151
|
Chen J, Guo W, Du P, Cui T, Yang Y, Wang Y, Kang P, Zhang Z, Wang Q, Ye Z, Liu L, Jian Z, Gao T, Bian H, Li S, Li C. MIF inhibition alleviates vitiligo progression by suppressing CD8 + T cell activation and proliferation. J Pathol 2023; 260:84-96. [PMID: 36852981 DOI: 10.1002/path.6073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/18/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
In vitiligo, autoreactive CD8+ T cells have been established as the main culprit considering its pathogenic role in mediating epidermal melanocyte-specific destruction. Macrophage migration inhibitory factor (MIF) is a pleiotropic molecule that plays a central role in various immune processes including the activation and proliferation of T cells; but whether MIF is intertwined in vitiligo development and progression and its involvement in aberrantly activated CD8+ T cells remains ill-defined. In this study, we found that MIF was overabundant in vitiligo patients and a mouse model for human vitiligo. Additionally, inhibiting MIF ameliorated the disease progression in vitiligo mice, which manifested as less infiltration of CD8+ T cells and more retention of epidermal melanocytes in the tail skin. More importantly, in vitro experiments indicated that MIF-inhibition suppressed the activation and proliferation of CD8+ T cells from the lymph nodes of vitiligo mice, and the effect extended to CD8+ T cells in peripheral blood mononuclear cells of vitiligo patients. Finally, CD8+ T cells derived from MIF-inhibited vitiligo mice also exhibited an impaired capacity for activation and proliferation. Taken together, our results show that MIF might be clinically targetable in vitiligo treatment, and its inhibition might ameliorate vitiligo progression by suppressing autoreactive CD8+ T cell activation and proliferation. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Pengran Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Tingting Cui
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yinghan Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Zhe Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Qi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Zhubiao Ye
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Ling Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Zhe Jian
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Tianwen Gao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Huijie Bian
- National Translational Science Center for Molecular Medicine and Department of Cell Biology, Fourth Military Medical University, Xi'an, PR China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| |
Collapse
|
152
|
Lv C, Li Y, Zhang M, Cheng Y, Han D, Tan W. Sequential Control of Cellular Interactions Using Dynamic DNA Displacement. NANO LETTERS 2023; 23:1167-1174. [PMID: 36748991 DOI: 10.1021/acs.nanolett.2c03899] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intercellular interactions play a significant role in various complex biological processes, and their dysregulation promotes disease progression. To reveal the mechanisms of intercellular interactions without destroying basic life processes, it is necessary to mimic multicellular behaviors in vitro. However, the precise control of multicellular systems remains technically challenging owing to dynamic interactions. Here, we used DNA as a molecular lock and key to sequentially assemble and disassemble different cell clusters in a programmed way, regulating intercellular interactions. Tagging the surface of live cells with cholesterol-modified DNA enabled dynamical intercellular assemblies. By consecutively adding corresponding metaphorical locks (attaching DNA strands) and keys (detaching DNA strands), clusters of different cells could be sequentially formed. This strategy improved the capability of natural killer NK-92 cells to target tumor cells, improving the antitumor therapy efficacy. Our suggested approach allows dynamic regulation of intercellular interactions in complex cell systems and increases understanding of intercellular communication networks.
Collapse
Affiliation(s)
- Cheng Lv
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yuan Li
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Mingzhi Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yu Cheng
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Da Han
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
153
|
Diaz-Canestro C, Chen J, Liu Y, Han H, Wang Y, Honoré E, Lee CH, Lam KSL, Tse MA, Xu A. A machine-learning algorithm integrating baseline serum proteomic signatures predicts exercise responsiveness in overweight males with prediabetes. Cell Rep Med 2023; 4:100944. [PMID: 36787735 PMCID: PMC9975321 DOI: 10.1016/j.xcrm.2023.100944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/11/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023]
Abstract
The molecular transducers conferring the benefits of chronic exercise in diabetes prevention remain to be comprehensively investigated. Herein, serum proteomic profiling of 688 inflammatory and metabolic biomarkers in 36 medication-naive overweight and obese men with prediabetes reveals hundreds of exercise-responsive proteins modulated by 12-week high-intensity interval exercise training, including regulators of metabolism, cardiovascular system, inflammation, and apoptosis. Strong associations are found between proteins involved in gastro-intestinal mucosal immunity and metabolic outcomes. Exercise-induced changes in trefoil factor 2 (TFF2) are associated with changes in insulin resistance and fasting insulin, whereas baseline levels of the pancreatic secretory granule membrane major glycoprotein GP2 are related to changes in fasting glucose and glucose tolerance. A hybrid set of 23 proteins including TFF2 are differentially altered in exercise responders and non-responders. Furthermore, a machine-learning algorithm integrating baseline proteomic signatures accurately predicts individualized metabolic responsiveness to exercise training.
Collapse
Affiliation(s)
- Candela Diaz-Canestro
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jiarui Chen
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hao Han
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Eric Honoré
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Institut de Pharmacologie Moléculaire et Cellulaire, Labex ICST, Valbonne, France
| | - Chi-Ho Lee
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Karen S L Lam
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Michael Andrew Tse
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Centre for Sports and Exercise, The University of Hong Kong, Hong Kong, China.
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
154
|
Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat Rev Immunol 2023; 23:90-105. [PMID: 35637393 DOI: 10.1038/s41577-022-00732-1] [Citation(s) in RCA: 251] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 02/04/2023]
Abstract
Great strides have been made in recent years towards understanding the roles of natural killer (NK) cells in immunity to tumours and viruses. NK cells are cytotoxic innate lymphoid cells that produce inflammatory cytokines and chemokines. By lysing transformed or infected cells, they limit tumour growth and viral infections. Whereas T cells recognize peptides presented by MHC molecules, NK cells display receptors that recognize stress-induced autologous proteins on cancer cells. At the same time, their functional activity is inhibited by MHC molecules displayed on such cells. The enormous potential of NK cells for immunotherapy for cancer is illustrated by their broad recognition of stressed cells regardless of neoantigen presentation, and enhanced activity against tumours that have lost expression of MHC class I owing to acquired resistance mechanisms. As a result, many efforts are under way to mobilize endogenous NK cells with therapeutics, or to provide populations of ex vivo-expanded NK cells as a cellular therapy, in some cases by equipping the NK cells with chimeric antigen receptors. Here we consider the key features that underlie why NK cells are emerging as important new additions to the cancer therapeutic arsenal.
Collapse
|
155
|
Makita K, Otsuka N, Tomaru U, Taniguchi K, Kasahara M. NKG2D Ligand Expression Induced by Oxidative Stress Mitigates Cutaneous Ischemia-Reperfusion Injury. J Histochem Cytochem 2023; 71:61-72. [PMID: 36762536 PMCID: PMC10088101 DOI: 10.1369/00221554221147582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/07/2022] [Indexed: 02/11/2023] Open
Abstract
Pressure ulcers represent a crucial clinical problem, especially in hospitalized patients. Ischemia-reperfusion (I-R) is an important cause of these lesions. Natural killer (NK), invariant NK T (iNKT), and dendritic epidermal T-cells, which express the natural killer group 2, member D (NKG2D) receptor, have been reported to have physiological roles in skin tissue repair and wound healing. However, a role for NKG2D-NKG2D ligand interactions in I-R-induced skin injury has not been determined. Using a murine pressure ulcer model, we demonstrated that I-R-induced ulcers in NKG2D-deficient mice were larger than those in wild-type or T-cell receptor δ knockout mice. Histopathological evaluation revealed that accumulation of macrophages and neutrophils at the peripheral deep dermis and subcutaneous tissue of the ulcers was enhanced in NKG2D-deficient mice. Rae-1 mRNA, which encodes an NKG2D ligand, was induced, and RAE-1 protein was detected immunohistochemically in fibroblasts and inflammatory cells in the dermis after reperfusion. RAE-1 expression was also increased in primary mouse fibroblasts treated with sodium arsenite. These results suggested that NKG2D ligand expression was induced by oxidative stress after I-R injury and support a putative role for this ligand in wound repair. Furthermore, the influx of NKG2D-positive cells at I-R sites may mitigate pressure ulcers via NKG2D-NKG2D ligand interactions.
Collapse
Affiliation(s)
- Keishi Makita
- Department of Pathology, Graduate School of Medicine and
Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Department of Pathology, Sapporo City General Hospital,
Sapporo, Japan
| | - Noriyuki Otsuka
- Department of Pathology, Graduate School of Medicine and
Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Department of Surgical Pathology, Hokkaido University
Hospital, Sapporo, Japan
| | - Utano Tomaru
- Department of Pathology, Graduate School of Medicine and
Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Department of Surgical Pathology, Hokkaido University
Hospital, Sapporo, Japan
| | - Koji Taniguchi
- Department of Pathology, Graduate School of Medicine and
Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masanori Kasahara
- Department of Pathology, Graduate School of Medicine and
Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
156
|
Al Olabi R, Hendy AEA, Alkassab MB, Alnajm K, Elias M, Ibrahim M, Carlyle JR, Makrigiannis AP, Rahim MMA. The inhibitory NKR-P1B receptor regulates NK cell-mediated mammary tumor immunosurveillance in mice. Oncoimmunology 2023; 12:2168233. [PMID: 36704449 PMCID: PMC9872954 DOI: 10.1080/2162402x.2023.2168233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Natural killer (NK) cells are an important component of anti-cancer immunity, and their activity is regulated by an array of activating and inhibitory receptors. In mice, the inhibitory NKR-P1B receptor is expressed in NK cells and recognizes the C-type lectin-related protein-b (Clr-b) ligand. NKR-P1B:Clr-b interactions represent a 'missing-self' recognition system to monitor cellular levels of Clr-b on healthy and diseased cells. Here, we report an important role for NKR-P1B:Clr-b interactions in tumor immunosurveillance in MMTV-PyVT mice, which develop spontaneous mammary tumors. MMTV-PyVT mice on NKR-P1B-deficient genetic background developed mammary tumors earlier than on wild-type (WT) background. A greater proportion of tumor-infiltrating NK cells downregulate expression of the transcription factor Eomesodermin (EOMES) in NKR-P1B-deficient mice compared to WT mice. Tumor-infiltrating NK cells also downregulated CD49b expression but gain CD49a expression and exhibit effector functions, such as granzyme B upregulation and proliferation in mammary tumors. However, unlike the EOMES+ NK cells, the EOMES‒ NK cell subset is unable to respond to further in vitro stimulation and exhibits phenotypic alterations associated with immune dysfunction. These alterations included increased expression of PD-1, LAG-3, and TIGIT and decreased expression of NKp46, Ly49C/I, CD11b, and KLRG-1. Furthermore, tumor-infiltrating NKR-P1B-deficient NK cells exhibited an elevated dysfunctional immune phenotype compared to WT NK cells. These findings demonstrate that the NKR-P1B receptor plays an important role in mammary tumor surveillance by regulating anti-cancer immune responses and functional homeostasis in NK cells.
