functional tissues, but few methods provide three-dimensional positioning at the cellular length scale. Here, we present a "bottom-up" approach for fabricating multicellular tissue constructs that utilizes DNA-templated assembly of 3D cell-laden hydrogel microtissues. A flow focusing-generated emulsion of photopolymerizable prepolymer is used to produce 100 μm monodisperse microtissues at a rate of 100 Hz (10(5) h(-1)). Multiple cell types, including suspension and adherently cultured cells, can be encapsulated into the microtissues with high viability (~97%). We then use a DNA coding scheme to self-assemble microtissues "bottom-up" from a template that is defined using "top-down" techniques. The microtissues are derivatized with single-stranded DNA using a biotin-streptavidin linkage to the polymer network, and are assembled by sequence-specific hybridization onto spotted DNA microarrays. Using orthogonal DNA codes, we achieve multiplexed patterning of multiple microtissue types with high binding efficiency and >90% patterning specificity. Finally, we demonstrate the ability to organize multicomponent constructs composed of epithelial and mesenchymal microtissues while preserving each cell type in a 3D microenvironment. The combination of high throughput microtissue generation with scalable surface-templated assembly offers the potential to dissect mechanisms of cell-cell interaction in three dimensions in healthy and diseased states, as well as provides a framework for templated assembly of larger structures for implantation.
Collapse
Affiliation(s)
- Cheri Y Li
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, USA
| | | | | | | |
Collapse
|
187
|
Lara-Díaz VJ, Garza-Bulnes R, Garza-Garza R, Durand M. Ectopic liver within the umbilical cord in a very preterm infant from a multiple gestation. Pediatr Dev Pathol 2011; 14:422-5. [PMID: 22206466 DOI: 10.2350/11-01-0955-cr.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A 29 weeks' gestational age newborn, the product of a multiple gestation, was found to have a round mass in the umbilical cord; the resected lesion was an ectopic liver tissue (3 × 2 cm). She also had an imperforated hymen; otherwise, no other abnormalities were seen. The infant survived. Some possible mechanisms that may be associated with an ectopic liver tissue are presented.
Collapse
|
188
|
Pauwelyn K, Roelandt P, Notelaers T, Sancho-Bru P, Fevery J, Verfaillie CM. Culture of mouse embryonic stem cells with serum but without exogenous growth factors is sufficient to generate functional hepatocyte-like cells. PLoS One 2011; 6:e23096. [PMID: 21829697 PMCID: PMC3149071 DOI: 10.1371/journal.pone.0023096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/11/2011] [Indexed: 12/13/2022] Open
Abstract
Mouse embryonic stem cells (mESC) have been used to study lineage specification in vitro, including towards a hepatocyte-like fate, and such investigations guided lineage differentiation protocols for human (h)ESC. We recently described a four-step protocol to induce hepatocyte-like cells from hESC which also induced hepatocyte-like cell differentiation of mouse induced pluripotent stem cells. As ESC also spontaneously generate hepatocyte-like cells, we here tested whether the growth factors and serum used in this protocol are required to commit mESC and hESC to hepatocyte-like cells. Culture of mESC from two different mouse strains in the absence of serum and growth factors did not induce primitive streak/definitive endoderm genes but induced default differentiation to neuroectoderm on day 6. Although Activin-A and Wnt3 induced primitive streak/definitive endoderm transcripts most robustly in mESC, simple addition of serum also induced these transcripts. Expression of hepatoblast genes occurred earlier when growth factors were used for mESC differentiation. However, further maturation towards functional hepatocyte-like cells was similar in mESC progeny from cultures with serum, irrespective of the addition of growth factors, and irrespective of the mouse strain. This is in contrast to hESC, where growth factors are required for specification towards functional hepatocyte-like cells. Culture of mESC with serum but without growth factors did not induce preferential differentiation towards primitive endoderm or neuroectoderm. Thus, although induction of primitive streak/definitive endoderm specific genes and proteins is more robust when mESC are exposed to a combination of serum and exogenous growth factors, ultimate generation of hepatocyte-like cells from mESC occurs equally well in the presence or absence of exogenous growth factors. The latter is in contrast to what we observed for hESC. These results suggest that differences exist between lineage specific differentiation potential of mESC and hESC, requiring optimization of different protocols for ESC from either species.
