151
|
The Effect of Necrosis Inhibitor on Dextran Sulfate Sodium Induced Chronic Colitis Model in Mice. Pharmaceutics 2023; 15:pharmaceutics15010222. [PMID: 36678851 PMCID: PMC9862178 DOI: 10.3390/pharmaceutics15010222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Uncontrolled chronic inflammation and necrosis is characteristic of inflammatory bowel disease (IBD). This study aimed to investigate the effect of necrosis inhibitor (NI, NecroX-7) on a dextran sulfate sodium (DSS) induced chronic colitis model of mice. DSS was administered on days 1-5, and the NI was administered intraperitoneally (3 mg/kg, 30 mg/kg) on days 1, 3, and 5 as well as every other day during the first five days of a three-week cycle. Three cycles of administration were performed. Colitis was evaluated based on the disease activity index (DAI) score, colon length, and histological score. Reverse transcription polymerase chain reaction testing, the Western blot assay, and immunohistochemical staining were performed to determine inflammatory cytokine levels. The NI reduced body weight change and the DAI score. Colon length and the histological score were longer and lower in the NI-treated groups, respectively. The NI decreased the expression of pro-inflammatory cytokines, particularly in tumor necrosis factor alpha (TNF-α) and phosphorylated nuclear factor kappa B (p-NF-κB). Immunohistochemical staining revealed decreased inducible nitric oxide synthase (iNOS) and high mobility group box 1 (HMGB1) levels. Overall, the NI improved DSS induced chronic colitis by attenuating the mRNA expression of pro-inflammatory cytokines such as TNF-α. Therefore, NI use is a potential, novel treatment approach for IBD.
Collapse
|
152
|
Kim N, Kim C, Ryu SH, Bae JS. Jujuboside B Inhibited High Mobility Group Box Protein 1-Mediated Severe Inflammatory Responses in Human Endothelial Cells and Mice. J Med Food 2023; 26:40-48. [PMID: 36576404 DOI: 10.1089/jmf.2022.k.0099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
High mobility group box protein 1 (HMGB1) is a biomolecule that acts as an alerting signal of late sepsis by accelerating the production of proinflammatory cytokines, and eventually leads to various inflammation-related symptoms. When released into plasma at high concentration, it disrupts precise diagnosis and prognosis and worsens the survival of patients with systemic inflammatory conditions. Jujuboside B (JB) is a natural compound pressed from the seed of Zizyphi Spinosi Semen, which is known for its medical efficacies in treating various conditions such as hyperlipidemia, hypoxia, and platelet aggregation. Nevertheless, the medicinal activity of JB on HMGB1-involved inflammatory response in vascular cells in the human body is still ambiguous. Therefore, we hypothesized that JB could regulate the lipopolysaccharide (LPS)-induced dynamics of HMGB1 and its mediated cascade in inflammatory responses in human umbilical vein endothelial cells (HUVECs). In this experiment, JB and HMGB1 were administered in that order. In vitro and in vivo permeability, and cell viability, adhesion, and excavation of leukocytes, development of cell adhesion molecules, and lastly production of proinflammatory substances were investigated on human endothelial cells and mouse disease models to investigate the efficacy of JB in inflammatory condition. JB substantially blocked the translocation of HMGB1 from HUVECs and controlled HMGB1-induced adhesion and extravasation of the neutrophils through LPS-treated HUVECs. Moreover, JB decreased the formation of HMGB1 receptors and continually prevented HMGB1-induced proinflammatory mechanisms by blocking transcription of nuclear factor-κB and synthesis of tumor necrosis factor-α. In conclusion, JB demonstrated preventive effects against inflammatory pathologies and showed the potential to be a candidate substance for various inflammatory diseases by regulating HMGB1-mediated cellular signaling.
Collapse
Affiliation(s)
- Nayeon Kim
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Chaeyeong Kim
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Soo Ho Ryu
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - Jong-Sup Bae
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
153
|
Kawamura T, Singh Mallah G, Ardalan M, Chumak T, Svedin P, Jonsson L, Jabbari Shiadeh SM, Goretta F, Ikeda T, Hagberg H, Sandberg M, Mallard C. Therapeutic Effect of Nicotinamide Mononucleotide for Hypoxic-Ischemic Brain Injury in Neonatal Mice. ASN Neuro 2023; 15:17590914231198983. [PMID: 37787108 PMCID: PMC10548811 DOI: 10.1177/17590914231198983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 10/04/2023] Open
Abstract
SUMMARY STATEMENT Neonatal hypoxia-ischemia reduces nicotinamide adenine dinucleotide (NAD+) and SIRT6 levels in the injured hippocampus.Hippocampal high mobility group box-1 (HMGB1) release is significantly increased after neonatal hypoxia-ischemia.Nicotinamide mononucleotide (NMN) treatment normalizes hippocampal NAD+ and SIRT6 levels, with significant decrease in caspase-3 activity and HMGB1 release.NMN improves early developmental behavior, as well as motor and memory function.
Collapse
Affiliation(s)
- Takuya Kawamura
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Gagandeep Singh Mallah
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maryam Ardalan
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tetyana Chumak
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Svedin
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lina Jonsson
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Seyedeh Marziyeh Jabbari Shiadeh
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fanny Goretta
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Tsu, Japan
| | - Henrik Hagberg
- Centre of Perinatal Medicine and Health, Institute of Clinical Sciences, Gothenburg, Sweden
| | - Mats Sandberg
- Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Institute of Neuroscience and Physiology, Centre of Perinatal Medicine and Health, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
154
|
Shin J, Kim YH, Lee B, Chang JH, Choi HY, Lee H, Song KC, Kwak MS, Choi JE, Shin JS. USP13 regulates HMGB1 stability and secretion through its deubiquitinase activity. Mol Med 2022; 28:164. [PMID: 36585612 PMCID: PMC9801610 DOI: 10.1186/s10020-022-00596-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND High mobility group box 1 (HMGB1) is a damage-associated molecular pattern (DAMP) molecule that plays a central role in innate immunity. HMGB1 acts as a late mediator of inflammation when actively secreted in response to inflammatory stimuli. Several post-translational modifications (PTMs), including acetylation, phosphorylation, and oxidation, are involved in HMGB1 secretion. However, the E3 ligases of HMGB1 and the mechanism by which DUBs regulate HMGB1 deubiquitination are not well known. METHODS LC-MS/MS, proximity ligation assay, immunoprecipitation were used to identify ubiquitin-specific protease 13 (USP13) as a binding partner of HMGB1 and to investigate ubiquitination of HMGB1. USP13 domain mutant was constructed for domain study and Spautin-1 was treated for inhibition of USP13. Confocal microscopy image showed localization of HMGB1 by USP13 overexpression. The data were analyzed using one-way analysis of variance with Tukey's honestly significant difference post-hoc test for multiple comparisons or a two-tailed Student's t-test. RESULTS We identified ubiquitin-specific protease 13 (USP13) as a novel binding partner of HMGB1 and demonstrated that USP13 plays a role in stabilizing HMGB1 from ubiquitin-mediated degradation. USP13 overexpression increased nucleocytoplasmic translocation of HMGB1 and promoted its secretion, which was inhibited by treatment with Spautin-1, a selective inhibitor of USP13. CONCLUSION Taken together, we suggest that USP13 is a novel deubiquitinase of HMGB1 that regulates the stability and secretion of HMGB1.
Collapse
Affiliation(s)
- Jaemin Shin
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Young Hun Kim
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Bin Lee
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Jae Ho Chang
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea
| | - Hee Youn Choi
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Hoojung Lee
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Ki Chan Song
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea
| | - Man Sup Kwak
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722 South Korea
| | - Ji Eun Choi
- grid.31501.360000 0004 0470 5905Department of Pediatrics, Seoul National University College of Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Boramaero 5 Gil 20, Dongjakgu, Seoul, 07061 South Korea
| | - Jeon-Soo Shin
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722 South Korea ,grid.15444.300000 0004 0470 5454Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722 South Korea
| |
Collapse
|
155
|
Shams S, Patel CB. Anti-cancer mechanisms of action of therapeutic alternating electric fields (tumor treating fields [TTFields]). J Mol Cell Biol 2022; 14:mjac047. [PMID: 35973687 PMCID: PMC9912101 DOI: 10.1093/jmcb/mjac047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/11/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Despite improved survival outcomes across many cancer types, the prognosis remains grim for certain solid organ cancers including glioblastoma and pancreatic cancer. Invariably in these cancers, the control achieved by time-limited interventions such as traditional surgical resection, radiation therapy, and chemotherapy is short-lived. A new form of anti-cancer therapy called therapeutic alternating electric fields (AEFs) or tumor treating fields (TTFields) has been shown, either by itself or in combination with chemotherapy, to have anti-cancer effects that translate to improved survival outcomes in patients. Although the pre-clinical and clinical data are promising, the mechanisms of TTFields are not fully elucidated. Many investigations are underway to better understand how and why TTFields is able to selectively kill cancer cells and impede their proliferation. The purpose of this review is to summarize and discuss the reported mechanisms of action of TTFields from pre-clinical studies (both in vitro and in vivo). An improved understanding of how TTFields works will guide strategies focused on the timing and combination of TTFields with other therapies, to further improve survival outcomes in patients with solid organ cancers.
Collapse
Affiliation(s)
- Shadi Shams
- Rowan University School of Osteopathic Medicine, Stratford, NJ 08028, USA
| | - Chirag B Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
156
|
RAGE Inhibitors for Targeted Therapy of Cancer: A Comprehensive Review. Int J Mol Sci 2022; 24:ijms24010266. [PMID: 36613714 PMCID: PMC9820344 DOI: 10.3390/ijms24010266] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a member of the immunoglobulin family that is overexpressed in several cancers. RAGE is highly expressed in the lung, and its expression increases proportionally at the site of inflammation. This receptor can bind a variety of ligands, including advanced glycation end products, high mobility group box 1, S100 proteins, adhesion molecules, complement components, advanced lipoxidation end products, lipopolysaccharides, and other molecules that mediate cellular responses related to acute and chronic inflammation. RAGE serves as an important node for the initiation and stimulation of cell stress and growth signaling mechanisms that promote carcinogenesis, tumor propagation, and metastatic potential. In this review, we discuss different aspects of RAGE and its prominent ligands implicated in cancer pathogenesis and describe current findings that provide insights into the significant role played by RAGE in cancer. Cancer development can be hindered by inhibiting the interaction of RAGE with its ligands, and this could provide an effective strategy for cancer treatment.
Collapse
|
157
|
Sil S, Thangaraj A, Oladapo A, Hu G, Kutchy NA, Liao K, Buch S, Periyasamy P. Role of Autophagy in HIV-1 and Drug Abuse-Mediated Neuroinflammaging. Viruses 2022; 15:44. [PMID: 36680084 PMCID: PMC9866731 DOI: 10.3390/v15010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Chronic low-grade inflammation remains an essential feature of HIV-1 infection under combined antiretroviral therapy (cART) and contributes to the accelerated cognitive defects and aging in HIV-1 infected populations, indicating cART limitations in suppressing viremia. Interestingly, ~50% of the HIV-1 infected population on cART that develops cognitive defects is complicated by drug abuse, involving the activation of cells in the central nervous system (CNS) and neurotoxin release, altogether leading to neuroinflammation. Neuroinflammation is the hallmark feature of many neurodegenerative disorders, including HIV-1-associated neurocognitive disorders (HAND). Impaired autophagy has been identified as one of the underlying mechanisms of HAND in treated HIV-1-infected people that also abuse drugs. Several lines of evidence suggest that autophagy regulates CNS cells' responses and maintains cellular hemostasis. The impairment of autophagy is associated with low-grade chronic inflammation and immune senescence, a known characteristic of pathological aging. Therefore, autophagy impairment due to CNS cells, such as neurons, microglia, astrocytes, and pericytes exposure to HIV-1/HIV-1 proteins, cART, and drug abuse could have combined toxicity, resulting in increased neuroinflammation, which ultimately leads to accelerated aging, referred to as neuroinflammaging. In this review, we focus on the potential role of autophagy in the mechanism of neuroinflammaging in the context of HIV-1 and drug abuse.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Centre for Excellence in Nanobio Translational Research, Anna University, BIT Campus, Tiruchirappalli 620024, Tamil Nadu, India
| | - Abiola Oladapo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ke Liao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Cedars-Sinai Medical Center, Smidt Heart Institute, Los Angeles, CA 90048, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
158
|
Wang H. Regulation of HMGB1 Release in Health and Diseases. Cells 2022; 12:cells12010046. [PMID: 36611839 PMCID: PMC9818800 DOI: 10.3390/cells12010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Almost a half century ago, a group of nuclear proteins were co-purified with histones from calf thymus and termed as "high mobility group" (HMG) proteins because of their relative rapid mobility on SDS-PAGE gels [...].