Collapse
Affiliation(s)
- Raghd Al Olabi
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Abd El Aziz Hendy
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | | | - Karla Alnajm
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Manahel Elias
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - Mary Ibrahim
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada
| | - James R. Carlyle
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Andrew P. Makrigiannis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Mir Munir A Rahim
- Department of Biomedical Sciences, University of Windsor, Windsor, Ontario, Canada,CONTACT Mir Munir A Rahim Department of Biomedical Sciences, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
157
|
Morimoto T, Nakazawa T, Maeoka R, Nakagawa I, Tsujimura T, Matsuda R. Natural Killer Cell-Based Immunotherapy against Glioblastoma. Int J Mol Sci 2023; 24:ijms24032111. [PMID: 36768432 PMCID: PMC9916747 DOI: 10.3390/ijms24032111] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive and malignant primary brain tumor in adults. Despite multimodality treatment involving surgical resection, radiation therapy, chemotherapy, and tumor-treating fields, the median overall survival (OS) after diagnosis is approximately 2 years and the 5-year OS is poor. Considering the poor prognosis, novel treatment strategies are needed, such as immunotherapies, which include chimeric antigen receptor T-cell therapy, immune checkpoint inhibitors, vaccine therapy, and oncolytic virus therapy. However, these therapies have not achieved satisfactory outcomes. One reason for this is that these therapies are mainly based on activating T cells and controlling GBM progression. Natural killer (NK) cell-based immunotherapy involves the new feature of recognizing GBM via differing mechanisms from that of T cell-based immunotherapy. In this review, we focused on NK cell-based immunotherapy as a novel GBM treatment strategy.
Collapse
Affiliation(s)
- Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
- Department of Neurosurgery, Nara City Hospital, Nara 630-8305, Japan
- Correspondence: (T.M.); (T.N.); Tel.: +81-744-22-3051 (T.M.); +81-745-84-9335 (T.N.)
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Clinic Grandsoul Nara, Uda 633-2221, Japan
- Correspondence: (T.M.); (T.N.); Tel.: +81-744-22-3051 (T.M.); +81-745-84-9335 (T.N.)
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Japan
- Clinic Grandsoul Nara, Uda 633-2221, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
158
|
Anang V, Singh A, Kottarath SK, Verma C. Receptors of immune cells mediates recognition for tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:219-267. [PMID: 36631194 DOI: 10.1016/bs.pmbts.2022.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Over the last few decades, the immune system has been steered toward eradication of cancer cells with the help of cancer immunotherapy. T cells, B cells, monocytes/macrophages, dendritic cells, T-reg cells, and natural killer (NK) cells are some of the numerous immune cell types that play a significant part in cancer cell detection and reduction of inflammation, and the antitumor response. Briefly stated, chimeric antigen receptors, adoptive transfer and immune checkpoint modulators are currently the subjects of research focus for successful immunotherapy-based treatments for a variety of cancers. This chapter discusses ongoing investigations on the mechanisms and recent developments by which receptors of immune cells especially that of lymphocytes and monocytes/macrophages regulate the detection of immune system leading to malignancies. We will also be looking into the treatment strategies based on these mechanisms.
Collapse
Affiliation(s)
- Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | | | - Sarat Kumar Kottarath
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Huston, TX, United States.
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, United States.
| |
Collapse
|
159
|
Yu L, Sun L, Liu X, Wang X, Yan H, Pu Q, Xie Y, Jiang Y, Du J, Yang Z. The imbalance between NKG2A and NKG2D expression is involved in NK cell immunosuppression and tumor progression of patients with hepatitis B virus-related hepatocellular carcinoma. Hepatol Res 2023; 53:417-431. [PMID: 36628564 DOI: 10.1111/hepr.13877] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Immunosuppression in a tumor microenvironment is associated with enhanced tumor progression. Natural killer group 2 (NKG2) family proteins, including inhibitory receptors and activators, can be used as attractive targets for immunotherapy of immune checkpoint inhibition. We further explore the expression level prognostic value of NKG2A and NKG2D in hepatitis B virus-related hepatocellular carcinoma (HBV-HCC). METHODS This study was a prospective study involving 92 patients with HBV-HCC, 16 patients with HBV-related liver cirrhosis, 18 patients with CHB, and 38 healthy donors. We analyzed the expression and related functions of NKG2A, NKG2D, and the NKG2A/NKG2D ratio in the peripheral blood of patients with HBV-HCC and analyzed tumor progression. The tissue samples from patients with HBV-HCC were further used for multiple immunofluorescence and immunohistochemistry. RESULTS In patients with HBV-HCC with tumor progression, the ratio of NKG2A/NKG2D is higher in NK cells and T cells. The Kaplan-Meier survival curve showed that the NKG2A/NKG2D ratio on NK cells could predict tumor progression in patients with HBV-HCC, and that an increase in this ratio was associated with inhibition of NK cell function. The Cancer Genome Atlas (TCGA) database was further used to verify that the higher the NKG2A/NKG2D ratio, the shorter the progression-free survival of patients with HCC, and the more likely the immune function was suppressed. CONCLUSIONS The imbalance between NKG2A and NKG2D of NK cells is involved in NK cell immunosuppression, and the increase of the NKG2A/NKG2D ratio is related to the tumor progression of HBV-HCC.
Collapse
Affiliation(s)
- Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinhui Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qing Pu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuyong Jiang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
160
|
Ghasemi M, Abbasi L, Ghanbari Naeini L, Kokabian P, Nameh Goshay Fard N, Givtaj N. Dendritic cells and natural killer cells: The road to a successful oncolytic virotherapy. Front Immunol 2023; 13:950079. [PMID: 36703982 PMCID: PMC9871831 DOI: 10.3389/fimmu.2022.950079] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/02/2022] [Indexed: 01/11/2023] Open
Abstract
Every type of cancer tissue is theoretically more vulnerable to viral infection. This natural proclivity has been harnessed as a new anti-cancer therapy by employing oncolytic viruses (OVs) to selectively infect and destroy cancer cells while providing little or no harm with no toxicity to the host. Whereas the primary oncolytic capabilities of OVs initially sparked the greatest concern, the predominant focus of research is on the association between OVs and the host immune system. Numerous OVs are potent causal agents of class I MHC pathway-related chemicals, enabling early tumor/viral immune recognition and cytokine-mediated response. The modified OVs have been studied for their ability to bind to dendritic cells (DCs) by expressing growth factors, chemokines, cytokines, and defensins inside the viral genome. OVs, like reovirus, can directly infect DCs, causing them to release chemokines and cytokines that attract and excite natural killer (NK) cells. In addition, OVs can directly alter cancer cells' sensitivity to NK by altering the expression levels of NK cell activators and inhibitors on cancerous cells. Therefore, NK cells and DCs in modulating the therapeutic response should be considered when developing and improving future OV-based therapeutics, whether modified to express transgenes or used in combination with other drugs/immunotherapies. Concerning the close relationship between NK cells and DCs in the potential of OVs to kill tumor cells, we explore how DCs and NK cells in tumor microenvironment affect oncolytic virotherapy and summarize additional information about the interaction mentioned above in detail in this work.
Collapse
Affiliation(s)
- Matin Ghasemi
- Faculty of Medicine, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pajman Kokabian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najmeh Nameh Goshay Fard
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nozar Givtaj
- Rajaei Cardiovascular, Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran,*Correspondence: Nozar Givtaj,
| |
Collapse
|
161
|
Kshersagar J, Damle MN, Bedge P, Jagdale R, Tardalkar K, Jadhav D, Jagadale S, Toro Y, Sharma R, Joshi MG. Downregulation of MICA/B tumor surface expressions and augmented soluble MICA serum levels correlate with disease stage in breast cancer. Breast Dis 2023; 41:471-480. [PMID: 36641654 DOI: 10.3233/bd-220023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE In this study, the profiling of the expression of major histocompatibility complex (MHC) class I-related chain A and B (MICA/B) in human breast cancer tumor tissue, saliva, and urine samples of breast cancer patients and control is carried out. MICA/B is ligand of NKG2D receptor expressed on malignant cells. The release of MICA/B from tumor tissue comprises an immune escape mechanism that impairs antitumor immunity. Based on this literature we explored the potential of soluble MICA (sMICA) as a marker in breast cancer (BC). METHODS The expression was profiled by using immunohistochemistry (MICA/B), western blot (MICA/B) and ELISA (MICA). RESULTS The optical density of western blot of MICA/B in different stages of BC illustrated significant difference as per one way analysis of variance and significant difference with stage III and IV by Dunnett's multiple comparisons test respectively. Analysis of sMICA in serum, saliva and urine of BC patients revealed significantly higher levels (median 41.0 ± 4.1 pg/ml in pre-treatment sera, 181.9 ± 1.6 pg/ml in saliva and 90.7 ± 1.7 pg/ml in urine) than in control (median <1.2 pg/ml). The elevated levels of sMICA were related to the cancer stage. CONCLUSIONS The elevated levels of sMICA were observed in patients with well differentiated cancer while the poor expression of sMICA was observed in patients with poorly differentiated tumors. Tumor immunity is impaired by the release of MICA in the biofluids and may be useful for detection and diagnosis of the stage of BC.
Collapse
Affiliation(s)
- Jeevitaa Kshersagar
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Deemed to be University, D. Y. Patil Vidyanagar, Kasba Bawda, Kolhapur, Maharashtra, India
| | - Mrunal N Damle
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Deemed to be University, D. Y. Patil Vidyanagar, Kasba Bawda, Kolhapur, Maharashtra, India.,Stem Plus Biotech, SMK Commercial Complex, Near Shivaji Maharaj Putla, Gaon Bhag, Sangli, Maharashtra, India
| | - Poonam Bedge
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Deemed to be University, D. Y. Patil Vidyanagar, Kasba Bawda, Kolhapur, Maharashtra, India
| | - Rakhi Jagdale
- Department of Pathology, Shri Siddhivinayak Ganpati Cancer Hospital, Miraj, Sangli, Maharashtra, India
| | - Kishor Tardalkar
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Deemed to be University, D. Y. Patil Vidyanagar, Kasba Bawda, Kolhapur, Maharashtra, India
| | - Dhanaji Jadhav
- Department of Statistics, Yashavantrao Chavan Institute of Science, Satara, Maharashtra, India
| | - Swapnali Jagadale
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Deemed to be University, D. Y. Patil Vidyanagar, Kasba Bawda, Kolhapur, Maharashtra, India
| | - Yashwant Toro
- Department of Scientific and Industrial Research Organization, Shri Siddhivinayak Ganpati Cancer Hospital, Miraj, Sangli, Maharashtra, India
| | - Rakesh Sharma
- Department of Obstetrics and Gynaecology, Dr. D Y Patil Medical College, Hospital and Research Institute, Kadamwadi, Kolhapur, Maharashtra, India
| | - Meghnad G Joshi
- Department of Stem Cells & Regenerative Medicine, D. Y. Patil Deemed to be University, D. Y. Patil Vidyanagar, Kasba Bawda, Kolhapur, Maharashtra, India.,Stem Plus Biotech, SMK Commercial Complex, Near Shivaji Maharaj Putla, Gaon Bhag, Sangli, Maharashtra, India
| |
Collapse
|
162
|
Scur M, Parsons BD, Dey S, Makrigiannis AP. The diverse roles of C-type lectin-like receptors in immunity. Front Immunol 2023; 14:1126043. [PMID: 36923398 PMCID: PMC10008955 DOI: 10.3389/fimmu.2023.1126043] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Our understanding of the C-type lectin-like receptors (CTLRs) and their functions in immunity have continued to expand from their initial roles in pathogen recognition. There are now clear examples of CTLRs acting as scavenger receptors, sensors of cell death and cell transformation, and regulators of immune responses and homeostasis. This range of function reflects an extensive diversity in the expression and signaling activity between individual CTLR members of otherwise highly conserved families. Adding to this diversity is the constant discovery of new receptor binding capabilities and receptor-ligand interactions, distinct cellular expression profiles, and receptor structures and signaling mechanisms which have expanded the defining roles of CTLRs in immunity. The natural killer cell receptors exemplify this functional diversity with growing evidence of their activity in other immune populations and tissues. Here, we broadly review select families of CTLRs encoded in the natural killer cell gene complex (NKC) highlighting key receptors that demonstrate the complex multifunctional capabilities of these proteins. We focus on recent evidence from research on the NKRP1 family of CTLRs and their interaction with the related C-type lectin (CLEC) ligands which together exhibit essential immune functions beyond their defined activity in natural killer (NK) cells. The ever-expanding evidence for the requirement of CTLR in numerous biological processes emphasizes the need to better understand the functional potential of these receptor families in immune defense and pathological conditions.