Collapse
Affiliation(s)
- Karen Pauwelyn
- Stem Cell Institute Leuven, Catholic University Leuven, Belgium
- Department of Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Philip Roelandt
- Stem Cell Institute Leuven, Catholic University Leuven, Belgium
- Department of Hepatology, University Hospitals Leuven, Leuven, Belgium
- * E-mail:
| | | | - Pau Sancho-Bru
- Stem Cell Institute Leuven, Catholic University Leuven, Belgium
- Liver Unit, Hospital Clinic, Institut d'Investigacions Biomedicale August Pi i Sunyer (IDIBAPS), CIBERehd, Barcelona, Spain
| | - Johan Fevery
- Department of Hepatology, University Hospitals Leuven, Leuven, Belgium
| | | |
Collapse
|
189
|
Abstract
Pancreas oganogenesis comprises a coordinated and highly complex interplay of signaling events and transcriptional networks that guide a step-wise process of organ development from early bud specification all the way to the final mature organ state. Extensive research on pancreas development over the last few years, largely driven by a translational potential for pancreatic diseases (diabetes, pancreatic cancer, and so on), is markedly advancing our knowledge of these processes. It is a tenable goal that we will one day have a clear, complete picture of the transcriptional and signaling codes that control the entire organogenetic process, allowing us to apply this knowledge in a therapeutic context, by generating replacement cells in vitro, or perhaps one day to the whole organ in vivo. This review summarizes findings in the past 5 years that we feel are amongst the most significant in contributing to the deeper understanding of pancreas development. Rather than try to cover all aspects comprehensively, we have chosen to highlight interesting new concepts, and to discuss provocatively some of the more controversial findings or proposals. At the end of the review, we include a perspective section on how the whole pancreas differentiation process might be able to be unwound in a regulated fashion, or redirected, and suggest linkages to the possible reprogramming of other pancreatic cell-types in vivo, and to the optimization of the forward-directed-differentiation of human embryonic stem cells (hESC), or induced pluripotential cells (iPSC), towards mature β-cells.
Collapse
|
190
|
Nagaoka M, Duncan SA. Transcriptional control of hepatocyte differentiation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 97:79-101. [PMID: 21074730 DOI: 10.1016/b978-0-12-385233-5.00003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is the largest glandular organ in the body and plays a central role in controlling metabolism. During hepatogenesis, complex developmental processes must generate an array of cell types that are spatially arranged to generate a hepatic architecture that is essential to support liver function. The processes that control the ultimate formation of the liver are diverse and complex and in many cases poorly defined. Much of the focus of research during the past three decades has been on understanding how hepatocytes, which are the predominant liver parenchymal cells, differentiate during embryogenesis. Through a combination of mouse molecular genetics, embryology, and molecular biochemistry, investigators have defined a myriad of transcription factors that combine to control formation and function of hepatocytes. Here, we will review the major discoveries that underlie our current understanding of transcriptional regulation of hepatocyte differentiation.
Collapse
Affiliation(s)
- Masato Nagaoka
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | |
Collapse
|
191
|
Subramanian K, Owens DJ, O'Brien TD, Verfaillie CM, Hu WS. Enhanced differentiation of adult bone marrow-derived stem cells to liver lineage in aggregate culture. Tissue Eng Part A 2011; 17:2331-41. [PMID: 21548835 DOI: 10.1089/ten.tea.2010.0667] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Hepatocyte-like cells derived from stem cells hold great potential for clinical and pharmaceutical applications, including high-throughput drug toxicity screening. We report a three-dimensional aggregate culture system for the directed differentiation of adult rat bone marrow-derived stem cells, rat multipotent adult progenitor cells, to hepatocyte-like cells. Compared to adherent monolayer cultures, differentiation in the aggregate culture system resulted in significantly higher expression level of liver-specific transcripts, including an increased albumin mRNA level, and higher levels of albumin and urea secretion. This coincides with the presence of significantly more cells that express intracellular albumin at levels found in primary hepatocytes. The differentiated cell aggregates exhibited cytochrome P450-mediated ethoxyresorufin-O-dealkylation and pentoxyresorufin-O-dealkylation activity. Consistent with these increased mature functions, cells within the aggregates were shown to have many ultrastructural features of mature hepatocytes by transmission electron microscopy. With the scalability of the aggregate culture system and the enhanced differentiation capability, this system may facilitate translation of generating hepatocytes from stem cells to technology.