Collapse
Affiliation(s)
- Haichao Wang
- The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| |
Collapse
|
159
|
Wang F, Zhang Y, Li J, Xia H, Zhang D, Yao S. The pathogenesis and therapeutic strategies of heat stroke-induced liver injury. Crit Care 2022; 26:391. [PMID: 36528615 PMCID: PMC9758799 DOI: 10.1186/s13054-022-04273-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Heat stroke (HS) is a life-threatening systemic disease characterized by an elevated core body temperature of more than 40 ℃ and subsequent multiple organ dysfunction syndrome. With the growing frequency of global heatwaves, the incidence rate of HS has increased significantly, which has caused a huge burden on people's lives and health. Liver injury is a well-documented complication of HS and usually constitutes the direct cause of patient death. In recent years, a lot of research has been carried out on the pathogenesis and treatment strategies of HS-induced liver injury. In this review, we summarized the important pathogenesis of HS-induced liver injury that has been confirmed so far. In addition to the comprehensive effect of systemic factors such as heat cytotoxicity, coagulopathy, and systemic inflammatory response syndrome, excessive hepatocyte cell pyroptosis, dysfunction of Kupffer cells, abnormal expression of heat shock protein expression, and other factors are also involved in the pathogenesis of HS-induced liver injury. Furthermore, we have also established the current therapeutic strategies for HS-induced liver injury. Our study is of great significance in promoting the understanding of the pathogenesis and treatment of HS-induced liver injury.
Collapse
Affiliation(s)
- Fuquan Wang
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Department of Anesthesiology, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022 China
| | - Yan Zhang
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Department of Anesthesiology, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022 China
| | - Jianhua Li
- grid.190737.b0000 0001 0154 0904Chongqing university Jiangjin hospital, Chongqing, China
| | - Haifa Xia
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Department of Anesthesiology, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022 China
| | - Dingyu Zhang
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Department of Anesthesiology, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022 China ,grid.507952.c0000 0004 1764 577XWuhan Jinyintan Hospital, Wuhan, 430023 China
| | - Shanglong Yao
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 China ,grid.33199.310000 0004 0368 7223Department of Anesthesiology, Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022 China
| |
Collapse
|
160
|
Electroacupuncture Alleviates Neuroinflammation by Inhibiting the HMGB1 Signaling Pathway in Rats with Sepsis-Associated Encephalopathy. Brain Sci 2022; 12:brainsci12121732. [PMID: 36552192 PMCID: PMC9776077 DOI: 10.3390/brainsci12121732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Sepsis-Associated Encephalopathy (SAE) is common in sepsis patients, with high mortality rates. It is believed that neuroinflammation is an important mechanism involved in SAE. High mobility group box 1 protein (HMGB1), as a late pro-inflammatory factor, is significantly increased during sepsis in different brain regions, including the hippocampus. HMGB1 causes neuroinflammation and cognitive impairment through direct binding to advanced glycation end products (RAGE) and Toll-like receptor 4 (TLR4). Electroacupuncture (EA) at Baihui (GV20) and Zusanli (ST36) is beneficial for neurological diseases and experimental sepsis. Our study used EA to treat SAE induced by lipopolysaccharide (LPS) in male Sprague-Dawley rats. The Y maze test was performed to assess working memory. Immunofluorescence (IF) and Western blotting (WB) were used to determine neuroinflammation and the HMGB1 signaling pathway. Results showed that EA could improve working memory impairment in rats with SAE. EA alleviated neuroinflammation by downregulating the hippocampus's HMGB1/TLR4 and HMGB1/RAGE signaling, reducing the levels of pro-inflammatory factors, and relieving microglial and astrocyte activation. However, EA did not affect the tight junctions' expression of the blood-brain barrier (BBB) in the hippocampus.
Collapse
|
161
|
Du F, Ding Z, Rönnow CF, Rahman M, Schiopu A, Thorlacius H. S100A9 induces reactive oxygen species-dependent formation of neutrophil extracellular traps in abdominal sepsis. Exp Cell Res 2022; 421:113405. [PMID: 36328195 DOI: 10.1016/j.yexcr.2022.113405] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/27/2022] [Indexed: 12/29/2022]
Abstract
Recent evidence suggests that targeting S100A9 reduces pathological inflammation in abdominal sepsis. Herein, we investigated the role of S100A9 in neutrophil extracellular trap (NET) formation in septic lung damage. NETs were detected by electron microscopy in the lung and by confocal microscopy in vitro. Stimulation of isolated mouse bone marrow-derived neutrophils with S100A9 triggered formation of NETs. Blocking TLR4 and RAGE reduced S100A9-induced generation of NETs and DNA-histone complexes. Moreover, S100A9 challenge increased generation of reactive oxygen species (ROS) in bone marrow neutrophils. Co-incubation with the NADPH oxidase inhibitor not only decreased ROS formation but also attenuated induction of DNA-histone complexes in S100A9-stimulated neutrophils. Abdominal sepsis was induced by cecal ligation and puncture (CLP) in male C57BL/6 mice. Administration of the S100A9 inhibitor ABR-238901 decreased CLP-induced formation of NETs in lungs and DNA-histone complexes in plasma. In addition, transmission electron microscopy revealed that S100A9 was abundantly expressed on NETs in the lungs in CLP mice. By use of intravital microscopy, we found that local injection of NETs increased leukocyte adhesion and migration in the mouse cremaster muscle microvasculature. Notably, treatment with ABR-238901 attenuated NET-induced leukocyte adhesion and extravasation in the cremaster muscle, suggesting that NET-associated S100A9 promotes leukocyte recruitment in vivo. Taken together, these novel findings suggest that S100A9 triggers ROS-dependent formation of NETs via TLR4 and RAGE signaling in neutrophils. Moreover, S100A9 regulates both formation of NETs and NET-induced leukocyte recruitment in vivo. Thus, targeting S100A9 might be useful to ameliorate lung damage in abdominal sepsis.
Collapse
Affiliation(s)
- Feifei Du
- Department of Clinical Sciences, Malmö, Section for Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Zhiyi Ding
- Department of Clinical Sciences, Malmö, Section for Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Carl-Fredrik Rönnow
- Department of Clinical Sciences, Malmö, Section for Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Alexandru Schiopu
- Department of Clinical Sciences, Malmö, Lund University, 21428, Malmö, Sweden; Department of Internal Medicine, Skåne University Hospital, 22185, Lund, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Malmö, Section for Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden.
| |
Collapse
|
162
|
HMGB1 Promotes In Vitro and In Vivo Skeletal Muscle Atrophy through an IL-18-Dependent Mechanism. Cells 2022; 11:cells11233936. [PMID: 36497194 PMCID: PMC9740799 DOI: 10.3390/cells11233936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle atrophy occurs due to muscle wasting or reductions in protein associated with aging, injury, and inflammatory processes. High-mobility group box-1 (HMGB1) protein is passively released from necrotic cells and actively secreted by inflammatory cells, and is implicated in the pathogenesis of various inflammatory and immune diseases. HMGB1 is upregulated in muscle inflammation, and circulating levels of the proinflammatory cytokine interleukin-18 (IL-18) are upregulated in patients with sarcopenia, a muscle-wasting disease. We examined whether an association exists between HMGB1 and IL-18 signaling in skeletal muscle atrophy. HMGB1-induced increases of IL-18 levels enhanced the expression of muscle atrophy markers and inhibited myogenic marker expression in C2C12 and G7 myoblast cell lines. HMGB1-induced increases of IL-18 production in C2C12 cells involved the RAGE/p85/Akt/mTOR/c-Jun signaling pathway. HMGB1 short hairpin RNA (shRNA) treatment rescued the expression of muscle-specific differentiation markers in murine C2C12 myotubes and in mice with glycerol-induced muscle atrophy. HMGB1 and IL-18 signaling was suppressed in the mice after HMGB1 shRNA treatment. These findings suggest that the HMGB1/IL-18 axis is worth targeting for the treatment of skeletal muscle atrophy.
Collapse
|
163
|
Chen D, Lu L, Wang H, Peng S, Liu J, Zhang X, Li Z, Huang X, Ouyang P, Qu L, Geng Y. Expression profiling and inflammatory activation analysis of high-mobility group box 1 in Schizothorax prenanti. JOURNAL OF AQUATIC ANIMAL HEALTH 2022; 34:174-183. [PMID: 36063081 DOI: 10.1002/aah.10172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/19/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE High-mobility group box 1 (HMGB1) is a highly conserved nuclear protein and participates in the immune response to pathogens in bony fish. In this study, the structure and function of HMGB1 in the cyprinid fish Schizothorax prenanti (SpHMGB1) were investigated. METHODS The spatial structure of SpHMGB1 was predicted by CPHmodels. Quantitative reverse transcription PCR was used to detect the mRNA of SpHMGB1 in different tissues and Streptococcus agalactiae infection. The macrophage was treated with synthetic SpHMGB1-B box peptide to analyze the inflammatory activity. RESULT Structurally, SpHMGB1 had the conserved A box, B box, and acid tail compared with Zebrafish Danio rerio and mice Mus musculus. SpHMGB1 was universally expressed in various tissues, with the highest expression in the middle kidney. In vivo, SpHMGB1 was significantly induced in response to Streptococcus agalactiae infection in the blood and spleen. Synthetic SpHMGB1-B box peptide activated respiratory burst and up-regulated the messenger RNA expression of interleukin-1β, tumor necrosis factor α, interleukin-10, interferon regulatory factor 1, interferon regulatory factor 7, C-X-C motif chemokine ligand 11-1, C-X-C motif chemokine ligand 11-2, and toll-like receptor 4 in macrophages. CONCLUSION This study suggested that SpHMGB1 participated in the response to bacterial pathogens and that SpHMGB1-B box peptide played an important role in mediating the immune response of S. prenanti.
Collapse
Affiliation(s)
- Defang Chen
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lu Lu
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hong Wang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shuang Peng
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jiaxi Liu
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xin Zhang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhiqiong Li
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli Huang
- Aquaculture Department, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ping Ouyang
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lianshi Qu
- Ya'an Fishery Development Center, Ya'an, China
| | - Yi Geng
- Research Center of Aquatic Animal Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
164
|
Lu TY, Xu XL, Du XG, Wei JH, Yu JN, Deng SL, Qin C. Advances in Innate Immunity to Overcome Immune Rejection during Xenotransplantation. Cells 2022; 11:cells11233865. [PMID: 36497122 PMCID: PMC9735653 DOI: 10.3390/cells11233865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Transplantation is an effective approach for treating end-stage organ failure. There has been a long-standing interest in xenotransplantation as a means of increasing the number of available organs. In the past decade, there has been tremendous progress in xenotransplantation accelerated by the development of rapid gene-editing tools and immunosuppressive therapy. Recently, the heart and kidney from pigs were transplanted into the recipients, which suggests that xenotransplantation has entered a new era. The genetic discrepancy and molecular incompatibility between pigs and primates results in barriers to xenotransplantation. An increasing body of evidence suggests that innate immune responses play an important role in all aspects of the xenogeneic rejection. Simultaneously, the role of important cellular components like macrophages, natural killer (NK) cells, and neutrophils, suggests that the innate immune response in the xenogeneic rejection should not be underestimated. Here, we summarize the current knowledge about the innate immune system in xenotransplantation and highlight the key issues for future investigations. A better understanding of the innate immune responses in xenotransplantation may help to control the xenograft rejection and design optimal combination therapies.
Collapse
Affiliation(s)
- Tian-Yu Lu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
| | - Xue-Ling Xu
- National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xu-Guang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jin-Hua Wei
- Cardiovascular Surgery Department, Center of Laboratory Medicine, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jia-Nan Yu
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
- Correspondence: (S.-L.D.); (C.Q.)