Collapse
Affiliation(s)
- Michal Scur
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Brendon D Parsons
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Sayanti Dey
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Andrew P Makrigiannis
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
163
|
Boucher JC, Yu B, Li G, Shrestha B, Sallman D, Landin AM, Cox C, Karyampudi K, Anasetti C, Davila ML, Bejanyan N. Large Scale Ex Vivo Expansion of γδ T cells Using Artificial Antigen-presenting Cells. J Immunother 2023; 46:5-13. [PMID: 36378147 PMCID: PMC9722378 DOI: 10.1097/cji.0000000000000445] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Higher γδ T cell counts in patients with malignancies are associated with better survival. However, γδ T cells are rare in the blood and functionally impaired in patients with malignancies. Promising results are reported on the treatment of various malignancies with in vivo expansion of autologous γδ T cells using zoledronic acid (zol) and interleukin-2 (IL-2). Here we demonstrated that zol and IL-2, in combination with a novel genetically engineered K-562 CD3scFv/CD137L/CD28scFv/IL15RA quadruplet artificial antigen-presenting cell (aAPC), efficiently expand allogeneic donor-derived γδ T cells using a Good Manufacturing Practice (GMP) compliant protocol sufficient to achieve cell doses for future clinical use. We achieved a 633-fold expansion of γδ T cells after day 10 of coculture with aAPC, which exhibited central (47%) and effector (43%) memory phenotypes. In addition, >90% of the expanded γδ T cells expressed NKG2D, although they have low cell surface expression of PD1 and LAG3 inhibitory checkpoint receptors. In vitro real-time cytotoxicity analysis showed that expanded γδ T cells were effective in killing target cells. Our results demonstrate that large-scale ex vivo expansion of donor-derived γδ T cells in a GMP-like setting can be achieved with the use of quadruplet aAPC and zol/IL-2 for clinical application.
Collapse
Affiliation(s)
- Justin C. Boucher
- Division of Clinical Science, Department of Blood and Marrow Transplant and Cellular Immunotherapy
| | - Bin Yu
- Division of Clinical Science, Department of Blood and Marrow Transplant and Cellular Immunotherapy
| | - Gongbo Li
- Division of Clinical Science, Department of Blood and Marrow Transplant and Cellular Immunotherapy
| | - Bishwas Shrestha
- Division of Clinical Science, Department of Blood and Marrow Transplant and Cellular Immunotherapy
| | | | | | - Cheryl Cox
- Cell Therapy Facility, H. Lee Moffitt Cancer Center, Tampa, FL
| | | | - Claudio Anasetti
- Division of Clinical Science, Department of Blood and Marrow Transplant and Cellular Immunotherapy
| | - Marco L. Davila
- Division of Clinical Science, Department of Blood and Marrow Transplant and Cellular Immunotherapy
| | - Nelli Bejanyan
- Division of Clinical Science, Department of Blood and Marrow Transplant and Cellular Immunotherapy
| |
Collapse
|
164
|
Whalen KA, Rakhra K, Mehta NK, Steinle A, Michaelson JS, Baeuerle PA. Engaging natural killer cells for cancer therapy via NKG2D, CD16A and other receptors. MAbs 2023; 15:2208697. [PMID: 37165468 PMCID: PMC10173799 DOI: 10.1080/19420862.2023.2208697] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/26/2023] [Indexed: 05/12/2023] Open
Abstract
The field of immuno-oncology has revolutionized cancer patient care and improved survival and quality of life for patients. Much of the focus in the field has been on exploiting the power of the adaptive immune response through therapeutic targeting of T cells. While these approaches have markedly advanced the field, some challenges remain, and the clinical benefit of T cell therapies does not extend to all patients or tumor indications. Alternative strategies, such as engaging the innate immune system, have become an intense area of focus in the field. In particular, the engagement of natural killer (NK) cells as potent effectors of the innate immune response has emerged as a promising modality in immunotherapy. Here, we review therapeutic approaches for selective engagement of NK cells for cancer therapy, with a particular focus on targeting the key activating receptors NK Group 2D (NKG2D) and cluster of differentiation 16A (CD16A).
Collapse
Affiliation(s)
- Kerry A. Whalen
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Kavya Rakhra
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Naveen K. Mehta
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
| | - Alexander Steinle
- Institute for Molecular Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
- Preclinical and Early Development, Frankfurt Cancer Institute, Frankfurt am Main, Germany
| | | | - Patrick A. Baeuerle
- Preclinical and Early Development, Cullinan Oncology, Inc, Cambridge, MA, USA
- Institute for Immunology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
165
|
Zafarani A, Taghavi-Farahabadi M, Razizadeh MH, Amirzargar MR, Mansouri M, Mahmoudi M. The Role of NK Cells and Their Exosomes in Graft Versus Host Disease and Graft Versus Leukemia. Stem Cell Rev Rep 2023; 19:26-45. [PMID: 35994137 DOI: 10.1007/s12015-022-10449-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2022] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells are one of the innate immune cells that play an important role in preventing and controlling tumors and viral diseases, but their role in hematopoietic stem cell transplantation (HCT) is not yet fully understood. However, according to some research, these cells can prevent infections and tumor relapse without causing graft versus host disease (GVHD). In addition to NK cells, several studies are about the anti-leukemia effects of NK cell-derived exosomes that can highlight their roles in graft-versus-leukemia (GVL). In this paper, we intend to investigate the results of various articles on the role of NK cells in allogeneic hematopoietic cell transplantation and also their exosomes in GVL. Also, we have discussed the antiviral effects of these cells in post-HCT cytomegalovirus infection.
Collapse
Affiliation(s)
- Alireza Zafarani
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Amirzargar
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mansoure Mansouri
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
166
|
Mehranzadeh E, Crende O, Badiola I, Garcia-Gallastegi P. What Are the Roles of Proprotein Convertases in the Immune Escape of Tumors? Biomedicines 2022; 10:biomedicines10123292. [PMID: 36552048 PMCID: PMC9776400 DOI: 10.3390/biomedicines10123292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Protein convertases (PCs) play a significant role in post-translational procedures by transforming inactive precursor proteins into their active forms. The role of PCs is crucial for cellular homeostasis because they are involved in cell signaling. They have also been described in many diseases such as Alzheimer's and cancer. Cancer cells are secretory cells that send signals to the tumor microenvironment (TME), remodeling the surrounding space for their own benefits. One of the most important components of the TME is the immune system of the tumor. In this review, we describe recent discoveries that link PCs to the immune escape of tumors. Among PCs, many findings have determined the role of Furin (PC3) as a paramount enzyme causing the TME to induce tumor immune evasion. The overexpression of various cytokines and proteins, for instance, IL10 and TGF-B, moves the TME towards the presence of Tregs and, consequently, immune tolerance. Furthermore, Furin is implicated in the regulation of macrophage activity that contributes to the increased impairment of DCs (dendritic cells) and T effector cells. Moreover, Furin interferes in the MHC Class_1 proteolytic cleavage in the trans-Golgi network. In tumors, the T cytotoxic lymphocytes (CTLs) response is impeded by the PD1 receptor (PD1-R) located on CTLs and its ligand, PDL1, located on cancer cells. The inhibition of Furin is a subtle means of enhancing the antitumor response by repressing PD-1 expression in tumors or macrophage cells. The impacts of other PCs in tumor immune escape have not yet been clarified to the extent that Furin has. Accordingly, the influence of other types of PCs in tumor immune escape is a promising topic for further consideration.
Collapse
Affiliation(s)
- Elham Mehranzadeh
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Olatz Crende
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Iker Badiola
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
- Nanokide Therapeutics SL, Ed. ZITEK, Barrio Sarriena, sn., 48940 Leioa, Spain
| | - Patricia Garcia-Gallastegi
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., 48940 Leioa, Spain
- Correspondence:
| |
Collapse
|
167
|
Fan J, Shi J, Zhang Y, Liu J, An C, Zhu H, Wu P, Hu W, Qin R, Yao D, Shou X, Xu Y, Tong Z, Wen X, Xu J, Zhang J, Fang W, Lou J, Yin W, Chen W. NKG2D discriminates diverse ligands through selectively mechano-regulated ligand conformational changes. EMBO J 2022; 41:e107739. [PMID: 34913508 PMCID: PMC8762575 DOI: 10.15252/embj.2021107739] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022] Open
Abstract
Stimulatory immune receptor NKG2D binds diverse ligands to elicit differential anti-tumor and anti-virus immune responses. Two conflicting degeneracy recognition models based on static crystal structures and in-solution binding affinities have been considered for almost two decades. Whether and how NKG2D recognizes and discriminates diverse ligands still remain unclear. Using live-cell-based single-molecule biomechanical assay, we characterized the in situ binding kinetics of NKG2D interacting with different ligands in the absence or presence of mechanical force. We found that mechanical force application selectively prolonged NKG2D interaction lifetimes with the ligands MICA and MICB, but not with ULBPs, and that force-strengthened binding is much more pronounced for MICA than for other ligands. We also integrated steered molecular dynamics simulations and mutagenesis to reveal force-induced rotational conformational changes of MICA, involving formation of additional hydrogen bonds on its binding interface with NKG2D, impeding MICA dissociation under force. We further provided a kinetic triggering model to reveal that force-dependent affinity determines NKG2D ligand discrimination and its downstream NK cell activation. Together, our results demonstrate that NKG2D has a discrimination power to recognize different ligands, which depends on selective mechanical force-induced ligand conformational changes.
Collapse
Affiliation(s)
- Juan Fan
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiawei Shi
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
| | - Yong Zhang
- Key Laboratory of RNA BiologyCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Junwei Liu
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryThe Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenyi An
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Huaying Zhu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Peng Wu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Wei Hu
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Rui Qin
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Danmei Yao
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xin Shou
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Yibing Xu
- Institute of Translational MedicineSchool of MedicineZhejiang UniversityHangzhouChina
| | - Zhou Tong
- Department of Medical OncologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Xue Wen
- Department of PathologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jianpo Xu
- Center for Stem Cell and Regenerative MedicineDepartment of Basic Medical SciencesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jin Zhang
- Center for Stem Cell and Regenerative MedicineDepartment of Basic Medical SciencesThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Laboratory for Systems and Precision MedicineZhejiang University Medical CenterHangzhouChina
- Institute of HematologyZhejiang UniversityHangzhouChina
| | - Weijia Fang
- Department of Medical OncologyFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Jizhong Lou
- Key Laboratory of RNA BiologyCAS Center for Excellence in BiomacromoleculesInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weiwei Yin
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Thoracic SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalCollege of Biomedical Engineering and Instrument of ScienceZhejiang UniversityHangzhouChina
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
- Key Laboratory for Biomedical Engineering of the Ministry of EducationZhejiang UniversityHangzhouChina
- Department of Hepatobiliary and Pancreatic SurgeryThe Center for Integrated Oncology and Precision MedicineAffiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouChina
- Zhejiang Laboratory for Systems and Precision MedicineZhejiang University Medical CenterHangzhouChina
- The MOE Frontier Science Center for Brain Science & Brain‐machine IntegrationZhejiang UniversityHangzhouChina
| |
Collapse
|
168
|
Maurer S, Zhong X, Prada BD, Mascarenhas J, de Andrade LF. The Latest Breakthroughs in Immunotherapy for Acute Myeloid Leukemia, with a Special Focus on NKG2D Ligands. Int J Mol Sci 2022; 23:15907. [PMID: 36555547 PMCID: PMC9784434 DOI: 10.3390/ijms232415907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by clonal expansion of stem and myeloid progenitor cells. Immunotherapy has revolutionized the care for other cancers such as solid tumors and lymphomas, and has the potential to effectively treat AML. There has been substantial progress in the developments of immunotherapeutic approaches for AML over the last several years, including the development of antibodies that further increase the innate immunogenicity of leukemia cells by the inhibition of NKG2D ligand-particularly MICA and MICB-shedding, chimeric proteins such as IL-15 superagonist that expand natural killer (NK) cells, blockers of immunologic checkpoints such as NKG2A, and chemicals that indirectly increase expression of immune stimulatory proteins in leukemia stem cells. Furthermore, cellular therapies have been designed to enable alloreactive immunity by allogeneic NK cells or target leukemia antigens such as mutated NPM1. These immunotherapeutic approaches have demonstrated remarkable efficacies in preclinical studies and have successfully transitioned to early phase clinical trials, to establish safety and initial signal of clinical activity. Here, we briefly discuss some of the most recent and impactful developments in the AML immunotherapy field and provide our perspectives for the future directions of this exciting and new therapeutic opportunity.
