151
|
Yamazaki T, Matsuo J. Mutation frequency of Escherichia coli isolated from river water: potential role in the development of antimicrobial resistance. Can J Microbiol 2021; 67:651-656. [PMID: 33756093 DOI: 10.1139/cjm-2020-0547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacteria acquire genetic variations that help them to adapt to stressful environmental conditions, and these changes may be associated with the development of antimicrobial resistance. In this study, we investigated the mutation frequencies of 270 isolates of Escherichia coli from river water, which represents a relatively unstressful environment. As we predicted, mutation frequencies of the E. coli isolates ranged from <1 × 10-11 to 6.3 × 10-8 (median, 1.7 × 10-9), and a strong mutator (≥ 4 × 10-7) was not detected. To better understand the role of mutation frequency in the development of antimicrobial resistance, we assessed antimicrobial sensitivity after exposure of the E. coli isolates to subinhibitory concentrations of ciprofloxacin, as a surrogate for stress. We found that antimicrobial resistance increased in bacteria with a low mutation frequency after exposure, and the relative increase in antimicrobial resistance generally increased, depending on the mutation frequency. Thus, mutation frequency may contribute to the development of antimicrobial resistance of bacteria in natural environments.
Collapse
Affiliation(s)
- Tomohiro Yamazaki
- School of Medical Technology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, Sapporo 002-8072, Japan.,School of Medical Technology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, Sapporo 002-8072, Japan
| | - Junji Matsuo
- School of Medical Technology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, Sapporo 002-8072, Japan.,School of Medical Technology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, Sapporo 002-8072, Japan
| |
Collapse
|
152
|
Naz S, Dabral S, Nagarajan SN, Arora D, Singh LV, Kumar P, Singh Y, Kumar D, Varshney U, Nandicoori VK. Compromised base excision repair pathway in Mycobacterium tuberculosis imparts superior adaptability in the host. PLoS Pathog 2021; 17:e1009452. [PMID: 33740020 PMCID: PMC8011731 DOI: 10.1371/journal.ppat.1009452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/31/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022] Open
Abstract
Tuberculosis caused by Mycobacterium tuberculosis (Mtb) is a significant public health concern, exacerbated by the emergence of drug-resistant TB. To combat the host’s dynamic environment, Mtb encodes multiple DNA repair enzymes that play a critical role in maintaining genomic integrity. Mtb possesses a GC-rich genome, rendering it highly susceptible to cytosine deaminations, resulting in the occurrence of uracils in the DNA. UDGs encoded by ung and udgB initiate the repair; hence we investigated the biological impact of deleting UDGs in the adaptation of pathogen. We generated gene replacement mutants of uracil DNA glycosylases, individually (RvΔung, RvΔudgB) or together (RvΔdKO). The double KO mutant, RvΔdKO exhibited remarkably higher spontaneous mutation rate, in the presence of antibiotics. Interestingly, RvΔdKO showed higher survival rates in guinea pigs and accumulated large number of SNPs as revealed by whole-genome sequence analysis. Competition assays revealed the superior fitness of RvΔdKO over Rv, both in ex vivo and in vivo conditions. We propose that compromised DNA repair results in the accumulation of mutations, and a subset of these drives adaptation in the host. Importantly, this property allowed us to utilize RvΔdKO for the facile identification of drug targets. Mutation in the genome of bacteria contributes to the acquisition of drug resistance. Mutations in bacteria can arise due to exposures to antibiotics, oxidative, reductive, and many other stresses that bacteria encounter in the host. Mtb has multiple DNA repair mechanisms, including a base excision repair pathway to restore the damaged genome. Here we set out to determine the impact of deleting the Uracil DNA base excision pathway on pathogen adaptability to both antibiotic and host induced stresses. Combinatorial mutant of Mtb UDGs showed higher spontaneous rates of mutations when subjected to antibiotic stress and showed higher survival levels in the guinea pig model of infection. Whole-genome sequence analysis showed significant accumulation of SNPs, suggesting that mutations providing survival advantage may have been positively selected. We also showed that double mutant of Mtb UDGs would be an excellent means to identify antibiotic targets in the bacteria. Competition experiments wherein we pitted wild type and double mutant against each other demonstrated that double mutant has a decisive edge over the wild type. Together, data suggest that the absence of a base excision repair pathway leads to higher mutations and provides a survival advantage under stress. They could be an invaluable tool for identifying targets of new antibiotics.
Collapse
Affiliation(s)
- Saba Naz
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- Department of Zoology, University of Delhi, Delhi, India
| | - Shruti Dabral
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Divya Arora
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Lakshya Veer Singh
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Pradeep Kumar
- Department of Microbiology & Cell Biology, Indian Institute of Sciences, Bangalore, India
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Dhiraj Kumar
- Cellular Immunology Group, International Center for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Umesh Varshney
- Department of Microbiology & Cell Biology, Indian Institute of Sciences, Bangalore, India
- * E-mail: (UV); (VKN)
| | - Vinay Kumar Nandicoori
- Signal Transduction Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail: (UV); (VKN)
| |
Collapse
|
153
|
Lee C, Klockgether J, Fischer S, Trcek J, Tümmler B, Römling U. Why? - Successful Pseudomonas aeruginosa clones with a focus on clone C. FEMS Microbiol Rev 2021; 44:740-762. [PMID: 32990729 PMCID: PMC7685784 DOI: 10.1093/femsre/fuaa029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
The environmental species Pseudomonas aeruginosa thrives in a variety of habitats. Within the epidemic population structure of P. aeruginosa, occassionally highly successful clones that are equally capable to succeed in the environment and the human host arise. Framed by a highly conserved core genome, individual members of successful clones are characterized by a high variability in their accessory genome. The abundance of successful clones might be funded in specific features of the core genome or, although not mutually exclusive, in the variability of the accessory genome. In clone C, one of the most predominant clones, the plasmid pKLC102 and the PACGI-1 genomic island are two ubiquitous accessory genetic elements. The conserved transmissible locus of protein quality control (TLPQC) at the border of PACGI-1 is a unique horizontally transferred compository element, which codes predominantly for stress-related cargo gene products such as involved in protein homeostasis. As a hallmark, most TLPQC xenologues possess a core genome equivalent. With elevated temperature tolerance as a characteristic of clone C strains, the unique P. aeruginosa and clone C specific disaggregase ClpG is a major contributor to tolerance. As other successful clones, such as PA14, do not encode the TLPQC locus, ubiquitous denominators of success, if existing, need to be identified.
Collapse
Affiliation(s)
- Changhan Lee
- Department of Microbiology, Tumor and Cell Biology, Biomedicum C8, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jens Klockgether
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover Medical School, D-30625 Hannover, Germany
| | - Sebastian Fischer
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover Medical School, D-30625 Hannover, Germany
| | - Janja Trcek
- Faculty of Natural Sciences and Mathematics, Department of Biology, University of Maribor, Maribor, 2000, Slovenia
| | - Burkhard Tümmler
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover Medical School, D-30625 Hannover, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Biomedicum C8, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
154
|
García-Ulloa MI, Escalante AE, Moreno-Letelier A, Eguiarte LE, Souza V. Evolutionary Rescue of an Environmental Pseudomonas otitidis in Response to Anthropogenic Perturbation. Front Microbiol 2021; 11:563885. [PMID: 33552002 PMCID: PMC7856823 DOI: 10.3389/fmicb.2020.563885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic perturbations introduce novel selective pressures to natural environments, impacting the genomic variability of organisms and thus altering the evolutionary trajectory of populations. Water overexploitation for agricultural purposes and defective policies in Cuatro Cienegas, Coahuila, Mexico, have strongly impacted its water reservoir, pushing entire hydrological systems to the brink of extinction along with their native populations. Here, we studied the effects of continuous water overexploitation on an environmental aquatic lineage of Pseudomonas otitidis over a 13-year period which encompasses three desiccation events. By comparing the genomes of a population sample from 2003 (original state) and 2015 (perturbed state), we analyzed the demographic history and evolutionary response to perturbation of this lineage. Through coalescent simulations, we obtained a demographic model of contraction-expansion-contraction which points to the occurrence of an evolutionary rescue event. Loss of genomic and nucleotide variation alongside an increment in mean and variance of Tajima’s D, characteristic of sudden population expansions, support this observation. In addition, a significant increase in recombination rate (R/θ) was observed, pointing to horizontal gene transfer playing a role in population recovery. Furthermore, the gain of phosphorylation, DNA recombination, small-molecule metabolism and transport and loss of biosynthetic and regulatory genes suggest a functional shift in response to the environmental perturbation. Despite subsequent sampling events in the studied site, no pseudomonad was found until the lagoon completely dried in 2017. We speculate about the causes of P. otitidis final decline or possible extinction. Overall our results are evidence of adaptive responses at the genomic level of bacterial populations in a heavily exploited aquifer.
Collapse
Affiliation(s)
- Manuel Ii García-Ulloa
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Ana Elena Escalante
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Alejandra Moreno-Letelier
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Luis E Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
155
|
Veschetti L, Sandri A, Patuzzo C, Melotti P, Malerba G, Lleò MM. Mobilome Analysis of Achromobacter spp. Isolates from Chronic and Occasional Lung Infection in Cystic Fibrosis Patients. Microorganisms 2021; 9:microorganisms9010130. [PMID: 33430044 PMCID: PMC7826576 DOI: 10.3390/microorganisms9010130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022] Open
Abstract
Achromobacter spp. is an opportunistic pathogen that can cause lung infections in patients with cystic fibrosis (CF). Although a variety of mobile genetic elements (MGEs) carrying antimicrobial resistance genes have been identified in clinical isolates, little is known about the contribution of Achromobacter spp. mobilome to its pathogenicity. To provide new insights, we performed bioinformatic analyses of 54 whole genome sequences and investigated the presence of phages, insertion sequences (ISs), and integrative and conjugative elements (ICEs). Most of the detected phages were previously described in other pathogens and carried type II toxin-antitoxin systems as well as other pathogenic genes. Interestingly, the partial sequence of phage Bcep176 was found in all the analyzed Achromobacter xylosoxidans genome sequences, suggesting the integration of this phage in an ancestor strain. A wide variety of IS was also identified either inside of or in proximity to pathogenicity islands. Finally, ICEs carrying pathogenic genes were found to be widespread among our isolates and seemed to be involved in transfer events within the CF lung. These results highlight the contribution of MGEs to the pathogenicity of Achromobacter species, their potential to become antimicrobial targets, and the need for further studies to better elucidate their clinical impact.
Collapse
Affiliation(s)
- Laura Veschetti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (C.P.); (G.M.)
| | - Angela Sandri
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy;
| | - Cristina Patuzzo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (C.P.); (G.M.)
| | - Paola Melotti
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata Verona, 37126 Verona, Italy;
| | - Giovanni Malerba
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (C.P.); (G.M.)
| | - Maria M. Lleò
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy;
- Correspondence:
| |
Collapse
|
156
|
Almeida MM, Freitas MT, Folescu TW, Firmida MC, Carvalho-Assef APD, Marques EA, Leão RS. Carbapenem-Resistant Pseudomonas aeruginosa in Chronic Lung Infection: Current Resistance Profile and Hypermutability in Patients with Cystic Fibrosis. Curr Microbiol 2021; 78:696-704. [PMID: 33404752 DOI: 10.1007/s00284-020-02337-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/14/2020] [Indexed: 11/29/2022]
Abstract
Pseudomonas aeruginosa is associated with chronic and progressive lung disease and is closely related to increased morbidity and mortality in cystic fibrosis (CF) patients. Hypermutable (HPM) P. aeruginosa isolates have been described in these patients and are usually associated with antibiotic resistance. This study aimed to investigate the occurrence of carbapenem resistance and hypermutable phenotype in 179 P. aeruginosa isolates from 8 chronically CF patients assisted at two reference centers in Rio de Janeiro, Brazil. Using disk diffusion test, non-susceptible (NS) rates higher than 40% were observed for imipenem, amikacin, and gentamicin. A total of 79 isolates (44.1%), 71 (39.6%), and 8 (4.4%) were classified as carbapenem-resistant (CR resistance to at least one carbapenem), multidrug-resistant (MDR), and extensively drug-resistant (XDR), respectively. Minimal inhibitory concentration was determined for 79 CR P. aeruginosa and showed the following variations: 4 and 128 μg/mL to imipenem, 4 and 64 µg/mL to meropenem, and 4 and ≥ 32 µg/mL to doripenem. We have found only four (2.23%) HPM isolates from 4 patients. Analyzing the genetic relationship among the HPM isolates, 3 pulsed-field gel electrophoresis/pulsotypes (D, M, and J) were observed. Only M pulsotype was recovered from two patients in different years. Polymerase chain reaction screening for blaGES, blaIMP, blaKPC, blaNDM, blaOXA-48, blaSPM, and blaVIM genes was performed for all CR isolates and none of them were positive. Our results demonstrate a high occurrence of CR and MDR P. aeruginosa of CF patients follow-up in both centers studied, while the presence of HPM is still unusual.