Collapse
Affiliation(s)
- Kartik Subramanian
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132, USA
| | | | | | | | | |
Collapse
|
192
|
Tremblay KD. Inducing the liver: understanding the signals that promote murine liver budding. J Cell Physiol 2011; 226:1727-31. [PMID: 20857423 DOI: 10.1002/jcp.22409] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The endoderm emerges as an epithelial sheet that covers the surface of the developing murine embryo. This tissue will produce the entire gut tube as well as associated digestive and respiratory organs including the thyroid, thymus, lung, liver, and pancreas. The emergence of each endodermal organ occurs in a temporally distinct manner that is dependant upon reciprocal inductive interactions between the endoderm and the underlying mesoderm. The emergence of the hepatic endoderm, which occurs using a morphological process termed liver budding, initiates during early somitogenesis in the mouse at approximately 8.25 days post-coitum (dpc). Explant and transplant studies performed in chicken and mouse have demonstrated that secreted signals from adjacent mesodermal tissues initiate the hepatic gene program from ventral-fated endoderm. Here, we review the data in support of the roles of members of the fibroblast growth factor (FGF), bone morphogenetic protein (BMP), and Wnt signaling pathways in liver budding and discover that little is known about the precise endogenous signals involved in the molecular and morphological induction of liver budding in the mouse.
Collapse
Affiliation(s)
- Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
193
|
Bone HK, Nelson AS, Goldring CE, Tosh D, Welham MJ. A novel chemically directed route for the generation of definitive endoderm from human embryonic stem cells based on inhibition of GSK-3. J Cell Sci 2011; 124:1992-2000. [PMID: 21610099 PMCID: PMC3104033 DOI: 10.1242/jcs.081679] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2011] [Indexed: 01/17/2023] Open
Abstract
The use of small molecules to 'chemically direct' differentiation represents a powerful approach to promote specification of embryonic stem cells (ESCs) towards particular functional cell types for use in regenerative medicine and pharmaceutical applications. Here, we demonstrate a novel route for chemically directed differentiation of human ESCs (hESCs) into definitive endoderm (DE) exploiting a selective small-molecule inhibitor of glycogen synthase kinase 3 (GSK-3). This GSK-3 inhibitor, termed 1m, when used as the only supplement to a chemically defined feeder-free culture system, effectively promoted differentiation of ESC lines towards primitive streak (PS), mesoderm and DE. This contrasts with the role of GSK-3 in murine ESCs, where GSK-3 inhibition promotes pluripotency. Interestingly, 1m-mediated induction of differentiation involved transient NODAL expression and Nodal signalling. Prolonged treatment of hESCs with 1m resulted in the generation of a population of cells displaying hepatoblast characteristics, that is expressing α-fetoprotein and HNF4α. Furthermore, 1m-induced DE had the capacity to mature and generate hepatocyte-like cells capable of producing albumin. These findings describe, for the first time, the utility of GSK-3 inhibition, in a chemically directed approach, to a method of DE generation that is robust, potentially scalable and applicable to different hESC lines.