Collapse
Affiliation(s)
- Stefanie Maurer
- Precision Immunology Institute, Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xiaoxuan Zhong
- Precision Immunology Institute, Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Betsy Deza Prada
- Precision Immunology Institute, Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John Mascarenhas
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lucas Ferrari de Andrade
- Precision Immunology Institute, Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
169
|
Masle-Farquhar E, Jackson KJL, Peters TJ, Al-Eryani G, Singh M, Payne KJ, Rao G, Avery DT, Apps G, Kingham J, Jara CJ, Skvortsova K, Swarbrick A, Ma CS, Suan D, Uzel G, Chua I, Leiding JW, Heiskanen K, Preece K, Kainulainen L, O'Sullivan M, Cooper MA, Seppänen MRJ, Mustjoki S, Brothers S, Vogel TP, Brink R, Tangye SG, Reed JH, Goodnow CC. STAT3 gain-of-function mutations connect leukemia with autoimmune disease by pathological NKG2D hi CD8 + T cell dysregulation and accumulation. Immunity 2022; 55:2386-2404.e8. [PMID: 36446385 DOI: 10.1016/j.immuni.2022.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/30/2022] [Accepted: 11/03/2022] [Indexed: 11/30/2022]
Abstract
The association between cancer and autoimmune disease is unexplained, exemplified by T cell large granular lymphocytic leukemia (T-LGL) where gain-of-function (GOF) somatic STAT3 mutations correlate with co-existing autoimmunity. To investigate whether these mutations are the cause or consequence of CD8+ T cell clonal expansions and autoimmunity, we analyzed patients and mice with germline STAT3 GOF mutations. STAT3 GOF mutations drove the accumulation of effector CD8+ T cell clones highly expressing NKG2D, the receptor for stress-induced MHC-class-I-related molecules. This subset also expressed genes for granzymes, perforin, interferon-γ, and Ccl5/Rantes and required NKG2D and the IL-15/IL-2 receptor IL2RB for maximal accumulation. Leukocyte-restricted STAT3 GOF was sufficient and CD8+ T cells were essential for lethal pathology in mice. These results demonstrate that STAT3 GOF mutations cause effector CD8+ T cell oligoclonal accumulation and that these rogue cells contribute to autoimmune pathology, supporting the hypothesis that somatic mutations in leukemia/lymphoma driver genes contribute to autoimmune disease.
Collapse
Affiliation(s)
- Etienne Masle-Farquhar
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia.
| | | | - Timothy J Peters
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ghamdan Al-Eryani
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mandeep Singh
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kathryn J Payne
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Geetha Rao
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Danielle T Avery
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Gabrielle Apps
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Australian BioResources, Moss Vale, NSW 2577, Australia
| | - Jennifer Kingham
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Australian BioResources, Moss Vale, NSW 2577, Australia
| | - Christopher J Jara
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ksenia Skvortsova
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Alexander Swarbrick
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Cindy S Ma
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Daniel Suan
- Westmead Clinical School, The University of Sydney, Westmead, Sydney, NSW, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Ignatius Chua
- Canterbury Health Laboratories, Christchurch, New Zealand
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, FL, USA; Division of Allergy and Immunology, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| | - Kaarina Heiskanen
- Children's Immunodeficiency Unit, Hospital for Children and Adolescents, and Pediatric Research Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kahn Preece
- Department of Immunology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Leena Kainulainen
- Department of Pediatrics, Turku University Hospital, University of Turku, Turku, Finland
| | | | - Megan A Cooper
- Department of Pedatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mikko R J Seppänen
- Rare Disease and Pediatric Research Centers, Hospital for Children and Adolescents, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland; Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | | | - Tiphanie P Vogel
- Department of Pedatrics, Division of Rheumatology/Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert Brink
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Stuart G Tangye
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Joanne H Reed
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Christopher C Goodnow
- The Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; Cellular Genomics Futures Institute, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
170
|
Bourayou E, Golub R. Inflammatory-driven NK cell maturation and its impact on pathology. Front Immunol 2022; 13:1061959. [PMID: 36569860 PMCID: PMC9780665 DOI: 10.3389/fimmu.2022.1061959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
NK cells are innate lymphocytes involved in a large variety of contexts and are crucial in the immunity to intracellular pathogens as well as cancer due to their ability to kill infected or malignant cells. Thus, they harbor a strong potential for clinical and therapeutic use. NK cells do not require antigen exposure to get activated; their functional response is rather based on a balance between inhibitory/activating signals and on the diversity of germline-encoded receptors they express. In order to reach optimal functional status, NK cells go through a step-wise development in the bone marrow before their egress, and dissemination into peripheral organs via the circulation. In this review, we summarize bone marrow NK cell developmental stages and list key factors involved in their differentiation before presenting newly discovered and emerging factors that regulate NK cell central and peripheral maturation. Lastly, we focus on the impact inflammatory contexts themselves can have on NK cell development and functional maturation.
Collapse
Affiliation(s)
- Elsa Bourayou
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| | - Rachel Golub
- Institut Pasteur, Université Paris Cité, INSERM U1223, Lymphocyte and Immunity Unit, Paris, France
| |
Collapse
|
171
|
Rahmani S, Yazdanpanah N, Rezaei N. Natural killer cells and acute myeloid leukemia: promises and challenges. Cancer Immunol Immunother 2022; 71:2849-2867. [PMID: 35639116 PMCID: PMC10991240 DOI: 10.1007/s00262-022-03217-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Acute myeloid leukemia (AML) is considered as one of the most malignant conditions of the bone marrow. Over the past few decades, despite substantial progresses in the management of AML, relapse remission remains a major problem. Natural killer cells (NK cells) are known as a unique component of the innate immune system. Due to swift tumor detection, distinct cytotoxic action, and extensive immune interaction, NK cells have been used in various cancer settings for decades. It has been a growing knowledge of therapeutic magnitudes ranging from adoptive NK cell transfer to chimeric antigen receptor NK cells, aiming to achieve better therapeutic responses in patients with AML. In this article, the potentials of NK cells for treatment of AML are highlighted, and challenges for such therapeutic methods are discussed. In addition, the clinical application of NK cells, mainly in patients with AML, is pictured according to the existing evidence.
Collapse
Affiliation(s)
- Shayan Rahmani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
172
|
Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers (Basel) 2022; 14:cancers14225633. [PMID: 36428727 PMCID: PMC9688455 DOI: 10.3390/cancers14225633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cytotoxic effects as single agents in tumors characterized by defective repair of DNA double-strand breaks deriving from BRCA1/2 mutations or other abnormalities in genes associated with homologous recombination. Preclinical studies have shown that PARPi-induced DNA damage may affect the tumor immune microenvironment and immune-mediated anti-tumor response through several mechanisms. In particular, increased DNA damage has been shown to induce the activation of type I interferon pathway and up-regulation of PD-L1 expression in cancer cells, which can both enhance sensitivity to Immune Checkpoint Inhibitors (ICIs). Despite the recent approval of ICIs for a number of advanced cancer types based on their ability to reinvigorate T-cell-mediated antitumor immune responses, a consistent percentage of treated patients fail to respond, strongly encouraging the identification of combination therapies to overcome resistance. In the present review, we analyzed both established and unexplored mechanisms that may be elicited by PARPi, supporting immune reactivation and their potential synergism with currently used ICIs. This analysis may indicate novel and possibly patient-specific immune features that might represent new pharmacological targets of PARPi, potentially leading to the identification of predictive biomarkers of response to their combination with ICIs.
Collapse
|
173
|
Human Vδ2 T Cells and Their Versatility for Immunotherapeutic Approaches. Cells 2022; 11:cells11223572. [PMID: 36429001 PMCID: PMC9688761 DOI: 10.3390/cells11223572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Gamma/delta (γδ) T cells are innate-like immune effectors that are a critical component linking innate and adaptive immune responses. They are recognized for their contribution to tumor surveillance and fight against infectious diseases. γδ T cells are excellent candidates for cellular immunotherapy due to their unique properties to recognize and destroy tumors or infected cells. They do not depend on the recognition of a single antigen but rather a broad-spectrum of diverse ligands through expression of various cytotoxic receptors. In this manuscript, we review major characteristics of the most abundant circulating γδ subpopulation, Vδ2 T cells, their immunotherapeutic potential, recent advances in expansion protocols, their preclinical and clinical applications for several infectious diseases and malignancies, and how additional modulation could enhance their therapeutic potential.
Collapse
|
174
|
Jarrar W, Khdair SI, Khudeir FA. MICA Polymorphism and Genetic Predisposition to T1D in Jordanian Patients: A Case-Control Study. Life (Basel) 2022; 12:life12111813. [PMID: 36362968 PMCID: PMC9693396 DOI: 10.3390/life12111813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder whose etiology includes genetic and environmental factors. The non-classical Major Histocompatibility Complex (MHC) class I chain-related gene A (MICA) gene has been associated with increased susceptibility to T1D as the interaction of MICA to the Natural Killer Group 2D (NK2GD) receptors found on the cell surface of natural killer (NK) cells and T cells is responsible for inducing immune responses. MICA polymorphisms were reported in association with T1D among different ethnic groups. However, data from different populations revealed conflicting results, so the association of MICA polymorphisms with predisposition to T1D remains uncertain. The aim of this sequencing-based study was to identify, for the first time, the possible MICA alleles and/or genotypes that could be associated with T1D susceptibility in the Jordanian population. Polymorphisms in exons 2–4 and the short tandem repeats (STR) in exon 5 of the highly polymorphic MICA gene were analyzed. No evidence for association between T1D and MICA alleles/genotypes was found in this study, except for the MICA*011 allele which was found to be negatively associated with T1D (p = 0.023, OR = 0.125). In conclusion, MICA polymorphisms seem not to be associated with increasing T1D susceptibility in Jordanian patients.