Collapse
Affiliation(s)
- Mila M Almeida
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Meyvianne T Freitas
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tania W Folescu
- Instituto Nacional de Saúde da Mulher, Criança e do Adolescente Fernandes Figueira, Centro de Referência para Crianças e Adolescentes com Fibrose Cística - Ministério da Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Monica C Firmida
- Departamento de Doenças do Tórax, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula D'A Carvalho-Assef
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Elizabeth A Marques
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson S Leão
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
157
|
Escherichia coli Genomic Diversity within Extraintestinal Acute Infections Argues for Adaptive Evolution at Play. mSphere 2021; 6:6/1/e01176-20. [PMID: 33408235 PMCID: PMC7845604 DOI: 10.1128/msphere.01176-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Little is known about the dynamics of adaptation in acute bacterial infections. By sequencing multiple isolates from monoclonal extraintestinal Escherichia coli infections in several patients, we were able to uncover traces of selection taking place at short time scales compared to chronic infection. Adaptive processes in chronic bacterial infections are well described, but much less is known about the processes at play during acute infections. Here, by sequencing seven randomly selected isolates per patient, we analyzed Escherichia coli populations from three acute extraintestinal infections in adults (meningitis, pyelonephritis, and peritonitis), in which a high-mutation-rate isolate or mutator isolate was found. The isolates of single patients displayed between a few dozen and more than 200 independent mutations, with up to half being specific to the mutator isolate. Multiple signs of positive selection were evidenced: a high ratio of nonsynonymous to synonymous mutations (Ka/Ks ratio) and strong mutational convergence within and between patients, some of them at loci well known for their adaptive potential, such as rpoS, rbsR, fimH, and fliC. For all patients, the mutator isolate was likely due to a large deletion of a methyl-directed mismatch repair gene, and in two instances, the deletion extended to genes involved in some genetic convergence, suggesting potential coselection. Intrinsic extraintestinal virulence assessed in a mouse model of sepsis showed variable patterns of virulence ranging from non-mouse killer to mouse killer for the isolates from single patients. However, genomic signature and gene inactivation experiments did not establish a link between a single gene and the capacity to kill mice, highlighting the complex and multifactorial nature of the virulence. Altogether, these data indicate that E. coli isolates are adapting under strong selective pressure when colonizing an extraintestinal site. IMPORTANCE Little is known about the dynamics of adaptation in acute bacterial infections. By sequencing multiple isolates from monoclonal extraintestinal Escherichia coli infections in several patients, we were able to uncover traces of selection taking place at short time scales compared to chronic infection. High genomic diversity was observed in the patient isolates, with an excess of nonsynonymous mutations, and the comparison within and between different infections showed patterns of convergence at the gene level, both constituting strong signs of adaptation. The genes targeted were coding mostly for proteins involved in global regulation, metabolism, and adhesion/motility. Moreover, virulence assessed in a mouse model of sepsis was variable among the isolates of single patients, but this difference was left unexplained at the molecular level. This work gives us clues about the E. coli lifestyle transition between commensalism and pathogenicity.
Collapse
|
158
|
Goh SJR, Tuomisto JEE, Purcell AW, Mifsud NA, Illing PT. The complexity of T cell-mediated penicillin hypersensitivity reactions. Allergy 2021; 76:150-167. [PMID: 32383256 DOI: 10.1111/all.14355] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/16/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
Abstract
Penicillin refers to a group of beta-lactam antibiotics that are the first-line treatment for a range of infections. However, they also possess the ability to form novel antigens, or neoantigens, through haptenation of proteins and can stimulate a range of immune-mediated adverse reactions-collectively known as drug hypersensitivity reactions (DHRs). IgE-mediated reactions towards these neoantigens are well studied; however, IgE-independent reactions are less well understood. These reactions usually manifest in a delayed manner as different forms of cutaneous eruptions or liver injury consistent with priming of an immune response. Ex vivo studies have confirmed the infiltration of T cells into the site of inflammation, and the subsets of T cells involved appear dependent on the nature of the reaction. Here, we review the evidence that has led to our current understanding of these immune-mediated reactions, discussing the nature of the lesional T cells, the characterization of drug-responsive T cells isolated from patient blood, and the potential mechanisms by which penicillins enter the antigen processing and presentation pathway to stimulate these deleterious responses. Thus, we highlight the need for a more comprehensive understanding of the underlying genetic and molecular basis of penicillin-induced DHRs.
Collapse
Affiliation(s)
- Shawn J. R. Goh
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Johanna E. E. Tuomisto
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Anthony W. Purcell
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Nicole A. Mifsud
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| | - Patricia T. Illing
- Infection and Immunity Program Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology Monash University Clayton Vic. Australia
| |
Collapse
|
159
|
Wang BX, Wheeler KM, Cady KC, Lehoux S, Cummings RD, Laub MT, Ribbeck K. Mucin Glycans Signal through the Sensor Kinase RetS to Inhibit Virulence-Associated Traits in Pseudomonas aeruginosa. Curr Biol 2021; 31:90-102.e7. [DOI: 10.1016/j.cub.2020.09.088] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/29/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022]
|
160
|
Nageeb W, Amin DH, Mohammedsaleh ZM, Makharita RR. Novel Molecular Markers Linked to Pseudomonas aeruginosa Epidemic High-Risk Clones. Antibiotics (Basel) 2021; 10:antibiotics10010035. [PMID: 33401446 PMCID: PMC7824207 DOI: 10.3390/antibiotics10010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
The population structure of Pseudomonas aeruginosa is panmictic-epidemic in nature, with the prevalence of some high-risk clones. These clones are often linked to virulence, antibiotic resistance, and more morbidity. The clonal success of these lineages has been linked to acquisition and spread of mobile genetic elements. The main aim of the study was to explore other molecular markers that explain their global success. A comprehensive set of 528 completely sequenced P. aeruginosa genomes was analyzed. The population structure was examined using Multilocus Sequence Typing (MLST). Strain relationships analysis and diversity analysis were performed using the geoBURST Full Minimum Spanning Tree (MST) algorithm and hierarchical clustering. A phylogenetic tree was constructed using the Unweighted Pair Group Method with Arithmetic mean (UPGMA) algorithm. A panel of previously investigated resistance markers were examined for their link to high-risk clones. A novel panel of molecular markers has been identified in relation to risky clones including armR, ampR, nalC, nalD, mexZ, mexS, gyrAT83I, gyrAD87N, nalCE153Q, nalCS46A, parCS87W, parCS87L, ampRG283E, ampRM288R, pmrALeu71Arg, pmrBGly423Cys, nuoGA890T, pstBE89Q, phoQY85F, arnAA170T, arnDG206C, and gidBE186A. In addition to mobile genetic elements, chromosomal variants in membrane proteins and efflux pump regulators can play an important role in the success of high-risk clones. Finding risk-associated markers during molecular surveillance necessitates applying more infection-control precautions.
Collapse
Affiliation(s)
- Wedad Nageeb
- Medical Microbiology and Immunology Department, Faculty of Medicine, Suez Canal University, Ismailia 41111, Egypt
- Correspondence:
| | - Dina H. Amin
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt;
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Rabab R. Makharita
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
- Biology Department, Faculty of Science and Arts, Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia
| |
Collapse
|
161
|
Díez-Aguilar M, Hernández-García M, Morosini MI, Fluit A, Tunney MM, Huertas N, del Campo R, Obrecht D, Bernardini F, Ekkelenkamp M, Cantón R. Murepavadin antimicrobial activity against and resistance development in cystic fibrosis Pseudomonas aeruginosa isolates. J Antimicrob Chemother 2020; 76:984-992. [DOI: 10.1093/jac/dkaa529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/20/2020] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Murepavadin, a novel peptidomimetic antibiotic, is being developed as an inhalation therapy for treatment of Pseudomonas aeruginosa respiratory infection in people with cystic fibrosis (CF). It blocks the activity of the LptD protein in P. aeruginosa causing outer membrane alterations.
Objectives
To determine the in vitro activity of murepavadin against CF P. aeruginosa isolates and to investigate potential mechanisms of resistance.
Methods
MIC values were determined by both broth microdilution and agar dilution and results compared. The effect of artificial sputum and lung surfactant on in vitro activity was also measured. Spontaneous mutation frequency was estimated. Bactericidal activity was investigated using time–kill assays. Resistant mutants were studied by WGS.
Results
The murepavadin MIC50 was 0.125 versus 4 mg/L and the MIC90 was 2 versus 32 mg/L by broth microdilution and agar dilution, respectively. Essential agreement was >90% when determining in vitro activity with artificial sputum or lung surfactant. It was bactericidal at a concentration of 32 mg/L against 95.4% of the strains within 1–5 h. Murepavadin MICs were 2–9 two-fold dilutions higher for the mutant derivatives (0.5 to >16 mg/L) than for the parental strains. Second-step mutants were obtained for the PAO mutS reference strain with an 8×MIC increase. WGS showed mutations in genes involved in LPS biosynthesis (lpxL1, lpxL2, bamA2, lptD, lpxT and msbA).
Conclusions
Murepavadin characteristics, such as its specific activity against P. aeruginosa, its unique mechanism of action and its strong antimicrobial activity, encourage the further clinical evaluation of this drug.
Collapse
Affiliation(s)
- María Díez-Aguilar
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - María-Isabel Morosini
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Ad Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Natalia Huertas
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Rosa del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | | | | | - Miquel Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
- Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| |
Collapse
|
162
|
Andersson DI, Balaban NQ, Baquero F, Courvalin P, Glaser P, Gophna U, Kishony R, Molin S, Tønjum T. Antibiotic resistance: turning evolutionary principles into clinical reality. FEMS Microbiol Rev 2020; 44:171-188. [PMID: 31981358 DOI: 10.1093/femsre/fuaa001] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is one of the major challenges facing modern medicine worldwide. The past few decades have witnessed rapid progress in our understanding of the multiple factors that affect the emergence and spread of antibiotic resistance at the population level and the level of the individual patient. However, the process of translating this progress into health policy and clinical practice has been slow. Here, we attempt to consolidate current knowledge about the evolution and ecology of antibiotic resistance into a roadmap for future research as well as clinical and environmental control of antibiotic resistance. At the population level, we examine emergence, transmission and dissemination of antibiotic resistance, and at the patient level, we examine adaptation involving bacterial physiology and host resilience. Finally, we describe new approaches and technologies for improving diagnosis and treatment and minimizing the spread of resistance.