Collapse
Affiliation(s)
- Heather K. Bone
- Centre for Regenerative Medicine and Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
- Centre for Regenerative Medicine and Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Adam S. Nelson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Christopher E. Goldring
- MRC Centre for Drug Safety Science, The University of Liverpool, Department of Pharmacology and Therapeutics, Ashton Street, Liverpool L69 3GE, UK
| | - David Tosh
- Centre for Regenerative Medicine and Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | - Melanie J. Welham
- Centre for Regenerative Medicine and Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
194
|
Turovets N, Fair J, West R, Ostrowska A, Semechkin R, Janus J, Cui L, Agapov V, Turovets I, Semechkin A, Csete M, Agapova L. Derivation of high-purity definitive endoderm from human parthenogenetic stem cells using an in vitro analog of the primitive streak. Cell Transplant 2011; 21:217-34. [PMID: 21669044 DOI: 10.3727/096368911x582723] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human parthenogenetic stem cells (hpSCs) are pluripotent stem cells with enormous potential as cell sources for cell-based therapies: hpSCs may have histocompatibilty advantages over human embryonic stem cells (hESCs) and derivation of hpSCs does not require viable blastocyst destruction. For translation of all pluripotent stem cell-based therapies, derivation of differentiated cell products that are not contaminated with undifferentiated cells is a major technical roadblock. We report here a novel method to derive high-purity definitive endoderm (DE) from hpSCs, based on reproducing features of the normal human embryonic microenvironment. The method mimics the developmental process of transition through a primitive streak, using a differentiation device that incorporates a three-dimensional extracellular matrix (ECM) combined with a porous membrane. Treatment of undifferentiated hpSCs above the membrane results an epithelial-to-mesenchymal transition (EMT); thus, responsive cells acquire the ability to migrate through the membrane into the ECM, where they differentiate into DE. Importantly, the resultant DE is highly purified, and is not contaminated by undifferentiated cells, as assessed by OCT4 expression using immunocytochemistry and flow cytometry. The functional properties of the DE are also preserved by the process: DE differentiated in the device can generate a highly enriched population of hepatocyte-like cells (HLCs) characterized by expression of hepatic lineage markers, indocyanine green clearance, glycogen storage, cytochrome P450 activity, and engraftment in the liver after transplantation into immunodeficient mice. The method is broadly applicable and we obtained purified DE using hESCs, as well as several hpSC lines. The novel method described here represents a significant step toward the efficient generation of high-purity cells derived from DE, including hepatocytes and pancreatic endocrine cells, for use in regenerative medicine and drug discovery, as well as a platform for studying cell fate specification and behavior during development.
Collapse
|
195
|
Snider P, Simmons O, Rogers R, Young R, Gosnell M, Conway SJ. Notochordal and foregut abnormalities correlate with elevated neural crest apoptosis in Patch embryos. ACTA ACUST UNITED AC 2011; 91:551-64. [PMID: 21557455 DOI: 10.1002/bdra.20802] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/25/2011] [Accepted: 02/04/2011] [Indexed: 01/17/2023]
Abstract
Although Patch mutants show severe abnormalities in many neural crest-derived structures including the face and the heart, there is a paucity of information characterizing the mechanisms underlying these congenital defects. Via manipulating the genetic background to circumvent early embryonic lethality, our results revealed that Patch phenotypes are most likely due to a significant decrease in migratory neural crest lineage due to diminished neural crest survival and elevated apoptosis. Homozygous mutant neural crest precursors can undergo typical expansion within the neural tube, epithelial-to-mesenchymal transformation, and initiate normal neural crest emigration. Moreover, in vitro explant culture demonstrated that when isolated from the surrounding mesenchyme, Patch mutant neural crest cells (NCCs) can migrate appropriately. Additionally, Patch foregut, notochord and somitic morphogenesis, and Sonic hedgehog expression profiles were all perturbed. Significantly, the timing of lethality and extent of apoptosis correlated with the degree of severity of Patch mutant foregut, notochord, and somite dysfunction. Finally, analysis of Balb/c-enriched surviving Patch mutants revealed that not all the neural crest subpopulations are affected and that Patch mutant neural crest-derived sympathetic ganglia and dorsal root ganglia were unaffected. We hypothesize that loss of normal coordinated signaling from the notochord, foregut, and somites underlies the diminished survival of the neural crest lineage within Patch mutants resulting in subsequent neural crest-deficient phenotypes.