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of animal model, Beijing 100021, China
- Changping National Laboratory (CPNL), Beijing 102206, China
- Correspondence: (S.-L.D.); (C.Q.)
| |
Collapse
|
165
|
Tonai K, Katayama S, Koyama K, Sata N, Tomioka Y, Imahase H, Nunomiya S. Association between hypomagnesemia and coagulopathy in sepsis: a retrospective observational study. BMC Anesthesiol 2022; 22:359. [PMID: 36424547 PMCID: PMC9685885 DOI: 10.1186/s12871-022-01903-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Hypomagnesemia reportedly has significant associations with poor clinical outcomes such as increased mortality and septic shock in patients with sepsis. Although the mechanism underlying these outcomes mostly remains unclear, some experimental data suggest that magnesium deficiency could potentiate coagulation activation in sepsis. However, in sepsis, the association between serum magnesium levels and coagulopathy, including disseminated intravascular coagulation (DIC), remains unknown. Thus, we aimed to investigate the relationship between serum magnesium levels and coagulation status and the association between hypomagnesemia and DIC in patients with sepsis. METHODS This retrospective observational study was conducted at the intensive care unit (ICU) of a university hospital from June 2011 to December 2017. Patients older than 19 years who met the Sepsis-3 definition were included. We categorized patients into three groups according to their serum magnesium levels: hypomagnesemia (< 1.6 mg/dL), normal serum magnesium level (1.6-2.4 mg/dL), and hypermagnesemia (> 2.4 mg/dL). We investigated the association between serum magnesium levels and overt DIC at the time of ICU admission according to the criteria of the International Society on Thrombosis and Haemostasis. RESULTS Among 753 patients included in this study, 181 had DIC, 105 had hypomagnesemia, 552 had normal serum magnesium levels, and 96 had hypermagnesemia. Patients with hypomagnesemia had a more activated coagulation status indicated by lower platelet counts, lower fibrinogen levels, higher prothrombin time-international normalized ratios, higher thrombin-antithrombin complex, and more frequent DIC than those with normal serum magnesium levels and hypermagnesemia (DIC: 41.9% vs. 20.6% vs. 24.0%, P < 0.001). The coagulation status in patients with hypomagnesemia was more augmented toward suppressed fibrinolysis than that in patients with normal serum magnesium levels and hypermagnesemia. Multivariate logistic regression revealed that hypomagnesemia was independently associated with DIC (odds ratio, 1.69; 95% confidence interval, 1.00-2.84; P = 0.048) after adjusting for several confounding variables. CONCLUSIONS Patients with hypomagnesemia had a significantly activated coagulation status and suppressed fibrinolysis. Hypomagnesemia was independently associated with DIC in patients with sepsis. Therefore, the treatment of hypomagnesemia may be a potential therapeutic strategy for the treatment of coagulopathy in sepsis.
Collapse
Affiliation(s)
- Ken Tonai
- grid.410804.90000000123090000Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498 Japan
| | - Shinshu Katayama
- grid.410804.90000000123090000Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498 Japan
| | - Kansuke Koyama
- grid.410804.90000000123090000Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498 Japan
| | - Naho Sata
- grid.410804.90000000123090000Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498 Japan
| | - Yoshihiro Tomioka
- grid.410804.90000000123090000Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498 Japan
| | - Hisashi Imahase
- grid.410804.90000000123090000Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498 Japan
| | - Shin Nunomiya
- grid.410804.90000000123090000Division of Intensive Care, Department of Anesthesiology and Intensive Care Medicine, Jichi Medical University School of Medicine, 3311-1, Yakushiji, Shimotsuke, Tochigi, 329-0498 Japan
| |
Collapse
|
166
|
Li X, Yuan F, Zhou L. Organ Crosstalk in Acute Kidney Injury: Evidence and Mechanisms. J Clin Med 2022; 11:jcm11226637. [PMID: 36431113 PMCID: PMC9693488 DOI: 10.3390/jcm11226637] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
Acute kidney injury (AKI) is becoming a public health problem worldwide. AKI is usually considered a complication of lung, heart, liver, gut, and brain disease, but recent findings have supported that injured kidney can also cause dysfunction of other organs, suggesting organ crosstalk existence in AKI. However, the organ crosstalk in AKI and the underlying mechanisms have not been broadly reviewed or fully investigated. In this review, we summarize recent clinical and laboratory findings of organ crosstalk in AKI and highlight the related molecular mechanisms. Moreover, their crosstalk involves inflammatory and immune responses, hemodynamic change, fluid homeostasis, hormone secretion, nerve reflex regulation, uremic toxin, and oxidative stress. Our review provides important clues for the intervention for AKI and investigates important therapeutic potential from a new perspective.
Collapse
|
167
|
Al-Hakeim HK, Al-Kaabi QJ, Maes M. High mobility group box 1 and Dickkopf-related protein 1 as biomarkers of glucose toxicity, atherogenicity, and lower β cell function in patients with type 2 diabetes mellitus. Growth Factors 2022; 40:240-253. [PMID: 36165005 DOI: 10.1080/08977194.2022.2126317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with increased atherogenicity and inflammatory responses, which may be related to high mobility group box 1 (HMGB1) and Dickkopf-related protein 1 (DKK1). The role of HMGB1 and DKK1 in T2DM is examined in association with lipid and insulin profiles. Serum HMGB1 and DKK1 were measured in T2DM with and without hypertension and compared with controls. The results showed that HMGB1 and DKK1 are higher in T2DM irrespective of hypertension. A large part of the variance in the β-cell index and glucose toxicity was explained by the combined effects of HMGB1 and DKK1. In conclusion, both HMGB1 and DKK1 may contribute to increased atherogenicity in T2DM. Moreover, both biomarkers may cause more deficits in β-cell function and increase glucose toxicity leading to the development of more inflammation and diabetic complications. HMGB1 and the Wnt pathways are other drug targets in treating T2DM.
Collapse
Affiliation(s)
| | | | - Michael Maes
- Faculty of Medicine, Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- School of Medicine, IMPACT Strategic Research Centre, Deakin University, Geelong, Australia
| |
Collapse
|
168
|
Mao D, Zheng Y, Xu F, Han X, Zhao H. HMGB1 in nervous system diseases: A common biomarker and potential therapeutic target. Front Neurol 2022; 13:1029891. [PMID: 36388178 PMCID: PMC9659947 DOI: 10.3389/fneur.2022.1029891] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
High-mobility group box-1 (HMGB1) is a nuclear protein associated with early inflammatory changes upon extracellular secretion expressed in various cells, including neurons and microglia. With the progress of research, neuroinflammation is believed to be involved in the pathogenesis of neurological diseases such as Parkinson's, epilepsy, and autism. As a key promoter of neuroinflammation, HMGB1 is thought to be involved in the pathogenesis of Parkinson's disease, stroke, traumatic brain injury, epilepsy, autism, depression, multiple sclerosis, and amyotrophic lateral sclerosis. However, in the clinic, HMGB1 has not been described as a biomarker for the above-mentioned diseases. However, the current preclinical research results show that HMGB1 antagonists have positive significance in the treatment of Parkinson's disease, stroke, traumatic brain injury, epilepsy, and other diseases. This review discusses the possible mechanisms by which HMGB1 mediates Parkinson's disease, stroke, traumatic brain injury, epilepsy, autism, depression, multiple sclerosis, amyotrophic lateral sclerosis, and the potential of HMGB1 as a biomarker for these diseases. Future research needs to further explore the underlying molecular mechanisms and clinical translation.
Collapse
Affiliation(s)
- Di Mao
- Department of Pediatrics, Jinan Central Hospital, Shandong University, Jinan, China
| | - Yuan Zheng
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fenfen Xu
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiao Han
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- *Correspondence: Hongyang Zhao
| |
Collapse
|
169
|
Gao S, Zhao LH, Tian X, Kong MW, He JQ, Ge XC, Liu XY, Feng ZB, Gao Y. Characteristics of Gut Microbiota in Female Patients with Diabetic Microvascular Complications. J Diabetes Res 2022; 2022:2980228. [PMID: 36339086 PMCID: PMC9633191 DOI: 10.1155/2022/2980228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To explore the characteristics and analyze the gut microbiota in female patients with diabetic microvascular complications (DMC). METHODS Thirty-seven female patients with type 2 diabetes mellitus (T2DM) were included in the study. These patients were divided into DM group with microvascular complications (T2DM-MC, n = 17) and no microvascular complications group (T2DM-0, n = 20). Patients in the microvascular group presented with the involvement of at least one of the following: kidney, retinal, or peripheral nerves. Using real-time fluorescence quantitative polymerase chain reaction, fecal samples from the two groups were tested for Bacteroides, Prevotella, Bifidobacterium spp, Lactobacillus, Faecalibacterium prausnitzii, Enterococcus spp, Eubacterium rectale, Veillonellaceae, Clostridium leptum, and Roseburia inulinivorans. Levels of fasting and 2 h postprandial blood glucose, glycosylated hemoglobin (HbA1c), lipids, and creatinine were determined to explore the correlation between gut microbiota and blood sugar. Mann-Whitney U test was used to analyze the differences between the two groups. Spearman correlation analysis was used to determine the correlation between gut microbiota and blood glucose. Multifactor logistic regression was used to analyze the risk factors for DMC. RESULTS The HbA1c levels in the T2DM-MC group were higher than those in the T2DM-0 group. The abundances of Bacteroides and Enterococcus spp in the T2DM-MC group were higher than that in the T2DM-0 group. The abundances of Bacteroides and Enterococcus spp in the T2DM-MC group were lower than that in the T2DM-0 group. Spearman's correlation analysis showed that Bacteroides, Prevotella, Lactobacillus, C. leptum, and R. inulinivorans were related to the levels of HbA1c or blood glucose (p < 0.05). Logistic regression analysis showed that after adjusting for confounding factors such as age, body mass index, family history, HbA1c, hypertension, dyslipidemia, and creatinine, Bacteroides remained an independent risk factor in female patients with DMC. CONCLUSION Gut microbiota is related to blood glucose levels. Female patients with DMC experience gut microbiota disorders. The abundances of Bacteroidesare related to DMC, and the abundances of intestinal flora may affect the blood sugar levels of the body.
Collapse
Affiliation(s)
- Shan Gao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Li-hua Zhao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Xue Tian
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Mo-wei Kong
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Jian-qiu He
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Xiao-chun Ge
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Xiao-yan Liu
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Zeng-bin Feng
- Department of Cardiac Surgery, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| | - Yu Gao
- Department of Endocrinology, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
170
|
Singh H, Agrawal DK. Therapeutic Potential of Targeting the HMGB1/RAGE Axis in Inflammatory Diseases. Molecules 2022; 27:7311. [PMID: 36364135 PMCID: PMC9658169 DOI: 10.3390/molecules27217311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 10/18/2023] Open
Abstract
High mobility group box 1 (HMGB1) is a nuclear protein that can interact with a receptor for advanced glycation end-products (RAGE; a multi-ligand immunoglobulin receptor) and mediates the inflammatory pathways that lead to various pathological conditions, such as cancer, diabetes, neurodegenerative disorders, and cardiovascular diseases. Blocking the HMGB1/RAGE axis could be an effective therapeutic approach to treat these inflammatory conditions, which has been successfully employed by various research groups recently. In this article, we critically review the structural insights and functional mechanism of HMGB1 and RAGE to mediate inflammatory processes. More importantly, current perspectives of recent therapeutic approaches utilized to inhibit the communication between HMGB1 and RAGE using small molecules are also summarized along with their clinical progression to treat various inflammatory disorders. Encouraging results are reported by investigators focusing on HMGB1/RAGE signaling leading to the identification of compounds that could be useful in further clinical studies. We highlight the current gaps in our knowledge and future directions for the therapeutic potential of targeting key molecules in HMGB1/RAGE signaling in the pathophysiology of inflammatory diseases.
Collapse
Affiliation(s)
| | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
171
|
Glycyrrhizin through liquorice intake modulates ACE2 and HMGB1 levels-A pilot study in healthy individuals with implications for COVID-19 and ARDS. PLoS One 2022; 17:e0275181. [PMID: 36251689 PMCID: PMC9576069 DOI: 10.1371/journal.pone.0275181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022] Open
Abstract
Background Glycyrrhizin, an active component of liquorice root extract, exhibits antiviral and immunomodulatory properties by direct inhibition of the pro-inflammatory alarmin HMGB1 (High-mobility group box 1). Objective The aim of this study was to explore the role of liquorice intake on the viral entry receptor ACE2 (angiotensin-converting enzyme 2) and the immunoregulatory HMGB1 in healthy individuals and to explore HMGB1 expression in coronavirus disease 2019 (COVID-19) or non-COVID-19 in ARDS (acute respiratory distress syndrome patients). Material and methods This study enrolled 43 individuals, including hospitalised patients with i) acute respiratory distress syndrome (ARDS) due to COVID-19 (n = 7) or other underlying causes (n = 12), ii) mild COVID-19 (n = 4) and iii) healthy volunteers (n = 20). Healthy individuals took 50 g of liquorice (containing 3% liquorice root extract) daily for 7 days, while blood samples were collected at baseline and on day 3 and 7. Changes in ACE2 and HMGB1 levels were determined by Western blot analysis and enzyme-linked immunosorbent assay, respectively. Additionally, HMGB1 levels were measured in hospitalised COVID-19 patients with mild disease or COVID-19 associated acute respiratory distress syndrome (ARDS) and compared with a non-COVID-19-ARDS group. Results Liquorice intake significantly reduced after 7 days both cellular membranous ACE2 expression (-51% compared to baseline levels, p = 0.008) and plasma HMGB1 levels (-17% compared to baseline levels, p<0.001) in healthy individuals. Half of the individuals had a reduction in ACE2 levels of at least 30%. HMGB1 levels in patients with mild COVID-19 and ARDS patients with and without COVID-19 were significantly higher compared with those of healthy individuals (+317%, p = 0.002), but they were not different between COVID-19 and non-COVID-19 ARDS. Conclusions Liquorice intake modulates ACE2 and HMGB1 levels in healthy individuals. HMGB1 is enhanced in mild COVID-19 and in ARDS with and without COVID-19, warranting evaluation of HMGB1 as a potential treatment target and glycyrrhizin, which is an active component of liquorice root extract, as a potential treatment in COVID-19 and non-COVID-19 respiratory disease.