Collapse
Affiliation(s)
- Dan I Andersson
- Department of Medical Biochemistry and Microbiology, University of Uppsala, BMC, Husargatan 3, 75237, Uppsala, Sweden
| | - Nathalie Q Balaban
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, 9190401, Jerusalem, Israel
| | - Fernando Baquero
- Department of Microbiology, Ramón y Cajal Health Research Institute, Ctra. Colmenar Viejo Km 9,100 28034 - Madrid, Madrid, Spain
| | - Patrice Courvalin
- French National Reference Center for Antibiotics, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, Paris, France
| | - Philippe Glaser
- Ecology and Evolution of Antibiotic Resistance, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, Paris, France
| | - Uri Gophna
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, 121 Jack Green building, Tel-Aviv University, Ramat-Aviv, 6997801, Tel Aviv, Israel
| | - Roy Kishony
- Faculty of Biology, The Technion, Technion City, Haifa 3200003, Haifa, Israel
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Building 220 2800 Kgs.Lyngby, Lyngby, Denmark
| | - Tone Tønjum
- Department of Microbiology, University of Oslo, OUS HF Rikshospitalet Postboks 4950 Nydalen 0424 Oslo, Oslo, Norway.,Oslo University Hospital, P. O. Box 4950 Nydalen N-0424 Oslo, Oslo, Norway
| |
Collapse
|
163
|
Cook J, Douglas GM, Zhang J, Glick BR, Langille MGI, Liu KH, Cheng Z. Transcriptomic profiling of Brassica napus responses to Pseudomonas aeruginosa. Innate Immun 2020; 27:143-157. [PMID: 33353474 PMCID: PMC7882811 DOI: 10.1177/1753425920980512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen of plants. Unlike the well-characterized plant defense responses to highly adapted bacterial phytopathogens, little is known about plant response to P. aeruginosa infection. In this study, we examined the Brassica napus (canola) tissue-specific response to P. aeruginosa infection using RNA sequencing. Transcriptomic analysis of canola seedlings over a 5 day P. aeruginosa infection revealed that many molecular processes involved in plant innate immunity were up-regulated, whereas photosynthesis was down-regulated. Phytohormones control many vital biological processes within plants, including growth and development, senescence, seed setting, fruit ripening, and innate immunity. The three main phytohormones involved in plant innate immunity are salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). Many bacterial pathogens have evolved multiple strategies to manipulate these hormone responses in order to infect plants successfully. Interestingly, gene expression within all three phytohormone (SA, JA, and ET) signaling pathways was up-regulated in response to P. aeruginosa infection. This study identified a unique plant hormone response to the opportunistic bacterial pathogen P. aeruginosa infection.
Collapse
Affiliation(s)
- Jamie Cook
- Department of Microbiology and Immunology, Dalhousie University, Canada
| | - Gavin M Douglas
- Department of Microbiology and Immunology, Dalhousie University, Canada
| | - Janie Zhang
- Department of Microbiology and Immunology, Dalhousie University, Canada
| | | | - Morgan G I Langille
- Department of Microbiology and Immunology, Dalhousie University, Canada.,Department of Pharmacology, Dalhousie University, Canada.,Integrated Microbiome Resource (IMR), Dalhousie University, Canada
| | - Kun-Hsiang Liu
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, USA.,Department of Genetics, Harvard Medical School, USA.,State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwestern Agriculture and Forestry University, People's Republic of China
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Dalhousie University, Canada
| |
Collapse
|
164
|
Clinical Biofilm Ring Test ® Reveals the Potential Role of β-Lactams in the Induction of Biofilm Formation by P. aeruginosa in Cystic Fibrosis Patients. Pathogens 2020; 9:pathogens9121065. [PMID: 33352641 PMCID: PMC7766936 DOI: 10.3390/pathogens9121065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/03/2022] Open
Abstract
Biofilms are characterized by high tolerance to antimicrobials. However, conventional antibiograms are performed on planktonic microorganisms. Through the clinical Biofilm Ring Test® (cBRT), initially aimed to measure the adhesion propensity of bacteria, we discerned a variable distribution of biofilm-producer strains among P. aeruginosa samples isolated from expectorations of cystic fibrosis (CF) patients. Despite a majority of spontaneous adherent isolates, few strains remained planktonic after 5 h of incubation. Their analysis by an adapted protocol of the cBRT revealed an induction of the biofilm early formation by sub-inhibitory doses of β-lactams. Microscopic observations of bacterial cultures stained with Syto 9/Propidium Iodide (PI) confirmed the ability of antimicrobials to increase either the bacterial biomass or the biovolume occupied by induced sessile cells. Finally, the cBRT and its derivatives enabled to highlight in a few hours the potential inducer property of antibiotics on bacterial adhesion. This phenomenon should be considered carefully in the context of CF since patients are constantly under fluctuating antimicrobial treatments. To conclude, assays derived from the Biofilm Ring Test® (BRT) device, not only define efficient doses preventing biofilm formation, but could be useful for the antimicrobial selection in CF, to avoid inducer molecules of the early biofilm initiation.
Collapse
|
165
|
Rosales-Reyes R, Vargas-Roldán SY, Lezana-Fernández JL, Santos-Preciado JI. Pseudomonas Aeruginosa: Genetic Adaptation, A Strategy for its Persistence in Cystic Fibrosis. Arch Med Res 2020; 52:357-361. [PMID: 33309309 DOI: 10.1016/j.arcmed.2020.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 10/22/2022]
Abstract
Cystic fibrosis (CF) is a progressive autosomal recessive genetic disease that principally affects the respiratory and digestive systems. It is a chronic disease that has no cure. Symptoms often include chronic cough, lung infections, and shortness of breath. Children with cystic fibrosis present failure to thrive as manifested by low weight and height for age. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (cftr) gene that codes for a cell membrane protein of epithelial tissues and affects multiple organ systems in the human body. Mutations on the CFTR causes dysfunctional electrolyte regulation affecting intracellular water content. Defective CFTR function in airways produce a dehydrated and sticky mucus that leads the establishment of bacterial chronic infection that ultimate decrease the lung function. During the first decade of life, affected individuals are colonized principally by non typable Haemophilus influenzae and Staphylococcus aureus. During the second decade, Pseudomonas aeruginosa becomes the most dominant pathogen and persists throughout the remainder of their lives. In this work, we describe the mechanisms used by P. aeruginosa to adapt and persist in lungs of individuals with cystic fibrosis.
Collapse
Affiliation(s)
- Roberto Rosales-Reyes
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Silvia Yalid Vargas-Roldán
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - José Luis Lezana-Fernández
- Laboratorio de Fisiología Respiratoria y Clínica de Fibrosis Quística, Hospital Infantil de México Federico Gómez, Ciudad de México, México; Dirección Médica, Asociación Mexicana de Fibrosis Quística, Ciudad de México, México
| | - José Ignacio Santos-Preciado
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
166
|
siRNA delivery to macrophages using aspherical, nanostructured microparticles as delivery system for pulmonary administration. Eur J Pharm Biopharm 2020; 158:284-293. [PMID: 33285246 DOI: 10.1016/j.ejpb.2020.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/16/2020] [Accepted: 11/28/2020] [Indexed: 12/13/2022]
Abstract
The delivery of oligonucleotides such as siRNA to the lung is a major challenge, as this group of drugs has difficulties to overcome biological barriers due to its polyanionic character and the associated hydrophilic properties, resulting in inefficient delivery. Especially in diseases such as asthma, chronic obstructive pulmonary disease and cystic fibrosis, where increased proinflammation is present, a targeted RNA therapy is desirable due to the high potency of these oligonucleotides. To address these problems and to ensure efficient uptake of siRNA in macrophages, a microparticulate, cylindrical delivery system was developed. In the first step, this particle system was tested for its aerodynamic characteristics to evaluate the aerodynamic properties to optimize lung deposition. The mass median aerodynamic diameter of 2.52 ± 0.23 µm, indicates that the desired target should be reached. The inhibition of TNF-α release, as one of the main mediators of proinflammatory reactions, was investigated. We could show that our carrier system can be loaded with siRNA against TNF-α. Gel electrophoreses allowed to demonstrate that the load can be incorporated and released without being degraded. The delivery system was found to transport a mass fraction of 0.371% [%w/w] as determined by inductively coupled plasma mass spectroscopy. When investigating the release kinetics, the results showed that several days are necessary to release a major amount of the siRNA indicating a sustained release. The cylindrical microparticles with an aspect ratio of 3.3 (ratio of length divided by width) were then tested in vitro successfully reducing TNF-α release from human macrophages significantly by more than 30%. The developed formulation presents a possible oligonucleotide delivery system allowing due to its internal structure to load and protect siRNA.
Collapse
|
167
|
Taylor SL, Leong LEX, Sims SK, Keating RL, Papanicolas LE, Richard A, Mobegi FM, Wesselingh S, Burr LD, Rogers GB. The cystic fibrosis gut as a potential source of multidrug resistant pathogens. J Cyst Fibros 2020; 20:413-420. [PMID: 33250435 DOI: 10.1016/j.jcf.2020.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND The emergence of multidrug resistant (MDR) pathogens represents a profound threat to global health. Individuals with CF have amongst the highest cumulative antibiotic exposure of any patient group, including to critically-important last-line agents. While there is little evidence that antibiotic resistance in airway pathogens results in worse clinical outcomes for CF patients, the potential emergence of MDR pathogens in non-respiratory systems, as a consequence of CF care, represents a potential health threat to the wider population, including family and carers. METHODS Stool from 19 adults with CF and 16 healthy adult controls was subjected to metagenomic sequencing, to assess faecal resistome, and culture-based analysis. Resistant isolates were identified phenotypically, and genetic determinants of resistance characterised by whole genome sequencing. RESULTS CF and control faecal resistomes differed significantly (P = 0.0003). The proportion of reads that mapped to mobile genetic elements was significantly higher in CF (P = 0.014) and the composition was significantly different (P = 0.0001). Notably, CF patients displayed higher carriage of plasmid-mediated aminoglycoside-modifying genes ant(6)-Ib, aac(6')-Ip, and aph(3')-IIIa (P < 0.01). Culture-based analysis supported higher aminoglycoside resistance, with a higher proportion of aminoglycoside-resistant, Gram-negative bacteria (P < 0.0001). Isolated extended spectrum beta lactamase (ESBL)-positive Escherichia coli from CF stool exhibited phenotypic resistance to tobramycin and gentamicin. Genomic analysis showed co-localisation of both aminoglycoside resistance and ESBL genes, consistent with MDR emergence through horizontal gene transfer. CONCLUSIONS The carriage of potentially transmissible resistance within the adult CF gut microbiome is considerably greater than in healthy individuals and could contribute to the emergence and dissemination of MDR pathogens.
Collapse
Affiliation(s)
- Steven L Taylor
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia; Microbiome and Host Health, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia.
| | - Lex E X Leong
- Microbiology and Infectious Diseases, SA Pathology, South Australia, Australia
| | - Sarah K Sims
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia; Microbiome and Host Health, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia
| | - Rebecca L Keating
- Department of Respiratory Medicine, Mater Health Services, South Brisbane, QLD, Australia
| | - Lito E Papanicolas
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia; Microbiome and Host Health, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia
| | - Alyson Richard
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia; Microbiome and Host Health, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia
| | - Fredrick M Mobegi
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia; Microbiome and Host Health, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia
| | - Steve Wesselingh
- Microbiome and Host Health, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia
| | - Lucy D Burr
- Department of Respiratory Medicine, Mater Health Services, South Brisbane, QLD, Australia; Mater Research - University of Queensland, Aubigny Place, South Brisbane, QLD, Australia
| | - Geraint B Rogers
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, SA, Australia; Microbiome and Host Health, South Australia Health and Medical Research Institute, North Terrace, Adelaide, SA, Australia
| |
Collapse
|
168
|
The sino-nasal warzone: transcriptomic and genomic studies on sino-nasal aspergillosis in dogs. NPJ Biofilms Microbiomes 2020; 6:51. [PMID: 33184275 PMCID: PMC7665010 DOI: 10.1038/s41522-020-00163-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022] Open
Abstract
We previously showed that each dog with chronic non-invasive sino-nasal aspergillosis (SNA) was infected with a single genotype of Aspergillus fumigatus. Here, we studied the transcriptome of this fungal pathogen and the canine host within the biofilm resulting from the infection. We describe here transcriptomes resulting from natural infections in animal species with A. fumigatus. The host transcriptome showed high expression of IL-8 and alarmins, uncontrolled inflammatory reaction and dysregulation of the Th17 response. The fungal transcriptome showed in particular expression of genes involved in secondary metabolites and nutrient acquisition. Single-nucleotide polymorphism analysis of fungal isolates from the biofilms showed large genetic variability and changes related with adaptation to host environmental factors. This was accompanied with large phenotypic variability in in vitro stress assays, even between isolates from the same canine patient. Our analysis provides insights in genetic and phenotypic variability of Aspergillus fumigatus in biofilms of naturally infected dogs reflecting in-host adaptation. Absence of a Th17 response and dampening of the Th1 response contributes to the formation of a chronic sino-nasal warzone.