Collapse
Affiliation(s)
- Wassan Jarrar
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
- Correspondence:
| | - Sawsan I. Khdair
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | | |
Collapse
|
175
|
Valenzuela-Vázquez L, Nuñez-Enriquez JC, Sánchez-Herrera J, Medina-Sanson A, Pérez-Saldivar ML, Jiménez-Hernández E, Martiín-Trejo JA, Del Campo-Martínez MDLÁ, Flores-Lujano J, Amador-Sánchez R, Mora-Ríos FG, Peñaloza-González JG, Duarte-Rodríguez DA, Torres-Nava JR, Espinosa-Elizondo RM, Cortés-Herrera B, Flores-Villegas LV, Merino-Pasaye LE, Almeida-Hernández C, Ramírez-Colorado R, Solís-Labastida KA, Medrano-López F, Pérez-Gómez JA, Velázquez-Aviña MM, Martínez-Ríos A, Aguilar-De los Santos A, Santillán-Juárez JD, Gurrola-Silva A, García-Velázquez AJ, Mata-Rocha M, Hernández-Echáurregui GA, Sepúlveda-Robles OA, Rosas-Vargas H, Mancilla-Herrera I, Jimenez-Morales S, Hidalgo-Miranda A, Martinez-Duncker I, Waight JD, Hance KW, Madauss KP, Mejía-Aranguré JM, Cruz-Munoz ME. NK cells with decreased expression of multiple activating receptors is a dominant phenotype in pediatric patients with acute lymphoblastic leukemia. Front Oncol 2022; 12:1023510. [PMID: 36419901 PMCID: PMC9677112 DOI: 10.3389/fonc.2022.1023510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
NK cells have unique attributes to react towards cells undergoing malignant transformation or viral infection. This reactivity is regulated by activating or inhibitory germline encoded receptors. An impaired NK cell function may result from an aberrant expression of such receptors, a condition often seen in patients with hematological cancers. Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer worldwide and NK cells have emerged as crucial targets for developing immunotherapies. However, there are important gaps concerning the phenotype and behavior of NK cells during emergence of ALL. In this study we analyze the phenotype and function of NK cells from peripheral blood in pediatric patients with ALL at diagnosis. Our results showed that NK cells exhibited an altered phenotype highlighted by a significant reduction in the overall expression and percent representation of activating receptors compared to age-matched controls. No significant differences were found for the expression of inhibitory receptors. Moreover, NK cells with a concurrent reduced expression in various activating receptors, was the dominant phenotype among patients. An alteration in the relative frequencies of NK cells expressing NKG2A and CD57 within the mature NK cell pool was also observed. In addition, NK cells from patients displayed a significant reduction in the ability to sustain antibody-dependent cellular cytotoxicity (ADCC). Finally, an aberrant expression of activating receptors is associated with the phenomenon of leukemia during childhood.
Collapse
Affiliation(s)
- Lucero Valenzuela-Vázquez
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Juan Carlos Nuñez-Enriquez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jacqueline Sánchez-Herrera
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Aurora Medina-Sanson
- Servicio de Oncología Pediátrica, Hospital Infantil de México, “Dr. Federico Gómez Sántos”, Secretaria de Salud, Ciudad de México, Mexico
| | - María Luisa Pérez-Saldivar
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Elva Jiménez-Hernández
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jorge Alfonso Martiín-Trejo
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - María de Los Ángeles Del Campo-Martínez
- Servicio de Hematología Pediátrica, Hospital General “Gaudencio González Garza”, Centro Médico Nacional (CMN) “La Raza”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Janet Flores-Lujano
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Raquel Amador-Sánchez
- Hospital General Regional No. 1 “Carlos McGregor Sánchez Navarro”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Félix Gustavo Mora-Ríos
- Departamento de Hematología, Hospital General Regional Ignacio Zaragoza del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - David Aldebarán Duarte-Rodríguez
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - José Refugio Torres-Nava
- Servicio de Oncología, Hospital Pediátrico de Moctezuma, Secretaría de Salud de la Ciudad de México (CDMX), Mexico City, Mexico
| | | | - Beatriz Cortés-Herrera
- Servicio de Hematología Pediátrica, Hospital General de México, Secretaria de Salud (SS), Mexico City, Mexico
| | - Luz Victoria Flores-Villegas
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Laura Elizabeth Merino-Pasaye
- Servicio de Hematología Pediátrica, Centro Médico Nacional (CMN) “20 de Noviembre”, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Carolina Almeida-Hernández
- Hospital General de Ecatepec “Las Américas”, Instituto de Salud del Estado de México (ISEM), Mexico City, Mexico
| | - Rosario Ramírez-Colorado
- Hospital Pediátrico La Villa, Secretaría de Salud de la Ciudad de México (SSCDMX), Mexico City, Mexico
| | - Karina Anastacia Solís-Labastida
- Servicio de Hematología Pediátrica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Francisco Medrano-López
- Hospital General Regional (HGR) No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Jessica Arleet Pérez-Gómez
- Hospital General Regional (HGR) No. 72 “Dr. Vicente Santos Guajardo”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Annel Martínez-Ríos
- Departamento de Hematología, Hospital General Regional Ignacio Zaragoza del Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | | | - Jessica Denisse Santillán-Juárez
- Servicio de Hemato-oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Alma Gurrola-Silva
- Hospital Regional Tipo B de Alta Especialidad Bicentenario de la Independencia, Instituto de Seguridad Social al Servicio de los Trabajadores del Estado, Mexico City, Mexico
| | - Alejandra Jimena García-Velázquez
- Servicio de Hemato-oncología Pediátrica, Hospital Regional No. 1° de Octubre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado (ISSSTE), Mexico City, Mexico
| | - Minerva Mata-Rocha
- Unidad de Investigación Médica en Epidemiología Clínica, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | | | - Omar Alejandro Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología, Mexico City, Mexico
| | - Silvia Jimenez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Ivan Martinez-Duncker
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | | | | | | | - Juan Manuel Mejía-Aranguré
- Unidad de Investigación Médica en Genética Humana, Unidad Médica de Alta Especialidad (UMAE) Hospital de Pediatría, Centro Médico Nacional (CMN) “Siglo XXI”, Instituto Mexicano del Seguro Social (IMSS), Mexico City, Mexico
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- *Correspondence: Juan Manuel Mejía-Aranguré, ; Mario Ernesto Cruz-Munoz,
| | - Mario Ernesto Cruz-Munoz
- Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
- *Correspondence: Juan Manuel Mejía-Aranguré, ; Mario Ernesto Cruz-Munoz,
| |
Collapse
|
176
|
Cichocki F, Miller JS. Promoting T and NK cell attack: preserving tumor MICA/B by vaccines. Cell Res 2022; 32:961-962. [PMID: 35821089 PMCID: PMC9652387 DOI: 10.1038/s41422-022-00696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
177
|
Demery-Poulos C, Romero R, Xu Y, Arenas-Hernandez M, Miller D, Tao L, Galaz J, Farias-Jofre M, Bhatti G, Garcia-Flores V, Seyerle M, Tarca AL, Gomez-Lopez N. Pregnancy imparts distinct systemic adaptive immune function. Am J Reprod Immunol 2022; 88:e13606. [PMID: 35989229 PMCID: PMC9648024 DOI: 10.1111/aji.13606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/05/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Pregnancy represents a state of systemic immune activation that is primarily driven by alterations in circulating innate immune cells. Recent studies have suggested that cellular adaptive immune components, T cells and B cells, also undergo changes throughout gestation. However, the phenotypes and functions of such adaptive immune cells are poorly understood. Herein, we utilized high-dimensional flow cytometry and functional assays to characterize T-cell and B-cell responses in pregnant and non-pregnant women. METHODS Peripheral blood mononuclear cells from pregnant (n = 20) and non-pregnant (n = 25) women were used for phenotyping of T-cell and B-cell subsets. T-cell proliferation and B-cell activation were assessed by flow cytometry after in vitro stimulation, and lymphocyte cytotoxicity was evaluated by using a cell-based assay. Statistical comparisons were performed with linear mixed-effects models. RESULTS Pregnancy was associated with modestly enhanced basal activation of peripheral CD4+ T cells. Both CD4+ and CD8+ T cells from pregnant women showed increased activation-induced proliferation; yet, a reduced proportion of these cells expressed activation markers compared to non-pregnant women. There were no differences in peripheral lymphocyte cytotoxicity between study groups. A greater proportion of B cells from pregnant women displayed memory-like and activated phenotypes, and such cells exhibited higher activation following stimulation. CONCLUSION Maternal circulating T cells and B cells display distinct responses during pregnancy. The former may reflect the unique capacity of T cells to respond to potential threats without undergoing aberrant activation, thereby preventing systemic inflammatory responses that can lead to adverse perinatal consequences.
Collapse
Affiliation(s)
- Catherine Demery-Poulos
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Centerfor Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Farias-Jofre
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Megan Seyerle
- Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
178
|
Jeon SB, Han AR, Choi YB, Lee AR, Lee JY. Lymphoid Lineage γδ T Cells Were Successfully Generated from Human Pluripotent Stem Cells via Hemogenic Endothelium. Int J Stem Cells 2022; 16:108-116. [PMID: 36310028 PMCID: PMC9978832 DOI: 10.15283/ijsc22150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 03/01/2023] Open
Abstract
γδ T cells are a rare and unique prototype of T cells that share properties with natural killer cells in secondary lymphoid organs. Although many studies have revealed the function and importance of adult-derived γδ T cells in cancer biology and regenerative medicine, the low numbers of these cells hamper their application as therapeutic cell sources in the clinic. To solve this problem, pluripotent stem cell-derived γδ T cells are considered alternative cell sources; however, few studies have reported the generation of human pluripotent stem cell-derived γδ T cells. In the present study, we investigated whether lymphoid lineage γδ T cells were successfully generated from human pluripotent stem cells via hemogenic endothelium under defined culture conditions. Our results revealed that pluripotent stem cells successfully generated γδ T cells with an overall increase in transcriptional activity of lymphoid lineage genes and cytolytic factors, indicating the importance of the optimization of culture conditions in generating lymphoid lineage γδ T cells. We uncovered an initial step in differentiating γδ T cells that could be applied to basic and translational investigations in the field of cancer biology. Based on our result, we will develop an appropriate method to purify γδ T cells with functionality and it helpful for the study of basic mechanism of γδ T cells in pathophysiologic condition as well as clinic application.
Collapse
Affiliation(s)
- Soo-Been Jeon
- CHA Advanced Research Institute, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - A-Reum Han
- CHA Advanced Research Institute, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Yoo Bin Choi
- CHA Advanced Research Institute, CHA Bundang Medical Center, CHA University, Seongnam, Korea
| | - Ah Reum Lee
- CHA Advanced Research Institute, CHA Bundang Medical Center, CHA University, Seongnam, Korea,Department of Biomedical Science, CHA University, Seongnam, Korea
| | - Ji Yoon Lee
- CHA Advanced Research Institute, CHA Bundang Medical Center, CHA University, Seongnam, Korea,Department of Biomedical Science, CHA University, Seongnam, Korea,Correspondence to Ji Yoon Lee, CHA Advanced Research Institute, CHA Bundang Medical Center, CHA University, 335, Pangyo-ro, Bundang-gu, Seongnam 13488, Korea, Tel: +82-31-881-7360, Fax: +82-31-881-7102, E-mail:
| |
Collapse
|
179
|
Wang K, Cadzow M, Bixley M, Leask MP, Merriman ME, Yang Q, Li Z, Takei R, Phipps-Green A, Major TJ, Topless R, Dalbeth N, King F, Murphy R, Stamp LK, de Zoysa J, Wang Z, Shi Y, Merriman TR. A Polynesian-specific copy number variant encompassing the MICA gene associates with gout. Hum Mol Genet 2022; 31:3757-3768. [PMID: 35451026 PMCID: PMC9616569 DOI: 10.1093/hmg/ddac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Gout is of particularly high prevalence in the Māori and Pacific (Polynesian) populations of Aotearoa New Zealand (NZ). Here, we investigated the contribution of common population-specific copy number variation (CNV) to gout in the Aotearoa NZ Polynesian population. Microarray-generated genome-wide genotype data from Aotearoa NZ Polynesian individuals with (n = 1196) and without (n = 1249) gout were analyzed. Comparator population groups were 552 individuals of European ancestry and 1962 of Han Chinese ancestry. Levels of circulating major histocompatibility complex (MHC) class I polypeptide-related sequence A (MICA) were measured by enzyme-linked immunosorbent assay. Fifty-four CNV regions (CNVRs) appearing in at least 10 individuals were detected, of which seven common (>2%) CNVRs were specific to or amplified in Polynesian people. A burden test of these seven revealed associations of insertion/deletion with gout (odds ratio (OR) 95% confidence interval [CI] = 1.80 [1.01; 3.22], P = 0.046). Individually testing of the seven CNVRs for association with gout revealed nominal association of CNVR1 with gout in Western Polynesian (Chr6: 31.36-31.45 Mb, OR = 1.72 [1.03; 2.92], P = 0.04), CNVR6 in the meta-analyzed Polynesian sample sets (Chr1: 196.75-196.92 Mb, OR = 1.86 [1.16; 3.00], P = 0.01) and CNVR9 in Western Polynesian (Chr1: 189.35-189.54 Mb, OR = 2.75 [1.15; 7.13], P = 0.03). Analysis of European gout genetic association data demonstrated a signal of association at the CNVR1 locus that was an expression quantitative trait locus for MICA. The most common CNVR (CNVR1) includes deletion of the MICA gene, encoding an immunomodulatory protein. Expression of MICA was reduced in the serum of individuals with the deletion. In summary, we provide evidence for the association of CNVR1 containing MICA with gout in Polynesian people, implicating class I MHC-mediated antigen presentation in gout.