Collapse
|
172
|
Tu T, Alba MM, Datta AA, Hong H, Hua B, Jia Y, Khan J, Nguyen P, Niu X, Pammidimukkala P, Slarve I, Tang Q, Xu C, Zhou Y, Stiles BL. Hepatic macrophage mediated immune response in liver steatosis driven carcinogenesis. Front Oncol 2022; 12:958696. [PMID: 36276076 PMCID: PMC9581256 DOI: 10.3389/fonc.2022.958696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/17/2022] [Indexed: 12/02/2022] Open
Abstract
Obesity confers an independent risk for carcinogenesis. Classically viewed as a genetic disease, owing to the discovery of tumor suppressors and oncogenes, genetic events alone are not sufficient to explain the progression and development of cancers. Tumor development is often associated with metabolic and immunological changes. In particular, obesity is found to significantly increase the mortality rate of liver cancer. As its role is not defined, a fundamental question is whether and how metabolic changes drive the development of cancer. In this review, we will dissect the current literature demonstrating that liver lipid dysfunction is a critical component driving the progression of cancer. We will discuss the involvement of inflammation in lipid dysfunction driven liver cancer development with a focus on the involvement of liver macrophages. We will first discuss the association of steatosis with liver cancer. This will be followed with a literature summary demonstrating the importance of inflammation and particularly macrophages in the progression of liver steatosis and highlighting the evidence that macrophages and macrophage produced inflammatory mediators are critical for liver cancer development. We will then discuss the specific inflammatory mediators and their roles in steatosis driven liver cancer development. Finally, we will summarize the molecular pattern (PAMP and DAMP) as well as lipid particle signals that are involved in the activation, infiltration and reprogramming of liver macrophages. We will also discuss some of the therapies that may interfere with lipid metabolism and also affect liver cancer development.
Collapse
Affiliation(s)
- Taojian Tu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Mario M. Alba
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Aditi A. Datta
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Handan Hong
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Brittney Hua
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yunyi Jia
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Jared Khan
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Phillip Nguyen
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Xiatoeng Niu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Pranav Pammidimukkala
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Ielyzaveta Slarve
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Qi Tang
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Chenxi Xu
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Yiren Zhou
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Bangyan L. Stiles
- Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- *Correspondence: Bangyan L. Stiles,
| |
Collapse
|
173
|
Gao S, Liu K, Ku W, Wang D, Wake H, Qiao H, Teshigawara K, Nishibori M. Histamine induced high mobility group box-1 release from vascular endothelial cells through H1 receptor. Front Immunol 2022; 13:930683. [PMID: 36275732 PMCID: PMC9583674 DOI: 10.3389/fimmu.2022.930683] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
Background Systemic allergic reaction is characterized by vasodilation and vascular leakage, which causes a rapid, precipitous and sustained decrease in arterial blood pressure with a concomitant decrease of cardiac output. Histamine is a major mediator released by mast cells in allergic inflammation and response. It causes a cascade of inflammation and strongly increases vascular permeability within minutes through its four G-protein-coupled receptors (GPCRs) on endothelial cells. High mobility group box-1 (HMGB1), a nonhistone chromatin-binding nuclear protein, can be actively secreted into the extracellular space by endothelial cells. HMGB1 has been reported to exert pro-inflammatory effects on endothelial cells and to increase vascular endothelial permeability. However, the relationship between histamine and HMGB1-mediated signaling in vascular endothelial cells and the role of HMGB1 in anaphylactic-induced hypotension have never been studied. Methods and results EA.hy 926 cells were treated with different concentrations of histamine for the indicated periods. The results showed that histamine induced HMGB1 translocation and release from the endothelial cells in a concentration- and time-dependent manner. These effects of histamine were concentration-dependently inhibited by d-chlorpheniramine, a specific H1 receptor antagonist, but not by H2 or H3/4 receptor antagonists. Moreover, an H1-specific agonist, 2-pyridylethylamine, mimicked the effects of histamine, whereas an H2-receptor agonist, 4-methylhistamine, did not. Adrenaline and noradrenaline, which are commonly used in the clinical treatment of anaphylactic shock, also inhibited the histamine-induced HMGB1 translocation in endothelial cells. We therefore established a rat model of allergic shock by i.v. injection of compound 48/80, a potent histamine-releasing agent. The plasma HMGB1 levels in compound 48/80-injected rats were higher than those in controls. Moreover, the treatment with anti-HMGB1 antibody successfully facilitated the recovery from compound 48/80-induced hypotension. Conclusion Histamine induces HMGB1 release from vascular endothelial cells solely through H1 receptor stimulation. Anti-HMGB1 therapy may provide a novel treatment for life-threatening systemic anaphylaxis.
Collapse
Affiliation(s)
- Shangze Gao
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Keyue Liu
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Wenhan Ku
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Handong Qiao
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kiyoshi Teshigawara
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- *Correspondence: Masahiro Nishibori,
| |
Collapse
|
174
|
Mohanty SK, Donnelly B, Temple H, Mowery S, Poling H, Meller J, Malik A, McNeal M, Tiao G. Rhesus rotavirus receptor-binding site affects high mobility group box 1 release, altering the pathogenesis of experimental biliary atresia. Hepatol Commun 2022; 6:2702-2714. [PMID: 35866580 PMCID: PMC9512450 DOI: 10.1002/hep4.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Biliary atresia (BA) is a neonatal inflammatory cholangiopathy that requires surgical intervention by Kasai portoenterostomy to restore biliary drainage. Even with successful portoenterostomy, most patients diagnosed with BA progress to end-stage liver disease, necessitating a liver transplantation for survival. In the murine model of BA, rhesus rotavirus (RRV) infection of neonatal mice induces an inflammatory obstructive cholangiopathy that parallels human BA. The model is triggered by RRV viral protein (VP)4 binding to cholangiocyte cell-surface proteins. High mobility group box 1 (HMGB1) protein is a danger-associated molecular pattern that when released extracellularly moderates innate and adaptive immune response. In this study, we investigated how mutations in three RRV VP4-binding sites, RRVVP4-K187R (sialic acid-binding site), RRVVP4-D308A (integrin α2β1-binding site), and RRVVP4-R446G (heat shock cognate 70 [Hsc70]-binding site), affects infection, HMGB1 release, and the murine model of BA. Newborn pups injected with RRVVP4-K187R and RRVVP4-D308A developed an obstruction within the extrahepatic bile duct similar to wild-type RRV, while those infected with RRVVP4-R446G remained patent. Infection with RRVVP4-R446G induced a lower level of HMGB1 release from cholangiocytes and in the serum of infected pups. RRV infection of HeLa cells lacking Hsc70 resulted in no HMGB1 release, while transfection with wild-type Hsc70 into HeLa Hsc70-deficient cells reestablished HMGB1 release, indicating a mechanistic role for Hsc70 in its release. Conclusion: Binding to Hsc70 contributes to HMGB1 release; therefore, Hsc70 potentially serves as a therapeutic target for BA.
Collapse
Affiliation(s)
- Sujit K. Mohanty
- Department of Pediatric and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Bryan Donnelly
- Department of Pediatric and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Haley Temple
- Department of Pediatric and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Sarah Mowery
- Department of Pediatric and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Holly M. Poling
- Department of Pediatric and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Jaroslaw Meller
- Department of Environmental and Public Health SciencesUniversity of CincinnatiCincinnatiOhioUSA
- Division of Biomedical InformaticsCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Astha Malik
- Division of Gastroenterology, Hepatology, and NutritionCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Monica McNeal
- Department of PediatricsUniversity of Cincinnati College of MedicineCincinnatiOhioUSA
- Division of Infectious DiseasesCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| | - Greg Tiao
- Department of Pediatric and Thoracic SurgeryCincinnati Children's Hospital Medical CenterCincinnatiOhioUSA
| |
Collapse
|
175
|
Liu J, Liu Y, Wang Y, Kang R, Tang D. HMGB1 is a mediator of cuproptosis-related sterile inflammation. Front Cell Dev Biol 2022; 10:996307. [PMID: 36211458 PMCID: PMC9534480 DOI: 10.3389/fcell.2022.996307] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023] Open
Abstract
Cuproptosis is a recently recognized modality of cell death driven by intracellular copper-dependent mitochondrial stress. However, the mediators of the sterile inflammatory response to cuproptotic death are undetermined. Here, we report that high-mobility group box 1 (HMGB1), a damage-associated molecular pattern, is released by cuproptotic cells to initiate inflammation. Mechanically, copper accumulation-induced adenosine triphosphate (ATP) depletion activates AMP-activated protein kinase (AMPK) to promote HMGB1 phosphorylation, resulting in increased extracellular release. In contrast, genetic (using RNAi) or pharmacologic (using dorsomorphin) inhibition of AMPK activation limits cuproptosis and HMGB1 release. Functionally, the ability of HMGB1-deficient cuproptotic cells to promote advanced glycosylation end product-specific receptor (AGER, also known as RAGE)-dependent inflammatory cytokine production is greatly reduced. Thus, HMGB1 is a key immune mediator of cuproptosis-initiated sterile inflammation.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- *Correspondence: Jiao Liu, ; Daolin Tang,
| | - Yang Liu
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuan Wang
- DAMP Laboratory, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Jiao Liu, ; Daolin Tang,
| |
Collapse
|
176
|
Kim GO, Kim N, Song GY, Bae JS. Inhibitory Activities of Rare Ginsenoside Rg4 on Cecal Ligation and Puncture-Induced Sepsis. Int J Mol Sci 2022; 23:ijms231810836. [PMID: 36142743 PMCID: PMC9505814 DOI: 10.3390/ijms231810836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis is an uncontrolled response to inflammatory infection and is associated with high levels of mortality and morbidity. Rg4 is a rare ginsenoside mainly found in the leaves of Panax ginseng C. A. Meyer and the major protopanaxatriol-type ginsenoside of black ginseng. In this study, we determined whether Rg4 affects cecal ligation and puncture (CLP)-induced sepsis. Animals were separated into the following six groups: control group, CLP-operated group, CLP plus maslinic acid (MA), and CLP plus Rg4 (5, 10, or 15 mg/kg). Survival rate, body weight changes, inflammatory cytokines, and histological analyses were assessed. Human endothelial cells were activated with the high-mobility group box 1 (HMGB1) protein and Rg4. Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Enzyme-linked immunosorbent assay (ELISA) and Western blot analysis were used to assess inflammation and gene expression, respectively. After CLP surgery, the Rg4-administered group exhibited a higher survival rate and body weight compared with the untreated control group. Rg4 treatment reduced cytokine levels, including tumor necrosis factor (TNF)-α and interleukin (IL)-1β, as well as nitric oxide (NO) levels and renal inflammation. After Rg4 treatment of HMGB1-activated cells, the expressions of toll-like receptor (TLR) 4 and TNF-α were decreased, and the activation of phosphoinositide 3-kinase (PI3K)/AKT signaling increased cell viability. In summary, Rg4 inhibited inflammation and exhibited a protective effect against CLP-induced sepsis, thereby reinforcing cell survival against septic responses.