Collapse
|
169
|
Blanco-Romero E, Garrido-Sanz D, Rivilla R, Redondo-Nieto M, Martín M. In Silico Characterization and Phylogenetic Distribution of Extracellular Matrix Components in the Model Rhizobacteria Pseudomonas fluorescens F113 and Other Pseudomonads. Microorganisms 2020; 8:E1740. [PMID: 33171989 PMCID: PMC7716237 DOI: 10.3390/microorganisms8111740] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 12/23/2022] Open
Abstract
Biofilms are complex structures that are crucial during host-bacteria interaction and colonization. Bacteria within biofilms are surrounded by an extracellular matrix (ECM) typically composed of proteins, polysaccharides, lipids, and DNA. Pseudomonads contain a variety of ECM components, some of which have been extensively characterized. However, neither the ECM composition of plant-associated pseudomonads nor their phylogenetic distribution within the genus has been so thoroughly studied. In this work, we use in silico methods to describe the ECM composition of Pseudomonas fluorescens F113, a plant growth-promoting rhizobacteria and model for rhizosphere colonization. These components include the polysaccharides alginate, poly-N-acetyl-glucosamine (PNAG) and levan; the adhesins LapA, MapA and PsmE; and the functional amyloids in Pseudomonas. Interestingly, we identified novel components: the Pseudomonas acidic polysaccharide (Pap), whose presence is limited within the genus; and a novel type of Flp/Tad pilus, partially different from the one described in P. aeruginosa. Furthermore, we explored the phylogenetic distribution of the most relevant ECM components in nearly 600 complete Pseudomonas genomes. Our analyses show that Pseudomonas populations contain a diverse set of gene/gene clusters potentially involved in the formation of their ECMs, showing certain commensal versus pathogen lifestyle specialization.
Collapse
Affiliation(s)
| | | | | | | | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, c/Darwin 2, 28049 Madrid, Spain; (E.B.-R.); (D.G.-S.); (R.R.); (M.R.-N.)
| |
Collapse
|
170
|
Revitt-Mills SA, Robinson A. Antibiotic-Induced Mutagenesis: Under the Microscope. Front Microbiol 2020; 11:585175. [PMID: 33193230 PMCID: PMC7642495 DOI: 10.3389/fmicb.2020.585175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022] Open
Abstract
The development of antibiotic resistance poses an increasing threat to global health. Understanding how resistance develops in bacteria is critical for the advancement of new strategies to combat antibiotic resistance. In the 1980s, it was discovered that certain antibiotics induce elevated rates of mutation in bacteria. From this, an “increased evolvability” hypothesis was proposed: antibiotic-induced mutagenesis increases the genetic diversity of bacterial populations, thereby increasing the rate at which bacteria develop antibiotic resistance. However, antibiotic-induced mutagenesis is one of multiple competing factors that act on bacterial populations exposed to antibiotics. Its relative importance in shaping evolutionary outcomes, including the development of antibiotic resistance, is likely to depend strongly on the conditions. Presently, there is no quantitative model that describes the relative contribution of antibiotic-induced mutagenesis to bacterial evolution. A far more complete understanding could be reached if we had access to technology that enabled us to study antibiotic-induced mutagenesis at the molecular-, cellular-, and population-levels simultaneously. Direct observations would, in principle, allow us to directly link molecular-level events with outcomes in individual cells and cell populations. In this review, we highlight microscopy studies which have allowed various aspects of antibiotic-induced mutagenesis to be directly visualized in individual cells for the first time. These studies have revealed new links between error-prone DNA polymerases and recombinational DNA repair, evidence of spatial regulation occurring during the SOS response, and enabled real-time readouts of mismatch and mutation rates. Further, we summarize the recent discovery of stochastic population fluctuations in cultures exposed to sub-inhibitory concentrations of bactericidal antibiotics and discuss the implications of this finding for the study of antibiotic-induced mutagenesis. The studies featured here demonstrate the potential of microscopy to provide direct observation of phenomena relevant to evolution under antibiotic-induced mutagenesis.
Collapse
Affiliation(s)
- Sarah A Revitt-Mills
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Andrew Robinson
- Molecular Horizons Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| |
Collapse
|
171
|
Fiedoruk K, Zakrzewska M, Daniluk T, Piktel E, Chmielewska S, Bucki R. Two Lineages of Pseudomonas aeruginosa Filamentous Phages: Structural Uniformity over Integration Preferences. Genome Biol Evol 2020; 12:1765-1781. [PMID: 32658245 PMCID: PMC7549136 DOI: 10.1093/gbe/evaa146] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa filamentous (Pf) bacteriophages are important factors contributing to the pathogenicity of this opportunistic bacterium, including biofilm formation and suppression of bacterial phagocytosis by macrophages. In addition, the capacity of Pf phages to form liquid crystal structures and their high negative charge density makes them potent sequesters of cationic antibacterial agents, such as aminoglycoside antibiotics or host antimicrobial peptides. Therefore, Pf phages have been proposed as a potential biomarker for risk of antibiotic resistance development. The majority of studies describing biological functions of Pf viruses have been performed with only three of them: Pf1, Pf4, and Pf5. However, our analysis revealed that Pf phages exist as two evolutionary lineages (I and II), characterized by substantially different structural/morphogenesis properties, despite sharing the same integration sites in the host chromosomes. All aforementioned model Pf phages are members of the lineage I. Hence, it is reasonable to speculate that their interactions with P. aeruginosa and impact on its pathogenicity may be not completely extrapolated to the lineage II members. Furthermore, in order to organize the present numerical nomenclature of Pf phages, we propose a more informative approach based on the insertion sites, that is, Pf-tRNA-Gly, -Met, -Sec, -tmRNA, and -DR (direct repeats), which are fully compatible with one of five types of tyrosine integrases/recombinases XerC/D carried by these viruses. Finally, we discuss possible evolutionary mechanisms behind this division and consequences from the perspective of virus-virus, virus-bacterium, and virus-human interactions.
Collapse
Affiliation(s)
- Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Magdalena Zakrzewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Sylwia Chmielewska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| |
Collapse
|
172
|
Waters VJ, Kidd TJ, Canton R, Ekkelenkamp MB, Johansen HK, LiPuma JJ, Bell SC, Elborn JS, Flume PA, VanDevanter DR, Gilligan P. Reconciling Antimicrobial Susceptibility Testing and Clinical Response in Antimicrobial Treatment of Chronic Cystic Fibrosis Lung Infections. Clin Infect Dis 2020; 69:1812-1816. [PMID: 31056660 DOI: 10.1093/cid/ciz364] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/29/2019] [Indexed: 01/28/2023] Open
Abstract
Median cystic fibrosis (CF) survival has increased dramatically over time due to several factors, including greater availability and use of antimicrobial therapies. During the progression of CF lung disease, however, the emergence of multidrug antimicrobial resistance can limit treatment effectiveness, threatening patient longevity. Current planktonic-based antimicrobial susceptibility testing lacks the ability to predict clinical response to antimicrobial treatment of chronic CF lung infections. There are numerous reasons for these limitations including bacterial phenotypic and genotypic diversity, polymicrobial interactions, and impaired antibiotic efficacy within the CF lung environment. The parallels to other chronic diseases such as non-CF bronchiectasis are discussed as well as research priorities for moving forward.
Collapse
Affiliation(s)
- Valerie J Waters
- Division of Infectious Diseases, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Canada
| | - Timothy J Kidd
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Australia
| | - Rafael Canton
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain
| | - Miquel B Ekkelenkamp
- Department of Medical Microbiology, University Medical Center Utrecht, The Netherlands
| | - Helle Krogh Johansen
- Department of Clinical Microbiology, Rigshospitalet, Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - John J LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor
| | - Scott C Bell
- Department of Thoracic Medicine, Prince Charles Hospital and QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - J Stuart Elborn
- Imperial College Hospital, Queen's University Belfast, Northern Ireland
| | - Patrick A Flume
- Departments of Medicine and Pediatrics, Medical University of South Carolina, Charleston
| | - Donald R VanDevanter
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Peter Gilligan
- Department of Pathology-Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill
| | | |
Collapse
|
173
|
Nadeem SF, Gohar UF, Tahir SF, Mukhtar H, Pornpukdeewattana S, Nukthamna P, Moula Ali AM, Bavisetty SCB, Massa S. Antimicrobial resistance: more than 70 years of war between humans and bacteria. Crit Rev Microbiol 2020; 46:578-599. [PMID: 32954887 DOI: 10.1080/1040841x.2020.1813687] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Development of antibiotic resistance in bacteria is one of the major issues in the present world and one of the greatest threats faced by mankind. Resistance is spread through both vertical gene transfer (parent to offspring) as well as by horizontal gene transfer like transformation, transduction and conjugation. The main mechanisms of resistance are limiting uptake of a drug, modification of a drug target, inactivation of a drug, and active efflux of a drug. The highest quantities of antibiotic concentrations are usually found in areas with strong anthropogenic pressures, for example medical source (e.g., hospitals) effluents, pharmaceutical industries, wastewater influents, soils treated with manure, animal husbandry and aquaculture (where antibiotics are generally used as in-feed preparations). Hence, the strong selective pressure applied by antimicrobial use has forced microorganisms to evolve for survival. The guts of animals and humans, wastewater treatment plants, hospital and community effluents, animal husbandry and aquaculture runoffs have been designated as "hotspots for AMR genes" because the high density of bacteria, phages, and plasmids in these settings allows significant genetic exchange and recombination. Evidence from the literature suggests that the knowledge of antibiotic resistance in the population is still scarce. Tackling antimicrobial resistance requires a wide range of strategies, for example, more research in antibiotic production, the need of educating patients and the general public, as well as developing alternatives to antibiotics (briefly discussed in the conclusions of this article).
Collapse
Affiliation(s)
- Syeda Fatima Nadeem
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Umar Farooq Gohar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Syed Fahad Tahir
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | | | - Pikunthong Nukthamna
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,College of Research Methodology and Cognitive Science, Burapha University, Chonburi, Thailand
| | - Ali Muhammed Moula Ali
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | | | - Salvatore Massa
- Faculty of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand.,Department of Agricultural, Food and Environmental Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
174
|
Soares A, Alexandre K, Lamoureux F, Lemée L, Caron F, Pestel-Caron M, Etienne M. Efficacy of a ciprofloxacin/amikacin combination against planktonic and biofilm cultures of susceptible and low-level resistant Pseudomonas aeruginosa. J Antimicrob Chemother 2020; 74:3252-3259. [PMID: 31424553 DOI: 10.1093/jac/dkz355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/21/2019] [Accepted: 07/17/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Eradicating bacterial biofilm without mechanical dispersion remains a challenge. Combination therapy has been suggested as a suitable strategy to eradicate biofilm. OBJECTIVES To evaluate the efficacy of a ciprofloxacin/amikacin combination in a model of in vitro Pseudomonas aeruginosa biofilm. METHODS The antibacterial activity of ciprofloxacin and amikacin (alone, in combination and successively) was evaluated by planktonic and biofilm time-kill assays against five P. aeruginosa strains: PAO1, a WT clinical strain and three clinical strains overexpressing the efflux pumps MexAB-OprM (AB), MexXY-OprM (XY) and MexCD-OprJ (CD), respectively. Amikacin MIC was 16 mg/L for XY and ciprofloxacin MIC was 0.5 mg/L for CD. The other strains were fully susceptible to ciprofloxacin and amikacin. The numbers of total and resistant cells were determined. RESULTS In planktonic cultures, regrowth of high-level resistant mutants was observed when CD was exposed to ciprofloxacin alone and XY to amikacin alone. Eradication was obtained with ciprofloxacin or amikacin in the other strains, or with the combination in XY and CD strains. In biofilm, bactericidal reduction after 8 h followed by a mean 4 log10 cfu/mL plateau in all strains and for all regimens was noticed. No regrowth of resistant mutants was observed whatever the antibiotic regimen. The bacterial reduction obtained with a second antibiotic used simultaneously or consecutively was not significant. CONCLUSIONS The ciprofloxacin/amikacin combination prevented the emergence of resistant mutants in low-level resistant strains in planktonic cultures. Biofilm persister cells were not eradicated, either with monotherapy or with the combination.