Collapse
Affiliation(s)
- Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Murray Cadzow
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Matt Bixley
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Megan P Leask
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Marilyn E Merriman
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Zhiqiang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
- Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao 266003, China
| | - Riku Takei
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Tanya J Major
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ruth Topless
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland 1023, New Zealand
| | - Frances King
- Ngati Porou Hauora Charitable Trust, Te Puia Springs, New Zealand
| | - Rinki Murphy
- Department of Medicine, University of Auckland, Auckland 1023, New Zealand
| | - Lisa K Stamp
- Department of Medicine, University of Otago, Christchurch 8013, New Zealand
| | - Janak de Zoysa
- Department of Medicine, University of Auckland, Auckland 1023, New Zealand
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
- Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao 266003, China
| | - Tony R Merriman
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
180
|
Ren X, Mao A, Tan S, Liu J, Wei X. Analysis of the association between MICA gene polymorphisms and schizophrenia. J Clin Lab Anal 2022; 36:e24721. [PMID: 36196481 DOI: 10.1002/jcla.24721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/04/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major histocompatibility complex (MHC) has been implicated in schizophrenia. This study aimed to explore the correlation between the major histocompatibility complex class I polypeptide-related sequence A (MICA) polymorphisms and schizophrenia. METHODS A total of 220 Han schizophrenia patients, 47 Han healthy controls, 155 Li schizophrenia patients, and 48 Li controls were selected from Hainan Province, China. The diagnosis was made according to the Diagnostic and Statistical Manual of Mental Disorders, 4th edition, criteria. Sequencing-based-typing (PCR-SBT) technology was used for MICA allele typing, and the correlation analyses of MICA gene polymorphism and schizophrenia were performed. RESULTS In the Han group, the three allele frequencies of MICA*002:01, MICA*A4, and MICA*A9 in the schizophrenia group were significantly higher than those in the healthy control group, and the differences were statistically significant (pc < 0.05; pc values were 0.024, 0.030, and 0.031, respectively). Yet, there was no difference in the MICA gene between the schizophrenia group and the healthy controls group in the Li population. CONCLUSION We found MICA*002:01, MICA*A4, and MICA*A9 may be susceptibility alleles for schizophrenia in the Han population, while the MICA allele polymorphism in the Li population is not associated with schizophrenia in Chinese.
Collapse
Affiliation(s)
- Xing Ren
- Department of Clinical Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Aiyou Mao
- Department of Clinical Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Shumin Tan
- Department of Clinical Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Jiaxiu Liu
- Department of Clinical Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| | - Xiaobin Wei
- Department of Clinical Laboratory, Central South University Xiangya School of Medicine Affiliated Haikou Hospital, Haikou, China
| |
Collapse
|
181
|
Wang B, Hu S, Fu X, Li L. CD4
+
Cytotoxic T Lymphocytes in Cancer Immunity and Immunotherapy. Adv Biol (Weinh) 2022; 7:e2200169. [PMID: 36193961 DOI: 10.1002/adbi.202200169] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Indexed: 11/05/2022]
Abstract
CD4+ T cells have the ability to differentiate into relatively specialized effector subsets after exposure to innate immune signals. The remarkable plasticity of CD4+ T cells is required to achieve immune responses in different tissues and against various pathogens. Numerous studies have shown that CD4+ T cells can play direct and indispensable roles in protective immunity by killing infected or transformed cells. Although the lineage decision of commitment to the CD4+ or CD8+ cell lineage is once thought to be inflexible, the identification of antigen-experienced CD4+ T cells with cytotoxic activity suggests the existence of unexpected plasticity for these cells. The recognition of CD4+ cytotoxic T lymphocytes (CTLs) and the mechanisms driving the differentiation of this particular cell subset create opportunities to explore the roles of these effector cells in protective immunity and immune-related pathology. CD4+ CTLs are proven to play a protective role in antiviral immunity. Here, the latest investigations on the phenotypic and functional features of CD4+ CTLs and their roles in antitumor immunity and immunotherapy are briefly reviewed.
Collapse
Affiliation(s)
- Boyu Wang
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Shaojie Hu
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Xiangning Fu
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Lequn Li
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| |
Collapse
|
182
|
Neuwirth T, Knapp K, Stary G. (Not) Home alone: Antigen presenting cell - T Cell communication in barrier tissues. Front Immunol 2022; 13:984356. [PMID: 36248804 PMCID: PMC9556809 DOI: 10.3389/fimmu.2022.984356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Priming of T cells by antigen presenting cells (APCs) is essential for T cell fate decisions, enabling T cells to migrate to specific tissues to exert their effector functions. Previously, these interactions were mainly explored using blood-derived cells or animal models. With great advances in single cell RNA-sequencing techniques enabling analysis of tissue-derived cells, it has become clear that subsets of APCs are responsible for priming and modulating heterogeneous T cell effector responses in different tissues. This composition of APCs and T cells in tissues is essential for maintaining homeostasis and is known to be skewed in infection and inflammation, leading to pathological T cell responses. This review highlights the commonalities and differences of T cell priming and subsequent effector function in multiple barrier tissues such as the skin, intestine and female reproductive tract. Further, we provide an overview of how this process is altered during tissue-specific infections which are known to cause chronic inflammation and how this knowledge could be harnessed to modify T cell responses in barrier tissue.
Collapse
Affiliation(s)
- Teresa Neuwirth
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Katja Knapp
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| |
Collapse
|
183
|
BST2, a Novel Inhibitory Receptor, Is Involved in NK Cell Cytotoxicity through Its Cytoplasmic Tail Domain. Int J Mol Sci 2022; 23:ijms231911395. [PMID: 36232695 PMCID: PMC9570199 DOI: 10.3390/ijms231911395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Bone Marrow Stromal Cell Antigen 2 (BST2) is a type II transmembrane protein expressed on various cell types that tethers the release of viruses. Natural killer (NK) cells express low levels of BST2 under normal conditions but exhibit increased expression of BST2 upon activation. In this study, we show for the first time that murine BST2 can control the cytotoxicity of NK cells. The cytoplasmic tail of murine BST2 contains an immunoreceptor tyrosine-based inhibitory motif (ITIM). The absence of BST2 on NK cells can enhance their cytotoxicity against tumor cells compared to wild type NK cells. NK cells isolated from NZW mice, which express ITIM-deficient BST2, also showed higher cytotoxicity than wild type NK cells. In addition, we found that galectin-8 and galectin-9 were ligands of BST2, since blocking galectin-8 or -9 with monoclonal antibodies enhanced the cytotoxicity of NK cells. These results suggested that BST2 might be a novel NK cell inhibitory receptor as it was involved in regulating NK cell cytotoxicity through its interaction with galectins.
Collapse
|
184
|
STAT1 is associated with NK cell dysfunction by downregulating NKG2D transcription in chronic HBV-infected patients. Immunobiology 2022; 227:152272. [PMID: 36122437 DOI: 10.1016/j.imbio.2022.152272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/30/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE Natural killer (NK) cells are key players in the immune system, however, the exact mechanism of NK cell dysfunction during HBV infection remains poorly defined. METHODS Hepatitis B envelope antigen-negative (HBeAg-, n = 19) chronic hepatitis B infection (CHB) patients, HBeAg-positive (HBeAg+, n = 20) CHB patients, HBV-related hepatocellular carcinoma (HBV-HCC, n = 12) patients and healthy blood donors (HD, n = 20), were enrolled in our study. The phenotype and function of the corresponding NK cells of these subjects were then determined. NK cells were cocultured with HBV to assess whether HBV influences the activation of STAT1. Receptors, proliferation, apoptosis rate, and cytotoxicity of NK-92 cells were detected after STAT1 overexpression and knockdown. The relationship between STAT1 and NKG2D promoter was determined by luciferase assay. RESULTS The levels of NKG2D and STAT1 were the lowest in the HBV-HCC group compared with the HD group, followed by the HBeAg+ group and then the HBeAg- group, respectively. Interestingly, STAT1 levels were positively correlated with NKG2D expression and HBeAg status. Furthermore, STAT1 directly bound to the NKG2D promoter to regulate the transcription and expression of NKG2D. Finally, the results also suggested that knockdown of STAT1 can inhibit proliferation, increase apoptosis rate of NK-92 cells and impair cytotoxicity of NK-92 cells. CONCLUSION STAT1 is correlated with NK cell dysfunction by downregulating NKG2D transcription in HBV-infected patients. Our findings demonstrate that STAT1 is an important and positive regulator of NK cells, which could provide a potential immunotherapy target for CHB.
Collapse
|
185
|
Yoon Kim D, Kwon Lee J. Type 1 and 2 diabetes are associated with reduced natural killer cell cytotoxicity. Cell Immunol 2022; 379:104578. [DOI: 10.1016/j.cellimm.2022.104578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
|
186
|
Aryee K, Burzenski LM, Yao L, Keck JG, Greiner D, Shultz LD, Brehm MA. Enhanced development of functional human NK cells in NOD-scid-IL2rg null mice expressing human IL15. FASEB J 2022; 36:e22476. [PMID: 35959876 PMCID: PMC9383543 DOI: 10.1096/fj.202200045r] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 01/09/2023]
Abstract
Human innate immunity plays a critical role in tumor surveillance and in immunoregulation within the tumor microenvironment. Natural killer (NK) cells are innate lymphoid cells that have opposing roles in the tumor microenvironment, including NK cell subsets that mediate tumor cell cytotoxicity and subsets with regulatory function that contribute to the tumor immune suppressive environment. The balance between effector and regulatory NK cell subsets has been studied extensively in murine models of cancer, but there is a paucity of models to study human NK cell function in tumorigenesis. Humanized mice are a powerful alternative to syngeneic mouse tumor models for the study of human immuno-oncology and have proven effective tools to test immunotherapies targeting T cells. However, human NK cell development and survival in humanized NOD-scid-IL2rgnull (NSG) mice are severely limited. To enhance NK cell development, we have developed NSG mice that constitutively expresses human Interleukin 15 (IL15), NSG-Tg(Hu-IL15). Following hematopoietic stem cell engraftment of NSG-Tg(Hu-IL15) mice, significantly higher levels of functional human CD56+ NK cells are detectable in blood and spleen, as compared to NSG mice. Hematopoietic stem cell (HSC)-engrafted NSG-Tg(Hu-IL15) mice also supported the development of human CD3+ T cells, CD20+ B cells, and CD33+ myeloid cells. Moreover, the growth kinetics of a patient-derived xenograft (PDX) melanoma were significantly delayed in HSC-engrafted NSG-Tg(Hu-IL15) mice as compared to HSC-engrafted NSG mice demonstrating that human NK cells have a key role in limiting the tumor growth. Together, these data demonstrate that HSC-engrafted NSG-Tg(Hu-IL15) mice support enhanced development of functional human NK cells, which limit the growth of PDX tumors.