Collapse
Affiliation(s)
- Go Oun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
| | - Nayeon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejon 34134, Korea
- Correspondence: (G.Y.S.); (J.-S.B.); Tel.: +82-42-821-5926 (G.Y.S.); +82-53-950-8570 (J.-S.B.); Fax: +82-42-823-6566 (G.Y.S.); +82-53-950-8557 (J.-S.B.)
| | - Jong-Sup Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea
- Correspondence: (G.Y.S.); (J.-S.B.); Tel.: +82-42-821-5926 (G.Y.S.); +82-53-950-8570 (J.-S.B.); Fax: +82-42-823-6566 (G.Y.S.); +82-53-950-8557 (J.-S.B.)
| |
Collapse
|
177
|
Yang R, Zhang X. A potential new pathway for heparin treatment of sepsis-induced lung injury: inhibition of pulmonary endothelial cell pyroptosis by blocking hMGB1-LPS-induced caspase-11 activation. Front Cell Infect Microbiol 2022; 12:984835. [PMID: 36189354 PMCID: PMC9519888 DOI: 10.3389/fcimb.2022.984835] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Sepsis is a significant cause of mortality in critically ill patients. Acute lung injury (ALI) is a leading cause of death in these patients. Endothelial cells exposed to the bacterial endotoxin lipopolysaccharide (LPS) can progress into pyroptosis, a programmed lysis of cell death triggered by inflammatory caspases. It is characterized by lytic cell death induced by the binding of intracellular LPS to caspases 4/5 in human cells and caspase-11 in mouse cells. In mice,caspase-11-dependent pyroptosis plays an important role in endotoxemia. HMGB1 released into the plasma binds to LPS and is internalized into lysosomes in endothelial cells via the advanced glycation end product receptor. In the acidic lysosomal environment, HMGB1 permeates the phospholipid bilayer, which is followed by the leakage of LPS into the cytoplasm and the activation of caspase-11. Heparin is an anticoagulant widely applied in the treatment of thrombotic disease. Previous studies have found that heparin could block caspase-11-dependent inflammatory reactions, decrease sepsis-related mortality, and reduce ALI, independent of its anticoagulant activity. Heparin or modified heparin with no anticoagulant property could inhibit the alarmin HMGB1-LPS interactions, minimize LPS entry into the cytoplasm, and thus blocking caspase-11 activation. Heparin has been studied in septic ALI, but the regulatory mechanism of pulmonary endothelial cell pyroptosis is still unclear. In this paper, we discuss the potential novel role of heparin in the treatment of septic ALI from the unique mechanism of pulmonary endothelial cell pyroptosis.
Collapse
|
178
|
Yang R, Gao Y, Li H, Huang W, Tu D, Yang M, Liu X, Hong JS, Gao HM. Posttranslational S-nitrosylation modification regulates HMGB1 secretion and promotes its proinflammatory and neurodegenerative effects. Cell Rep 2022; 40:111330. [PMID: 36103834 PMCID: PMC9531316 DOI: 10.1016/j.celrep.2022.111330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/14/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Nuclear protein high-mobility group box 1 (HMGB1) can be actively secreted by activated immune cells and functions as a proinflammatory cytokine. Regulation of HMGB1 secretion is critical for treatment of HMGB1-mediated inflammation and related diseases. This study demonstrates that S-nitrosylation (SNO; the covalent binding of nitric oxide [NO] to cysteine thiols) by inducible nitric oxide synthase (iNOS)-derived NO at Cys106 is essential and sufficient for inflammation-elicited HMGB1 secretion. iNOS deletion or inhibition or Cys106Ser mutation prevents lipopolysaccharide (LPS)- and/or poly(I:C)-elicited HMGB1 secretion. NO donors induce SNO of HMGB1 and reproduce inflammogen-triggered HMGB1 secretion. SNO of HMGB1 promotes its proinflammatory and neurodegenerative effects. Intranigral HMGB1 injection induces chronic microglial activation, dopaminergic neurodegeneration, and locomotor deficits, the key features of Parkinson’s disease (PD), in wild-type, but not Mac1 (CD11b/CD18)-deficient, mice. This study indicates pivotal roles for SNO modification in HMGB1 secretion and HMGB1-Mac1 interaction for inflammatory neurodegeneration, identifying a mechanistic basis for PD development. Regulation of HMGB1 secretion is critical for the treatment of HMGB1-mediated inflammation and related diseases. Yang et al. demonstrate that posttranslational S-nitrosylation modification (the covalent binding of nitric oxide to protein cysteine thiols) regulates HMGB1 secretion and promotes its proinflammatory and neurodegenerative effects, thereby contributing to Parkinson’s disease pathogenesis.
Collapse
Affiliation(s)
- Ru Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Yun Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu Province 210023, China; Laboratory of Neurobiology, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Hui Li
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Wei Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Dezhen Tu
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu Province 210023, China; Laboratory of Neurobiology, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Mengnan Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Xingqian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu Province 210023, China
| | - Jau-Shyong Hong
- Laboratory of Neurobiology, National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Hui-Ming Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
179
|
Xia J, Wan Y, Wu JJ, Yang Y, Xu JF, Zhang L, Liu D, Chen L, Tang F, Ao H, Peng C. Therapeutic potential of dietary flavonoid hyperoside against non-communicable diseases: targeting underlying properties of diseases. Crit Rev Food Sci Nutr 2022; 64:1340-1370. [PMID: 36073729 DOI: 10.1080/10408398.2022.2115457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Non-communicable diseases (NCDs) are a global epidemic with diverse pathogenesis. Among them, oxidative stress and inflammation are the most fundamental co-morbid features. Therefore, multi-targets and multi-pathways therapies with significant anti-oxidant and anti-inflammatory activities are potential effective measures for preventing and treating NCDs. The flavonol glycoside compound hyperoside (Hyp) is widely found in a variety of fruits, vegetables, beverages, and medicinal plants and has various health benefits, especially excellent anti-oxidant and anti-inflammatory properties targeting nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor-κB (NF-κB) signaling pathways. In this review, we summarize the pathogenesis associated with oxidative stress and inflammation in NCDs and the biological activity and therapeutic potential of Hyp. Our findings reveal that the anti-oxidant and anti-inflammatory activities regulated by Hyp are associated with numerous biological mechanisms, including positive regulation of mitochondrial function, apoptosis, autophagy, and higher-level biological damage activities. Hyp is thought to be beneficial against organ injuries, cancer, depression, diabetes, and osteoporosis, and is a potent anti-NCDs agent. Additionally, the sources, bioavailability, pharmacy, and safety of Hyp have been established, highlighting the potential to develop Hyp into dietary supplements and nutraceuticals.
Collapse
Affiliation(s)
- Jia Xia
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin-Feng Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
180
|
Lin M, Stewart MT, Zefi S, Mateti KV, Gauthier A, Sharma B, Martinez LR, Ashby CR, Mantell LL. Dual effects of supplemental oxygen on pulmonary infection, inflammatory lung injury, and neuromodulation in aging and COVID-19. Free Radic Biol Med 2022; 190:247-263. [PMID: 35964839 PMCID: PMC9367207 DOI: 10.1016/j.freeradbiomed.2022.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022]
Abstract
Clinical studies have shown a significant positive correlation between age and the likelihood of being infected with SARS-CoV-2. This increased susceptibility is positively correlated with chronic inflammation and compromised neurocognitive functions. Postmortem analyses suggest that acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), with systemic and lung hyperinflammation, can cause significant morbidity and mortality in COVID-19 patients. Supraphysiological supplemental oxygen, also known as hyperoxia, is commonly used to treat decreased blood oxygen saturation in COVID-19 patients. However, prolonged exposure to hyperoxia alone can cause oxygen toxicity, due to an excessive increase in the levels of reactive oxygen species (ROS), which can overwhelm the cellular antioxidant capacity. Subsequently, this causes oxidative cellular damage and increased levels of aging biomarkers, such as telomere shortening and inflammaging. The oxidative stress in the lungs and brain can compromise innate immunity, resulting in an increased susceptibility to secondary lung infections, impaired neurocognitive functions, and dysregulated hyperinflammation, which can lead to ALI/ARDS, and even death. Studies indicate that lung inflammation is regulated by the central nervous system, notably, the cholinergic anti-inflammatory pathway (CAIP), which is innervated by the vagus nerve and α7 nicotinic acetylcholine receptors (α7nAChRs) on lung cells, particularly lung macrophages. The activation of α7nAChRs attenuates oxygen toxicity in the lungs and improves clinical outcomes by restoring hyperoxia-compromised innate immunity. Mechanistically, α7nAChR agonist (e.g., GAT 107 and GTS-21) can regulate redox signaling by 1) activating Nrf2, a master regulator of the antioxidant response and a cytoprotective defense system, which can decrease cellular damage caused by ROS and 2) inhibiting the activation of the NF-κB-mediated inflammatory response. Notably, GTS-21 has been shown to be safe and it improves neurocognitive functions in humans. Therefore, targeting the α7nAChR may represent a viable therapeutic approach for attenuating dysregulated hyperinflammation-mediated ARDS and sepsis in COVID-19 patients receiving prolonged oxygen therapy.
Collapse
Affiliation(s)
- Mosi Lin
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Maleka T Stewart
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Sidorela Zefi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Kranthi Venkat Mateti
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Alex Gauthier
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Bharti Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Lauren R Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA
| | - Lin L Mantell
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, USA; Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
181
|
Nishibori M. Novel aspects of sepsis pathophysiology: NETs, plasma glycoproteins, endotheliopathy and COVID-19. J Pharmacol Sci 2022; 150:9-20. [PMID: 35926948 PMCID: PMC9197787 DOI: 10.1016/j.jphs.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, sepsis was newly defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis remains one of the crucial medical problems to be solved worldwide. Although the world health organization has made sepsis a global health priority, there remain no specific and effective therapy for sepsis so far. Indeed, over the previous decades almost all attempts to develop novel drugs have failed. This may be partly ascribable to the multifactorial complexity of the septic cascade and the resultant difficulties of identifying drug targets. In addition, there might still be missing links among dysregulated host responses in vital organs. In this review article, recent advances in understanding of the complex pathophysiology of sepsis are summarized, with a focus on neutrophil extracellular traps (NETs), the significant role of NETs in thrombosis/embolism, and the functional roles of plasma proteins, histidine-rich glycoprotein (HRG) and inter-alpha-inhibitor proteins (IAIPs). The specific plasma proteins that are markedly decreased in the acute phase of sepsis may play important roles in the regulation of blood cells, vascular endothelial cells and coagulation. The accumulating evidence may provide us with insights into a novel aspect of the pathophysiology of sepsis and septic ARDS, including that in COVID-19.
Collapse
Affiliation(s)
- M Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
182
|
Yamaguchi M, Tashiro H, Kuroda S, Okimoto S, Kobayashi T, Hinoi T, Ohdan H. Downregulation of thrombomodulin contributes to ischemia-reperfusion injury in mice with steatotic liver. Hepatol Res 2022; 52:762-772. [PMID: 35714128 DOI: 10.1111/hepr.13802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 02/08/2023]
Abstract
AIM Ischemia-reperfusion (IR) injury is one of the most critical complications commonly associated with liver surgery, including liver transplantation. Steatotic livers are particularly vulnerable to IR injury. However, the underlying mechanisms of this increased susceptibility have not fully been understood. In the present study, we used heterogeneous thrombomodulin (TM)-knockout (KO) (TM+/- ) mice, which express about 50% functional activity of TM as compared with wild type, to investigate whether dysregulation of TM enhances IR injury in steatotic livers. METHODS Steatotic livers were induced using choline-deficient diets (CDD) in mice. The biological activity of TM was assessed using the productivity of protein C. Susceptibility to IR injury was compared between steatotic livers and non-steatotic livers and also assessed in TM-KO mice. We investigated whether recombinant TM (rTM) and the lectin-like domain of TM (rTM-D1) ameliorated IR injury in steatotic livers. RESULTS Protein C activity was significantly decreased to less than 20% in CDD-fed mice compared with mice with non-steatotic livers. Steatotic livers showed exaggerated IR injury compared with non-steatotic livers. Recombinant TM (rTM) and the lectin-like domain of TM (rTM-D1), which has anti-inflammatory effects, ameliorated IR injury in steatotic livers. TM+/- mice showed increased susceptibility to IR injury, and rTM ameliorated the increased IR injury in TM+/- mice. CONCLUSION We conclude that downregulation of TM increases susceptibility to hepatic IR injury in steatotic livers and that rTM ameliorates hepatic IR injury through anti-inflammatory action.