Collapse
Affiliation(s)
- Anaïs Soares
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Microbiology Department, Rouen University Hospital, Rouen, France
| | - Kévin Alexandre
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Infectious Diseases Department, Rouen University Hospital, Rouen, France
| | - Fabien Lamoureux
- Laboratory of Pharmacology, Toxicology and Pharmacogenetics, Rouen University Hospital, Rouen, France
| | - Ludovic Lemée
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Microbiology Department, Rouen University Hospital, Rouen, France
| | - François Caron
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Infectious Diseases Department, Rouen University Hospital, Rouen, France
| | - Martine Pestel-Caron
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Microbiology Department, Rouen University Hospital, Rouen, France
| | - Manuel Etienne
- EA 2656 (GRAM), Normandie Univ, Unirouen, Rouen, France.,Infectious Diseases Department, Rouen University Hospital, Rouen, France
| |
Collapse
|
175
|
Novel Aminoglycoside-Tolerant Phoenix Colony Variants of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2020; 64:AAC.00623-20. [PMID: 32540981 DOI: 10.1128/aac.00623-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/09/2020] [Indexed: 01/13/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen and is known to produce biofilms. We previously showed the emergence of colony variants in the presence of tobramycin-loaded calcium sulfate beads. In this study, we characterized the variant colonies, which survived the antibiotic treatment, and identified three distinct phenotypes-classically resistant colonies, viable but nonculturable colonies (VBNC), and phoenix colonies. Phoenix colonies, described here for the first time, grow out of the zone of clearance of antibiotic-loaded beads from lawn biofilms while there are still very high concentrations of antibiotic present, suggesting an antibiotic-resistant phenotype. However, upon subculturing of these isolates, phoenix colonies return to wild-type levels of antibiotic susceptibility. Compared with the wild type, phoenix colonies are morphologically similar aside from a deficiency in green pigmentation. Phoenix colonies do not recapitulate the phenotype of any previously described mechanisms of resistance, tolerance, or persistence and, thus, form a novel group with their own phenotype. Growth under anaerobic conditions suggests that an alternative metabolism could lead to the formation of phoenix colonies. These findings suggest that phoenix colonies could emerge in response to antibiotic therapies and lead to recurrent or persistent infections, particularly within biofilms where microaerobic or anaerobic environments are present.
Collapse
|
176
|
Brao KJ, Wille BP, Lieberman J, Ernst RK, Shirtliff ME, Harro JM. Scnn1b-Transgenic BALB/c Mice as a Model of Pseudomonas aeruginosa Infections of the Cystic Fibrosis Lung. Infect Immun 2020; 88:e00237-20. [PMID: 32631918 PMCID: PMC7440770 DOI: 10.1128/iai.00237-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/30/2020] [Indexed: 02/07/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is responsible for much of the morbidity and mortality associated with cystic fibrosis (CF), a condition that predisposes patients to chronic lung infections. P. aeruginosa lung infections are difficult to treat because P. aeruginosa adapts to the CF lung, can develop multidrug resistance, and can form biofilms. Despite the clinical significance of P. aeruginosa, modeling P. aeruginosa infections in CF has been challenging. Here, we characterize Scnn1b-transgenic (Tg) BALB/c mice as P. aeruginosa lung infection models. Scnn1b-Tg mice overexpress the epithelial Na+ channel (ENaC) in their lungs, driving increased sodium absorption that causes lung pathology similar to CF. We intranasally infected Scnn1b-Tg mice and wild-type littermates with the laboratory P. aeruginosa strain PAO1 and CF clinical isolates and then assessed differences in bacterial clearance, cytokine responses, and histological features up to 12 days postinfection. Scnn1b-Tg mice carried higher bacterial burdens when infected with biofilm-grown rather than planktonic PAO1; Scnn1b-Tg mice also cleared infections more slowly than their wild-type littermates. Infection with PAO1 elicited significant increases in proinflammatory and Th17-linked cytokines on day 3. Scnn1b-Tg mice infected with nonmucoid early CF isolates maintained bacterial burdens and mounted immune responses similar to those of PAO1-infected Scnn1b-Tg mice. In contrast, Scnn1b-Tg mice infected with a mucoid CF isolate carried high bacterial burdens, produced significantly more interleukin 1β (IL-1β), IL-13, IL-17, IL-22, and KC, and showed severe immune cell infiltration into the bronchioles. Taken together, these results show the promise of Scnn1b-Tg mice as models of early P. aeruginosa colonization in the CF lung.
Collapse
Affiliation(s)
- Kristen J Brao
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Brendan P Wille
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Joshua Lieberman
- Division of Microbiology, Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | - Robert K Ernst
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mark E Shirtliff
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Janette M Harro
- Department of Microbial Pathogenesis, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| |
Collapse
|
177
|
Papkou A, Hedge J, Kapel N, Young B, MacLean RC. Efflux pump activity potentiates the evolution of antibiotic resistance across S. aureus isolates. Nat Commun 2020; 11:3970. [PMID: 32769975 PMCID: PMC7414891 DOI: 10.1038/s41467-020-17735-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/14/2020] [Indexed: 11/23/2022] Open
Abstract
The rise of antibiotic resistance in many bacterial pathogens has been driven by the spread of a few successful strains, suggesting that some bacteria are genetically pre-disposed to evolving resistance. Here, we test this hypothesis by challenging a diverse set of 222 isolates of Staphylococcus aureus with the antibiotic ciprofloxacin in a large-scale evolution experiment. We find that a single efflux pump, norA, causes widespread variation in evolvability across isolates. Elevated norA expression potentiates evolution by increasing the fitness benefit provided by DNA topoisomerase mutations under ciprofloxacin treatment. Amplification of norA provides a further mechanism of rapid evolution in isolates from the CC398 lineage. Crucially, chemical inhibition of NorA effectively prevents the evolution of resistance in all isolates. Our study shows that pre-existing genetic diversity plays a key role in shaping resistance evolution, and it may be possible to predict which strains are likely to evolve resistance and to optimize inhibitor use to prevent this outcome.
Collapse
Affiliation(s)
- Andrei Papkou
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3PS, UK.
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zurich, CH-8057, Switzerland.
| | - Jessica Hedge
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3PS, UK
| | - Natalia Kapel
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3PS, UK
| | - Bernadette Young
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - R Craig MacLean
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
178
|
Martak D, Meunier A, Sauget M, Cholley P, Thouverez M, Bertrand X, Valot B, Hocquet D. Comparison of pulsed-field gel electrophoresis and whole-genome-sequencing-based typing confirms the accuracy of pulsed-field gel electrophoresis for the investigation of local Pseudomonas aeruginosa outbreaks. J Hosp Infect 2020; 105:643-647. [DOI: 10.1016/j.jhin.2020.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022]
|
179
|
Antibiotic Substrate Selectivity of Pseudomonas aeruginosa MexY and MexB Efflux Systems Is Determined by a Goldilocks Affinity. Antimicrob Agents Chemother 2020; 64:AAC.00496-20. [PMID: 32457110 DOI: 10.1128/aac.00496-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/22/2020] [Indexed: 12/19/2022] Open
Abstract
Resistance-nodulation-division (RND) efflux pumps are important contributors to bacterial antibiotic resistance. In this study, we combined evolutionary sequence analyses, computational structural modeling, and ligand docking to develop a framework that can explain the known antibiotic substrate selectivity differences between two Pseudomonas aeruginosa RND transporters, MexY and MexB. For efficient efflux, antibiotic substrates must possess a "Goldilocks affinity": binding strong enough to allow interaction with transporter but not so tight as to impede movement through the pump.
Collapse
|
180
|
Molecular characterization of a carbon dioxide-dependent Escherichia coli small-colony variant isolated from blood cultures. Int J Med Microbiol 2020; 310:151431. [PMID: 32654769 DOI: 10.1016/j.ijmm.2020.151431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/22/2020] [Accepted: 05/23/2020] [Indexed: 11/23/2022] Open
Abstract
A carbon dioxide-dependent small-colony variant of Escherichia coli SH4888 was isolated from blood cultures of a patient with cholangitis. To date, little is known regarding the molecular mechanisms leading to formation of carbon dioxide-dependent phenotypes in clinical isolates, but abnormalities in the carbonic anhydrase are thought to cause carbon dioxide autotrophy. In this study DNA sequence analysis of the carbonic anhydrase-encoding can locus in the carbon dioxide-dependent E. coli SH4888 revealed that the isolate had a 325-bp deletion spanning from the 3'-terminal region of can to the 3'-terminal region of hpt, which encodes a hypoxanthine phosphoribosyltransferase. To confirm that the carbon dioxide-dependent SCV phenotype of E. coli SH4888 was due to the can mutation, we performed a complementation test with a plasmid carrying an intact can that restored the normal phenotype. However, E. coli SH4888 had increased virulence compared to the can-complemented E. coli SH4888 in a murine infection model. In conclusion, these data confirm that impaired carbonic anhydrase function can cause a carbon dioxide-dependent SCV phenotype in E. coli SH4888 and provides a fitness advantage in terms of infection.
Collapse
|
181
|
Clinically Relevant Epithelial Lining Fluid Concentrations of Meropenem with Ciprofloxacin Provide Synergistic Killing and Resistance Suppression of Hypermutable Pseudomonas aeruginosa in a Dynamic Biofilm Model. Antimicrob Agents Chemother 2020; 64:AAC.00469-20. [PMID: 32366710 DOI: 10.1128/aac.00469-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/20/2020] [Indexed: 01/18/2023] Open
Abstract
Treatment of exacerbations of chronic Pseudomonas aeruginosa infections in patients with cystic fibrosis (CF) is highly challenging due to hypermutability, biofilm formation, and an increased risk of resistance emergence. We evaluated the impact of ciprofloxacin and meropenem as monotherapy and in combination in the dynamic in vitro CDC biofilm reactor (CBR). Two hypermutable P. aeruginosa strains, PAOΔmutS (MIC of ciprofloxacin [MICciprofloxacin], 0.25 mg/liter; MICmeropenem, 2 mg/liter) and CW44 (MICciprofloxacin, 0.5 mg/liter; MICmeropenem, 4 mg/liter), were investigated for 120 h. Concentration-time profiles achievable in epithelial lining fluid (ELF) following FDA-approved doses were simulated in the CBR. Treatments were ciprofloxacin at 0.4 g every 8 h as 1-h infusions (80% ELF penetration), meropenem at 6 g/day as a continuous infusion (CI) (30% and 60% ELF penetration), and their combinations. Counts of total and less-susceptible planktonic and biofilm bacteria and MICs were determined. Antibiotic concentrations were quantified by an ultrahigh-performance liquid chromatography photodiode array (UHPLC-PDA) assay. For both strains, all monotherapies failed, with substantial regrowth and resistance of planktonic (≥8 log10 CFU/ml) and biofilm (>8 log10 CFU/cm2) bacteria at 120 h (MICciprofloxacin, up to 8 mg/liter; MICmeropenem, up to 64 mg/liter). Both combination treatments demonstrated synergistic bacterial killing of planktonic and biofilm bacteria of both strains from ∼48 h onwards and suppressed regrowth to ≤4 log10 CFU/ml and ≤6 log10 CFU/cm2 at 120 h. Overall, both combination treatments suppressed the amplification of resistance of planktonic bacteria for both strains and of biofilm bacteria for CW44. The combination with meropenem at 60% ELF penetration also suppressed the amplification of resistance of biofilm bacteria for PAOΔmutS Thus, combination treatment demonstrated synergistic bacterial killing and resistance suppression against difficult-to-treat hypermutable P. aeruginosa strains.
Collapse
|
182
|
Yadav TC, Agarwal V, Srivastava AK, Raghuwanshi N, Varadwaj P, Prasad R, Pruthi V. Insight into Structure-Function Relationships of β-Lactamase and BLIPs Interface Plasticity using Protein-Protein Interactions. Curr Pharm Des 2020; 25:3378-3389. [PMID: 31544712 DOI: 10.2174/1381612825666190911154650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mostly BLIPs are identified in soil bacteria Streptomyces and originally isolated from Streptomyces clavuligerus and can be utilized as a model system for biophysical, structural, mutagenic and computational studies. BLIP possess homology with two proteins viz., BLIP-I (Streptomyces exofoliatus) and BLP (beta-lactamase inhibitory protein like protein from S. clavuligerus). BLIP consists of 165 amino acid, possessing two homologues domains comprising helix-loop-helix motif packed against four stranded beta-sheet resulting into solvent exposed concave surface with extended four stranded beta-sheet. BLIP-I is a 157 amino acid long protein obtained from S. exofoliatus having 37% sequence identity to BLIP and inhibits beta-lactamase. METHODS This review is intended to briefly illustrate the beta-lactamase inhibitory activity of BLIP via proteinprotein interaction and aims to open up a new avenue to combat antimicrobial resistance using peptide based inhibition. RESULTS D49A mutation in BLIP-I results in a decrease in affinity for TEM-1 from 0.5 nM to 10 nM (Ki). It is capable of inhibiting TEM-1 and bactopenemase and differs from BLIP only in modulating cell wall synthesis enzyme. Whereas, BLP is a 154 amino acid long protein isolated from S. clavuligerus via DNA sequencing analysis of Cephamycin-Clavulanate gene bunch. It shares 32% sequence similarity with BLIP and 42% with BLIP-I. Its biological function is unclear and lacks beta-lactamase inhibitory activity. CONCLUSION Protein-protein interactions mediate a significant role in regulation and modulation of cellular developments and processes. Specific biological markers and geometric characteristics are manifested by active site binding clefts of protein surfaces which determines the specificity and affinity for their targets. TEM1.BLIP is a classical model to study protein-protein interaction. β-Lactamase inhibitory proteins (BLIPs) interacts and inhibits various β-lactamases with extensive range of affinities.