Collapse
Affiliation(s)
- Ken‐Edwin Aryee
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Li‐Chin Yao
- The Jackson LaboratorySacramentoCaliforniaUSA
| | | | - Dale L. Greiner
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| | | | - Michael A. Brehm
- Program in Molecular MedicineDiabetes Center of Excellence, University of Massachusetts Chan Medical SchoolWorcesterMassachusettsUSA
| |
Collapse
|
187
|
Kim H, Kim J, Sa JK, Ryu BK, Park KJ, Kim J, Ha H, Park Y, Shin MH, Kim J, Lee H, Kim D, Lee K, Jang B, Lee KM, Kang SH. Calcipotriol, a synthetic Vitamin D analog, promotes antitumor immunity via CD4+T-dependent CTL/NK cell activation. Biomed Pharmacother 2022; 154:113553. [PMID: 35994815 DOI: 10.1016/j.biopha.2022.113553] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 11/02/2022] Open
Abstract
To overcome the hurdles of immunotherapy, we investigated whether calcipotriol, a synthetic vitamin D analog, could overcome the immune evasion of glioblastoma multiforme (GBM) by modulating immune responses and the immunosuppressive tumor microenvironment. Administration of calcipotriol considerably reduced tumor growth. Both in vivo and in vitro studies revealed that CD8+T and natural killer (NK) cell gene signatures were enriched and activated, producing high levels of IFN-γ and granzyme B. In contrast, regulatory T cells (Treg) were significantly reduced in the calcipotriol-treated group. The expression of CD127, the receptor for thymic stromal lymphopoietin (TSLP), is elevated in CD4+T cells and potentially supports T-cell priming. Depleting CD4+T cells, but not NK or CD8+T cells, completely abrogated the antitumor efficacy of calcipotriol. These data highlight that the calcipotriol/TSLP/CD4+T axis can activate CD8+T and NK cells with a concomitant reduction in the number of Tregs in GBM. Therefore, calcipotriol can be a novel therapeutic modality to overcome the immune resistance of GBM by converting immunologically "cold" tumors into "hot" tumors. DATA AVAILABILITY: Data are available upon reasonable request. The RNA-seq dataset comparing the transcriptomes of control and calcipotriol-treated GL261 tumors is available from the corresponding author upon request.
Collapse
Affiliation(s)
- Hyungsin Kim
- Department of Neurosurgery, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Jeongsoo Kim
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Jason K Sa
- Biomedical Sciences, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Byung-Kyu Ryu
- Department of Neurosurgery, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Kyung-Jae Park
- Department of Neurosurgery, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Jiyoung Kim
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Hyojeong Ha
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Yejin Park
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Min Hwa Shin
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Jungwon Kim
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Hyemin Lee
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Daham Kim
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Kyunghye Lee
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Byunghyun Jang
- Biomedical Sciences, Korea University College of Medicine, Seoul, the Republic of Korea
| | - Kyung-Mi Lee
- Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, the Republic of Korea.
| | - Shin-Hyuk Kang
- Department of Neurosurgery, Korea University College of Medicine, Seoul, the Republic of Korea.
| |
Collapse
|
188
|
Mussafi O, Mei J, Mao W, Wan Y. Immune checkpoint inhibitors for PD-1/PD-L1 axis in combination with other immunotherapies and targeted therapies for non-small cell lung cancer. Front Oncol 2022; 12:948405. [PMID: 36059606 PMCID: PMC9430651 DOI: 10.3389/fonc.2022.948405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/22/2022] [Indexed: 12/13/2022] Open
Abstract
It has been widely acknowledged that the use of immune checkpoint inhibitors (ICI) is an effective therapeutic treatment in many late-stage cancers. However, not all patients could benefit from ICI therapy. Several biomarkers, such as high expression of PD-L1, high mutational burden, and higher number of tumor infiltration lymphocytes have shown to predict clinical benefit from immune checkpoint therapies. One approach using ICI in combination with other immunotherapies and targeted therapies is now being investigated to enhance the efficacy of ICI alone. In this review, we summarized the use of other promising immunotherapies and targeted therapies in combination with ICI in treatment of lung cancers. The results from multiple animals and clinical trials were reviewed. We also briefly discussed the possible outlooks for future treatment.
Collapse
Affiliation(s)
- Ofek Mussafi
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, United States
| | - Jie Mei
- Department of Oncology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Yuan Wan
- The Pq Laboratory of BiomeDx/Rx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY, United States
| |
Collapse
|
189
|
White TM, Stanfield BA, Bonavita CM, Rudd JS, Cardin RD. Development of a mouse salivary gland-derived mesenchymal cell line for immunological studies of murine cytomegalovirus. PLoS One 2022; 17:e0265479. [PMID: 35976883 PMCID: PMC9385033 DOI: 10.1371/journal.pone.0265479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
The salivary glands are a crucial site of replication for human cytomegalovirus (HCMV) and its murine counterpart, murine cytomegalovirus (MCMV). Studies of MCMV often involve the use of BALB/c strain mice, but most in vitro assays are carried out in the NIH 3T3 cell line, which is derived from Swiss Albino mice. This report describes a BALB/c-derived mouse salivary gland cell line immortalized using the SV40 large T antigen. Cells stained positive for PDGFR1 and negative for E-cadherin and PECAM-1, indicating mesenchymal origin. This cell line, which has been named murine salivary gland mesenchymal (mSGM), shows promise as a tool for ex vivo immunological assays due to its MHC haplotype match with the BALB/c mouse strain. In addition, plaque assays using mSGM rather than NIH 3T3 cells are significantly more sensitive for detecting low concentrations of MCMV particles. Finally, it is demonstrated that mSGM cells express all 3 BALB/c MHC class I isotypes and are susceptible to T cell-mediated ex vivo cytotoxicity assays, leading to many possible uses in immunological studies of MCMV.
Collapse
Affiliation(s)
- Timothy M. White
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Brent A. Stanfield
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Cassandra M. Bonavita
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Jared S. Rudd
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Rhonda D. Cardin
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
190
|
Seliger B, Koehl U. Underlying mechanisms of evasion from NK cells as rational for improvement of NK cell-based immunotherapies. Front Immunol 2022; 13:910595. [PMID: 36045670 PMCID: PMC9422402 DOI: 10.3389/fimmu.2022.910595] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Natural killer (NK) cells belong to the family of innate immune cells with the capacity to recognize and kill tumor cells. Different phenotypes and functional properties of NK cells have been described in tumor patients, which could be shaped by the tumor microenvironment. The discovery of HLA class I-specific inhibitory receptors controlling NK cell activity paved the way to the fundamental concept of modulating immune responses that are regulated by an array of inhibitory receptors, and emphasized the importance to explore the potential of NK cells in cancer therapy. Although a whole range of NK cell-based approaches are currently being developed, there are still major challenges that need to be overcome for improved efficacy of these therapies. These include escape of tumor cells from NK cell recognition due to their expression of inhibitory molecules, immune suppressive signals of NK cells, reduced NK cell infiltration of tumors, an immune suppressive micromilieu and limited in vivo persistence of NK cells. Therefore, this review provides an overview about the NK cell biology, alterations of NK cell activities, changes in tumor cells and the tumor microenvironment contributing to immune escape or immune surveillance by NK cells and their underlying molecular mechanisms as well as the current status and novel aspects of NK cell-based therapeutic strategies including their genetic engineering and their combination with conventional treatment options to overcome tumor-mediated evasion strategies and improve therapy efficacy.
Collapse
Affiliation(s)
- Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- *Correspondence: Barbara Seliger,
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
- Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany
- Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| |
Collapse
|
191
|
Sankar J, Arora S, Joshi G, Kumar R. Pore-forming proteins and their role in cancer and inflammation: Mechanistic insights and plausible druggable targets. Chem Biol Interact 2022; 366:110127. [DOI: 10.1016/j.cbi.2022.110127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/03/2022]
|
192
|
Lei Y, Zhao H, Wu Y, Huang L, Nie W, Liu H, Wu G, Pang DW, Xie HY. Phytochemical natural killer cells reprogram tumor microenvironment for potent immunotherapy of solid tumors. Biomaterials 2022; 287:121635. [PMID: 35921728 DOI: 10.1016/j.biomaterials.2022.121635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 11/02/2022]
Abstract
Natural killer cells (NKs) hold great promise in cancer treatment, but their application in solid tumors remains a great challenge because current solutions hardly can overcome various difficulties that faced. Herein, we endow NKs with the phytochemical feature for effective immunotherapy of solid tumors. NKs are decorated with natural thylakoid (Tk) membranes through an efficient and convenient membrane fusion strategy. Tk engineering effectively activates NKs, because the antioxidase on Tk induce glycogen synthase kinase-3β inhibition, and subsequently increase the expression of activating receptor and cytotoxic effector molecules in NKs. After systemic administration, the phytochemical NKs (PC-NKs) can target tumor tissues, and then profoundly reprogram tumor microenvironment (TME) with the help of catalase on Tk, resulting in significantly enhanced direct killing of PC-NKs and immune activated TME. Therefore, potent therapeutic effects with few abnormalities are achieved, providing a novel idea for the development of highly efficient NKs for solid tumors.
Collapse
Affiliation(s)
- Yao Lei
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Helin Zhao
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yuzhu Wu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Lili Huang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Houli Liu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Guanghao Wu
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Dai-Wen Pang
- College of Chemistry, Nankai University, Tianjin, 300071, PR China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, PR China.
| |
Collapse
|
193
|
Maza J, García-Almedina DM, Boike LE, Hamlish NX, Nomura DK, Francis MB. Tyrosinase-Mediated Synthesis of Nanobody-Cell Conjugates. ACS CENTRAL SCIENCE 2022; 8:955-962. [PMID: 35912347 PMCID: PMC9335918 DOI: 10.1021/acscentsci.1c01265] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A convenient enzymatic strategy is reported for the modification of cell surfaces. Using a tyrosinase enzyme isolated from Agaricus bisporus, unique tyrosine residues introduced at the C-termini of nanobodies can be site-selectively oxidized to reactive o-quinones. These reactive intermediates undergo rapid modification with nucleophilic thiol, amine, and imidazole residues present on cell surfaces, producing novel nanobody-cell conjugates that display targeted antigen binding. We extend this approach toward the synthesis of nanobody-NK cell conjugates for targeted immunotherapy applications. The resulting NK cell conjugates exhibit targeted cell binding and elicit targeted cell death.