Collapse
Affiliation(s)
- Megumi Yamaguchi
- Department of Surgery, Kure Medical Center, National Hospital Organization, Hiroshima, Japan.,Department of Gastroenterological and Transplant Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Hirotaka Tashiro
- Department of Surgery, Kure Medical Center, National Hospital Organization, Hiroshima, Japan
| | - Shintaro Kuroda
- Department of Gastroenterological and Transplant Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Sho Okimoto
- Department of Gastroenterological and Transplant Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Tsuyoshi Kobayashi
- Department of Gastroenterological and Transplant Surgery, Hiroshima University Hospital, Hiroshima, Japan
| | - Takao Hinoi
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima, Japan
| | - Hideki Ohdan
- Department of Gastroenterological and Transplant Surgery, Hiroshima University Hospital, Hiroshima, Japan
| |
Collapse
|
183
|
Aulin C, Larsson S, Vogl T, Roth J, Åkesson A, Swärd P, Heinbäck R, Erlandsson Harris H, Struglics A. The alarmins high mobility group box protein 1 and S100A8/A9 display different inflammatory profiles after acute knee injury. Osteoarthritis Cartilage 2022; 30:1198-1209. [PMID: 35809846 DOI: 10.1016/j.joca.2022.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/13/2022] [Accepted: 06/26/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare the concentrations of high mobility group box 1 protein (HMGB1) and S100A8/A9 in synovial fluid between patients with knee injuries and osteoarthritis (OA), and knee healthy subjects. To investigate associations of alarmin levels with different joint injuries and with biomarkers of inflammation, Wnt signaling, complement system, bone and cartilage degradation. METHODS HMGB1 and S100A8/A9 were measured in synovial fluid by immunoassays in patients with knee injuries, with OA and from knee healthy subjects, and were related to time from injury and with biomarkers obtained from previous studies. Hierarchical cluster and enrichment analyses of biomarkers associated to HMGB1 and S100A8/A9 were performed. RESULTS The synovial fluid HMGB1 and S100A8/A9 concentrations were increased early after knee injury; S100A8/A9 levels were negatively associated to time after injury and was lower in the old compared to recent injury group, while HMGB1 was not associated to time after injury. The S100A8/A9 levels were also increased in OA. The initial inflammatory response was similar between the alarmins, and HMGB1 and S100A8/A9 shared 9 out of 20 enriched pathways. The alarmins displayed distinct response profiles, HMGB1 being associated to cartilage biomarkers while S100A8/A9 was associated to proinflammatory cytokines. CONCLUSIONS HMGB1 and S100A8/A9 are increased as an immediate response to knee trauma. While they share many features in inflammatory and immunoregulatory mechanisms, S100A8/A9 and HMGB1 are associated to different downstream responses, which may have impact on the OA progression after acute knee injuries.
Collapse
Affiliation(s)
- C Aulin
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, and Division of Rheumatology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| | - S Larsson
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden
| | - T Vogl
- University of Muenster, Institute of Immunology, Münster, Germany
| | - J Roth
- University of Muenster, Institute of Immunology, Münster, Germany
| | - A Åkesson
- Clinical Studies Sweden, Forum South, Skåne University Hospital, Lund, Sweden
| | - P Swärd
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden
| | - R Heinbäck
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, and Division of Rheumatology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - H Erlandsson Harris
- Center for Molecular Medicine, Department of Medicine Solna, Karolinska Institutet, and Division of Rheumatology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden; Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - A Struglics
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Lund, Sweden
| |
Collapse
|
184
|
Xiao H, Xu X, Du L, Li X, Zhao H, Wang Z, Zhao L, Yang Z, Zhang S, Yang Y, Wang C. Lycorine and organ protection: Review of its potential effects and molecular mechanisms. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154266. [PMID: 35752077 DOI: 10.1016/j.phymed.2022.154266] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Multiorgan dysfunction, especially sepsis-related multiorgan damage, remains a major cause of high mortality in the late stages of infection and a great clinical challenge. In recent years, natural drugs have received widespread attention because of their low cost, wide sources, high efficacy, low toxicity, and limited side effects. Lycorine, a natural compound extracted from Amaryllidaceae, exhibits multiple pharmacological activities, including in the regulation of autophagy and the induction of cancer cell apoptosis, and has anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor activities. However, studies on lycorine have mainly focused on its antitumor properties, and research on its use for organ protection, especially in sepsis-related organ injury, is relatively limited. PURPOSE To review and discuss the effects and mechanisms of lycorine in the treatment of multi-organ dysfunction, especially sepsis. METHODS Literature searches in electronic databases, such as Web of Science, Science Direct, PubMed, Google Scholar, and Scopus, were performed using 'Lycorine', 'Amaryllidaceae', 'Pharmacology', 'Pharmacokinetics', 'Anti-inflammation', 'Autophagy', 'Apoptosis', 'Anti-microbial and anti-parasitic', 'Antitumor', 'Organ protection', and 'Sepsis' as keywords, the correlated literature was extracted and conducted from the databases mentioned above. RESULTS By summarizing the progress made in existing research, we found that the general effects of lycorine involve the regulation of autophagy and the induction of cancer cell apoptosis, and anti-inflammatory, antifungal, antiviral, antimalarial, and antitumor effects; through these pathways, the compound can ameliorate organ damage. In addition, lycorine was found to have an important effect on organ damage in sepsis. CONCLUSION Lycorine is a promising natural organ protective agent. This review will provide a new theoretical basis for the treatment of organ protection, especially in sepsis.
Collapse
Affiliation(s)
- Haoxiang Xiao
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Luyang Du
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Xiyang Li
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Huadong Zhao
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, Wuhan, China
| | - Lin Zhao
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhi Yang
- Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Shaofei Zhang
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China.
| | - Changyu Wang
- Department of Cardiology, Xi'an No.3 Hospital, Faculty of Life Sciences and Medicine, Northwest University, Xi'an, China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi'an, China.
| |
Collapse
|
185
|
Gkouveris I, Hadaya D, Elzakra N, Soundia A, Bezouglaia O, Dry SM, Pirih F, Aghaloo T, Tetradis S. Inhibition of HMGB1/RAGE Signaling Reduces the Incidence of Medication-Related Osteonecrosis of the Jaw (MRONJ) in Mice. J Bone Miner Res 2022; 37:1775-1786. [PMID: 35711109 PMCID: PMC9474692 DOI: 10.1002/jbmr.4637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/07/2022] [Accepted: 06/04/2022] [Indexed: 11/06/2022]
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a severe complication of antiresorptive or antiangiogenic medications, used in the treatment of bone malignancy or osteoporosis. Bone necrosis, mainly represented by osteocytic death, is always present in MRONJ sites; however, the role of osteocyte death in MRONJ pathogenesis is unknown. High mobility group box 1 (HMGB1) is a non-histone nucleoprotein that in its acetylated form accumulates in the cytoplasm, whereas non-acetylated HMGB1 localizes in the nucleus. SIRT1 deacetylase regulates cellular localization of HMGB1. Interestingly, HMGB1 is released during cell necrosis and promotes inflammation through signaling cascades, including activation of the RAGE receptor. Here, we utilized a well-established mouse MRONJ model that utilizes ligature-induced experimental periodontitis (EP) and treatment with either vehicle or zolendronic acid (ZA). Initially, we evaluated HMGB1-SIRT1 expression in osteocytes at 1, 2, and 4 weeks of treatment. Significantly increased cytoplasmic and perilacunar HMGB1 expression was observed at EP sites of ZA versus vehicle (Veh) animals at all time points. SIRT1 colocalized with cytoplasmic HMGB1 and presented a statistically significant increased expression at the EP sites of ZA animals for all time points. RAGE expression was significantly higher in the submucosal tissues EP sites of ZA animals compared with those in vehicle group. To explore the significance of increased cytoplasmic and extracellular HMGB1 and increased RAGE expression in MRONJ pathogenesis, we used pharmacologic inhibitors of these molecules. Combined HMGB1/RAGE inhibition resulted in lower MRONJ incidence with statistically significant decrease in osteonecrotic areas and bone exposure versus non-inhibitor treated ZA animals. Together, our data point to the role of HMGB1 as a central alarmin, overexpressed at early phase of MRONJ pathogenesis during osteocytic death. Moreover, HMGB1-RAGE pathway may represent a new promising therapeutic target in patients at high risk of MRONJ. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Ioannis Gkouveris
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Danny Hadaya
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Naseim Elzakra
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Akrivoula Soundia
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Olga Bezouglaia
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Sarah M Dry
- UCLA Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Flavia Pirih
- Division of Constitutive and Regenerative Sciences, UCLA School of Dentistry, Los Angeles, CA, 90095, USA
| | - Tara Aghaloo
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Sotirios Tetradis
- Division of Diagnostic and Surgical Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| |
Collapse
|
186
|
Wu R, Liu J, Wang N, Zeng L, Yu C, Chen F, Wang H, Billiar TR, Jiang J, Tang D, Kang R. Aconitate decarboxylase 1 is a mediator of polymicrobial sepsis. Sci Transl Med 2022; 14:eabo2028. [PMID: 36001682 DOI: 10.1126/scitranslmed.abo2028] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Sepsis is a challenging clinical syndrome caused by a dysregulated host response to infection. Here, we identified an unexpected proseptic activity of aconitate decarboxylase 1 (ACOD1) in monocytes and macrophages. Previous studies have suggested that ACOD1, also known as immune-responsive gene 1, is an immunometabolic regulator that favors itaconate production to inhibit bacterial lipopolysaccharide-induced innate immunity. We used next-generation sequencing of lipopolysaccharide-activated THP1 cells to demonstrate that ACOD1 accumulation confers a robust proinflammation response by activating a cytokine storm, predominantly through the tumor necrosis factor signaling pathway. We further revealed that the phosphorylation of cyclin-dependent kinase 2 (CDK2) on threonine-160 mediates the activation of mitogen-activated protein kinase 8 through receptor for activated C kinase 1, leading to JUN-dependent transcription of ACOD1 in human and mouse macrophages or monocytes. Genetic deletion of CDK2 or ACOD1 in myeloid cells, or the administration of the CDK inhibitor dinaciclib, protected mice against polymicrobial sepsis and was associated with improved survival and decreased cytokine storm. The expression of the CDK2-ACOD1 axis also correlated with severity of illness in a cohort of 40 patients with bacterial sepsis. Thus, our findings provide evidence for a previously unrecognized function of ACOD1 in innate immunity and suggest it as a potential therapeutic target for the treatment of sepsis.
Collapse
Affiliation(s)
- Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA.,Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Nian Wang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ling Zeng
- Research Institute of Surgery, Daping Hospital, Chongqing 400042, China
| | - Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, North Shore University Hospital and the Feinsteins Institute for Medical Research, Manhasset, NY 11030, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Jianxin Jiang
- Research Institute of Surgery, Daping Hospital, Chongqing 400042, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
187
|
Nakamura T, Moriyama K, Kuriyama N, Hara Y, Komatsu S, Kawaji T, Kato Y, Ishihara T, Shintani A, Nishida O. A Larger Membrane Area Increases Cytokine Removal in Polymethyl Methacrylate Hemofilters. MEMBRANES 2022; 12:811. [PMID: 36005726 PMCID: PMC9413121 DOI: 10.3390/membranes12080811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Blood purification is performed to control cytokines in critically ill patients. The relationship between the clearance (CL) and the membrane area during adsorption is not clear. We hypothesized that the CL increases with the hydrophobic area when hydrophobic binding contributes to cytokine adsorption. We investigated the relationship between the hemofilter membrane area and the CL of the high mobility group box 1 protein (HMGB-1) and interleukin-6 (IL-6). We performed experimental hemofiltration in vitro using polymethyl methacrylate membranes CH-1.8W (1.8 m2) and CH-1.0N (1.0 m2), as well as polysulfone membrane NV-18X (1.8 m2). After adding 100 mg of HMGB1 or 10 μg of IL-6 into the test solution, experimental hemofiltration was conducted for 360 min in a closed-loop circulation system, and the same amount of HMGB1 and IL-6 was added after 180 min. With CH-1.8W and CH-1.0N, both HMGB-1 and IL-6 showed a rapid concentration decrease of more than 70% at 180 min and 360 min after the re-addition. At 15 min, the CL of HMGB-1 was CH-1.8W: 28.4 and CH-1.0N: 19.8, and that of IL-6 was CH-1.8W: 41.1 and CH-1.0N: 25.4. CH-1.8W and CH-1.0N removed HMGB1 and IL-6 by adsorption and CH-1.8W was superior in CL, which increased with a greater membrane area.