Collapse
Affiliation(s)
- Tara C Yadav
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
| | - Vidhu Agarwal
- Department of Bioinformatics, Indian Institute of Information Technology, Allahabad 211015, India
| | - Amit K Srivastava
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
| | - Navdeep Raghuwanshi
- Vaccine Formulation & Research Center, Gennova (Emcure) Biopharmaceuticals Limited, Pune - 11057, Maharashtra, India
| | - Pritish Varadwaj
- Department of Bioinformatics, Indian Institute of Information Technology, Allahabad 211015, India
| | - Ramasare Prasad
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
| | - Vikas Pruthi
- Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, Uttarakhand, India
| |
Collapse
|
183
|
Morales-Múnera OL, Rosero-Ascuntar CA, Cuellar-Santaella MCS, Aristizábal-Serna EA, Villegas-Castaño A. Utilidad de los criterios de Murray para el procesamiento de esputo en pacientes con fibrosis quística. Laboratorio de Infectados de la Universidad de Antioquia (Medellín/Colombia). INFECTIO 2020. [DOI: 10.22354/in.v24i4.881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introducción: la fibrosis quística (FQ) es una enfermedad autosómica recesiva que aumenta la viscosidad de las secreciones, en especial las del árbol respiratorio; genera inflamación crónica y colonización/infección por microorganismos, conduciendo a deterioro de la función pulmonar y muerte. Nuestro estudio evaluó la calidad del esputo de pacientes con FQ que ingresaron al Laboratorio de Infectados de la UdeA con base a los criterios de Murray. Metodología: estudio descriptivo con información retrospectiva, incluyendo todos los esputos de pacientes con FQ, recolectados entre enero de 2015 a diciembre de 2018. Resultados: se analizaron 686 muestras de 85 pacientes, de las cuáles se obtuvo cultivo positivo en 501 (73 %) y el 21 % no cumplían los criterios de calidad según Murray. De 908 aislamientos identificados, 823 (90.6 %) corresponden a microorganismos considerados como patógenos en la vía aérea de los pacientes con FQ donde se incluyen S aureus, Pseudomonas spp, H influenzae, Burkhordelia spp, A. xylosoxidans, S maltophilia, A fumigatus, entre otras. Conclusiones: los criterios de Murray no se deben utilizar para definir el procesamiento o no del esputo en pacientes con FQ.
Collapse
|
184
|
Merrikh H, Kohli RM. Targeting evolution to inhibit antibiotic resistance. FEBS J 2020; 287:4341-4353. [PMID: 32434280 DOI: 10.1111/febs.15370] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/31/2020] [Accepted: 05/15/2020] [Indexed: 12/21/2022]
Abstract
Drug-resistant bacterial infections have led to a global health crisis. Although much effort is placed on the development of new antibiotics or variants that are less subject to existing resistance mechanisms, history shows that this strategy by itself is unlikely to solve the problem of drug resistance. Here, we discuss inhibiting evolution as a strategy that, in combination with antibiotics, may resolve the problem. Although mutagenesis is the main driver of drug resistance development, attacking the drivers of genetic diversification in pathogens has not been well explored. Bacteria possess active mechanisms that increase the rate of mutagenesis, especially at times of stress, such as during replication within eukaryotic host cells, or exposure to antibiotics. We highlight how the existence of these promutagenic proteins (evolvability factors) presents an opportunity that can be capitalized upon for the effective inhibition of drug resistance development. To help move this idea from concept to execution, we first describe a set of criteria that an 'optimal' evolvability factor would likely have to meet to be a viable therapeutic target. We then discuss the intricacies of some of the known mutagenic mechanisms and evaluate their potential as drug targets to inhibit evolution. In principle, and as suggested by recent studies, we argue that the inhibition of these and other evolvability factors should reduce resistance development. Finally, we discuss the challenges of transitioning anti-evolution drugs from the laboratory to the clinic.
Collapse
Affiliation(s)
- Houra Merrikh
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
185
|
Salehi B, Dimitrijević M, Aleksić A, Neffe-Skocińska K, Zielińska D, Kołożyn-Krajewska D, Sharifi-Rad J, Stojanović-Radić Z, Prabu SM, Rodrigues CF, Martins N. Human microbiome and homeostasis: insights into the key role of prebiotics, probiotics, and symbiotics. Crit Rev Food Sci Nutr 2020; 61:1415-1428. [PMID: 32400169 DOI: 10.1080/10408398.2020.1760202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The interest in the study of the gut microbiome has grown exponentially. Indeed, its impact on health and disease has been increasingly reported, and the importance of keeping gut microbiome homeostasis clearly highlighted. However, and despite many advances, there are still some gaps, as well as the real discernment on the contribution of some species falls far short of what is needed. Anyway, it is already more than a solid fact of its importance in maintaining health and preventing disease, as well as in the treatment of some pathologies. In this sense, and given the existence of some ambiguous opinions, the present review aims to discuss the importance of gut microbiome in homeostasis maintenance, and even the role of probiotics, prebiotics, and symbiotics in both health promotion and disease prevention.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Marina Dimitrijević
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Ana Aleksić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Katarzyna Neffe-Skocińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), Warszawa, Poland
| | - Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), Warszawa, Poland
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Warsaw University of Life Sciences (WULS), Warszawa, Poland
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zorica Stojanović-Radić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | | | - Célia F Rodrigues
- LEPABE - Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
186
|
Sheng H, Huang J, Han Z, Liu M, Lü Z, Zhang Q, Zhang J, Yang J, Cui S, Yang B. Genes and Proteomes Associated With Increased Mutation Frequency and Multidrug Resistance of Naturally Occurring Mismatch Repair-Deficient Salmonella Hypermutators. Front Microbiol 2020; 11:770. [PMID: 32457709 PMCID: PMC7225559 DOI: 10.3389/fmicb.2020.00770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/31/2020] [Indexed: 11/23/2022] Open
Abstract
The emergence of antibiotic-resistant Salmonella through mutations led to mismatch repair (MMR) deficiency that represents a potential hazard to public health. Here, four representative MMR-deficient Salmonella hypermutator strains and Salmonella Typhimurium LT2 were used to comprehensively reveal the influence of MMR deficiency on antibiotic resistance among Salmonella. Our results indicated that the mutation frequency ranged from 3.39 × 10–4 to 5.46 × 10–2 in the hypermutator. Mutation sites in MutS, MutL, MutT, and UvrD of the four hypermutators were all located in the essential and core functional regions. Mutation frequency of the hypermutator was most highly correlated with the extent of mutation in MutS. Mutations in MMR genes (mutS, mutT, mutL, and uvrD) were correlated with increased mutation in antibiotic resistance genes, and the extent of antibiotic resistance was significantly correlated with the number of mutation sites in MutL and in ParC. The number of mutation sites in MMR genes and antibiotic resistance genes exhibited a significant positive correlation with the number of antibiotics resisted and with expression levels of mutS, mutT, and mutL. Compared to Salmonella Typhimurium LT2, a total of 137 differentially expressed and 110 specifically expressed proteins were identified in the four hypermutators. Functional enrichment analysis indicated that the proteins significantly overexpressed in the hypermutators primarily associated with translation and stress response. Interaction network analysis revealed that the ribosome pathway might be a critical factor for high mutation frequency and multidrug resistance in MMR-deficient Salmonella hypermutators. These results help elucidate the mutational dynamics that lead to hypermutation, antibiotic resistance, and activation of stress response pathways in Salmonella.
Collapse
Affiliation(s)
- Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jinling Huang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Zhaoyu Han
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, China
| | - Mi Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Zexun Lü
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Qian Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jinlei Zhang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Jun Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Xianyang, China
| |
Collapse
|
187
|
Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Inhibitors of DNA Glycosylases as Prospective Drugs. Int J Mol Sci 2020; 21:ijms21093118. [PMID: 32354123 PMCID: PMC7247160 DOI: 10.3390/ijms21093118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-5187
| |
Collapse
|
188
|
Hypermutator Pseudomonas aeruginosa Exploits Multiple Genetic Pathways To Develop Multidrug Resistance during Long-Term Infections in the Airways of Cystic Fibrosis Patients. Antimicrob Agents Chemother 2020; 64:AAC.02142-19. [PMID: 32071060 DOI: 10.1128/aac.02142-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa exploits intrinsic and acquired resistance mechanisms to resist almost every antibiotic used in chemotherapy. Antimicrobial resistance in P. aeruginosa isolates recovered from cystic fibrosis (CF) patients is further enhanced by the occurrence of hypermutator strains, a hallmark of chronic infections in CF patients. However, the within-patient genetic diversity of P. aeruginosa populations related to antibiotic resistance remains unexplored. Here, we show the evolution of the mutational resistome profile of a P. aeruginosa hypermutator lineage by performing longitudinal and transversal analyses of isolates collected from a CF patient throughout 20 years of chronic infection. Our results show the accumulation of thousands of mutations, with an overall evolutionary history characterized by purifying selection. However, mutations in antibiotic resistance genes appear to have been positively selected, driven by antibiotic treatment. Antibiotic resistance increased as infection progressed toward the establishment of a population constituted by genotypically diversified coexisting sublineages, all of which converged to multidrug resistance. These sublineages emerged by parallel evolution through distinct evolutionary pathways, which affected genes of the same functional categories. Interestingly, ampC and ftsI, encoding the β-lactamase and penicillin-binding protein 3, respectively, were found to be among the most frequently mutated genes. In fact, both genes were targeted by multiple independent mutational events, which led to a wide diversity of coexisting alleles underlying β-lactam resistance. Our findings indicate that hypermutators, apart from boosting antibiotic resistance evolution by simultaneously targeting several genes, favor the emergence of adaptive innovative alleles by clustering beneficial/compensatory mutations in the same gene, hence expanding P. aeruginosa strategies for persistence.
Collapse
|
189
|
Muthukumarasamy U, Preusse M, Kordes A, Koska M, Schniederjans M, Khaledi A, Häussler S. Single-Nucleotide Polymorphism-Based Genetic Diversity Analysis of Clinical Pseudomonas aeruginosa Isolates. Genome Biol Evol 2020; 12:396-406. [PMID: 32196089 PMCID: PMC7197496 DOI: 10.1093/gbe/evaa059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 01/26/2023] Open
Abstract
Extensive use of next-generation sequencing has the potential to transform our knowledge on how genomic variation within bacterial species impacts phenotypic versatility. Because different environments have unique selection pressures, they drive divergent evolution. However, there is also parallel or convergent evolution of traits in independent bacterial isolates inhabiting similar environments. The application of tools to describe population-wide genomic diversity provides an opportunity to measure the predictability of genetic changes underlying adaptation. Here, we describe patterns of sequence variations in the core genome among 99 individual Pseudomonas aeruginosa clinical isolates and identified single-nucleotide polymorphisms that are the basis for branching of the phylogenetic tree. We also identified single-nucleotide polymorphisms that were acquired independently, in separate lineages, and not through inheritance from a common ancestor. Although our results demonstrate that the Pseudomonas aeruginosa core genome is highly conserved and in general, not subject to adaptive evolution, instances of parallel evolution will provide an opportunity to uncover genetic changes that underlie phenotypic diversity.