Collapse
Affiliation(s)
- Johnathan
C. Maza
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Lydia E. Boike
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Novartis-Berkeley
Center for Proteomics and Chemistry Technologies, Cambridge, Massachusetts 02139, United States
| | - Noah X. Hamlish
- Department
of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Daniel K. Nomura
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Novartis-Berkeley
Center for Proteomics and Chemistry Technologies, Cambridge, Massachusetts 02139, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, California 94720, United States
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
- Innovative
Genomics Institute, Berkeley, California 94720, United States
| | - Matthew B. Francis
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratories, Berkeley, California 94720,United States
| |
Collapse
|
194
|
Yang L, Sun L, Cao Y, Wang Q, Song A, Zhu R, Liu W, Lu S. MULT1-Encoding DNA Alleviates Schistosomiasis-Associated Hepatic Fibrosis via Modulating Cellular Immune Response. J Inflamm Res 2022; 15:4027-4045. [PMID: 35873385 PMCID: PMC9301018 DOI: 10.2147/jir.s354224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose In schistosomiasis-associated hepatic fibrosis, the role of murine UL16-binding protein-like transcript 1 (MULT1), the strongest ligand of natural killer group 2-member D receptor (NKG2D), remains unclear. Here, Schistosoma japonicum-infected mice administered with MULT1-encoding DNA were used to test MULT1 as a potential therapy for schistosomiasis-associated hepatic fibrosis and explore relevant mechanisms. Materials and Methods A recombinant plasmid encoding MULT1 (p-rMULT1) was constructed and administered to Schistosoma japonicum-infected BALB/c mice via hydrodynamic tail vein injection. Egg granulomas in liver, hepatic fibrosis biomarkers and levels of cytokines were investigated. Comparisons of CD4+ T, CD8+ T, NK and NKT proportions as well as their phenotype were performed not only between Schistosoma infected, p-rMULT1 treated group and Schistosoma infected, backbone plasmid pEGFP-N1 treated group but also between infected, nontreated group and health control group. Results Reduced area of granuloma formation and fibrosis around single eggs, downregulated expression of collagen I, α-smooth muscle actin, TGF-β and IL-10, and upregulated expression of IFN-γ, were observed in the livers of p-rMULT1 treated mice. p-rMULT1 treatment improved Schistosoma infection impacted immune microenvironment by modulating proportion of CD4+ T CD8+ T, natural killer (NK) and NKT cells, enhancing expression of NKG2D, in lymphocytes, and augmenting IFN-γ secretion by CD4+ T, CD8+ T, NK and NKT cells, as well as partially reversing some other phenotype changes of lymphocytes. Conclusion To the best of our knowledge, we provided the first in vivo evidence that MULT1 is a favorable anti-fibrosis factor in the context of schistosomiasis. The inhibitory effect of MULT1 overexpression on schistosomiasis associated with hepatic fibrosis may result from augmenting the proportion and function of NKG2D-expressing immune cells, and from enhancing NK- and T-cell activation, as well as regulating the helper T (Th)1/Th2 balance.
Collapse
Affiliation(s)
- Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Li Sun
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yalan Cao
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qi Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, People's Republic of China
| | - Anni Song
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ru Zhu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wenqi Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shengjun Lu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
195
|
Chan KF, Duarte JDG, Ostrouska S, Behren A. γδ T Cells in the Tumor Microenvironment-Interactions With Other Immune Cells. Front Immunol 2022; 13:894315. [PMID: 35880177 PMCID: PMC9307934 DOI: 10.3389/fimmu.2022.894315] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/15/2022] [Indexed: 01/02/2023] Open
Abstract
A growing number of studies have shown that γδ T cells play a pivotal role in mediating the clearance of tumors and pathogen-infected cells with their potent cytotoxic, cytolytic, and unique immune-modulating functions. Unlike the more abundant αβ T cells, γδ T cells can recognize a broad range of tumors and infected cells without the requirement of antigen presentation via major histocompatibility complex (MHC) molecules. Our group has recently demonstrated parts of the mechanisms of T-cell receptor (TCR)-dependent activation of Vγ9Vδ2+ T cells by tumors following the presentation of phosphoantigens, intermediates of the mevalonate pathway. This process is mediated through the B7 immunoglobulin family-like butyrophilin 2A1 (BTN2A1) and BTN3A1 complexes. Such recognition results in activation, a robust immunosurveillance process, and elicits rapid γδ T-cell immune responses. These include targeted cell killing, and the ability to produce copious quantities of cytokines and chemokines to exert immune-modulating properties and to interact with other immune cells. This immune cell network includes αβ T cells, B cells, dendritic cells, macrophages, monocytes, natural killer cells, and neutrophils, hence heavily influencing the outcome of immune responses. This key role in orchestrating immune cells and their natural tropism for tumor microenvironment makes γδ T cells an attractive target for cancer immunotherapy. Here, we review the current understanding of these important interactions and highlight the implications of the crosstalk between γδ T cells and other immune cells in the context of anti-tumor immunity.
Collapse
Affiliation(s)
- Kok Fei Chan
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Simone Ostrouska
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
- Department of Medicine, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
196
|
Witalisz-Siepracka A, Klein K, Zdársky B, Stoiber D. The Multifaceted Role of STAT3 in NK-Cell Tumor Surveillance. Front Immunol 2022; 13:947568. [PMID: 35865518 PMCID: PMC9294167 DOI: 10.3389/fimmu.2022.947568] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a member of the Janus kinase (JAK)-STAT pathway, which is one of the key pathways contributing to cancer. STAT3 regulates transcription downstream of many cytokines including interleukin (IL)-6 and IL-10. In cancer, STAT3 is mainly described as a tumor promoter driving tumor cell proliferation, resistance to apoptosis, angiogenesis and metastasis and aberrant activation of STAT3 is associated with poor prognosis. STAT3 is also an important driver of immune evasion. Among many other immunosuppressive mechanisms, STAT3 aids tumor cells to escape natural killer (NK) cell-mediated immune surveillance. NK cells are innate lymphocytes, which can directly kill malignant cells but also regulate adaptive immune responses and contribute to the composition of the tumor microenvironment. The inborn ability to lyse transformed cells renders NK cells an attractive tool for cancer immunotherapy. Here, we provide an overview of the role of STAT3 in the dynamic interplay between NK cells and tumor cells. On the one hand, we summarize the current knowledge on how tumor cell-intrinsic STAT3 drives the evasion from NK cells. On the other hand, we describe the multiple functions of STAT3 in regulating NK-cell cytotoxicity, cytokine production and their anti-tumor responses in vivo. In light of the ongoing research on STAT3 inhibitors, we also discuss how targeting STAT3 would affect the two arms of STAT3-dependent regulation of NK cell-mediated anti-tumor immunity. Understanding the complexity of this interplay in the tumor microenvironment is crucial for future implementation of NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Agnieszka Witalisz-Siepracka
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Klara Klein
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, Vienna, Austria
| | - Bernhard Zdársky
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Dagmar Stoiber
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
- *Correspondence: Dagmar Stoiber,
| |
Collapse
|
197
|
Joshi S, Sharabi A. Targeting myeloid-derived suppressor cells to enhance natural killer cell-based immunotherapy. Pharmacol Ther 2022; 235:108114. [DOI: 10.1016/j.pharmthera.2022.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 12/09/2022]
|
198
|
Chitadze G, Kabelitz D. Immune surveillance in glioblastoma: role of the NKG2D system and novel cell-based therapeutic approaches. Scand J Immunol 2022; 96:e13201. [PMID: 35778892 DOI: 10.1111/sji.13201] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/27/2022]
Abstract
Glioblastoma, formerly known as Glioblastoma multiforme (GBM) is the most frequent and most aggressive brain tumor in adults. The brain is an immunopriviledged organ and the blood brain barrier shields the brain from immune surveillance. In this review we discuss the composition of the immunosuppressive tumor micromilieu and potential immune escape mechanisms in GBM. In this respect, we focus on the role of the NKG2D receptor/ligand system. NKG2D ligands are frequently expressed on GBM tumor cells and can activate NKG2D-expressing killer cells including NK cells and γδ T cells. Soluble NKG2D ligands, however, contribute to tumor escape from immunological attack. We also discuss the current immunotherapeutic strategies to improve the survival of GBM patients. Such approaches include the modulation of the NKG2D receptor/ligand system, the application of checkpoint inhibitors, the adoptive transfer of ex vivo expanded and/or modified immune cells, or the application of antibodies and antibody constructs to target cytotoxic effector cells in vivo. In view of the multitude of pursued strategies, there is hope for improved overall survival of GBM patients in the future.
Collapse
Affiliation(s)
- Guranda Chitadze
- Unit for Hematological Diagnostics, Department of Internal Medicine II
| | - Dieter Kabelitz
- Institute of Immunology, University Hospital Schleswig-Holstein (UKSH) Campus Kiel, Kiel, Germany
| |
Collapse
|
199
|
Westheim AJF, Stoffels LM, Dubois LJ, van Bergenhenegouwen J, van Helvoort A, Langen RCJ, Shiri-Sverdlov R, Theys J. Fatty Acids as a Tool to Boost Cancer Immunotherapy Efficacy. Front Nutr 2022; 9:868436. [PMID: 35811951 PMCID: PMC9260274 DOI: 10.3389/fnut.2022.868436] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Although immunotherapy represents one of the most potent therapeutic anti-cancer approaches, only a limited number of patients shows clinical benefit. Recent evidence suggests that patients' nutritional status plays a major role in immunotherapy outcome. Fatty acids are essential in a balanced diet and well-known to influence the immune response. Moreover, short-chain fatty acids (SCFAs) show beneficial effects in metabolic disorders as well as in cancer and polyunsaturated fatty acids (PUFAs) contribute to body weight and fat free mass preservation in cancer patients. In line with these data, several studies imply a role for SCFAs and PUFAs in boosting the outcome of immunotherapy. In this review, we specifically focus on mechanistic data showing that SCFAs modulate the immunogenicity of tumor cells and we discuss the direct effects of SCFAs and PUFAs on the immune system in the context of cancer. We provide preclinical and clinical evidence indicating that SCFAs and PUFAs may have the potential to boost immunotherapy efficacy. Finally, we describe the challenges and address opportunities for successful application of nutritional interventions focusing on SCFAs and PUFAs to increase the therapeutic potential of immunotherapeutic approaches for cancer.
Collapse
Affiliation(s)
- Annemarie J. F. Westheim
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Lara M. Stoffels
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Ludwig J. Dubois
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
| | - Jeroen van Bergenhenegouwen
- Danone Nutricia Research, Utrecht, Netherlands
- Department of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ardy van Helvoort
- Danone Nutricia Research, Utrecht, Netherlands
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ramon C. J. Langen
- Department of Respiratory Medicine, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Genetics and Cell Biology, NUTRIM-School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Jan Theys
- Department of Precision Medicine, GROW-Research School for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, Netherlands
- *Correspondence: Jan Theys
| |
Collapse
|
200
|
Human γδ T Cell Subsets and Their Clinical Applications for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14123005. [PMID: 35740670 PMCID: PMC9221220 DOI: 10.3390/cancers14123005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Research into the immunotherapeutic potential of T cells has predominantly focused on conventional alpha beta (αβ) T cells, which recognize peptide antigens presented by polymorphic major histocompatibility complex (MHC) class I and class II molecules. However, innate-like T cells, such as gamma delta (γδ) T cells, also play important roles in antitumor immunity. Here, we review the current understanding of γδ T cells in antitumor immunity and discuss strategies that could potentially maximize their potential in cancer immunotherapy. Abstract Gamma delta (γδ) T cells are a minor population of T cells that share adaptive and innate immune properties. In contrast to MHC-restricted alpha beta (αβ) T cells, γδ T cells are activated in an MHC-independent manner, making them ideal candidates for developing allogeneic, off-the-shelf cell-based immunotherapies. As the field of cancer immunotherapy progresses rapidly, different subsets of γδ T cells have been explored. In addition, γδ T cells can be engineered using different gene editing technologies that augment their tumor recognition abilities and antitumor functions. In this review, we outline the unique features of different subsets of human γδ T cells and their antitumor properties. We also summarize the past and the ongoing pre-clinical studies and clinical trials utilizing γδ T cell-based cancer immunotherapy.
Collapse
|