Collapse
Affiliation(s)
- Tomoyuki Nakamura
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Kazuhiro Moriyama
- Laboratory for Immune Response and Regulatory Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Naohide Kuriyama
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Yoshitaka Hara
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Satoshi Komatsu
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Takahiro Kawaji
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Yu Kato
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu 501-1193, Japan
| | - Ayumi Shintani
- Department of Medical Statistics, Graduate School of Medicine, Osaka Metropolitan University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Osamu Nishida
- Department of Anesthesiology and Critical Care Medicine, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| |
Collapse
|
188
|
Chang YM, Chou YT, Kan WC, Shiao CC. Sepsis and Acute Kidney Injury: A Review Focusing on the Bidirectional Interplay. Int J Mol Sci 2022; 23:ijms23169159. [PMID: 36012420 PMCID: PMC9408949 DOI: 10.3390/ijms23169159] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022] Open
Abstract
Although sepsis and acute kidney injury (AKI) have a bidirectional interplay, the pathophysiological mechanisms between AKI and sepsis are not clarified and worthy of a comprehensive and updated review. The primary pathophysiology of sepsis-associated AKI (SA-AKI) includes inflammatory cascade, macrovascular and microvascular dysfunction, cell cycle arrest, and apoptosis. The pathophysiology of sepsis following AKI contains fluid overload, hyperinflammatory state, immunosuppression, and infection associated with kidney replacement therapy and catheter cannulation. The preventive strategies for SA-AKI are non-specific, mainly focusing on infection control and preventing further kidney insults. On the other hand, the preventive strategies for sepsis following AKI might focus on decreasing some metabolites, cytokines, or molecules harmful to our immunity, supplementing vitamin D3 for its immunomodulation effect, and avoiding fluid overload and unnecessary catheter cannulation. To date, several limitations persistently prohibit the understanding of the bidirectional pathophysiologies. Conducting studies, such as the Kidney Precision Medicine Project, to investigate human kidney tissue and establishing parameters or scores better to determine the occurrence timing of sepsis and AKI and the definition of SA-AKI might be the prospects to unveil the mystery and improve the prognoses of AKI patients.
Collapse
Affiliation(s)
- Yu-Ming Chang
- Division of Nephrology, Department of Internal Medicine, Camillian Saint Mary’s Hospital Luodong, Yilan 26546, Taiwan
| | - Yu-Ting Chou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Wei-Chih Kan
- Department of Nephrology, Department of Internal Medicine, Chi Mei Medical Center, Tainan 71004, Taiwan
- Department of Biological Science and Technology, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan
- Correspondence: (W.-C.K.); (C.-C.S.)
| | - Chih-Chung Shiao
- Division of Nephrology, Department of Internal Medicine, Camillian Saint Mary’s Hospital Luodong, Yilan 26546, Taiwan
- Saint Mary’s Junior College of Medicine, Nursing and Management, Yilan 26546, Taiwan
- Correspondence: (W.-C.K.); (C.-C.S.)
| |
Collapse
|
189
|
Nofi CP, Wang P, Aziz M. Chromatin-Associated Molecular Patterns (CAMPs) in sepsis. Cell Death Dis 2022; 13:700. [PMID: 35961978 PMCID: PMC9372964 DOI: 10.1038/s41419-022-05155-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023]
Abstract
Several molecular patterns have been identified that recognize pattern recognition receptors. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are commonly used terminologies to classify molecules originating from pathogen and endogenous molecules, respectively, to heighten the immune response in sepsis. Herein, we focus on a subgroup of endogenous molecules that may be detected as foreign and similarly trigger immune signaling pathways. These chromatin-associated molecules, i.e., chromatin containing nuclear DNA and histones, extracellular RNA, mitochondrial DNA, telomeric repeat-containing RNA, DNA- or RNA-binding proteins, and extracellular traps, may be newly classified as chromatin-associated molecular patterns (CAMPs). Herein, we review the release of CAMPs from cells, their mechanism of action and downstream immune signaling pathways, and targeted therapeutic approaches to mitigate inflammation and tissue injury in inflammation and sepsis.
Collapse
Affiliation(s)
- Colleen P. Nofi
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Ping Wang
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Monowar Aziz
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| |
Collapse
|
190
|
Kim SW, Oh SA, Seol SI, Davaanyam D, Lee JK. Cytosolic HMGB1 Mediates LPS-Induced Autophagy in Microglia by Interacting with NOD2 and Suppresses Its Proinflammatory Function. Cells 2022; 11:cells11152410. [PMID: 35954253 PMCID: PMC9368039 DOI: 10.3390/cells11152410] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
The high mobility group box 1 (HMGB1), a well-known danger-associated molecule pattern (DAMP) molecule, is a non-histone chromosomal protein localized in the nucleus under normal physiological conditions. HMGB1 exhibits diverse functions depending on its subcellular location. In the present study, we investigated the role of HMGB1-induced autophagy in the lipopolysaccharide (LPS)-treated BV2 microglial cell line in mediating the transition between the inflammatory and autophagic function of the nucleotide-binding oligomerization domain-containing 2 (NOD2), a cytoplasmic pattern-recognition receptor. The induction of the microtubule-associated protein 1 light chain 3 (LC3), an autophagy biomarker, was detected slowly in BV2 cells after the LPS treatment, and peak induction was detected at 12 h. Under these conditions, NOD2 level was significantly increased and the binding between HMGB1 and NOD2 and between HMGB1 and ATG16L1 was markedly enhanced and the temporal profiles of the LC3II induction and HMGB1-NOD2 and HMGB1-ATG16L1 complex formation coincided with the cytosolic accumulation of HMGB1. The LPS-mediated autophagy induction was significantly suppressed in BV2 cells after HMGB1 or NOD2 knock-down (KD), indicating that HMGB1 contributes to NOD2-mediated autophagy induction in microglia. Moreover, NOD2-RIP2 interaction-mediated pro-inflammatory cytokine induction and NF-κB activity were significantly enhanced in BV2 cells after HMGB1 KD, indicating that HMGB1 plays a critical role in the modulation of NOD2 function between pro-inflammation and pro-autophagy in microglia. The effects of the cell-autonomous pro-autophagic pathway operated by cytoplasmic HMGB1 may be beneficial, whereas those from the paracrine pro-inflammatory pathway executed by extracellularly secreted HMGB1 can be detrimental. Thus, the overall functional significance of HMGB1-induced autophagy is different, depending on its temporal activity.
Collapse
Affiliation(s)
- Seung-Woo Kim
- Department of Biomedical Sciences, Inha University School of Medicine, Inchon 22212, Korea
| | - Sang-A Oh
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Korea
| | - Song-I Seol
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Korea
| | - Dashdulam Davaanyam
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Korea
| | - Ja-Kyeong Lee
- Department of Anatomy, Inha University School of Medicine, Incheon 22212, Korea
- Correspondence: ; Tel.: +82-32-860-9893
| |
Collapse
|
191
|
Li YF, Ren X, Zhang L, Wang YH, Chen T. Microglial polarization in TBI: Signaling pathways and influencing pharmaceuticals. Front Aging Neurosci 2022; 14:901117. [PMID: 35978950 PMCID: PMC9376354 DOI: 10.3389/fnagi.2022.901117] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a serious disease that threatens life and health of people. It poses a great economic burden on the healthcare system. Thus, seeking effective therapy to cure a patient with TBI is a matter of great urgency. Microglia are macrophages in the central nervous system (CNS) and play an important role in neuroinflammation. When TBI occurs, the human body environment changes dramatically and microglia polarize to one of two different phenotypes: M1 and M2. M1 microglia play a role in promoting the development of inflammation, while M2 microglia play a role in inhibiting inflammation. How to regulate the polarization direction of microglia is of great significance for the treatment of patients with TBI. The polarization of microglia involves many cellular signal transduction pathways, such as the TLR-4/NF-κB, JAK/STAT, HMGB1, MAPK, and PPAR-γ pathways. These provide a theoretical basis for us to seek therapeutic drugs for the patient with TBI. There are several drugs that target these pathways, including fingolimod, minocycline, Tak-242 and erythropoietin (EPO), and CSF-1. In this study, we will review signaling pathways involved in microglial polarization and medications that influence this process.
Collapse
Affiliation(s)
| | | | | | - Yu-Hai Wang
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, China
| | - Tao Chen
- Department of Neurosurgery, The 904th Hospital of PLA, Medical School of Anhui Medical University, Wuxi, China
| |
Collapse
|
192
|
Luo ZH, Li Y, Wang YL, Zhang ZP, Zou PF. Molecular cloning and functional characterization of HMGB1 and HMGB2 in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2022; 127:855-865. [PMID: 35850457 DOI: 10.1016/j.fsi.2022.07.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/25/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
High mobility group box 1 (HMGB1) and HMGB2 have been demonstrated to be key regulators not only in DNA recombination, replication, gene transcription, but also in host inflammation and immune responses. In the present study, orthologs of HMGB1 and HMGB2 named Lc-HMGB1 and Lc-HMGB2 were characterized in large yellow croaker (Larimichthys crocea). The ORFs of Lc-HMGB1 and Lc-HMGB2 are 621 bp and 648 bp, encoding proteins of 206 aa and 215 aa, with the putative Lc-HMGB1 and Lc-HMGB2 proteins both contain two HMG domains, respectively. The genome organizations of Lc-HMGB1 and Lc-HMGB2 are both composed of four exons and three introns, which are conserved in vertebrates. Lc-HMGB1 and Lc-HMGB2 were identified as cell nucleus localized proteins, and were ubiquitously distributed in the examined organs/tissues. Additionally, Lc-HMGB1 was significantly up-regulated under LPS and PGN stimulation, whereas the stimulation of poly I:C, LPS, PGN, and Pseudomonas plecoglossicida infection could significantly induce Lc-HMGB2 expression in vivo. Notably, both Lc-HMGB1 and Lc-HMGB2 overexpression could significantly up-regulated the expression of diverse immune-related genes, including IFN1, IRF3, ISG15, ISG56, RSAD2, g-type lysozyme, and TNF-α. Moreover, overexpression of Lc-HMGB1 could also induce the expression of IRF7 and Mx. These results collectively indicate that Lc-HMGB1 and Lc-HMGB2 play important roles in host immune responses against pathogen infection.
Collapse
Affiliation(s)
- Zi Hao Luo
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Ying Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou, Fujian Province, 363105, China.
| | - Yi Lei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, Fujian Province, 352103, China
| | - Zi Ping Zhang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, Fujian Province, 352103, China; College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China
| | - Peng Fei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Ornamental Aquarium Engineering Research Centre in University of Fujian Province, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China.
| |
Collapse
|
193
|
Jieduan–Niwan Formula Ameliorates Oxidative Stress and Apoptosis in Acute-on-Chronic Liver Failure by Suppressing HMGB1/TLR-4/NF-κB Signaling Pathway: A Study In Vivo and In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1833921. [PMID: 35873636 PMCID: PMC9307324 DOI: 10.1155/2022/1833921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022]
Abstract
Jieduan-Niwan (JDNW) formula is a traditional Chinese medicine compound created by the famous Chinese medicine expert Professor Qian Ying, and has been used clinically for decades to treat acute-on-chronic liver failure (ACLF) and exhibits remarkable efficacy. However, the exact mechanism remains to be discovered. As an important hepatocyte damage-associated molecular patterns (DAMP) factor, high mobility group box 1 (HMGB1) is a potential therapeutic target as an accelerator of ACLF in the pathogenesis. Therefore, the present study investigated whether JDNW inhibits the overexpression and cytoplasmic translocation of HMGB1 in ACLF liver tissue and alleviates its mediated oxidative stress and apoptosis. In vivo, an immune-induced ACLF rat model was established, and then treated with JDNW for 5, 10, and 15 d. The results showed that a large number of cytoplasmic translocations of HMGB1 occurred in the ACLF group. And there was an increase in the expression of HMGB1 in the M-5 d group. After the intervention of JDNW, the overexpression and translocation of HMGB1 were inhibited. In vitro, D-GaLN caused an increase in the expression and translocation of HMGB1 in L02 cells. Similar to the inhibitor of HMGB1, JDNW serum alleviated this kind of increase. Further tests showed that JDNW attenuated ACLF-related oxidative stress and apoptosis, and the inhibition was associated with the regulation of TLR-4/NF-κB signaling pathway. In conclusion, our present findings suggest that the therapeutic effect of JDNW on ACLF was associated with the inhibition of high expression and cytoplasmic translocation of HMGB1 during the acute injury phase, thus, attenuating oxidative stress injury and apoptosis induced by HMGB1/TLR-4/NF-κB pathway.
Collapse
|
194
|
Chen F, Wu R, Liu J, Kang R, Li J, Tang D. The STING1-MYD88 complex drives ACOD1/IRG1 expression and function in lethal innate immunity. iScience 2022; 25:104561. [PMID: 35769880 PMCID: PMC9234224 DOI: 10.1016/j.isci.2022.104561] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/29/2022] [Accepted: 06/02/2022] [Indexed: 01/18/2023] Open
Abstract
ACOD1 (also known as IRG1) has emerged as a regulator of immunometabolism that operates by producing metabolite itaconate. Here, we report a key role of STING1 (also known as STING and TMEM173) in mediating ACOD1 expression in myeloid cells in response to toll-like receptor (TLR) signaling. The activation of STING1 through exogenous cyclic dinucleotides (e.g., 3'3'-cGAMP) or endogenous gain-of-function mutation (e.g., V155M) enhances lipopolysaccharide-induced ACOD1 expression and itaconate production in macrophages and monocytes, whereas the deletion of STING1 blocks this process. The adaptor protein MYD88, instead of DNA sensor cyclic GMP-AMP synthase (CGAS), favors STING1-dependent ACOD1 expression. Mechanistically, MYD88 directly blocks autophagic degradation of STING1 and causes subsequent IRF3/JUN-mediated ACOD1 gene transcription. Consequently, the conditional deletion of STING1 in myeloid cells fails to produce ACOD1 and itaconate, thereby protecting mice against endotoxemia and polymicrobial sepsis. Our results, therefore, establish a direct link between TLR4 signaling and ACOD1 expression through the STING1-MYD88 complex during septic shock.