Collapse
Affiliation(s)
- Uthayakumar Muthukumarasamy
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, Hannover, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, Hannover, Germany
| | - Adrian Kordes
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, Hannover, Germany
| | - Michal Koska
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, Hannover, Germany
| | - Monika Schniederjans
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, Hannover, Germany
| | - Ariane Khaledi
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, Hannover, Germany
| | - Susanne Häussler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute of Molecular Bacteriology, TWINCORE GmbH, Center for Clinical and Experimental Infection Research, Hannover, Germany
| |
Collapse
|
190
|
Bachar A, Itzhaki E, Gleizer S, Shamshoom M, Milo R, Antonovsky N. Point mutations in topoisomerase I alter the mutation spectrum in E. coli and impact the emergence of drug resistance genotypes. Nucleic Acids Res 2020; 48:761-769. [PMID: 31777935 PMCID: PMC6954433 DOI: 10.1093/nar/gkz1100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/27/2019] [Accepted: 11/21/2019] [Indexed: 11/14/2022] Open
Abstract
Identifying the molecular mechanisms that give rise to genetic variation is essential for the understanding of evolutionary processes. Previously, we have used adaptive laboratory evolution to enable biomass synthesis from CO2 in Escherichia coli. Genetic analysis of adapted clones from two independently evolving populations revealed distinct enrichment for insertion and deletion mutational events. Here, we follow these observations to show that mutations in the gene encoding for DNA topoisomerase I (topA) give rise to mutator phenotypes with characteristic mutational spectra. Using genetic assays and mutation accumulation lines, we find that point mutations in topA increase the rate of sequence deletion and duplication events. Interestingly, we observe that a single residue substitution (R168C) results in a high rate of head-to-tail (tandem) short sequence duplications, which are independent of existing sequence repeats. Finally, we show that the unique mutation spectrum of topA mutants enhances the emergence of antibiotic resistance in comparison to mismatch-repair (mutS) mutators, and leads to new resistance genotypes. Our findings highlight a potential link between the catalytic activity of topoisomerases and the fundamental question regarding the emergence of de novo tandem repeats, which are known modulators of bacterial evolution.
Collapse
Affiliation(s)
- Amit Bachar
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Elad Itzhaki
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shmuel Gleizer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Melina Shamshoom
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Ron Milo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Niv Antonovsky
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.,Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
191
|
Ramiro RS, Durão P, Bank C, Gordo I. Low mutational load and high mutation rate variation in gut commensal bacteria. PLoS Biol 2020; 18:e3000617. [PMID: 32155146 PMCID: PMC7064181 DOI: 10.1371/journal.pbio.3000617] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Bacteria generally live in species-rich communities, such as the gut microbiota. Yet little is known about bacterial evolution in natural ecosystems. Here, we followed the long-term evolution of commensal Escherichia coli in the mouse gut. We observe the emergence of mutation rate polymorphism, ranging from wild-type levels to 1,000-fold higher. By combining experiments, whole-genome sequencing, and in silico simulations, we identify the molecular causes and explore the evolutionary conditions allowing these hypermutators to emerge and coexist within the microbiota. The hypermutator phenotype is caused by mutations in DNA polymerase III proofreading and catalytic subunits, which increase mutation rate by approximately 1,000-fold and stabilise hypermutator fitness, respectively. Strong mutation rate variation persists for >1,000 generations, with coexistence between lineages carrying 4 to >600 mutations. The in vivo molecular evolution pattern is consistent with fitness effects of deleterious mutations sd ≤ 10−4/generation, assuming a constant effect or exponentially distributed effects with a constant mean. Such effects are lower than typical in vitro estimates, leading to a low mutational load, an inference that is observed in in vivo and in vitro competitions. Despite large numbers of deleterious mutations, we identify multiple beneficial mutations that do not reach fixation over long periods of time. This indicates that the dynamics of beneficial mutations are not shaped by constant positive Darwinian selection but could be explained by other evolutionary mechanisms that maintain genetic diversity. Thus, microbial evolution in the gut is likely characterised by partial sweeps of beneficial mutations combined with hitchhiking of slightly deleterious mutations, which take a long time to be purged because they impose a low mutational load. The combination of these two processes could allow for the long-term maintenance of intraspecies genetic diversity, including mutation rate polymorphism. These results are consistent with the pattern of genetic polymorphism that is emerging from metagenomics studies of the human gut microbiota, suggesting that we have identified key evolutionary processes shaping the genetic composition of this community. Weak-effect deleterious mutations and negative frequency–dependent selection, acting on beneficial mutations, shape the dynamics of molecular evolution within the mouse gut microbiota.
Collapse
Affiliation(s)
- Ricardo S. Ramiro
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (RSR); (IG)
| | - Paulo Durão
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Claudia Bank
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Isabel Gordo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail: (RSR); (IG)
| |
Collapse
|
192
|
Antimicrobial biosynthetic potential and diversity of culturable soil actinobacteria from forest ecosystems of Northeast India. Sci Rep 2020; 10:4104. [PMID: 32139731 PMCID: PMC7057963 DOI: 10.1038/s41598-020-60968-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Actinobacteria is a goldmine for the discovery of abundant secondary metabolites with diverse biological activities. This study explores antimicrobial biosynthetic potential and diversity of actinobacteria from Pobitora Wildlife Sanctuary and Kaziranga National Park of Assam, India, lying in the Indo-Burma mega-biodiversity hotspot. A total of 107 actinobacteria were isolated, of which 77 exhibited significant antagonistic activity. 24 isolates tested positive for at least one of the polyketide synthase type I, polyketide synthase type II or non-ribosomal peptide synthase genes within their genome. Their secondary metabolite pathway products were predicted to be involved in the production of ansamycin, benzoisochromanequinone, streptogramin using DoBISCUIT database. Molecular identification indicated that these actinobacteria predominantly belonged to genus Streptomyces, followed by Nocardia and Kribbella. 4 strains, viz. Streptomyces sp. PB-79 (GenBank accession no. KU901725; 1313 bp), Streptomyces sp. Kz-28 (GenBank accession no. KY000534; 1378 bp), Streptomyces sp. Kz-32 (GenBank accession no. KY000536; 1377 bp) and Streptomyces sp. Kz-67 (GenBank accession no. KY000540; 1383 bp) showed ~89.5% similarity to the nearest type strain in EzTaxon database and may be considered novel. Streptomyces sp. Kz-24 (GenBank accession no. KY000533; 1367 bp) showed only 96.2% sequence similarity to S. malaysiensis and exhibited minimum inhibitory concentration of 0.024 µg/mL against methicilin resistant Staphylococcus aureus ATCC 43300 and Candida albicans MTCC 227. This study establishes that actinobacteria isolated from the poorly explored Indo-Burma mega-biodiversity hotspot may be an extremely rich reservoir for production of biologically active compounds for human welfare.
Collapse
|
193
|
Castañeda-García A, Martín-Blecua I, Cebrián-Sastre E, Chiner-Oms A, Torres-Puente M, Comas I, Blázquez J. Specificity and mutagenesis bias of the mycobacterial alternative mismatch repair analyzed by mutation accumulation studies. SCIENCE ADVANCES 2020; 6:eaay4453. [PMID: 32095527 PMCID: PMC7015689 DOI: 10.1126/sciadv.aay4453] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/25/2019] [Indexed: 05/09/2023]
Abstract
The postreplicative mismatch repair (MMR) is an almost ubiquitous DNA repair essential for maintaining genome stability. It has been suggested that Mycobacteria have an alternative MMR in which NucS, an endonuclease with no structural homology to the canonical MMR proteins (MutS/MutL), is the key factor. Here, we analyze the spontaneous mutations accumulated in a neutral manner over thousands of generations by Mycobacterium smegmatis and its MMR-deficient derivative (ΔnucS). The base pair substitution rates per genome per generation are 0.004 and 0.165 for wild type and ΔnucS, respectively. By comparing the activity of different bacterial MMR pathways, we demonstrate that both MutS/L- and NucS-based systems display similar specificity and mutagenesis bias, revealing a functional evolutionary convergence. However, NucS is not able to repair indels in vivo. Our results provide an unparalleled view of how this mycobacterial system works in vivo to maintain genome stability and how it may affect Mycobacterium evolution.
Collapse
Affiliation(s)
- A. Castañeda-García
- Centro Nacional de Biotecnología–CSIC, Madrid, Spain
- Corresponding author. (A.C.-G.); (J.B.)
| | | | | | - A. Chiner-Oms
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
| | | | - I. Comas
- Instituto de Biomedicina de Valencia, IBV-CSIC, Valencia, Spain
- CIBER in Epidemiology and Public Health
| | - J. Blázquez
- Centro Nacional de Biotecnología–CSIC, Madrid, Spain
- Corresponding author. (A.C.-G.); (J.B.)
| |
Collapse
|
194
|
DeNegre AA, Myers K, Fefferman NH. Impact of chemorophylaxis policy for AIDS-immunocompromised patients on emergence of bacterial resistance. PLoS One 2020; 15:e0225861. [PMID: 31999715 PMCID: PMC6992000 DOI: 10.1371/journal.pone.0225861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/13/2019] [Indexed: 12/20/2022] Open
Abstract
Chemoprophylaxis (antibiotic prophylaxis) is a long relied-upon means of opportunistic infection management among HIV/AIDS patients, but its use represents an evolutionary tradeoff: Despite the benefits of chemoprophylaxis, widespread use of antibiotics creates a selective advantage for drug-resistant bacterial strains. Especially in the developing world, with combined resource limitations, antibiotic misuse, and often-poor infection control, the emergence of antibiotic resistance may pose a critical health risk. Extending previous work that demonstrated that this risk is heightened when a significant proportion of the population is HIV/AIDS-immunocompromised, we work to address the relationship between HIV/AIDS patients' use of antibiotic chemoprophylaxis and the emergence of resistance. We apply an SEIR compartmental model, parameterized to reflect varying percentages of chemoprophylaxis use among HIV/AIDS+ patients in a resource-limited setting, to investigate the magnitude of the risk of prophylaxis-associated emergence versus the individual-level benefits it is presumed to provide. The results from this model suggest that, while still providing tangible benefits to the individual, chemoprophylaxis is associated with negligible decreases in population-wide morbidity and mortality from bacterial infection, and may also fail to provide assumed efficacy in reduction of TB prevalence.
Collapse
Affiliation(s)
- Ashley A. DeNegre
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, United States of America
- The Command, Control and Interoperability Center for Advanced Data Analysis (CCICADA), Rutgers University, New Brunswick, New Jersey, United States of America
| | - Kellen Myers
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- Department of Mathematics, University of Tennessee, Knoxville, Tennessee, United States of America
- National Institute for Mathematical and Biological Synthesis (NIMBioS), University of Tennessee, Knoxville, Tennessee, United States of America
- Department of Mathematics, Tusculum University, Greeneville, Tennessee, United States of America
| | - Nina H. Fefferman
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, New Jersey, United States of America
- The Command, Control and Interoperability Center for Advanced Data Analysis (CCICADA), Rutgers University, New Brunswick, New Jersey, United States of America
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- Department of Mathematics, University of Tennessee, Knoxville, Tennessee, United States of America
- National Institute for Mathematical and Biological Synthesis (NIMBioS), University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
195
|
Yasir M, Dutta D, Hossain KR, Chen R, Ho KKK, Kuppusamy R, Clarke RJ, Kumar N, Willcox MDP. Mechanism of Action of Surface Immobilized Antimicrobial Peptides Against Pseudomonas aeruginosa. Front Microbiol 2020; 10:3053. [PMID: 32038530 PMCID: PMC6987417 DOI: 10.3389/fmicb.2019.03053] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022] Open
Abstract
Bacterial colonization and biofilm development on medical devices can lead to infection. Antimicrobial peptide-coated surfaces may prevent such infections. Melimine and Mel4 are chimeric cationic peptides showing broad-spectrum antimicrobial activity once attached to biomaterials and are highly biocompatible in animal models and have been tested in Phase I and II/III human clinical trials. These peptides were covalently attached to glass using an azidobenzoic acid linker. Peptide attachment was confirmed using X-ray photoelectron spectroscopy and amino acid analysis. Mel4 when bound to glass was able to adopt a more ordered structure in the presence of bacterial membrane mimetic lipids. The ability of surface bound peptides to neutralize endotoxin was measured along with their interactions with the bacterial cytoplasmic membrane which were analyzed using DiSC(3)-5 and Sytox green, Syto-9, and PI dyes with fluorescence microscopy. Leakage of ATP and nucleic acids from cells were determined by analyzing the surrounding fluid. Attachment of the peptides resulted in increases in the percentage of nitrogen by 3.0% and 2.4%, and amino acid concentrations to 0.237 nmole and 0.298 nmole per coverslip on melimine and Mel4 coated surfaces, respectively. The immobilized peptides bound lipopolysaccharide and disrupted the cytoplasmic membrane potential of Pseudomonas aeruginosa within 15 min. Membrane depolarization was associated with a reduction in bacterial viability by 82% and 63% for coatings melimine and Mel4, respectively (p < 0.001). Disruption of membrane potential was followed by leakage of ATP from melimine (1.5 ± 0.4 nM) or Mel4 (1.3 ± 0.2 nM) coated surfaces compared to uncoated glass after 2 h (p < 0.001). Sytox green influx started after 3 h incubation with either peptide. Melimine coatings yielded 59% and Mel4 gave 36% PI stained cells after 4 h. Release of the larger molecules (DNA/RNA) commenced after 4 h for melimine (1.8 ± 0.9 times more than control; p = 0.008) and after 6 h with Mel4 (2.1 ± 0.2 times more than control; p < 0.001). The mechanism of action of surface bound melimine and Mel4 was similar to that of the peptides in solution, however, their immobilization resulted in much slower (approximately 30 times) kinetics.