Collapse
Affiliation(s)
- Paige Snider
- Developmental Biology and Neonatal Medicine Program, HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | |
Collapse
|
196
|
Christodoulou C, Longmire TA, Shen SS, Bourdon A, Sommer CA, Gadue P, Spira A, Gouon-Evans V, Murphy GJ, Mostoslavsky G, Kotton DN. Mouse ES and iPS cells can form similar definitive endoderm despite differences in imprinted genes. J Clin Invest 2011; 121:2313-25. [PMID: 21537085 DOI: 10.1172/jci43853] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 03/08/2011] [Indexed: 11/17/2022] Open
Abstract
The directed differentiation of iPS and ES cells into definitive endoderm (DE) would allow the derivation of otherwise inaccessible progenitors for endodermal tissues. However, a global comparison of the relative equivalency of DE derived from iPS and ES populations has not been performed. Recent reports of molecular differences between iPS and ES cells have raised uncertainty as to whether iPS cells could generate autologous endodermal lineages in vitro. Here, we show that both mouse iPS and parental ES cells exhibited highly similar in vitro capacity to undergo directed differentiation into DE progenitors. With few exceptions, both cell types displayed similar surges in gene expression of specific master transcriptional regulators and global transcriptomes that define the developmental milestones of DE differentiation. Microarray analysis showed considerable overlap between the genetic programs of DE derived from ES/iPS cells in vitro and authentic DE from mouse embryos in vivo. Intriguingly, iPS cells exhibited aberrant silencing of imprinted genes known to participate in endoderm differentiation, yet retained a robust ability to differentiate into DE. Our results show that, despite some molecular differences, iPS cells can be efficiently differentiated into DE precursors, reinforcing their potential for development of cell-based therapies for diseased endoderm-derived tissues.
Collapse
Affiliation(s)
- Constantina Christodoulou
- Boston University Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Iwamuro M, Shahid JM, Yamamoto K, Kobayashif N. Prospects for Induced Phiripotent Stem Cell-Derived Hepatocytes in Cell Therapy. CELL MEDICINE 2011; 2:1-8. [PMID: 26998398 DOI: 10.3727/215517911x575975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Induced pluripotent stem (iPS) cells, first established in 2006, have the same characteristics of self-renew-ability and pluripotency as embryonic stem (ES) cells. iPS cells are inducible from patient-specific somatic cells; therefore, they hold significant advantages for overcoming immunological rejection as well as the ethical issues associated with the derivation of ES cells from embryos. Generation of patient-derived hepatocytes by iPS technology and their use in cell transplantation therapy for patients with liver disease is quite attractive. Here, we discuss recent advances and challenges in hepatocyte differentiation from iPS cells and their utility in cell therapy.
Collapse
Affiliation(s)
- Masaya Iwamuro
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences , Okayama , Japan
| | - Javed M Shahid
- † Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences , Okayama , Japan
| | - Kazuhide Yamamoto
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences , Okayama , Japan
| | - Naoya Kobayashif
- † Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences , Okayama , Japan
| |
Collapse
|
198
|
Klein C, Mikutta J, Krueger J, Scholz K, Brinkmann J, Liu D, Veerkamp J, Siegel D, Abdelilah-Seyfried S, le Noble F. Neuron navigator 3a regulates liver organogenesis during zebrafish embryogenesis. Development 2011; 138:1935-45. [PMID: 21471154 DOI: 10.1242/dev.056861] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Endodermal organogenesis requires a precise orchestration of cell fate specification and cell movements, collectively coordinating organ size and shape. In Caenorhabditis elegans, uncoordinated-53 (unc-53) encodes a neural guidance molecule that directs axonal growth. One of the vertebrate homologs of unc-53 is neuron navigator 3 (Nav3). Here, we identified a novel vertebrate neuron navigator 3 isoform in zebrafish, nav3a, and we provide genetic evidence in loss- and gain-of-function experiments showing its functional role in endodermal organogenesis during zebrafish embryogenesis. In zebrafish embryos, nav3a expression was initiated at 22 hpf in the gut endoderm and at 40 hpf expanded to the newly formed liver bud. Endodermal nav3a expression was controlled by Wnt2bb signaling and was independent of FGF and BMP signaling. Morpholino-mediated knockdown of nav3a resulted in a significantly reduced liver size, and impaired development of pancreas and swim bladder. In vivo time-lapse imaging of liver development in nav3a morphants revealed a failure of hepatoblast movement out from the gut endoderm during the liver budding stage, with hepatoblasts being retained in the intestinal endoderm. In hepatocytes in vitro, nav3a acts as a positive modulator of actin assembly in lamellipodia and filipodia extensions, allowing cellular movement. Knockdown of nav3a in vitro impeded hepatocyte movement. Endodermal-specific overexpression of nav3a in vivo resulted in additional ectopic endodermal budding beyond the normal liver and pancreatic budding sites. We conclude that nav3a is required for directing endodermal organogenesis involving coordination of endodermal cell behavior.