Collapse
Affiliation(s)
- Feng Chen
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Runliu Wu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jiao Liu
- DAMP Laboratory, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinbao Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
195
|
Andersson U, Yang H. HMGB1 is a critical molecule in the pathogenesis of Gram-negative sepsis. JOURNAL OF INTENSIVE MEDICINE 2022; 2:156-166. [PMID: 36789020 PMCID: PMC9924014 DOI: 10.1016/j.jointm.2022.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 02/06/2022] [Indexed: 04/12/2023]
Abstract
Gram-negative sepsis is a severe clinical syndrome associated with significant morbidity and mortality. Lipopolysaccharide (LPS), expressed on Gram-negative bacteria, is a potent pro-inflammatory toxin that induces inflammation and coagulation via two separate receptor systems. One is Toll-like receptor 4 (TLR4), expressed on cell surfaces and in endosomes, and the other is the cytosolic receptor caspase-11 (caspases-4 and -5 in humans). Extracellular LPS binds to high mobility group box 1 (HMGB1) protein, a cytokine-like molecule. The HMGB1-LPS complex is transported via receptor for advanced glycated end products (RAGE)-endocytosis to the endolysosomal system to reach the cytosolic LPS receptor caspase-11 to induce HMGB1 release, inflammation, and coagulation that may cause multi-organ failure. The insight that LPS needs HMGB1 assistance to generate severe inflammation has led to successful therapeutic results in preclinical Gram-negative sepsis studies targeting HMGB1. However, to date, no clinical studies have been performed based on this strategy. HMGB1 is also actively released by peripheral sensory nerves and this mechanism is fundamental for the initiation and propagation of inflammation during tissue injury. Homeostasis is achieved when other neurons actively restrict the inflammatory response via monitoring by the central nervous system and the vagus nerve through the cholinergic anti-inflammatory pathway. The neuronal control in Gram-negative sepsis needs further studies since a deeper understanding of the interplay between HMGB1 and acetylcholine may have beneficial therapeutic implications. Herein, we review the synergistic overlapping mechanisms of LPS and HMGB1 and discuss future treatment opportunities in Gram-negative sepsis.
Collapse
Affiliation(s)
- Ulf Andersson
- Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, Stockholm 17176, Sweden
- Corresponding author: Ulf Andersson, Department of Women's and Children's Health, Karolinska Institute at Karolinska University Hospital, Stockholm 17176, Sweden.
| | - Huan Yang
- Institute for Bioelectronic Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America
| |
Collapse
|
196
|
Ryan TAJ, O'Neill LAJ. Innate immune signaling and immunothrombosis: New insights and therapeutic opportunities. Eur J Immunol 2022; 52:1024-1034. [PMID: 35569038 PMCID: PMC9543829 DOI: 10.1002/eji.202149410] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 01/10/2023]
Abstract
Activation of the coagulation cascade is a critical, evolutionarily conserved mechanism that maintains hemostasis by rapidly forming blood clots in response to blood-borne infections and damaged blood vessels. Coagulation is a key component of innate immunity since it prevents bacterial dissemination and can provoke inflammation. The term immunothrombosis describes the process by which the innate immune response drives aberrant coagulation, which can result in a lethal condition termed disseminated intravascular coagulation, often seen in sepsis. In this review, we describe the recently uncovered molecular mechanisms underlying inflammasome- and STING-driven immunothrombosis induced by bacterial and viral infections, culminating in tissue factor (TF) activation and release. Current anticoagulant therapeutics, while effective, are associated with a life-threatening bleeding risk, requiring the urgent development of new treatments. Targeting immunothrombosis may provide a safer option. Thus, we highlight preclinical tools which target TF and/or block canonical (NLRP3) or noncanonical (caspase-11) inflammasome activation as well as STING-driven TF release and discuss clinically approved drugs which block key immunothrombotic processes and, therefore, may be redeployed as safer anticoagulants.
Collapse
Affiliation(s)
- Tristram A. J. Ryan
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College DublinDublin 2Ireland
| | - Luke A. J. O'Neill
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences InstituteTrinity College DublinDublin 2Ireland
| |
Collapse
|
197
|
Yu S, Qian L, Ma J. Genetic alterations, RNA expression profiling and DNA methylation of HMGB1 in malignancies. J Cell Mol Med 2022; 26:4322-4332. [PMID: 35765707 PMCID: PMC9344825 DOI: 10.1111/jcmm.17454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/27/2022] Open
Abstract
The high mobility group box 1 (HMGB1) is a potential biomarker and therapeutic target in various human diseases. However, a systematic, comprehensive pan‐cancer analysis of HMGB1 in human cancers remains to be reported. This study analysed the genetic alteration, RNA expression profiling and DNA methylation of HMGB1 in more than 30 types of tumours. It is worth noting that HMGB1 is overexpressed in malignant tissues, including lymphoid neoplasm diffuse large B‐cell lymphoma (DLBC), pancreatic adenocarcinoma (PAAD) and thymoma (THYM). Interestingly, there is a positive correlation between the high expression of HMGB1 and the high survival prognosis of THYM. Finally, this study comprehensively evaluates the genetic variation of HMGB1 in human malignant tumours. As a prospective biomarker of COVID‐19, the role that HMGB1 plays in THYM is highlighted.
Collapse
Affiliation(s)
- Shoukai Yu
- Hongqiao International Institue of Medicine & Clinical Research Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingmei Qian
- Hongqiao International Institue of Medicine & Clinical Research Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Ma
- Hongqiao International Institue of Medicine & Clinical Research Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
198
|
Hisaoka-Nakashima K, Ohata K, Yoshimoto N, Tokuda S, Yoshii N, Nakamura Y, Wang D, Liu K, Wake H, Yoshida T, Ago Y, Hashimoto K, Nishibori M, Morioka N. High-mobility group box 1-mediated hippocampal microglial activation induces cognitive impairment in mice with neuropathic pain. Exp Neurol 2022; 355:114146. [PMID: 35738416 DOI: 10.1016/j.expneurol.2022.114146] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/28/2022]
Abstract
Clinical evidence indicates that cognitive impairment is a common comorbidity of chronic pain, including neuropathic pain, but the mechanism underlying cognitive impairment remains unclear. Neuroinflammation plays a critical role in the development of both neuropathic pain and cognitive impairment. High-mobility group box 1 (HMGB1) is a proinflammatory molecule and could be involved in neuroinflammation-mediated cognitive impairment in the neuropathic pain state. Hippocampal microglial activation in mice has been associated with cognitive impairment. Thus, the current study examined a potential role of HMGB1 and microglial activation in cognitive impairment in mice with neuropathic pain due to a partial sciatic nerve ligation (PSNL). Mice developed cognitive impairment over two weeks, but not one week, after nerve injury. Nerve-injured mice demonstrated decreased nuclear fraction HMGB1, suggesting increased extracellular release of HMGB1. Furthermore, two weeks after PSNL, significant microglia activation was observed in hippocampus. Inhibition of microglial activation with minocycline, local hippocampal microglia depletion with clodronate liposome, or blockade of HMGB1 with either glycyrrhizic acid (GZA) or anti-HMGB1 antibody in PSNL mice reduced hippocampal microglia activation and ameliorated cognitive impairment. Other changes in the hippocampus of PSNL mice potentially related to cognitive impairment, including decreased hippocampal neuron dendrite length and spine densities and decreased α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptor (AMPAR) subunits, were prevented with anti-HMGB1 antibody treatment. The current findings suggest that neuro-inflammation involves a number of cellular-level changes and microglial activation. Blocking neuro-inflammation, particularly through blocking HMGB1 could be a novel approach to reducing co-morbidities such as cognitive impairment associated with neuropathic pain.
Collapse
Affiliation(s)
- Kazue Hisaoka-Nakashima
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kazuto Ohata
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Natsuki Yoshimoto
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Shintarou Tokuda
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Nanako Yoshii
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yoki Nakamura
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Dengli Wang
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Keyue Liu
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Hidenori Wake
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Takayuki Yoshida
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan
| | - Masahiro Nishibori
- Department of Translational Research & Drug Development, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata, Okayama, Japan
| | - Norimitsu Morioka
- Department of Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, Japan.
| |
Collapse
|
199
|
Cao Z, Yang F, Lin Y, Shan J, Cao H, Zhang C, Zhuang Y, Xing C, Hu G. Selenium Antagonizes Cadmium-Induced Inflammation and Oxidative Stress via Suppressing the Interplay between NLRP3 Inflammasome and HMGB1/NF-κB Pathway in Duck Hepatocytes. Int J Mol Sci 2022; 23:ijms23116252. [PMID: 35682929 PMCID: PMC9181349 DOI: 10.3390/ijms23116252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 12/14/2022] Open
Abstract
Cadmium (Cd) is a toxic heavy metal that can accumulate in the liver of animals, damaging liver function. Inflammation and oxidative stress are considered primary causes of Cd-induced liver damage. Selenium (Se) is an antioxidant and can resist the detrimental impacts of Cd on the liver. To elucidate the antagonism of Se on Cd against hepatocyte injury and its mechanism, duck embryo hepatocytes were treated with Cd (4 μM) and/or Se (0.4 μM) for 24 h. Then, the hepatocyte viability, oxidative stress and inflammatory status were assessed. The findings manifested that the accumulation of reactive oxygen species (ROS) and the levels of pro-inflammatory factors were elevated in the Cd group. Simultaneously, immunofluorescence staining revealed that the interaction between NOD-like receptor pyran domain containing 3 (NLRP3) and apoptosis-associated speck-like protein (ASC) was enhanced, the movement of high-mobility group box 1 (HMGB1) from nucleus to cytoplasm was increased and the inflammatory response was further amplified. Nevertheless, the addition of Se relieved the above-mentioned effects, thereby alleviating cellular oxidative stress and inflammation. Collectively, the results suggested that Se could mitigate Cd-stimulated oxidative stress and inflammation in hepatocytes, which might be correlated with the NLRP3 inflammasome and HMGB1/nuclear factor-κB (NF-κB) signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chenghong Xing
- Correspondence: (C.X.); (G.H.); Tel.: +86-18770046182 (C.X.); +86-13807089905 (G.H.)
| | - Guoliang Hu
- Correspondence: (C.X.); (G.H.); Tel.: +86-18770046182 (C.X.); +86-13807089905 (G.H.)
| |
Collapse
|
200
|
Transcriptomic Profiling Reveals That HMGB1 Induces Macrophage Polarization Different from Classical M1. Biomolecules 2022; 12:biom12060779. [PMID: 35740904 PMCID: PMC9221381 DOI: 10.3390/biom12060779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are key inflammatory immune cells that display dynamic phenotypes and functions in response to their local microenvironment. In different conditions, macrophage polarization can be induced by high-mobility group box 1 (HMGB1), a nuclear DNA-binding protein that activates innate immunity via the Toll-like receptor (TLR) 4, the receptor for advanced glycation end products (RAGE), and C-X-C chemokine receptor (CXCR) 4. This study investigated the phenotypes of murine bone-marrow-derived macrophages (BMDMs) stimulated with different HMGB1 redox isoforms using bulk RNA sequencing (RNA-Seq). Disulfide HMGB1 (dsHMGB1)-stimulated BMDMs showed a similar but distinct transcriptomic profile to LPS/IFNγ- and LPS-stimulated BMDMs. Fully reduced HMGB1 (frHMGB1) did not induce any significant transcriptomic change. Interestingly, compared to LPS/IFNγ- and LPS-, dsHMGB1-stimulated BMDMs showed lipid metabolism and foam cell differentiation gene set enrichment, and oil red O staining revealed that both dsHMGB1 and frHMGB1 alleviated oxidized low-density lipoprotein (oxLDL)-induced foam cells formation. Overall, this work, for the first time, used transcriptomic analysis by RNA-Seq to investigate the impact of HMGB1 stimulation on BMDM polarization. Our results demonstrated that dsHMGB1 and frHMGB1 induced distinct BMDM polarization phenotypes compared to LPS/IFNγ- and LPS- induced phenotypes.
Collapse
|