Collapse
Affiliation(s)
- Muhammad Yasir
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia
| | - Debarun Dutta
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia
- Optometry and Vision Science, Optometry School, Aston University, Birmingham, United Kingdom
| | - Khondker R. Hossain
- School of Chemistry, The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| | - Renxun Chen
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Kitty K. K. Ho
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Rajesh Kuppusamy
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Ronald J. Clarke
- School of Chemistry, The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales, Sydney, NSW, Australia
| | - Mark D. P. Willcox
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
196
|
Hypermutation as an Evolutionary Mechanism for Achromobacter xylosoxidans in Cystic Fibrosis Lung Infection. Pathogens 2020; 9:pathogens9020072. [PMID: 31973169 PMCID: PMC7168687 DOI: 10.3390/pathogens9020072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/18/2022] Open
Abstract
Achromobacter xylosoxidans can cause chronic infections in the lungs of patients with cystic fibrosis (CF) by adapting to the specific environment. The study of longitudinal isolates allows to investigate its within-host evolution to unravel the adaptive mechanisms contributing to successful colonization. In this study, four clinical isolates longitudinally collected from two chronically infected patients underwent whole genome sequencing, de novo assembly and sequence analysis. Phenotypic assays were also performed. The isolates coming from one of the patients (patient A) presented a greater number of genetic variants, diverse integrative and conjugative elements, and different protease secretion. In the first of these isolates (strain A1), we also found a large deletion in the mutS gene, involved in DNA mismatch repair (MMR). In contrast, isolates from patient B showed a lower number of variants, only one integrative and mobilizable element, no phenotypic changes, and no mutations in the MMR system. These results suggest that in the two patients the establishment of a chronic infection was mediated by different adaptive mechanisms. While the strains isolated from patient B showed a longitudinal microevolution, strain A1 can be clearly classified as a hypermutator, confirming the occurrence and importance of this adaptive mechanism in A. xylosoxidans infection.
Collapse
|
197
|
Prevalence of hypermutator isolates of Achromobacter spp. from cystic fibrosis patients. Int J Med Microbiol 2020; 310:151393. [PMID: 31969255 DOI: 10.1016/j.ijmm.2020.151393] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/30/2019] [Accepted: 12/04/2019] [Indexed: 01/26/2023] Open
Abstract
Bacteria colonising the lungs of cystic fibrosis (CF) patients encounter high selective pressures. Hypermutation facilitates adaptation to fluctuating environments, and hypermutator strains are frequently isolated from CF patients. We investigated the prevalence of hypermutator isolates of Achromobacter spp. among patients affiliated with the CF Centre in Aarhus, Denmark. By exposure to rifampicin, the mutation frequency was determined for 90 isolates of Achromobacter spp. cultured from 42 CF patients; 20 infections were categorised as chronic, 22 as intermittent. The genetic mechanisms of hypermutation were examined by comparing DNA repair gene sequences from hypermutator and normomutator isolates. Achromobacter spp. cultured from 11 patients were categorised as hypermutators, and this phenotype was exclusively associated with chronic infections. Isolates of the Danish epidemic strain (DES) of Achromobacter ruhlandii cultured from patients from both Danish CF centres showed elevated mutation frequencies. The hypermutator state of Achromobacter spp. was most commonly associated with nonsynonymous mutations in the DNA mismatch repair gene mutS; a single clone had developed a substitution in the S-adenosyl-L-methionine-dependent methyltransferase putatively involved in DNA repair mechanisms, but not previously linked to the hypermutator phenotype. Hypermutation is prevalent among clinical isolates of Achromobacter spp. and could be a key determinant for the extraordinary adaptation and persistence of DES.
Collapse
|
198
|
Thöming JG, Tomasch J, Preusse M, Koska M, Grahl N, Pohl S, Willger SD, Kaever V, Müsken M, Häussler S. Parallel evolutionary paths to produce more than one Pseudomonas aeruginosa biofilm phenotype. NPJ Biofilms Microbiomes 2020; 6:2. [PMID: 31934344 PMCID: PMC6954232 DOI: 10.1038/s41522-019-0113-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/16/2019] [Indexed: 01/28/2023] Open
Abstract
Studying parallel evolution of similar traits in independent within-species lineages provides an opportunity to address evolutionary predictability of molecular changes underlying adaptation. In this study, we monitored biofilm forming capabilities, motility, and virulence phenotypes of a plethora of phylogenetically diverse clinical isolates of the opportunistic pathogen Pseudomonas aeruginosa. We also recorded biofilm-specific and planktonic transcriptional responses. We found that P. aeruginosa isolates could be stratified based on the production of distinct organismal traits. Three major biofilm phenotypes, which shared motility and virulence phenotypes, were produced repeatedly in several isolates, indicating that the phenotypes evolved via parallel or convergent evolution. Of note, while we found a restricted general response to the biofilm environment, the individual groups of biofilm phenotypes reproduced biofilm transcriptional profiles that included the expression of well-known biofilm features, such as surface adhesive structures and extracellular matrix components. Our results provide insights into distinct ways to make a biofilm and indicate that genetic adaptations can modulate multiple pathways for biofilm development that are followed by several independent clinical isolates. Uncovering core regulatory pathways that drive biofilm-associated growth and tolerance towards environmental stressors promises to give clues to host and environmental interactions and could provide useful targets for new clinical interventions.
Collapse
Affiliation(s)
- Janne G. Thöming
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Jürgen Tomasch
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Matthias Preusse
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michal Koska
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Nora Grahl
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sarah Pohl
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Sven D. Willger
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics and Institute of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Mathias Müsken
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Department of Clinical Microbiology, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
199
|
Duruel O, Berker E, Özşin-Özler C, Gharibzadeh-Hızal M, Gürpınar Ö, Eryılmaz-Polat S, Ataman-Duruel ET, Tan Ç, Karabulut E, Tekçiçek M, Eser ÖK, Kiper N, Tezcan İ. Levels of pro- and anti-inflammatory cytokines in cystic fibrosis patients with or without gingivitis. Cytokine 2020; 127:154987. [PMID: 31927460 DOI: 10.1016/j.cyto.2020.154987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 12/23/2019] [Accepted: 01/04/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Inflammatory periodontal diseases are caused by interaction between gram negative, anaerobic bacteria and host response. Persistent infection of Pseudomonas aeruginosa in cystic fibrosis (CF) patients also cause increased pro-inflammatory response and the imbalance of pro- and anti-inflammatory response in brochoalveolar lavage fluid which leads to destruction of lungs. The aim of this study is to evaluate periodontal status of CF patients, to measure level of cytokines and biochemical molecules in gingival crevicular fluid (GCF), and to detect presence of P. aeruginosa in dental plaque samples. MATERIALS AND METHODS GCF samples were collected from 41 CF patients and 39 healthy (non-CF) subjects. Interleukin (IL)-1ß, IL-17, IL-10, human neutrophil elastase (HNE), cystic fibrosis transmembrane regulator (CFTR) protein, and human β-defensin-1 (HBD1) in GCF were evaluated by ELISA method. Dental plaque samples were collected from 18 CF patients with history of P. aeruginosa colonization and 15 non-CF subjects. Presence of P. aeruginosa was evaluated by using conventional culture methods and molecular methods. RESULTS Levels of IL-1ß, HNE, and HBD1 in CF patients were significantly higher than non-CF subjects. However, IL-10 level was significantly lower in CF patients. Increased pro-inflammatory (IL-1ß) and decreased anti-inflammatory (IL-10) cytokine levels were observed in GCF samples from CF patients, irrespective of their periodontal status. P. aeruginosa were detected in four samples of 18 CF patients, and all were negative in non-CF group. CONCLUSIONS As a result of this study, CF coexists increasing pro-inflammatory and decreasing anti-inflammatory response locally. Due to increasing pro-inflammation, CF patients should be followed-up more often than non-CF children.
Collapse
Affiliation(s)
- Onurcem Duruel
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey.
| | - Ezel Berker
- Department of Periodontology, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Cansu Özşin-Özler
- Department of Pediatric Dentistry, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Mina Gharibzadeh-Hızal
- Division of Pediatric Pulmonology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Öznur Gürpınar
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Sanem Eryılmaz-Polat
- Division of Pediatric Pulmonology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | | | - Çağman Tan
- Division of Immunology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Erdem Karabulut
- Department of Biostatistics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Meryem Tekçiçek
- Department of Pediatric Dentistry, Faculty of Dentistry, Hacettepe University, Ankara, Turkey
| | - Özgen Köseoğlu Eser
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Nural Kiper
- Division of Pediatric Pulmonology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - İlhan Tezcan
- Division of Immunology, Department of Pediatrics, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
200
|
Balboa S, Hu Y, Dean FB, Bullard JM. Lysyl-tRNA Synthetase from Pseudomonas aeruginosa: Characterization and Identification of Inhibitory Compounds. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:57-69. [PMID: 31498734 PMCID: PMC6925310 DOI: 10.1177/2472555219873095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes nosocomial infections and has highly developed systems for acquiring resistance against numerous antibiotics. The gene (lysS) encoding P. aeruginosa lysyl-tRNA synthetase (LysRS) was cloned and overexpressed, and the resulting protein was purified to 98% homogeneity. LysRS was kinetically evaluated, and the Km values for the interaction with lysine, adenosine triphosphate (ATP), and tRNALys were determined to be 45.5, 627, and 3.3 µM, respectively. The kcatobs values were calculated to be 13, 22.8, and 0.35 s-1, resulting in kcatobs/KM values of 0.29, 0.036, and 0.11 s-1µM-1, respectively. Using scintillation proximity assay technology, natural product and synthetic compound libraries were screened to identify inhibitors of function of the enzyme. Three compounds (BM01D09, BT06F11, and BT08F04) were identified with inhibitory activity against LysRS. The IC50 values were 17, 30, and 27 µM for each compound, respectively. The minimum inhibitory concentrations were determined against a panel of clinically important pathogens. All three compounds were observed to inhibit the growth of gram-positive organisms with a bacteriostatic mode of action. However, two compounds (BT06F11 and BT08F04) were bactericidal against cultures of gram-negative bacteria. When tested against human cell cultures, BT06F11 was not toxic at any concentration tested, and BM01D09 was toxic only at elevated levels. However, BT08F04 displayed a CC50 of 61 µg/mL. In studies of the mechanism of inhibition, BM01D09 inhibited LysRS activity by competing with ATP for binding, and BT08F04 was competitive with ATP and uncompetitive with the amino acid. BT06F11 inhibited LysRS activity by a mechanism other than substrate competition.
Collapse
Affiliation(s)
- Samantha Balboa
- The University of Texas–RGV, Edinburg, TX, USA
- Department of Chemistry, The University of North Carolina, Chapel Hill, NC, USA
| | - Yanmei Hu
- The University of Texas–RGV, Edinburg, TX, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|