Collapse
Affiliation(s)
- Christian Klein
- Department of Angiogenesis and Cardiovascular Pathology, Max-Delbrueck-Center for Molecular Medicine (MDC), Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Chen X, Zeng F. Directed hepatic differentiation from embryonic stem cells. Protein Cell 2011; 2:180-8. [PMID: 21468890 DOI: 10.1007/s13238-011-1023-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 03/01/2011] [Indexed: 12/21/2022] Open
Abstract
The liver is the largest internal organ in mammals, and is important for the maintenance of normal physiological functions of other tissues and organs. Hepatitis, cirrhosis, liver cancer and other chronic liver diseases are serious threats to human health, and these problems are compounded by a scarcity of liver donors for transplantation therapies. Directed differentiation of embryonic stem cells to liver cells is a promising strategy for obtaining hepatocytes that can be used for cell transplantation. In vitro hepatocyte differentiation of embryonic stem cells requires a profound understanding of normal development during embryonic hepatogenesis. Here we provide a simple description of hepatogenesis in vivo and discuss directed differentiation of embryonic stem cells into hepatocytes in vitro.
Collapse
Affiliation(s)
- Xuesong Chen
- Laboratory of Developmental Biology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | |
Collapse
|
200
|
Shin D, Lee Y, Poss KD, Stainier DYR. Restriction of hepatic competence by Fgf signaling. Development 2011; 138:1339-48. [PMID: 21385764 PMCID: PMC3050664 DOI: 10.1242/dev.054395] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2011] [Indexed: 12/27/2022]
Abstract
Hepatic competence, or the ability to respond to hepatic-inducing signals, is regulated by a number of transcription factors broadly expressed in the endoderm. However, extrinsic signals might also regulate hepatic competence, as suggested by tissue explant studies. Here, we present genetic evidence that Fgf signaling regulates hepatic competence in zebrafish. We first show that the endoderm posterior to the liver-forming region retains hepatic competence: using transgenic lines that overexpress hepatic inducing signals following heat-shock, we found that at late somitogenesis stages Wnt8a, but not Bmp2b, overexpression could induce liver gene expression in pancreatic and intestinal bulb cells. These manipulations resulted in the appearance of ectopic hepatocytes in the intestinal bulb. Second, by overexpressing Wnt8a at various stages, we found that as embryos develop, the extent of the endodermal region retaining hepatic competence is gradually reduced. Most significantly, we found, using gain- and loss-of-function approaches, that Fgf10a signaling regulates this gradual reduction of the hepatic-competent domain. These data provide in vivo evidence that endodermal cells outside the liver-forming region retain hepatic competence and show that an extrinsic signal, Fgf10a, negatively regulates hepatic competence.
Collapse
Affiliation(s)
- Donghun Shin
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Liver Center and Diabetes Center, Institute for Regeneration Medicine, University of California, San Francisco, CA 94158, USA
| | - Yoonsung Lee
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D. Poss
- Department of Cell Biology and Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental and Stem Cell Biology, Genetics and Human Genetics, Liver Center and Diabetes Center, Institute for Regeneration Medicine, University of California, San Francisco, CA 94158, USA
| |
Collapse
|